
Mathematical Processes 597 

 

Wood, M. B., Turner, E. E., Civil, M., & Eli, J. A. (Eds.). (2016). Proceedings of the 38th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: 
The University of Arizona. 

WHAT DOES IT MEAN TO “UNDERSTAND” CONCAVITY AND INFLECTION POINTS? 

Steven R. Jones 
Brigham Young University 

sjones@mathed.byu.edu 

The calculus concepts of concavity and inflection points are often given meaning through the shape 
or curvature of a graph. However, there appear to be deeper core ideas for these two concepts, 
though the research literature has yet to give explicit attention to what these core ideas might be or 
what it might mean to “understand” them. In this paper, I propose a framework for the concavity 
and inflection point concepts, using the construct of covariation, wherein I propose conceptual (as 
opposed to mathematical) definitions that can be used for both research and instruction. I 
demonstrate that the proposed conceptual definitions in this framework contain important 
implications for the teaching and learning of these concepts, and that they provide more powerful 
insight into student difficulties than more traditional graphical interpretations. 
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At the level of calculus, and beyond, the twin concepts of concavity and inflection points are 
essential components of a complete understanding of function behavior. As such, several researchers 
have begun to examine how students think about these two concepts (e.g., Baker, Cooley, & 
Trigueros, 2000; Gómez & Carulla, 2001; Tsamir & Ovodenko, 2013). The way these concepts have 
been studied, as well as how they are often portrayed in textbooks, is usually deeply connected to 
graphical interpretations and meanings of the concepts (e.g., Baker, Cooley, & Trigueros, 2000; 
Stewart, 2014). Yet, on occasion, calculus education researchers seemed to have acknowledged other 
important interpretations or meanings of these concepts. For example, Tsamir and Ovodenko (2013) 
discussed how students used symbolic representations, including   f ’(x) and f ”(x), to define and 
reason about the two concepts, and Berry and Nyman (2003) described teaching activities that 
develop these two concepts through physical movement. Furthermore, Carlson, Jacobs, Coe, Larsen, 
and Hsu (2002) explained how covariational reasoning is deeply connected to making sense of 
function behavior, which is closely linked to concavity and inflection points. All of this research has 
given us important information on how students use concavity and inflection points in activities like 
graphing, or on general difficulties students may have with them, or on types of reasoning that are 
required to make sense of them. Yet, these studies have often taken implicit stances on what the 
concepts concavity and inflection points actually mean. Thus, the question is raised: What are the 
core ideas we might say are contained in the concepts concavity and inflection points, and, 
consequently, what does it mean for a student to understand these ideas? While it is possible to claim 
that these answers can, or should, reside purely in graphical terms, such as the shape or curvature of a 
graph, the research literature seems to suggest that there are ideas more fundamental than simply the 
“shape of a graph” for these concepts. Since research has often not made explicit what these core 
ideas are, beyond graphical interpretations, it is important that we, as a research community, debate 
what might make up the core ideas of concavity and inflection points and an “understanding” of 
them. 

Like the research literature, calculus textbooks also tend to focus on graphical interpretations of 
concavity and inflection points (e.g., Hughes-Hallett et al., 2012; Stewart, 2014; Thomas, Weir, & 
Hass, 2009). However, despite the heavy graphical treatment of the concepts, they are frequently 
given definitions through non-graphical language. For example, Thomas et al. (2009) define 
concavity based on whether “f ’ is increasing [or decreasing] on I” (p. 203), and in Foerster (2010), 



Mathematical Processes 598 

 

Wood, M. B., Turner, E. E., Civil, M., & Eli, J. A. (Eds.). (2016). Proceedings of the 38th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: 
The University of Arizona. 

concavity is defined by the sign of the second derivative (p. 373). Even though these books 
subsequently focus on graphical meanings in their treatment of the concepts, we see hints at other 
ideas for concavity and inflection points beyond just the shape of a graph. Again, we are left with the 
question as to what the core ideas are that we want to ascribe to concavity and inflection points and 
what an “understanding” of them might consequently look like. 

