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This report presents dual analyses of an undergraduate student, Cassie, whose work provides nice 
contrasts between Grounded Theory (GT) analysis and Knowledge Analysis (KA). The analyses 
highlight particular methodological differences, such as grain size of findings, positioning of novices 
and more general implications about expert–novice studies. The combination of the two methods 
results in a more complete and nuanced description of Cassie as a prover, while mediating many of 
the methodological concerns from the individual analysis.  
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At the higher academic levels (graduate and professional mathematics), proving can be 
considered to be a way in which the truth of a claim is established or realized (Hanna, 2000; Weber, 
Inglis, & Mejia–Ramos, 2014). Proving, and more generally, justifying is a process by which 
mathematical knowledge can be furthered throughout the K–12 grades and in higher mathematics 
education. Selden, McKee, and Selden (2010) stated that the proving process “play[s] a significant 
role in both learning and teaching many tertiary mathematical topics, such as abstract algebra or real 
analysis” (p. 128). Various empirical studies have ventured to provide insight into the process of 
proving separate from the product of proof. For instance, previous work involving the comparing of 
expert and novice productions of proof have examined issues such as differences in strategic 
knowledge in the construction of proofs in abstract algebra (Weber, 2001), private and public aspects 
of proof (Mejia–Ramos & Tall, 2005; Raman, 2002), and use of examples by doctoral students in 
evaluating mathematical statements (Alcock & Inglis, 2008). This current work adds to this corpus of 
literature in order to better understand the process of proving, without necessarily associating the 
process to the finished product of proof.  

The study of the process of proving as an unfamiliar phenomenon benefits from the use of 
qualitative methods that focus on explaining the phenomenon being studied instead of validating 
existing theory about the phenomenon. Grounded Theory (GT) research is a qualitative research 
method that is defined by the generation of theory that is inductively derived from the study of data 
(Glaser & Strauss, 1967). GT research can be used to investigate how individuals go through a 
process and to identify the different steps in that process (Charmaz, 2000, 2006; Creswell, 2007). 
More specifically the types of questions routinely investigated using GT methods are of the type: 
“What was the process?; …What was central to the process? (core phenomenon); … What strategies 
were employed during the process? (strategies); [and] What effect occurred? (consequences)” 
(Creswell, 2007, p. 66).   

The goal of a GT analysis is to develop a substantive theory based on categories that are 
generated from iteratively gathering and examining data until the categories generated have been 
sufficiently saturated. This often implies that any theory developed through GT analysis is expected 
to be coarser and may necessarily sacrifice details and nuances about the phenomenon. Parnafes and 
diSessa (2013) asserted that claims about cognitive processes using GT typically use “time–scale and 
meaning–resolution [that] are rather large and indefinite” compared to other types of analyses of 
learning that are more microgenetic in nature (p. 15).  

One such method is Knowledge Analysis (KA) (diSessa, Sherin, & Levin, 2016; Parnafes and 
diSessa 2013). KA is a methodological approach associated with the Knowledge in Pieces (KiP) 
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theoretical framework (diSessa, 1993) to “study the content and form of knowledge for the purpose 
of understanding learning” (diSessa et al., 2016). KA aims to describe details of models for mental 
representations of students’ knowledge through micro–assessments and tracking of an individual’s 
learning in real time. In principle, KA explicitly rejects the notion that novices’ knowledge is a 
subset of experts’ knowledge, and thus prioritizes the investigation of how mathematical knowledge 
emerges out of naïve thoughts. 

In this paper, we employ both GT analysis and KA to explore the proving process of Cassie (a 
pseudonym), a “novice” prover. We anticipate that the two methods to complement each other in 
some aspects but to diverge in others. The goal is to provide a more complete and nuanced account of 
Cassie’s proving process with the two methods, and to simultaneously contribute to the more general 
discussion about combined methods in qualitative research. 

Methods 

Data Source 
Data was drawn from a larger study (Karunakaran, 2014), which examined the similarities and 

differences in the usage of knowledge by expert and novice provers of mathematics. The larger study 
involved individual semi–structured interviews where 5 undergraduate mathematics students and 5 
mathematics Ph.D. students validated or refuted the truth of five mathematical statements. At the 
time of data collection for the larger study, Cassie was a female undergraduate student majoring in 
mathematics. Cassie was selected because her work offers a palpable illustration of the affordances 
of using the individual methods of GT and KA. Cassie’s proving work was not unique compared to 
that of others within the novice prover group. In fact, the use of the GT analysis necessitated that the 
resultant claims about Cassie were consistent with her peers. Five mathematical statements were 
presented to Cassie over the course of two 90-minute interviews, which were audio and video 
recorded for subsequent transcription and analysis. The analysis in this paper focuses on Cassie’s 
engagement with the first task. 

