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Underrepresentation of people of color in mathematics at the postsecondary level warrants more 
focus on equity issues. The prevalence of cognitive studies at the undergraduate level is met with the 
call for critical analysis about the kinds of knowledge that get privileged in mathematics education. 
Connecting to the Funds of Knowledge work, this paper discusses the utility of diSessa’s Knowledge 
in Pieces cognitive framework to uncover productive informal knowledge in learning formal 
mathematics. Seeing the valorization of knowledge as related to issues of power, a case of a Chicana 
student’s productive sense making about the formal definition of a limit illustrates the way diSessa’s 
framework can help challenge what counts as productive mathematical knowledge and reasoning. 
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Whether parents, teachers, students, or researchers, we all bring valorization of knowledge to our 
views of what counts as “proper” or “better” approaches to doing mathematics.  

–Marta Civil (2014, p. 12)  

The President’s Council of Advisors on Science and Technology (PCAST) called for 1 million 
additional college graduates in science, technology, engineering, and mathematics (STEM) fields 
based on economic forecasts (Executive Office of the President, PCAST, 2012). Within STEM, the 
number of mathematics degrees being conferred continues to be generally low. People of color, in 
particular, continue to be severely underrepresented in mathematics. A recent National Science 
Foundation report shows that historically marginalized population accounts for 20% of the 
mathematics degrees conferred (NSB, 2014).  

Gutiérrez (2002) characterizes equity research as one that explicitly focuses on efforts to 
understand and mitigate systematic differences in how people experience educational opportunities, 
particularly differences that privilege one group over another. In the broader area of undergraduate 
STEM education, some studies have begun to explore issues of marginalization of women and 
students of color and ways that students manage it in their everyday lives (e.g., McGee & Martin, 
2011). However, there has not been a sustained and concerted effort to focus on equity considerations 
in undergraduate mathematics education research (Adiredja, Alexander & Andrews-Larson, 2015), 
like there has been in K-12 mathematics education research in recent years (Gutiérrez, 2013).  

The need to understand how students make sense of challenging topics in undergraduate 
mathematics contributed to the prevalence of studies about students’ and teachers’ individual 
cognition and practices (Adiredja et al., 2015). Several scholars have argued for critical analysis of 
the kinds of knowledge and practices that we privilege in teaching and learning of mathematics 
(Civil, 2014; Gutiérrez, 2013). Considering the socio-political nature of education, Gutiérrez (2013) 
emphasized the interconnectedness of knowledge and power:    

Knowledge and power are inextricably linked. That is, because the production of knowledge 
reflects the society in which it is created, it brings with it the power relations that are part of 
society. What counts as knowledge, how we come to “know” things, and who is privileged in the 
process are all part and parcel of issues of power.  

For example, children of immigrant parents at times would discount their parents’ mathematical 
knowledge as a result of the way things are taught in US schools (Civil and Planas, 2010). This 
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example illustrates one explicit implication of power vis-à-vis the kinds of knowledge students learn 
to be valued in the classroom. The question then becomes how can we begin to unpack issues of 
power behind our valorization of mathematical knowledge and approaches, particularly at the 
undergraduate level?  

At the K-12 level, some researchers have responded to this question by trying to leverage and 
build on cultural aspects of the students’ communities in designing curriculum (Moll, Amanti, Neff 
& Gonzalez, 1992). The goal with the Funds of Knowledge project (Moll et al., 1992) is to help 
teachers explore and document the often invisible but productive knowledge of non-dominant 
students. While it is tempting to assert that the nature of mathematics at the undergraduate level is 
different from that of K-12 mathematics, I posit that the spirit of the Funds of Knowledge work can 
also be productive at the post-secondary level.  

The kind of mathematics that is being learned at the postsecondary level does become 
increasingly abstract and are often built on prior formal mathematical knowledge. Moreover, the 
Euro-centricity of mathematics (Joseph, 2010) becomes even more privileged at the post-secondary 
level. As such one might argue that these realities of mathematics at the post-secondary level limit 
opportunities for teachers to connect to students’ informal knowledge and experiences. For example, 
in the context of limit in calculus, some researchers have argued that students’ intuitive knowledge is 
an obstacle in learning (Davis & Vinner, 1986), despite the prevalence of such knowledge student 
thinking about the concept (Monaghan, 1991).  