In this paper I propose an argument for a particular conceptual framework that could be used as a 
way to conceptually define concavity and inflection points, which then provides one possible answer 
for what the core ideas are and what it might mean to “understand” them. I articulate my stance 
through covariational reasoning (Carlson et al., 2002), in that I see covariation as more than just 
“important” to an overall understanding of these concepts, but I have come to see it as the single core 
idea that makes up the essence of these two concepts. In laying out this conceptual framework, I 
discuss its connection to the common graphical approach to these concepts, and I discuss some 
pedagogical implications. I hasten to note that my stance is influenced by my examination of these 
concepts in real-world contexts (see Gundlach & Jones, 2015), and as such, I fully acknowledge that 
my view is certainly not the only point of departure for a conceptual discussion on concavity and 
inflection points. The fact that many studies and textbooks discuss concavity in other ways speaks to 
this. However, I propose my perspective as a way to launch a debate on what a shared idea of the 
core ideas of concavity and inflection points might be and what an understanding of them might look 
like for calculus education. 

Arguments For and Against Having a Conceptual Framework 
In one sense, one could argue that the various ideas about concavity and inflection points in the 

research literature and in the textbooks that I outlined in the introduction are all basically different 
ways to express the same idea, and that consequently there would be no need for a framework such 
as this. However, contained in this argument is exactly the issue I want to address: if they are all 
different ways of expressing the same idea, what, exactly, is that underlying idea? Similarly, one 
could argue that we just define an “understanding” of these concepts through the idea of making 
connections between representations, much as some have couched an understanding of function 
through representational connections. Yet, just as Carlson et al. (2002) have shown that there is a 
deeper level of function understanding in covariational reasoning, I believe concavity and inflection 
points also have deeper meanings beyond just connections in the ways we externally represent them 
to each other through graphs or symbols.  

In another argument, one could dismiss the need for a framework by indicating that these 
different approaches in the literature and textbooks are all equivalent mathematically and that one 
approach or representation can be translated into another approach or representation. However, 
despite the mathematical consistency across the different approaches and representations, I argue that 
they are quite conceptually different from one another and would therefore each have separate 
learning implications (as opposed to mathematical implications). To develop a shared notion of what 
it means to understand concavity and inflection points, the conceptual nature, and not purely the 
mathematical nature, of these two concepts must be attended to. In other words, my argument is 
similar to—though not congruent to—Tall and Vinner’s (1981) distinction between concept 
definition and concept image. I use the comparison to Tall and Vinner simply to illustrate the 
difference I see between mathematical consistency versus conceptual consistency. Despite the 
possible mathematical equivalence of the various definitions and uses of concavity and inflection 
point, it is important that we distinguish what are the core conceptual ideas that might make up the 
concepts. 
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A Proposal of a Conceptual Framework for Concavity and Inflection Points 

Covariational Reasoning 
Since I am using covariational reasoning as the foundation of my proposed conceptual 

framework, in this section I briefly describe the covariation construct as laid out in the work of 
Carlson and colleagues, which is rooted in research on understanding function behavior (Carlson, 
1998; Carlson et al., 2002; Oehrtman, Carlson, & Thompson, 2008). Covariational reasoning is 
defined to be “the cognitive activities involved in coordinating two varying quantities while attending 
to the ways in which they change in relation to each other” (Carlson et al., 2002, p. 354). In the 
framework, five levels of “mental actions” are described, which correspond to increasingly 
sophisticated cognitive activities. These begin with simply recognizing that the two variables depend 
on each other, moving to coordinating the “direction” and “amount” of change, followed by a 
coordination of how the rate of change changes. The five mental actions of the covariational 
framework are summarized in Table 1. 