Grounded Theory Analysis 
GT analysis uses methods such as constant comparison, and coding strategies such as open 

coding, axial coding and selective coding (Charmaz, 2000, 2001, 2006; Straus & Corbin, 2008). 
These phases of coding can be described as examining the data in order to develop categories of 
information (open coding), examining these categories to develop them further and to interconnect 
them (axial coding), and using these developed categories and their interconnections to build a theory 
that explains the existence of the categories (selective coding).  

To instantiate this coding and analysis process, consider the following excerpt from Cassie’s first 
interview, where she was addressing the task shown in Figure 1. For space considerations, the 
transcript has been abridged to exclude non–mathematical language and probing questions from the 
interviewer. 

Cassie: Let’s see. So if #ù	were 1, uh #5 were 1 then that would have to be less than or equal to 
#/, #D um so and then that would have to be um that would have to be less than or equal to 
#J plus #G plus #° plus #2 /…/ Ok. (Pause) um I’m inclined to say that it’s false. /…/ 
Because the, I mean the only constraint is like in the future so the #/ù. #/ù†5 can grow 
arbitrarily large and like all that matters is that the next two, like the next #/ù and #/ù†5 are 
bigger than that. … So like #ù is only constrained by #/ù and #/ù†5. But uh nothing before it 
so my initial inclination is to say that it’s false. 
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Figure 1: The task statement for Task 1 and Cassie’s counterexample to the statement. 

The first level of coding involved the identification of the mathematical objects used by Cassie 
(resources) and the acts performed on or with them (actions). For instance, the inequality condition 
from the task statement was identified as a resource to perform the action of generating an example 
sequence. The second level of coding was to infer the intention behind Cassie’s use of the resources 
and actions. In the above transcript, all the identified actions and resources seemed to be expressly 
used with the intention of generating an example sequence to refute the statement. Thus, the second 
level of coding generated bundles of actions and resources based on their common intention. This 
was done iteratively for every task worked on by every participant. The final level of coding involved 
comparing the bundles identified across every task for each single participant and across every 
participant for each single task. For more details about data collection and of the GT phases of 
analysis see Karunakaran (2014).  

Like typical GT studies, the claims generated for the expert and novice groups in this study were 
solely derived and supported by the data. This was achieved by constant and repeated examinations 
of the data for confirming and for disconfirming evidence. Since the emergent claims during the GT 
process were constantly evolving based on the confirming or disconfirming evidence found with 
continuing analyses, the final claims put forth by this method were necessarily consistent with the 
corpus of data collected within each group. 

Knowledge in Pieces (KiP) and Knowledge Analysis (KA) 
KiP models knowledge as a system of diverse elements and complex connections. One of the 

main principles of KiP is that knowledge is context sensitive (Smith, diSessa and Roschelle, 1993). 
This means that the productivity of a piece of knowledge is highly influenced by the context in which 
it is used. In contrast to studies that focus on identifying students’ misconceptions, KiP focuses on 
the ways that students build new knowledge onto their prior knowledge. Adopting this theoretical 
framework implies that one analysis in this paper focuses on ways that Cassie builds on her prior 
ideas while suspending judgment about her correctness. 

There are different types of KA studies. Microanalytic studies are a type of KA studies, which 
focuses on identifying knowledge elements/resources and how they are used in real–time reasoning. 
Knowledge resources considered in KA do not have to be mathematical, and can be intuitive in 
nature. KA tends to focus on a short segment of thinking, and document moment–by–moment 
changes in the process by which different ideas develop in students’ engagement with the topic. The 
KA in this paper segmented Cassie’s engagement with the task into thematic episodes. It exploited 
any relevant data (e.g., gestures, other parts of transcripts) to optimally understand the activation of 
knowledge resources in various contexts. The analysis then generated multiple models 
(interpretations) of Cassie’s argument in each episode, and put these models in competition with one 
another. This process of competitive argumentation (VanLehn, Brown, & Greeno, 1984) was used to 
refine interpretations of Cassie’s thinking. In this paper, we illustrate the use of the counter models 
with the first episode of Cassie’s engagement with task 1. For the rest of the episodes we only present 
the final model from the analysis due to space constraint. 
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Analysis 

Grounded Theory Analysis 
The GT analysis found, through comparison of bundles across the tasks and students, that if the 

novice provers (NPs) searched for a counterexample to invalidate a given task statement then they 
seemed to require an earlier rationale (intuitive, inductive, deductive, or otherwise) for the invalidity 
of the statement. That is, the NPs needed to already believe that a statement is invalid, before they 
searched for a counterexample. An alternative to this would be the strategy of using the search for a 
counterexample as an investigative tool, without any earlier rationale for the invalidity of the 
statement. This alternative strategy was more descriptive of the expert provers in the larger study. 

