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Abstract: This paper sets forth a concept (Simon, 2017) of contrapositive equivalence and explores 
some related phenomena of learning through a case study of Hugo’s learning in a teaching 
experiment guiding the reinvention of mathematical logic. Our proposed concept of contrapositive 
equivalence rests upon set-based meanings for mathematical categories and negation, representing 
these sets by closed regions in space, and linking conditional truth to a subset relation between these 
regions in space. Our case study serves to portray that students must construct all of these elements 
to achieve a sense of necessity in the equivalence. This study thus contributes a set of learning goals 
for any introductory logic instruction using Euler (or Venn) diagrams, which has been little studied 
in the mathematics education literature.  
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Proof oriented mathematics instruction depends upon mathematical logic to ensure that students 
learn 1) to interpret mathematical statements the way mathematicians do and 2) to draw inferences 
that do not violate the mathematical community’s norms. Prior research provides ample evidence that 
students’ interpretations of mathematical conditionals (statements of the form “if…, then…”) pose a 
number of difficulties (e.g. Durand-Guerrier, 2003) as does the logical equivalence of contrapositive 
(CP) statements (Stylianides, Stylianides, & Phillipou, 2004). There is little prior literature on how 
students are to come to learn CP equivalence (Yopp, 2017) or the meanings by which this can be a 
logical necessity. This paper seeks to fill this gap through a case study drawn from a larger series of 
teaching experiments guiding reinvention of mathematical logic through reflective use of 
mathematical language (Dawkins & Cook, 2016).  

Logical Background 
The CP of a conditional “If [P], then [Q]” is the conditional “If not [Q], then not [P].” Consider 

the statement, “If a triangle is obtuse, then it is not acute.” Its CP is “If a triangle is acute, then it is 
not obtuse.” Certainly these statements are both true, but how are their truths linked? In our prior 
studies we observe that students often reason about such statements using examples, properties, or 
sets (Dawkins & Cook, 2016). We encourage the reader to consider how both statements can be 
confirmed from the fact that any triangle has exactly one of the properties acute, right, or obtuse (a 
property-based strategy). Notice that so affirming both conditionals may not reveal the relationship 
between the two or why all conditionals with that relationship must share a truth-value. For this 
reason, we propose a distinction between a CP inference and CP equivalence. A student draws a CP 
inference when they infer a CP is true from the original conditional or when they use the original 
conditional to infer not [P] from not [Q] (modus tollens). CP equivalence instead entails students 
constructing a logical equivalence between any conditional and its CP rooted in generalizable 
meanings for conditional truth and reference.  

We present our intended understanding of contrapositive equivalence in terms of Simon’s (2017) 
explication of mathematical concepts. Simon explains, “A mathematical concept is a researcher’s 
articulation of intended or inferred student knowledge of the logical necessity involved in a particular 
mathematical relationship” (p. 7). This concept thus reflects our understanding of how a student 
might come to understand the necessity of CP equivalence. Simon clarified that concepts result from 
reflexive abstraction and thus are anticipations based on the learner’s activity. This characterization 
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of a concept helps distinguish our work from other relevant studies. Stenning (2002) explored logical 
reasoning as a broadly assessed without attending to students’ meanings for particular concepts or 
their sense of logical necessity. Stylianides et al. (2004) assessed whether students use a CP 
equivalence rule they were taught when assessing arguments, and found that students frequently did 
not apply CP equivalence as intended. They did not study the students’ meanings for conditional 
truth or how they entail CP equivalence’s necessity. Hawthorne and Rasmussen (2014) explored 
students’ meanings for elements of formal logic such as truth tables, and found that many learned 
such formalisms disjoint from their ongoing mathematical activity. They lacked necessity for the 
learned rules.  

