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A commonly accepted claim in mathematics education is that there is a relationship between the 
cognitive demand of mathematical task enactments and students’ subsequent learning. One study 
often cited to support this claim is Stein and Lane (1996), and in 44% of those citations, Stein and 
Lane (1996) is the sole reference provided. Citation analysis reveals that many of these claims go 
beyond the warrants provided by the Stein and Lane study, either by granting more confidence in the 
relationship than the study design allows or by phrasing the claim causally. A few other studies are 
occasionally cited in conjunction with Stein and Lane (1996), but there remains a need for 
replication studies to provide better empirical support for claims about cognitive demand and 
student learning and to refine our shared understanding. 
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Replication studies are rarer in education research than in other fields, leading Makel and Plucker 
(2014) to call for more replications because such studies can both identify and remedy 
methodological biases and can be instrumental in buttressing robust findings or clarifying 
inconsistent findings. In these ways, replications can play a role in the field’s systematic 
accumulation of knowledge (National Research Council, 2002). An area ripe for replication would be 
a testable, widely-held belief that is resting on a relatively inadequate empirical foundation. One 
belief seemingly shared by most scholars in mathematics education is that the cognitive demand of 
mathematical tasks and task enactments (Stein, Grover, & Henningsen, 1996) is important with 
respect to student learning outcomes. It may be that experiences with cognitively demanding tasks 
lead to positive learning outcomes or it may be that having students experience cognitively 
demanding tasks is an end itself. The latter is a philosophical position based on values, whereas the 
former is a testable position that currently rests on some supporting evidence, but what is the extent 
of that evidence? In our own past work related to cognitive demand (e.g., de Araujo, 2012; Otten & 
Soria, 2014), we noticed an extensive literature base on the nature of cognitive demand (Doyle, 1983; 
Stein, Smith, Henningsen, & Silver, 2009) and factors influencing cognitive demand throughout 
mathematical task implementations (Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013; Wilhelm, 
2014), but a weaker empirical foundation for the direct link between cognitive demand and student 
learning. 

The hypothesis motivating this study was that a single reference—Stein and Lane (1996)—
constituted a large portion of the warrants for claims in the mathematics education literature about 
the link between cognitive demand and learning. If this hypothesis were true, then it would become 
imperative to critically analyze the research design, evidence, and claims made in Stein and Lane 
(1996) and to consider possibilities of replication. We examined the claims for which Stein and Lane 
(1996) was included as a citation and we identified other references, if they existed, that were also 
cited for those same claims. In the following sections, we briefly summarize the Stein and Lane 
(1996) study, describe our method for compiling and analyzing citations to Stein and Lane (1996), 
and then share our key results. 

Summary of Stein and Lane (1996) 
Stein and Lane (1996) stems from a project well known in mathematics education—Quantitative 

Understanding: Amplifying Student Achievement and Reasoning (QUASAR). QUASAR involved a 
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university partnership with six urban middle schools with the overall goals of promoting reform-
oriented mathematics instruction and investigating the feasibility of such instruction in schools with a 
history of poor mathematics performance (see Silver & Stein, 1996, for an overview). Within that 
context, Stein and Lane (1996) sought to “present evidence regarding the degree to which the 
presence of reform features of instruction are linked to increases in student understanding of 
mathematics” (p. 51). Their study focused on 4 of the 6 middle schools from the QUASAR project 
over a three-year period. Data consisted of narrative summary field notes and video recordings of 
three three-day observation cycles in three teachers’ classrooms in each school each year, a 
classroom observation instrument completed based on the field notes and video recordings, and Fall 
and Spring administrations of a project-developed assessment instrument (Lane, 1993). Mathematical 
tasks were identified and of the 620 main tasks, a stratified random sample of 144 was drawn and the 
task set-up and task implementation of these 144 tasks were coded for cognitive demand. Levels of 
cognitive demand were collapsed to 2 (high and low). A 25% sample of the 144 tasks was double 
coded with 79% agreement. 

The assessment instrument consisted of 36 open-ended tasks distributed into four forms (9 
questions per form) and a 5-point scoring rubric (0–4) for each task. Analysis focused on 11 of the 
tasks and used not the scores themselves but “the average percentage of student responses across 
tasks that were scored at the two most proficient score levels (3 or 4)” (p. 68) and how this average 
percentage shifted between Fall Year 1 and Spring Year 3. 