For instance, when given the statement in Task 1 (see Figure 1), Cassie stated that, “with 
sequences I usually start just by like counting numbers and then seeing if it seems like it’s gonna 
converge or not.” She then assigned the first term of the sequence to be 1. Cassie went on to realize 
that since the inequality condition presented in the task statement did not place a strict upper bound 
on the terms of the sequence. She justified this by stating, “the only constraint is like in the future so 
#/ù and #/ù†5 can grow arbitrarily large and like all that matters is that the next two, like the next 
#/ù and #/ù†5 are bigger than that.” She then made her initial conclusion that the statement of Task 1 
was invalid. Cassie then explicitly expressed her intention of finding a counterexample. She 
proceeded to generate the sequence #ù = = ùé5

è  (where n is a positive integer) as a valid 
counterexample to the statement of Task 1. That is, the sequence #ù = = ùé5

è  satisfies the inequality 
condition 0 < #ù ≤ #/ù + #/ù†5, but the corresponding series diverges.  

Cassie also routinely used examples that were generated only by using the constraints or 
assumptions present within the task statements. These types of examples are termed as constructed 
examples. For instance, when Cassie contended with a modified version of the statement in Task 1, 
she used only the constraints within the task statement to generate more examples. The modified task 
statement was identical to the original statement, except for the last word changed from “converges” 
to “diverges.” Cassie seemed to focus on constructing an example of a sequence that expressly 
satisfied the inequality condition 0 < #ù ≤ #/ù + #/ù†5. She successfully did this by generating the 
sequence 1,½,½,¼,¼,¼,¼,…	  with the goal of constructing a sequence with converging terms, 
and where the corresponding series diverges.  
The previously described instances are exemplars of Cassie’s proving behavior. This behavior was 
consistent with the proving behavior of other members of the greater NP group. In the next section, 
we present the KA of Cassie’s proving process separate from her group. We analyzed Cassie’s 
engagement with Task 1, which was split into three episodes. The analysis was organized 
chronologically. 

Knowledge Analysis 
In episode 1, Cassie came up with the sequence = ùé5

è 	as a counterexample for the statement in 
Task 1. She relied on a transitive property of inequalities and inferred the strictness of the problem’s 
constraint. 

Cassie: So if #ù were 1, uh  #5 were 1 then that would have to be less than or equal to #/, #D. So 
and then that would have to be, that would have to be less than or equal to #J	plus #G plus #° 
plus #2,	a triangle inequality. 

Cassie started by plugging in numbers for n and described the nature of the sequence based on the 
inequality,	#ù ≤ #/ù + #/ù†5. She immediately saw that if the terms of the sequence satisfied the 
inequality for all integers n, then #5 ≤ #/ + #D meant that #5 ≤ #/ + #D ≤ #J + #G + #° + #2. She 
called this a triangle inequality. We posit that she mistakenly referred to the transitivity property of 
inequality as a triangle inequality.  
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Cassie: I’m inclined to say that it’s false because the, I mean the only constraint is in the future. 
So the #/ù, #/ù†5	can grow arbitrarily large and all that matters is that the next two, like the 
next #/ù and #/ù†5 are bigger than that. So. /…/ So like #ù	is only constrained by #/ù and 
#/ù†5, but nothing before it. So my initial inclination is to say that it’s false.  

At this point Cassie saw that each term of the sequence could grow to become arbitrarily large 
insofar as it was smaller than its associated #/ù + #/ù†5. Her use of the phrase “in the future,” “all 
that matters,” and “nothing before” suggests that Cassie did not see the constraint as particularly 
strict, or as immediately affecting the terms of the sequence. The inequality only required that the 
sum of the future terms of the sequence had to be larger than the current term. Thus, given that the 
sequence could grow to become arbitrarily large, and there was not an immediate constraint on the 
rate of growth, Cassie posited that a sequence that satisfied the inequality could diverge, and thus the 
statement was false. 