We articulate the concept of CP equivalence as follows: 

(Point 1) A mathematical conditional is true whenever the set of objects satisfying the if part 
is a subset of the objects satisfying the then part. (Point 2) These two sets can be represented as 
closed regions in space with points representing the mathematical objects. (Point 3) The negation 
of a mathematical category refers to the complement set of mathematical objects. (Point 4) 
Therefore, whenever a conditional is true, its CP must also be true because the complement of the 
larger region is contained in the complement of the smaller region.  

Original conditional CP conditional 

“If for ! ∈ ! !(!), 
then !(!).” 

 
is true whenever 

 
! ∈ ! ! !
⊂ ! ∈ ! ! !  

 “If for ! ∈ ! not 
!(!), then not !(!).” 

 
is thus true because 

 
! ∈ ! ~! !
⊂ ! ∈ ! ~! !  

 

Figure 1. Euler diagrams portraying the subset meaning for a conditional and its CP.  

Point 1) We propose the subset meaning for conditional truth as part of Dawkins and Cook’s 
(2016) more general findings that set-based meanings were most propitious for students’ reinvention 
of mathematical logic (over example and property-based meanings). Point 2) Logicians have long 
represented categories by closed regions (Stenning, 2002), but we find this is not always a natural 
step for participants in our reinvention. Students often prefer representations that maintain semantic 
meaning (e.g. the number line, example numerals, example shapes). Representing categories by 
closed regions reflects an abstract meaning for mathematical definition: any well-defined distinction 
among mathematical objects. Point 3) Dawkins and Cook (2016) explain that students’ 
interpretations of negative categories do not always correspond to the complement set of examples, 
but this interpretation is necessary for interpreting CP equivalence diagrammatically. Point 4) CP 
equivalence is a necessary entailment of the topological relations portrayed in Figure 1. We do not 
claim that student understanding of CP equivalence must be mediated by visual diagrams (Yopp, 
2017), but we anticipate that the necessity of CP equivalence rests upon isomorphic ways of 
reasoning across semantic content.  

The Case of Hugo 
In what follows, we shall explore the contours of our concept of CP equivalence through a case 

study of one student’s participation in our guided reinvention teaching experiments. Hugo did not 
construct the concept of CP equivalence, though his interview partner did. We find Hugo’s story of 
learning helpful because he made clear progress on diagrammatic reasoning about mathematical 
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conditionals and in some way exhibited progress regarding each of the first three points of the 
concept. However, he still clearly lacked a sense of necessity for CP equivalence, though he observed 
the shared truth-values. We present this case both because it portrays the kinds of activity that we 
anticipate would foster students’ abstraction of CP equivalence and the challenge inherent to such 
abstractions in mathematical logic. Furthermore, this case allows us to set forth three possible 
characterizations for logic learning in advanced mathematics, which we observe as an arena in need 
of clarification and disambiguation.  

Methods 
The methods of this study mirror those reported elsewhere regarding this series of teaching 

experiments guiding the reinvention of mathematical logic (Dawkins & Cook, 2016). Each teaching 
experiment involved pairs of volunteers recruited from Calculus 3 courses at a medium-sized, public 
university in the Midwestern United States. These students met with a teacher/researcher for 6-11 
hour-long sessions. The sequence of activities consisted of presenting students with lists of 
statements of the same logical form (disjunctions, conditionals, and multiply-quantified) each with 
varied, familiar mathematical content. Students were asked to:  

1. determine whether each was true or false,  
2. formulate rules for when statements of the given form were true or false,  
3. develop a method for negating statements, and  
4. in the case of conditionals, explore the relationship between a conditional and its converse, 

inverse, and contrapositive.  

Table 1: Sample Conditionals that Hugo and Elya Analyzed 
1. If a number is a multiple of 3, then it is a multiple of 4. 
2. If a number is a multiple of 3, then it is a multiple of 6.  
3. If a number is a multiple of 6, then it is a multiple of 3.  
4. If a number is not a multiple of 6, then it is not a multiple of 3.  
5. If a number is not a multiple of 3, then it is not a multiple of 6. 
6. If a triangle is not acute, then it is obtuse.  
7. If a triangle is obtuse, then it is not acute.  
8. If a triangle is not acute, then it is not equilateral.  
10. If a quadrilateral is a rectangle, then it is a parallelogram.  
15. If the sum of two integers x+y is even, then at least one of the numbers x and y is not odd. 