To generate their findings, Stein and Lane rank ordered the four schools based on their gains in 
percentage of students at the top two levels of proficiency and then focused on Site A, which had 
gained the most (36%), and Site D, which had gained the least (17%). They compared these learning 
gain rankings with the school profile for task enactments and noted the following: 

Site D’s profile can be seen as embodying a more conventional mathematics program in which 
many or most tasks lent themselves to being solved with a single strategy, using only one 
representation (usually symbolic), and without much explanation and/or discussion. Site A’s 
profile, on the other hand, suggests a well-functioning reform program that is successfully 
utilizing tasks that invite and support students’ use of multiple solution strategies and multiple 
representations, along with student discussion of their work. (p. 71) 

In other words, the tasks in Site D classrooms were often set-up and implemented at low levels of 
cognitive demand whereas tasks in Site A classrooms were often set-up and implemented at high 
levels, and Site D had the lowest proficiency gains whereas Site A had the highest. 

The fact that the sites conformed to a positive relationship between cognitive demand and gain 
scores seems, on the surface, to be compelling. The number of sites, however, is quite low for 
making even correlational claims about the relationship between task features and student 
achievement. Moreover, the use of only 11 items to measure learning over a three-year period gives 
pause. In addition, sites were only compared in relation to each other, not to a standardized score, 
raising questions about the size of the differences between the outcomes of the different sites. The 
study also did not account for differences among teachers within the same site. The authors 
acknowledged “the possibility that the findings of this study may partially reflect differences in 
school-level variables in addition to the documented differences in instructional practices” (p. 75), 
but in other instances the authors shifted from discussing the results in terms of correlations to 
suggesting causation. For example, the authors drew the following conclusions: 

[S]tudents appear to benefit more from inconsistently implemented tasks that began with the 
encouragement to use multiple solution strategies, multiple connected representations, and 
explanations, than they do from tasks that—from the start—required only single solution 
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strategies, single representations, and little or no mathematical communication (p. 74, emphasis 
added) 

The authors appropriately hedged this statement with the word “appear” but the language in bold 
suggests not just that Site A used more high demand tasks and performed better, but that the use of 
high demand tasks was a primary reason for higher student achievement. This claim seems to extend 
beyond the actual warrants of the study given its limitations. Yet, as we show below, the hedged 
claims appear to have been accepted widely by several researchers and national organizations alike, 
frequently in an unhedged fashion. Although Stein and Lane recommended that a replication of their 
study be carried out, to our knowledge this has not occurred except a substantially modified 
replication (Otten, 2012) involving 12 middle school classrooms in which cognitive demand was 
decidedly not correlated with measured student learning. 

We wish to emphasize that by pointing out some of the limitations of the study, we do not mean 
to criticize the study itself but rather to raise caution about the claims that can be made—by Stein, 
Lane, or others—based on this single study’s evidence. These cautions led us to investigate the 
claims that have been made based on Stein and Lane’s (1996) work. 

Method 

Compiling Citations of Stein and Lane (1996) 
Similar to Leatham and Winiecke (2014), we used the “cited by” tool on Google Scholar to 

obtain a list of articles in which Stein and Lane (1996) was cited. This initial search yielded 298 
sources. Because we were interested in how the field of mathematics education specifically draws 
upon this reference, we retained only those articles that were published in mathematics education 
journals that received an A-grade in Toerner and Arzarello (2012, December) and also appeared as a 
top-five journal in the rankings compiled by Nivens and Otten (in press). These journals were 
Educational Studies in Mathematics, Journal for Research in Mathematics Education, Mathematical 
Thinking and Learning, Journal of Mathematical Behavior, Journal of Mathematics Teacher 
Education, and ZDM – The International Journal of Mathematics Education. This constraint yielded 
26 articles. We then expanded our search beyond the Google Scholar results to include other forms of 
codified mathematics education literature—namely, the Second Handbook of Research on 
Mathematics Teaching and Learning (Lester, 2007) and two major policy documents from NCTM 
(2000, 2014). This additional search led to the identification of 4 handbook chapters and one policy 
document (NCTM, 2014) that cited Stein and Lane (1996). The 31 analyzed resources are marked 
with * in the reference list. 

Analyzing Citations of Stein and Lane (1996) 
The goal of our analysis was to understand the claims for which authors cited the Stein and Lane 

(1996) study. Within the 31 sources, we located the Stein and Lane (1996) citations in text, yielding 
60 excerpts. We then used analytic memos to briefly describe the claim that was being supported by 
the Stein and Lane citation and met to identify the recurring themes and further refine them into 
codes. We came to a consensus on four codes (see Table 1), which we used to code all but one of the 
excerpts. 