While the Euro-centricity of advance mathematics is a reality, students’ intuitive knowledge 
about mathematics, and more importantly ways that such knowledge might be productive in learning 
formal mathematics, are largely underexplored in undergraduate mathematics education. Wawro et 
al. (2012) have shown a case where incorporating students’ intuition about using different modes of 
transportation in traveling is productive to explore concepts in linear algebra. This study suggests that 
there is room for intuitive knowledge in learning mathematics at the undergraduate level. 
Recognizing the potential utility of students’ informal knowledge, and its potential in disturbing 
power distribution in the classroom, where can we find such knowledge? What might be able to 
assist us in uncovering many of the invisible productive knowledge students bring with them to learn 
formal mathematics?  

This paper attempts to offer a response to those questions, particularly in the context of 
undergraduate mathematics education. This paper argues that the theoretical perspective on 
epistemology and learning in cognitive studies plays an important role in uncovering knowledge 
resources students bring into learning formal mathematics. In particular, this paper argues for the 
utility of the Knowledge in Pieces cognitive framework (diSessa, 1993) to recognize productive 
knowledge resources students might use in learning formal mathematics, particularly in the face of 
non-normative language. The analysis shows how this framework has a potential of challenging the 
existing distribution of power vis-à-vis what counts as productive knowledge.  

Theoretical Framework for Cognition 
The Knowledge in Pieces (KiP) theoretical framework (diSessa, 1993; Smith, diSessa and 

Roschelle, 1993) models knowledge as a system of diverse elements and complex connections. The 
nature of the elements, their diversity, and connections are typical interests for studies using this 
framework. Characterizing knowledge using generic ideas like “concept” or the commonly used idea 
of “misconceptions” is viewed as uninformative and unproductive (Smith et al., 1993). Instead, KiP 
focuses on the context specificity of knowledge to maintain the productivity of the particular piece of 
knowledge. KiP also pays particular attention to the continuity of knowledge, i.e., ways that 
knowledge gets used or built upon in new contexts. It is common for studies using this framework to 
uncover productive sense making behind students’ use of non-normative language to describe their 
reasoning (e.g., Campbell, 2011; diSessa, 2014).  
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One of the main principles of KiP is that knowledge is context specific (Smith et al., 1993). This 
means that the productivity of a piece of knowledge is highly dependent on the context in which it is 
used. Context variation can happen as a result of change in the literal problem context, the passage of 
time, or simply as knowledge is assessed more or less carefully. For example, the knowledge that 
“multiplication makes a number bigger” is productive in the context of multiplication with numbers 
larger than one. The knowledge is not productive in the context of multiplication with all real 
numbers. In contrast to studies that focus on identifying students’ misconceptions, KiP focuses on 
building new knowledge on students’ prior knowledge, instead of focusing on efforts to “replace” 
students’ misconceptions (Smith et al., 1993). Adopting this theoretical framework implies that the 
analysis in this paper will focus on ways that students build on their prior ideas while suspending 
judgment about their correctness. KiP also posits that students have a lot of intuitive ideas that can be 
leveraged in instruction. KiP was developed in the context of physics where students have a diversity 
of intuitive ideas about physics originating from their everyday experience. Some studies have shown 
that intuitive ideas can also be found in mathematical reasoning as well (e.g., Campbell, 2011). 

Mathematical Context and Literature 
The formal definition of a limit of a function at a point, also known as the epsilon-delta (ε-δ) 

definition, is an essential topic in mathematics majors’ development that is introduced in calculus. 
The limit of a function f (x) as x approaches a is L and is written as lim

x→a
f (x) = L if and only if, for 

every positive number ε, there exists a positive number δ, such that all numbers x that are within δof 
a (but not equal to a)yield f (x) values that are within εof the limit L. This defining property is often 
written as “for every number ε> 0, there exists a number δ> 0 such that if 0 <|x–a |<δthen |f (x)–
L|<ε”.Informally, one might say, “If L is the limit, then for however close one wants f (x) to be to L, 
one can constrain the x-values so that f (x) would satisfy the given constraint.” We return to this 
intuitive idea shortly. 

The formal definition provides the technical tools for demonstrating how a limit works and 
introduces students to the rigor of calculus. Yet even thoughtful efforts at instruction leave students, 
including intending and continuing mathematics majors, confused or with at most a procedural 
understanding about the formal definition (Cottrill, Dubinksy, Nichols, Schwingendorf, and 
Vidakovic, 1996; Oehrtman, 2008). Many studies assert that students’ dynamic conception (the limit 
is the number that f (x) approaches as x approaches a) is an obstacle in learning the formal definition 
(Parameswaran, 2006; Williams, 2001). These studies largely focused on the unproductivity of 
students’ prior conception and their sense making.  