The teacher/researcher generally provided minimal direct guidance besides clarifying 
mathematical facts about the content of each statement (e.g. 1 is not prime, a square is a rectangle), 
asking students to clarify explanations or compare claims about various statements, and asking 
partners to respond to one another’s reasoning. Based on the earlier findings reported in Dawkins and 
Cook (2016), the teacher/researcher also explicitly guided Hugo and his partner Elya to focus on the 
sets of objects making each statement true or false. The interviewer attempted not to introduce any 
logical formalizations (i.e. notation, terminology, or diagrams) until the students seemed to recognize 
some relevant pattern or need to express their reasoning. All data was analyzed using the constant 
comparative method (Strauss & Corbin, 1999).  

Results 
Hugo and Elya studied conditionals during their third, fourth, and fifth experimental sessions. 

Elya was absent from the fourth session. During the third session, their initial task was to assign 
truth-values to (or assess) the conditionals. They assigned the same truth-values a mathematician 
would (normative truth-values). They did not exhibit set-based reasoning during this activity; the pair 
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relied on examples and properties. For false claims, they recognized what constituted a counter-
example to a conditional. For instance, Hugo denied statement #1 with the example 6 and explained 
this was sufficient for assessment: “So we came up with one case where it’s false, so it is false.” 
Hugo affirmed three statements using property-based reasoning. For instance, he reasoned about #8 
saying, “not acute would mean either a right triangle or an obtuse triangle. Neither of those can be 
equilateral, so that would be true.” In other cases when Elya affirmed a statement using properties, 
Hugo introduced examples. Regarding #15, Elya inferred that “one of [x and y] would have to be 
odd” to have an odd sum. Hugo chose 5 as the sum and considered the possible addends. It is unclear 
whether Hugo perceived this as a justification or simply an explanation, but it portrays Hugo’s 
overall propensity toward example-based strategies for assessing conditionals even when Elya 
provided property-based explanations.  

Point 1: The Subset Meaning of Conditional Truth 
In the last 15 minutes of that session, the interviewer asked Hugo and Elya to consider sets. 

I  (1):  Think about the set of all things that satisfy the if part and the set of all things that satisfy the 
then part. And tell me about the relationship between those two […]  

H (2):  I’d say, if the statement is true then the set for the first part—I’m sorry the set of the second 
part will be included in the set of the first part.  

I  (3):  Okay. Why do you say that?  
H (4):  Um, because if we said that it’s true then when we pick—something that’s true for the first 

part, then it has to be included in the second part for the whole statement to be true.  
I  (5):  […] So you’re saying, if the statement is true then what was the relationship here?  
H (6):  Then the—then will be inside if.  

Hugo’s initial explanation (turn 2) suggests that he had not yet considered the sets of objects referred 
to by the categories in the given conditionals. It is possible that his reverse subset claim reflects 
attention to the set of properties in each statement. For instance #3 is equivalent to “If an integer is a 
multiple of 2 and 3, then it is a multiple of 3.” The then property is “included” in the if property (turn 
4), but the subset relation between the sets of integers goes the other way round.  

When the interviewer asked Elya, she proposed the normative subset relation that the “if has to be 
in the then.” She elaborated using statement #3, “all the multiples of 6 are contained in multiples of 
3.” The interviewer asked Hugo to respond using a particular statement.  

H (7):  Uh, you wanna talk about number 3. Um in like a circle, and multiples of 3—3,6,9,12. [draws 
a circle and inside of it writes the numbers he says aloud] Um, multiples of 6 will be included in 
that circle [draws smaller circle around 6 and 12]. Like 6 and 12 are multiples of 6. So there’s an 
additional circle inside that includes some numbers but does not include others [completes the 
diagram in Figure 2].  