To gain a more nuanced understanding of the ways in which authors used the Stein and Lane 
reference, we subdivided the learning claim excerpts into two groups based on whether the claim was 
causal or non-causal. For example, the following excerpt was coded causal because the authors’ state 
that tasks result in an increase in student understanding: 

As the research conducted by the QUASAR project indicates, when teachers choose tasks that 
require a high-level of cognitive demand, set them up and implement them in ways that maintain 
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a high-level of cognitive demand, the result is an increase in student understanding and 
reasoning (Stein & Lane, 1996). (Arbaugh & Brown, 2005, p. 527, emphasis added)  

In the same article, we coded an earlier reference as non-causal: 

The relationship between the types of tasks students engage in when learning mathematics and 
the mathematics they learn has been a subject of research for many years (see, for example, 
Hiebert & Wearne, 1993; Marx & Walsh, 1988; Stein & Lane, 1996). These research studies 
indicate that a relationship exists between the level of student thinking required by a 
mathematical task and the nature of students’ understanding of mathematics. (Arbaugh & Brown, 
2005, p. 505, emphasis added) 

Table 1: Coding Scheme for Citations of Stein and Lane (1996) 
Code Descriptions Examples 

Claim about a relationship between 
tasks and student learning [learning 
claim] 

“There is evidence that solving a task of high cognitive 
demand or a cognitively demanding task (CDT) has a 
positive impact on students’ conceptual understanding 
(Stein & Lane, 1996).” (Wilhelm, 2014, p. 637) 

Claim that tasks (or task 
implementations) and learning have 
been studied [study claim] 

“Research has focused on instructor questions across the 
K–16 spectrum and examined … the value of questions to 
student learning (Silver, 1996; Stein & Lane, 1996).” 
(Fukawa-Connelly, 2012, p. 332) 

Claim about the levels of cognitive 
demand (but no connection to student 
learning) [cognitive demand claim] 

“[Stein and Lane] use four categories: Memorization, 
Procedures without Connections, Procedures with 
Connections, and Doing Mathematics.” (White & Mesa, 
2014, p. 678) 

Claim about a research method used 
[method claim] 

“Of particular note are the procedures developed by Stein 
and Lane (1996) and Stein et al. (1996) for sampling and 
coding mathematical tasks and linking those findings to 
student outcomes.” (Gearhart et al., 1999, p. 309) 

 
We also distinguished four levels of attribution within the learning claims, from weak to strong—

(1) the author(s) state that others have made claims about the relationship but the authors do not 
necessarily endorse the claims themselves, (2) the authors state the relationship with an explicit 
hedge (e.g., it is “suggested” or there is “possibly” a relationship) or as being found specifically in 
the context of the cited study, (3) the relationship is stated as something found in past studies and the 
authors explicitly or implicitly endorse the findings beyond the cited study’s context, and (4) the 
relationship is stated as a generalized fact. We independently assigned each of the learning claim 
excerpts a level of attribution and met to discuss any differences until we came to a consensus. 

Results 
Table 2 contains frequencies for the codes described in Table 1. The most common claim for 

which Stein and Lane (1996) was used as support was the notion that the cognitive demand of 
mathematical tasks or task implementations is somehow related to student learning. More than three-
quarters (77.4%) of the resources made claims of this sort, encompassing 60% of the total Stein and 
Lane citations analyzed. Of the 36 learning-claim citations of Stein and Lane (1996), 16 (44.4%) 
cited only Stein and Lane. This supports our hypothesis that Stein and Lane (1996) often stands alone 
as the empirical basis for such claims. A substantial minority (25%) of the claims (spanning 41.9% of 
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the resources) did not involve student learning but instead focused solely on the construct of 
cognitive demand or task implementation. Six claims (10%) simply acknowledged that studies such 
as Stein and Lane (1996) existed and two (3.3%) referenced the type of study design that Stein and 
Lane employed. Overall, the citations of Stein and Lane (1996) predominantly involved the 
relationship between cognitive demand and student learning. 

Table 2: Frequencies of Claims for which Stein and Lane (1996) was Cited 
Code Number of Excerpts Number of Sources 

Learning claims 36 (60.0%) 24 (77.4%) 
Study claims 6 (10.0%) 6 (19.4%) 
Cognitive demand claims 15 (25.0%) 13 (41.9%) 
Method claims 2 (3.3%) 1 (3.2%) 
Other 1 (1.7%) 1 (3.2%) 

 
Of the 36 learning claims, 25 (69.4%) were correlational claims and 11 (30.6%) were causal. 

Although correlational claims are more justified than causal claims, few alluded to limitations of the 
Stein and Lane (1996) study. Furthermore, we found 11 citations that made causal claims. For 
example, Wilhelm (2014) stated, “There is evidence that solving a task of high cognitive demand or a 
cognitively demanding task (CDT) has a positive impact on students’ conceptual understanding 
(Stein & Lane, 1996)” (p. 639, emphasis added). 