Table 1: Mental Actions of the Covariation Framework  
(Carlson et al., 2002, p. 357; Oehrtman et al., 2008, p. 163) 

Mental action Description of mental actions 
1 Coordinating the dependence of one variable on another variable 
2 Coordinating the direction of change of one variable with changes in the other 
3 Coordinating the amount of change of one variable with changes in the other 
4 Coordinating the average rate-of-change of the function with uniform 

increments of change in the input variable 
5 Coordinating the instantaneous rate of change of the function with continuous 

changes in the independent variable for the entire domain of the function 

Conceptual Objects Produced by the Mental Actions 
While Carlson and colleagues obviously bring up the concepts of concavity and inflection points 

in their work, the framework is focused on an understanding of function. Yet, since mental actions 4 
and 5 deal quite explicitly with concavity, I propose to define the “concavity concept” in terms of the 
conceptual objects (in the spirit of Sfard, 1991; Sfard & Linchevski, 1994) potentially produced by 
covariational reasoning at mental actions 4 and 5. In other words, simply put, I define concavity 
conceptually as “the covariation between the rate of change and the independent variable.” Inherent 
in this definition is the claim that concavity cannot be truly understood in the absence of a mastery of 
mental actions 4 and 5. I acknowledge that this proposed definition extends the covariation 
framework beyond its original intent, in that the framework was originally meant to capture cognitive 
activities involved in coordinating change (Carlson et al., 2002, p. 354). By contrast, in this paper I 
am proposing a definition for a conceptual object. Yet, I believe the cognitive activities performed in 
the mental actions 4 and 5 can produce a conceptual object, which is the very covariation that exists 
between the rate of change itself and the independent variable. Thus, the concept of covariation 
dealing explicitly with the rate of change is, then, exactly the concept of concavity I propose. 

To define the “inflection point concept,” I note that mental actions 4 and 5 can be seen as 
essentially recycling through mental actions 1–3, with the “dependent variable” quantity being 
replaced by the “rate of change” quantity. In other words, mental actions 4 and 5 recursively trace 
through the first three mental actions again, but with the more sophisticated layer of one of the 
variables being the rate of change (see Table 2). Note that mental action 2 coordinates the direction 
of change, which I interpret to mean increasing or decreasing. Within mental action 2, one can track 
places where a switch in the increasing/decreasing of the rate of change takes place. Thus, within 
this mental action, if a switch in increase/decrease is identified, a conceptual object can be produced, 
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which is “change in the direction of covariation,” which has much in common with the concepts of 
maximum or minimum. I then define this “change in covariation” as the “inflection point concept” 
precisely when one of the covarying quantities is the rate of change itself. Note that in this definition, 
an inflection point is not a point on a graph, but rather a “switch in increase/decrease” of the rate of 
change as the independent variable changes. Of course, it can be represented graphically as a point, 
but it is only that—a visual representation of a deeper idea centered on covariation. 

Table 2: Mental Actions 4 and 5 Recycling through Mental Actions 1, 2, and 3 
Mental Actions: 
4. Coordinating 
average rate-of-
change 
5. Coordinating 
instantaneous 
rate of change 

 
1. Coordinating dependence of rate of change on independent 
variable 
2. Coordinating direction (i.e. increase/decrease) of change in the 
rate of change with respect to the independent variable 
3. Coordinating amount of change in the rate of change with changes 
in independent variable 

 
Conceptual 
objects produced 

à Concavity concept = covariation between rate of change and variable 
à Inflection point concept = change in direction of covariation 

 
I point out that I am careful to state definitions for the concavity concept and the inflection point 

concept, as I am not attempting to define them mathematically. A mathematical definition is a way to 
take a conceptual idea and create a formal statement for it (see Tall & Vinner, 1981; Zandieh & 
Rasmussen, 2010). By contrast, this framework is not intended to create a standardized formal 
definition, but rather to put forward an argument for what we, as a field, should consider to be the 
core conceptual ideas for these two concepts, which may then be represented in various possible 
ways in textbooks or other mathematical writings. 