In the meantime, a small number of studies that focuses on students’ sense making of the formal 
definition (Knapp & Oehrtman, 2005; Roh, 2009; Swinyard, 2011) suggest that students’ 
understanding of a crucial relationship between two quantities featured in the formal definition, 
epsilon (ε) and delta (δ), warrants further investigation. Davis and Vinner (1986) used the term 
temporal order to describe their relationship. While studies have shown the existence and prevalence 
of this particular difficulty, its nature is largely underexplored. 

The relationship between the quantities δand ε in the definition can be described using the idea of 
quality control in manufacturing an item. The conceptual structure at issue can be described as 
follows: given a permissible error in the measurement of the output (ε), one determines a way to 
control the input to achieve that result. One does so by determining the permissible error in the 
measurement of the input (δ) based on the given parameter for the output (ε). In this way, the error 
bounds follow the following sequential order, error bound for the output, then the error bound for the 
input. This is because the error bound for the output is given. In some ways, the error bound for the 
input could be seen as being dependent on the given error bound for the output. Epsilon can be seen 
as the error bound of the output whereas delta is the error bound for the input. Therefore, δand 
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εfollow the order of ε first, and then δ, or δdepends on ε. In this paper, the student discussed this idea 
of quality control in the context of working at a pancake house that is known to make 5-inch 
diameter pancakes. Students are given a permissible error for the size of the pancakes, and they were 
responsible to control the error in the amount of batter. 

Data Collection and Analysis Methods 
The data presented in this report is a case study from a larger interview study investigating the 

role of prior (and intuitive) knowledge in student understanding of the temporal order of epsilon and 
delta within the formal definition (Adiredja, 2014). Participants of the study were calculus students at 
a large Western public research university. Students were interviewed about their understanding 
about the temporal order. They were asked a series of questions about the temporal order before and 
after engaging with the instructional intervention. The instructional intervention, the Pancake Story 
uses the context of working at a pancake house to leverage the idea of quality control in discussing 
the formal definition, as explained in the previous section. A video recording of the interview was 
transcribed following Ochs’ (1979) guidelines. Transcripts were organized by turns, marked changes 
in the speaker. They included non-verbal behaviors, including relevant gazes, laughter and gestures. 
Turns that discus one mathematical argument make up an episode. The transcript was modified to 
facilitate reading. Many hedges, and uh-huh’s and um-hm’s from the interviewer were removed. 

Adriana, the focus of the analysis of this paper, was a mathematics and Chicano studies major. 
She ethnically identified as Chicana. Adriana received an A in her first semester calculus course in 
high school and in college. She was selected because despite her strong academic background, even 
after engaging with the Pancake Story, she still initially (and incorrectly) argued that ε depended on 
δ. Ultimately, Adriana adopted many of the productive resources from the story and used them to 
reorganize her knowledge and modify her claim. The analysis was interested in understanding how 
and why she did so. The analysis did not explore ways that Adriana’s identity as a Chicana 
influenced her reasoning about the topic. Her ethnicity and gender were included to better represent 
her as a student and challenge the common unintended assumption with cognitive studies that the 
student is a White male student (Nasir, 2013).  

The analysis focused on identifying a knowledge entity called knowledge resources (Adiredja, 
2014), which is defined as a single or a collection of knowledge elements that might be involved in 
making a single claim from larger ideas that the student used to make her claim. Knowledge 
resources were assumed to be neutral; they are not correct or incorrect. This theoretical assumption 
distinguished knowledge resources from larger ideas that were combinations of several knowledge 
resources. To identify knowledge resources, the analysis exploit any relevant data (e.g., gestures, 
other parts of transcripts) that might inform the aim to optimally understand the activation of 
knowledge resources in various contexts. The analysis then generated multiple models 
(interpretations) of the student’s argument in each episode. The analysis then put these models of 
student thinking in competition with one another. This process of competitive argumentation 
(VanLehn, Brown, & Greeno, 1984) was used to refine interpretations of student thinking. In this 
paper I only present the final model of each episode that was the result of the process of competitive 
argumentation.  