Cassie: So let’s see (pause) um (pause) yeah I mean it, it seems like the sequence just #ù equals n 
wouldn’t converge because obviously we have the n’s less than or equal to 2n plus 2n+1. So 
that meets the criteria but /.../ which means the #ù’s are going to infinity. So the sum 
wouldn’t converge. 

Cassie used the sequence #ù	as a counterexample to disprove the claim in task 1.  
Model. By plugging in values for n, Cassie immediately recognized the behavior of the terms of 

the series. Applying the transitive property, she concluded that #5 ≤ #/ + #D ≤ #J + #G + #° + #2 ≤
⋯.		This seemingly “nested” quality of the terms did not play a major role in the process of coming 
up with the counterexample. Cassie asserted that the terms of the sequence could grow to become 
arbitrarily large, and she deemed the constraint of the terms’ needing to be smaller than a sum of two 
consecutive future terms to be relevant, but not immediately consequential to the growth of the terms. 
With this she came up with the sequence #ù = = ùé5

è  as a counterexample to disprove the claim in 
Task 1.  

Counter Model. Cassie initially considered the sequence #ù = 1	(“if #5 were 1,”), which she 
would return to later. However, she noticed that the terms were only constrained by #/ù and #/ù†5, 
but “nothing before it”, and so any #¶’s before	#/ù could behave without constraint. Thus, the 
unpredictability of the terms before #/ù and #/ù†5 led her to believe that it could diverge. So she 
came up with the #ù = = ùé5

è  as a counterexample because it satisfied her initial thought of #5 = 1 
and #ù	grew to become really large before it reached #/ù. 

We posit that students’ taking #5 = 1 is a common practice. After that, Cassie worked with an 
arbitrary sequence #ù, and did not revisit	#5 = 1. She later came up with the sequence #ù = 1, but 
only after she recognized the lack of strict inequality in the constraint. The counter model suggests 
that Cassie did not treat the sum of #/ù and #/ù†5 as the bound, but instead the individual terms. Her 
acknowledgement that = ≤ 2= + 2= + 1	with her counterexample refutes the counter model. Cassie 
understood that the inequality constrained the terms, but attributed the looseness of the constraint to 
the possibility of the terms diverging, which motivated her counterexample.  

In episode 2, Cassie constructed an example of a sequence that satisfied the inequality, and where 
the corresponding series diverges, by recognizing and utilizing the lack of strict inequality in #ù ≤
#/ù + #/ù†5. Using the transitive property from earlier, she constructed a sequence #ù  where #5 =
1, #/ = #D = ½, and #J = #G = #° = #2 = ¼ and so on, such that 1 = #5 = #/ + #D = #J + #G +
#° + #2. She generalized the pattern associated with this example, where the 1’s were made of 2ùp5 
many terms of ½ ùp5. She effectively used a sequence $ù = 1	as a counterexample, where $ù 
followed the pattern $5 = #5,	$/ = #/ + #D, $D = #D + #J + #G + #°, etc. Cassie asserted that her 
example was a defining example for the claim that any series satisfying the task’s criteria must 
always diverge.  
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In episode 3, Cassie justified that claim by arguing that it was not possible for any series that 
satisfied the given criteria to be convergent. Cassie explained that with two general related sequences 
(say, #ù and $ù), if $ù was a strictly increasing sequence, then $ù (and thus, #ù) would be 
infinity (The Divergence Theorem), and therefore the series would not be convergent. Cassie asserted 
that the best–case scenario for the series to be convergent would be if all the $ù’s were equal, like 
with her counter example. Cassie proved the statement by using her example as a boundary case.  

In summary, Cassie’s engagement with the task and the modified task is sophisticated. She 
productively inferred the implication of the loose constraint of the inequality to the rate of growth of 
the sequence, and used it to find the first counterexample. She attended to relevant details about the 
task, like the lack of strict inequality to construct her example. She recognized ∑1 as an example, and 
using the transitive property constructed and generalized the sequence 1,½,½,¼,¼,¼,¼, …. She 
recognized her example as a boundary case and worked with two different, albeit related sequences, 
#ù	and $ù to prove the modified statement. 

Discussion and Implication 
The results from the two analyses provide insights into Cassie’s proving process, albeit at 

different grain sizes. The Grounded theory (GT) analysis provided broader patterns about Cassie’s 
process as a representative of the novice prover (NP) group across the five tasks. Particularly 
pertaining to the need to find a counterexample to disprove a statement, Cassie needed prior 
conviction (grounded in a particular rationale) about the fallacy of the statement. To then construct it, 
Cassie solely focused on the explicit constraints set in the problem statement.  