Comparing the Framework to the Common Graphical Approach 
In this section, I address two issues: First, if the framework is simply a repeat of the ways that 

concavity and inflection points are already typically approached and used, then it is of little use. This 
framework should offer something beyond what one could already find in other presentations on 
these two concepts. Second, despite the need for the conceptual framework to offer something new, it 
must also resonate with the way in which that concept is commonly used, defined, and represented in 
the mathematical community, including in educational research literature and textbooks. Otherwise, 
it may be that the framework does not even capture what the community considers to be “concavity” 
and “inflection point.” 

To address the first of these issues, I describe how concavity and inflection points are often 
approached and represented in the research literature and in textbooks. Many studies that deal with 
concavity and inflection points discuss them through the activity of graphing, or through graphical 
images (e.g., Asiala, Cottrill, Dubinksy, & Schwingendorf, 1997; Baker et al., 2000; Gómez & 
Carulla, 2001; Tsamir & Ovodenko, 2013). Similarly, many textbooks I have examined primarily 
define and discuss these concepts through the graphical register (e.g., Finney, Demana, Waits, & 
Kennedy, 2012; Hughes-Hallett et al., 2012; Smith & Minton, 2008; Stewart, 2014; Thomas et al., 
2009; Zill & Wright, 2011). Many textbooks do provide a definition of concavity based on the first 
derivative increasing or decreasing, yet these books still seem to ascribe concavity as only a feature 
of a graph. For example, Finney, Demana, Waits, and Kennedy (2012) begin their definition with, 
“The graph of a differentiable function y = f(x) is…” (p. 197, emphasis added), and Smith and 
Minton (2008) start their definition with, “The graph of f is…” (p. 238, emphasis added). The book 
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by Briggs, Cochran, and Gillett (2015) is the only book I have examined that indicates that the 
function itself might be considered concave up or down. Consequently, my conceptual framework 
offers a new perspective that takes a stance against convention, in that I do not define the concavity 
and inflection point concepts through graphical terms at all, but as concepts rooted in the ideas of 
covariation. 

Moving to the second issue, given that my stance goes contrary to convention, is my conceptual 
framework even consistent with what the community thinks of as “concavity” and “inflection 
points?” In many of the studies and textbooks listed in the preceding paragraph, the discussion 
regarding the relationship between an increase in the derivative, f ’, and the shape of the graph 
focuses on how the slopes of the tangent lines become more steep or less steep. However, one can 
ask, steeper according to what? Implicit in these kinds of statements is the idea of getting steeper as 
one moves left to right. If one moves right to left, the steepness trend would reverse. Thus, even these 
strictly graphical approaches have covariation inherently embedded in them: the slopes (quantity 
one) change with respect to the independent variable (quantity two). 

Similarly, “inflection point” is often described as a change in one kind of graphical shape to 
another kind of graphical shape. Inherent in this description is the need to attend to whether the 
slopes’ steepness increases or decreases (i.e. “direction”). These increases or decreases correspond to 
the mental action 2 with slope or rate of change as one of the quantities. A switch in that 
increase/decrease of slopes or rates of change aligns with the definition of the “inflection point 
concept” in this framework. Thus, this framework does speak to the same “concepts” discussed in the 
typical graphical approaches. 

Implications for the Teaching and Learning of Concavity and Inflection Points 
So far in this paper, I have (a) outlined potential conceptual (not mathematical) definitions of 

concavity and inflection points, (b) shown that this framework differs from conventional approaches, 
and (c) shown that despite the difference, it still speaks to the same concepts of concavity and 
inflection points used by the community. However, if this framework yielded no worthwhile 
implications for how concavity and inflection points are to be taught and learned, then it would still 
be little more than an academic exercise of small value. I believe that this conceptual framework for 
concavity and inflection points contains significant implications for the teaching and learning of 
these concepts. In this section, I first outline what it might look like for a student to “understand” 
these concepts according to my framework. I then re-examine examples of student difficulties 
described in the literature regarding the concavity concept and the inflection point concept to show 
how this framework can further illuminate the nature of some of these difficulties and provide ways 
to address them. 