Results 
This paper only presents two of the four episodes of Adriana’s sense making: the first and final 

episode. These episodes illustrate the changes in Adriana’s thinking and salient ideas from the 
Pancake Story. They also show the initial conflict that Adriana faced in aligning the ideas from the 
story with her prior knowledge. The four episodes occurred on the span of 14 minutes.  

The first episode started with the interviewer’s asking Adriana about the dependence 
betweenδand ε after they discussed the Pancake Story. Adriana responded with the same [incorrect] 
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claim she made before she engaged with the story. She argued thatε depended on δ because epsilon 
was with f (x)and delta was with x and f (x) depended on x. The bolded texts marked the ideas that 
from which knowledge resources were identified. 

Adriana: [They kinda depend on each other], yeah in a sense because, but more whatever you're 
getting, like f (x) is always gonna depend on what x you're inputting it. But then, if you want 
to get something that's within delta [marks a small interval on the x axis with two fingers] 
you need to see if /.../ for example here [points to the pancake story] our epsilon here was 
already set, then that [points back and forth between 4.5 and 5.5 in the inequality 4.5<f (x)–
L<5.5] kind of depended on what we were putting in for x [points at the same interval 
around x on the graph] but..but mostly whatever you’re putting in to your x is gonna 
determine what you get for f (x) [pause]. So I’m still saying the same thing like delta depends 
on epsilon but= 

Interviewer: =Delta depends on epsilon? Or epsilon depends.. 
Adriana: No, yeah, epsilon depends on delta. But, /…/ if epsilon's already set then you'll 

manipulate your /…/ delta so it's within an error bound and /…/ then continue to manipu- 
wait [long pause] wait, so you're… hm. 

Final model of episode 1: Adriana focuses on her prior claim that epsilon depends on delta. She 
justifies the claim using functional dependence and function slots resources. She simultaneously 
brings up many of the productive resources from the story: domain constraint for a limit, the 
givenness of epsilon and quality control. However, these resources are in conflict with her prior 
conception. Adriana’s use of the knowledge resource of functional dependence can be seen in her 
statement, “whatever you’re putting in to your x is gonna determine what you get for f (x).” Analysis 
of the final episode revealed that in this episode, Adriana thought about epsilon and delta as a range 
of errors, i.e., x and y values, instead of error bounds for those values. This suggests that along with 
functional dependence, Adriana uses the knowledge resource function slots, i.e., the assumption that 
when two quantities share a functional relationship, one quantity is the x and the other is the f (x) or 
the y.  

Separate from her previous argument, Adriana also mentioned the idea that the epsilon (the error 
bound for the pancake) was given (givenness knowledge resource) in the story, and that she wanted 
to get “something” that was within delta. That statement reveals Adriana’s preference of only 
considering x values that are close to a in discussing limit problems. She would control that closeness 
by choosing x values that were within a small delta. This suggests her use of the knowledge resource 
domain constraint for a limit. The last line of the episode suggests that Adriana might have also 
taken up the idea of quality control: for a given specification on the output, one would manipulate the 
input so the output would be within the specified error bound. The sentence also reveals her use of 
the dynamic conception of a limit when she talked about continuing to manipulate the delta to get x 
closer and closer to a. She also erroneously talked about wanting delta to be within an error bound, 
which is consistent with the interpretation that delta in this episode as a range of x values.   

In the final episode, Adriana repurposed the functional dependence resource to describe the 
relationship between the errors but not the error bounds. This productive move helped Adriana to 
align productive resources from the story with Adriana’s prior knowledge. She then prioritized the 
idea of givenness of epsilon and quality control, which she already knew since episode 1,to conclude 
that delta depended on epsilon. She also adopted the story’s language. 

Interviewer: So, do they depend on each other, is it just one way now? 
Adriana: Um, see cus I was looking at it like /…/ the f of x [f (x)] depends on the x and that's 

how I was like saying that epsilon depends on delta because epsilon is related to the f of x 
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[f(x)]/…/. But that's just saying the error of the L and the f of x [f (x)] depends on the a 
and x but that's not to say that epsilon depends on delta. 

Interviewer: Ok, so? 
Adriana: So, I think that delta depends on epsilon now [laughs]. Just cus if it's given like this 

[reference unclear] and you're trying to aim at getting /…/ within a certain error bound, 
then you're gonna try to manipulate your entries /…/ to be within a certain error bound 
[gestures a small horizontal interval with her palms] 

Interviewer: Ok. Alright, so and so you changed your mind it seems? Um, so how did that 
happen? Why did you change your mind? 