Knowledge Analysis (KA) focused on the details of Cassie’s engagement with one task to 
identify knowledge resources that were influential in her proofs. While the GT analysis also started 
with identifying actions and resources, albeit strictly mathematical, the ultimate result of that analysis 
necessarily removed details that do not apply across the NP population. KA remained at that level of 
detail in providing specific insights about Cassie’s proving process.  

KA also highlights the power of Cassie’s productive inferences in constructing a counterexample, 
and to generalize from an example. Cassie did need the prior conviction before constructing a 
counterexample. However, that prior conviction came from a productive inference she made about 
the loose constraints of the inequality on the growth rate of the terms of the sequence. In addition to 
providing the prior conviction, her attention to task constraints (lack of strict inequality) also allowed 
her to construct a counter example ($ù = 1). She then productively inferred that a sequence 
satisfying the equation,	#ù = #/ù + #/ù†5, was a boundary case, and used her example to prove the 
modified claim. KA confirms the findings from the GT analysis, but allows us to observe Cassie’s 
sophistication through the details of her proving process.   

These two analyses together provide a more complete picture of Cassie’s proving process. On the 
one hand, this is common sense. Employing complementary methods results in richer analysis. On 
the other hand, to our knowledge this might be one of the first studies that uses GT analysis in 
concert with KA, thereby crossing the boundaries between the two methods set out in Parnafes & 
diSessa (2012). We now discuss the importance of considering these two methods together, and the 
danger of privileging only one of the analyses.  

Combining the two methods provides a more accurate positioning of Cassie as a prover. The 
result of the GT analysis positioned Cassie as a consistent member of the novice prover group, 
whereas KA was able to uncover Cassie’s sophistication. Adiredja (2015) has argued that theoretical 
perspectives of cognition hold the power in determining what counts as productive mathematical 
practice, and who are deemed as “successful” learners, highlighting the connection between 
cognition and equity issues. While KA and KiP value and prioritize knowledge and sense making of 
novice learners, and are against treating novices’ knowledge as a subset of that of experts, GT is not 
tied to any such particular theoretical perspectives. In fact, the GT analysis in this paper was 
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particularly mindful of the danger of positioning the novice group in a deficit way. However, by 
grouping students a priori as novices and experts, the study was in danger of beginning with a 
particular positioning of students before the analysis even started. This discussion highlights the 
importance of framing for GT studies, and how framing, in addition to theoretical perspectives also 
contribute to students’ positioning. We were able to mediate that concern by combining the two 
methods.  

Combining the two methods also mediates some generalizability concerns of KA and 
problematizes the common novice–expert dichotomy. By favoring depth and richness of analysis of 
cognition, one of the potential limitations of the findings from the KA done in this paper is the lack 
of immediate generalizability of its findings to other subjects. In a typical microanalytical KA study, 
the analysis would continue to identify particular kinds of resources or knowledge elements that 
Cassie used. Then it would examine the generalizability of those theoretical entities with other 
students. As is, in this paper, while KA was able to show Cassie’s sophistication in her proving 
process, that sophistication is unique to Cassie. Little can be said about how undergraduates 
generally prove or construct counterexamples.  

The GT analysis grounds Cassie’s sophistication in her membership in the NP group as 
implicated by her proving process. Without the GT analysis, any resemblance of Cassie’s proving 
process to those of an expert, or any sophistication could be attributed to her being an exception. The 
fact that Cassie’s proving processes were consistent with those of the NP group, allows her 
sophistication to challenge the novice–expert dichotomy. Researchers have argued against the over–
privileging of experts’ knowledge, and suggested the shift in focus to understanding novices’ 
knowledge in their own terms (diSessa et al., 2016; Smith, diSessa & Roschelle, 1993). In fact, 
Weber et al. (2014) have shown the continuity between novice and experts proving behaviors.  

In summary, putting the two methods in communication with each other proved productive. The 
varying grain sizes in the results of the analyses provide a more complete reporting of the patterns we 
observed about Cassie’s proving process. Mindful of the role of cognitive studies in positioning 
students, the two methods together also provide a more accurate positioning Cassie as a student. 
Related to that point, we problematize the common expert–novice framing of studies. Our dual 
analyses highlight how framing, independent from methods and theory, also contribute to the 
positioning of students. At the same time, the analyses also highlight the power in combining the two 
methods in challenging the subset model of novices’ knowledge to that of experts.’ By only focusing 
on Cassie, we were able to see the power of her proving process and the important inferences she was 
able to make. 
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