I was recently involved in a study in which we examined how students made sense of concavity 
and inflection points in real-world contexts (Gundlach & Jones, 2015) . While the students in the 
study exhibited a range of interpretations of concavity and inflection points, one student in particular 
showed an ability to think about, reason about, and make sense of concavity and inflection points in a 
range of contexts, from intuitive contexts (temperature) to more abstract contexts (the size of the 
universe). He also demonstrated a facility with the type of graphing problem used in Baker et al. 
(2000). I believe his proficiency with these concepts stemmed from the fact that he had mastery of 
the covariation mental actions and seemed to have codified these into some kind of conceptual 
objects—or at least he had begun to. For example, in one prompt, he was asked to describe how 
concavity related to a person’s height over their lifetime. He first discussed the early period of a 
person’s life, which he stated reflected “concave up.” 

Student: The way I thought about it is that, over time, it seemed like the height increases. There’s 
a bigger increase of height as you get older, up to a certain point… So from here to here 
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[indicates two points in time] it’s less increase of height, whereas from here to there, about 
the same [time] length, it’s a greater increase of height, and this would be concave up. 

Here the student’s comments reflected mental action 4, wherein average rates of change over 
equal-sized intervals were considered. What is important to note is that he realized that one of the 
covarying “quantities” in this case is the “increase of height,” or the growth rate. Thus, the student 
has demonstrated a dependence of the growth rate on the time variable. As he moved to discuss a 
concave down period, he exhibited mental action 5 by dropping finite intervals of time from his 
explanations, and switched instead to continuously changing rates. 

Student: They’re starting to get close to their full height, whatever that height happens to be. It’ll 
still be increasing, it’ll be increasing at a decreasing rate, which means that—that would have 
to be an inflection point [in order] for that rate, at which their height is changing, to change. 
And at that point it would begin to be concave down. 

Interviewer: …If the curve [i.e. the graph of the height function] doesn’t go back down, is it not 
concave down? What would you say about that? 

Student: I’d still say it’s concave down… that rate at which they’re growing slows down, it still is 
concave down. 

The student used the idea of a continuously changing growth rate, and stated that an increasing 
growth rate is defined as concave up, while a decreasing growth rate is defined as concave down. 
Note that he also described the inflection point as being dependent on a “change” in the growth rate 
from a growth rate that is increasing to a growth rate that is decreasing. Thus, he seemed to have 
encapsulated the “change in direction” from mental action 2, with one “quantity” being the growth 
rate. These sophisticated mental actions seemed to have produced understanding of covariation and 
change that were associated with the terms “concavity” and “inflection point.” As such, this student 
seemed to demonstrate an understanding of these concepts according to this framework. 

In this illustrative example of understanding, I wish to highlight that this student’s discussion of 
and meaning for concavity and inflection points were not dependent on the shape of a graph, even 
though a graph was drawn during the discussion. Rather, it was his coordination of a changing rate of 
change with the dependent variable that drove his thinking and seemingly produced an understanding 
of the conceptual objects defined in this paper. 