Adriana: Because I was given an epsilon [points at the inequality 4.5<f (x)–L<5.5] and that's 
kinda like the main goal. The main goal is to get the pancake, /…/ and they gave me a 
constraint /…/ and /…/ they didn't give me an error bound for the batter or for like the a 
or x, they didn't give me an error bound. But I know I want to make it small so that it's 
within the error bound, the epsilon. So then I would kinda base my delta on what was 
epsilon.  

Final model of episode 4: Adriana uses functional dependence to describe the relationship 
between the errors (“But that's just saying the error of the L and the f (x) depends on the a and x, but 
that's not to say that ε depends on δ.”). To determine the dependence relationship between ε and δ, 
she prioritizes the resource givenness of epsilon and quality control, as seen in her statement, “you’re 
trying to aim at getting within a certain error bound, then you’re gonna try to manipulate your entries 
to be within a certain error bound.” Adriana also made the productive observation that delta was not 
given, showing her use of the givenness resource with delta as well. More importantly, not only did 
Adriana treat delta as an error bound, she also stated that she wanted delta to be small. By making 
delta small, Adriana was no longer using the idea of smaller and smaller or “continuing to 
manipulate” the input errors that suggests the use of dynamic conception of a limit in the first 
episode.  

Discussion 
In summary, the analysis revealed that Adriana took up many of the productive resources from 

the story despite its initially looking as if her understanding seemed unchanged. It took effort for 
Adriana to align the new productive resources from the story with her prior knowledge. After she 
repurposed the functional dependence resource to describe a relationship between the errors, she 
prioritized the productive resources from the story. Adriana also used the story to make a novel 
observation about the temporal order (delta was not given). That move and the adoption of the 
language of the Pancake Story suggest that the story was a rich learning context for Adriana. The 
story was able to leverage Adriana’s prior knowledge about functional dependence and quality 
control while reasoning about the temporal order. 

The Knowledge in Pieces framework guided the analysis in revealing knowledge resources from 
the story that were salient to Adriana, as well as those that existed as part of her prior knowledge. 
Adriana’s language in describing her conception in the first episode was not clear. However, analysis 
of the structure of her knowledge revealed these productive resources. The analysis was also able to 
recognize the productivity of Adriana’s moves because KiP takes seriously the process of 
reorganization of knowledge. The theoretical assumptions about epistemology and learning make 
KiP particularly sensitivity to subtle changes in sense making and potential productive roles that 
students’ prior knowledge can play in learning. It challenges the deficit perspective of student 
thinking and challenges what counts as productive mathematical knowledge and reasoning. More 
broadly, researchers studying student thinking wield a great deal of power in deciding what kind of 
knowledge is valuable, and particularly in suggesting implications to practice from the findings of the 
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analysis. For example, cognitive studies that focus on pathologizing students’ thinking might have 
simply characterized Adriana’s return to her prior argument about the temporal order as a result of a 
persistent misconception. Moreover, a lot of the subtle changes and her adoption of many of the 
productive resources might have been easily overlooked. Thus, not only would it position her and her 
thinking in a deficit way, it would also fail to recognize her contribution. 

The findings also show the utility of intuitive knowledge in building a conceptual understanding 
of formal mathematics. The spirit of the Funds of Knowledge work can be seen in the way that the 
Pancake Story leveraged the intuitive notion of quality control to learn about the temporal order 
within formal definition of a limit. At the same time, the story was designed with the KiP 
framework’s assumptions about the potential productivity of prior knowledge and ways that 
knowledge is reorganized. In addition to Wawro and colleagues’ (2012) work, we see another case 
where intuitive knowledge can be productive in learning formal mathematics.   

In sum, I argue that cognitive studies can contribute to equity issues more directly by addressing 
issues of power vis-à-vis valorization of knowledge. In this paper, I made a case for the KiP 
framework, and recognize that there might be other frameworks that can help uncover non-normative 
but potentially productive ways of thinking with formal mathematics. This type of work would 
benefit all students, but would particularly benefit non-dominant students whose knowledge are often 
devalued or unrecognized at the post-secondary level. In the face of underrepresentation and 
marginalization of non-dominant students more broadly, cognitive research can play an important 
role in challenging issues of power in mathematics education.  
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