Returning to the 36 learning claims overall, Table 3 summarizes their attribution level. More than 
half (58.3%) of the claims were Level 2—that is, rephrasings of Stein and Lane (1996) or hedged 
claims that stated what Stein and Lane (and possibly others) had found, without implying that it was 
a generalized result. For example, Otten and Soria (2014) wrote that “Stein and Lane (1996) argued 
that maintaining high cognitive demand has positive benefits with respect to student learning” (p. 
816, emphasis added). Such instances are defensible because it is true that Stein and Lane argued for 
the benefits of high cognitive demand tasks. 

Table 3: Attribution Levels for Learning Claims Supported by Stein and Lane (1996) 
Attribution Level Number of Excerpts Number of Sources 

1 (non-endorsed) 4 (11.1%) 4 (12.9%) 
2 (hedged or context-specific) 17 (47.2%) 10 (32.3%) 
3 (study-supported) 9 (25.0%) 8 (25.8%) 
4 (general fact) 6 (16.7%) 5 (16.1%) 

 
Yet, 41.7% of the learning claims went further by referring in some sense to a general 

relationship (level 3 or 4 attribution). For example, NCTM (2014) wrote about the relationship in a 
general fashion, as a matter of fact: 

Learning is greatest in classrooms where the tasks consistently encourage high-level student 
thinking and reasoning and least in classrooms where the tasks are routinely procedural in nature 
(Boaler & Staples, 2008; Hiebert & Wearne, 1993; Stein & Lane, 1996). (p. 17) 

In this case, NCTM did not mention cognitive demand specifically but instead mentioned key 
features related to cognitive demand. They also cited studies in addition to Stein and Lane (1996) as 
support for their claim, but due to space limitations, we will not describe those studies here. 
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Discussion 
Our citation analysis revealed that, across primary journals in our field, Stein and Lane (1996) 

was used to support a substantial number of claims about the link between cognitive demand of 
mathematical tasks and students’ mathematical learning. Of those claims, 55.6% also involved 
additional references beyond Stein and Lane, but these were often policy or practitioner works rather 
than empirical research, perhaps aligning with a philosophical stance on cognitive demand but not an 
empirical one. The U.S. Department of Education and the National Science Foundation (2013) 
described six types of education research: foundational, exploratory, design and development, 
efficacy, effectiveness, and scale-up. Exploratory research “examines relationships among important 
constructs in education and learning to establish logical connections that may form the basis for 
future interventions or strategies to improve education outcomes” (p. 9). They indicate that 
exploratory “connections are usually correlational rather than causal” (p. 9). Certainly, the work of 
Stein and Lane (1996) and others (e.g., Hiebert and Wearne, 1993; Tarr et al., 2008) provides 
valuable information about a potential relationship between cognitive demand and student learning, 
but based on the evidence, we judge this work to be at no higher than the exploratory level. 
Replications are needed to test whether this relationship holds under various conditions (design and 
development research), and a significant amount of work would need to be done in order to make 
causal claims that could estimate the average impact of using high cognitive demand tasks. As Stein 
and Lane said in 1996, “the analyses discussed herein should be replicated” (p. 75), but rather than 
answering this call, the field has instead justified the belief that cognitively demanding tasks relate 
with (or cause) higher student learning outcomes by drawing on studies in the initial stages of the 
research progression. 

Though we argue for the need of later-stage research studies to examine the link between 
cognitively demanding tasks and student learning, we do not dismiss the value of smaller-scale 
studies. We recognize the importance of a wide array of research; however, certain types of claims 
(e.g., factors that generally relate to measureable student outcomes) are best supported empirically by 
larger-scale study designs. If we include such claims in our work, we should be cognizant of the 
nature of the empirical support, and modify claims accordingly. And if claims are value-based rather 
than empirical, that is appropriate, but they should be written as such. 

At the center of this article is a deep question about the relationship between cognitively 
demanding mathematical tasks and students’ mathematical learning, broadly construed. Although we 
have critiqued some of the sources of evidence for claims made about this relationship, it is not our 
intention to cast doubt on the relationship itself. In fact, we believe it is highly likely that a positive 
relationship does exist. Yet, as a field, we should not be satisfied with shared beliefs based on 
insufficient evidence. Instead, we should strive for a body of evidence that would convince not only 
someone who is already predisposed to value cognitively demanding experiences but that would 
convince a skeptic. Therefore, we join Makel and Plucker (2014) and Warne (2014) in encouraging 
editors and agencies to open the door to replications, even—or perhaps especially—if it investigates 
claims that many already take to be true. 
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