I now switch to focus on examples from the literature regarding student difficulties. First, I 
discuss a student difficulty described in Baker et al. (2000), in which at least two of the students in 
the study (Carol on page 567 and Jack on page 568) held the idea that concave up meant the graph 
was increasing and concave down meant the graph was decreasing. This idea was a source of 
difficulty for the students when it conflicted with information about the first derivative that seemed to 
contradict it. The question then becomes, if these two students knew that the first derivative dealt 
with increase/decrease, why did they also apply the idea of increase/decrease to the second 
derivative? Baker et al. proposed the idea that the students were not at an “inter-property” level, 
meaning they could not coordinate information from two different properties simultaneously. 
However, it seemed like the students attempted to do so, which is what created the conflict in the first 
place. To provide an alternate reason, note that this difficulty is consistent with the framework’s 
interpretation of mental actions 4 and 5 being a recycling of mental actions 1–3. That is, making 
sense of concavity goes through the same cognitive activities as making sense of slope or rate of 
change. The problem is that the activities required in making sense of concavity take on an additional 
layer of sophistication since the recycled mental actions 1–3 now deal with one of the quantities 
being the “rate of change.” Since it is likely that current graph-based approaches provide little 
instructional support to developing these sophisticated, layered mental actions, then it is possible that 
the recycled layer of mental actions 1–3 collapsed to the original layer of mental actions 1–3. It may 
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be that “concavity” was reduced in some sense to the same thing as “rate of change.” Thus, the two 
distinct conceptual objects (concavity versus rate of change) became blurred into a single conceptual 
object, rate of change. To separate out these two objects, instruction would have to highlight the fact 
that concavity essentially retraces through the same concept as rate of change, but now using rate of 
change as one of the covarying quantities. I am in no way claiming that this would be an easy feat, 
but a necessary one if students are to fully understand these concepts. 

In a second example, Tsamir and Ovodenko (2013) describe several students identifying 
inflection points as places where “the graph keeps increasing, but the slope changes dramatically,” 
like a mountain trail changing from a gentle upward slope to a steep, difficult climb (p. 421). The 
reasons given by Tsamir and Ovodenko for this difficulty was that students look too holistically at 
graphs, or base their reasoning too much in real-world contexts (p. 421). However, this explanation 
does not provide much by way of how to address this problem, other than to be “less holistic” or to 
not use “real-world contexts.” By contrast, I believe my framework provides a much deeper reason 
for this difficulty. In general, an “inflection point” is typically presented as a change in something 
(e.g., Hughes-Hallett et al., 2012; Stewart, 2014; Thomas et al., 2009), and the issue is in what 
changes exactly. There is a significant cognitive demand in recycling through mental actions 1–3 
inside of mental actions 4 and 5, replacing one “variable” with the “rate of change” quantity. 
Specifically, an inflection point arises by noting a change in the “increase/decrease” inside mental 
action 2, if one quantity is understood to represent the rate of change. The students in Tsamir and 
Ovodenko’s study may have been looking for something that met the usual criterion of a “change in 
something” when seeking to identify inflection points. Indeed, the idea of the graph going from a 
slower increase to a sudden, dramatic increase seemed to give the students some kind of “change” 
happening in the rate of change. Yet, despite the students’ possible recognition of the need for a 
change in the rate of change, they did not have a fully-formed object associated with a switch in the 
direction from mental action 2. Only a switch of increase-to-decrease (or vice versa) in the rate of 
change is appropriate for identifying an inflection point. Thus, this framework would indicate that the 
students in that study were, in fact, making decisions intelligently, but without a fully formed 
conceptual object of what exactly should change about the rate of change. In other words, instead of 
looking at students’ inability to attend to relevant features of a graph, or of particular shapes, it may 
be that we should help students see that a change from increasing rates of change to decreasing rates 
of change (or vice versa) is what constitutes an inflection point. 

Conclusion 
In this paper, I have shown that despite the heavy graphical emphasis on concavity and inflection 

points, these concepts may have more important core meanings than as the “shape of a graph.” What 
the core ideas are has important ramifications for the teaching and learning of these concepts, and 
how we view, understand, and address student difficulties. I have proposed a framework that 
conceptually (not mathematically) defines concavity as the concept of covariation in which one 
quantity is the rate of change, and inflection points as a change in direction of this covariation. Thus, 
this framework provides one possible answer to the question, “What does it mean for a student to 
understand concavity and inflection points?” 
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