I  (8):  Okay[…] which are you calling the if part and which circle are you calling the then?  
H (9):  The then part would be the bigger one [he labels the larger circle]. The inside would be 

then—sorry other way around. Then is on the outside. If is in [he labels the small circle].  

By encircling his short list of examples, Hugo bridged his example-based representation into a set-
based representation and acknowledged the normative set-based meaning for conditional truth. In this 
way, Hugo made initial steps toward the first point in our concept of CP equivalence, though his 
grasp was at times tenuous through the subsequent interviews.  



Mathematical Processes 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

673 

 
Figure 2: Hugo’s first set diagram. 

During this third session, Elya and Hugo recognized the syntactic relationships between 
conditionals traditionally known as converse (e.g. #6 and #7) and inverse (e.g. #3 and #4). They 
related CP statements as having undergone both transformations (e.g. #3 and #5, via #4). Using one 
of their subset diagrams, Elya provided an argument for why the original and CP statements should 
both be true in a manner compatible with Figure 1. We thus observe that she quickly and easily 
constructed our concept of CP equivalence from her fluency with set-based meanings and 
complement operations. Hugo showed little sign of following her reasoning, but he was exposed to a 
general explanation for why the CP must be true whenever the original statement is.  

Point 2: Closed Regions and Their Topology 
Elya was absent from the fourth session allowing Hugo to explore his understanding of 

conditionals and sets independently. Early in the session, Hugo considered statement #6. He 
appropriately explained that it was false because it failed the normative subset relation, “We said it 
was false ‘cause our first set included… right triangles. So then it was only asking if it was only 
obtuse. So it could have been a right triangle or obtuse. Not just obtuse.” Hugo went on to produce 
two diagrams to express his understanding of the two sets (Figure 3). The first reflected a traditional 
Venn diagram arrangement (with “O” standing for “obtuse”). As he unpacked the properties in the 
statement, he revised his diagram, “This is the if, “not acute” we said that could be a 90 triangle or 
obtuse. And then the then was, ‘it is obtuse’ so I guess that would be—this. So it’s a little different 
than what I originally drew.”  

           
Figure 3: Hugo’s two diagrams for statement #6.  

Hugo recognized that one region of the Venn diagram did not contain any triangles and represented 
that in the topology of the two regions in his second, Euler diagram. In this instance, Hugo seemed to 
clearly make progress regarding the second point in our concept of CP equivalence by using closed 
regions to represent sets and using their topology to relate those sets.  

We conjecture that Hugo’s property-based reasoning the previous day influenced his diagram 
construction. He let the properties stand for the entire category without recourse to representative 
examples (as in his diagram produced the previous day). It is unclear the extent to which Hugo 
imagined the curves as encasing the sets of triangles imagined as points or whether they encased the 
words themselves that stood for the examples. One cause for questioning Hugo’s interpretation of the 
circles and their reference arose when Hugo next considered statement #7. Though statement #7 
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contains the same categories, Hugo produced a completely new diagram like the second in Figure 3, 
except the if and then labels were reversed. The interviewer asked Hugo to compare the two 
diagrams, and, upon reflection, he said they were the same. He clearly did not anticipate this 
relationship.  

Point 3: The Negation/Complement Relation 
The interviewer invited Hugo to write the inverse statements to both #6 and #7 on the board. He 

then asked Hugo to assess these statements using the same diagram he produced for #6. Hugo 
considered #6’s inverse, written “If acute, then not obtuse” in the following way: 

So “if acute” then we’d be talking about anything outside of the if circle, so everything 
outside of here, then “it is not obtuse”—right. ‘Cause you’re not—we’re talking about everything 
except inside this circle. And obtuse is inside the circle. So that’d be true. We said this [statement 
#6] was false. So it was the opposite, or the negation. 

Here, Hugo displayed two novel developments in his thinking. First, he associated the negation 
of a category with the complement of a closed region. Specifically, the region outside the larger 
circle represented acute triangles. Once again, we cannot be sure whether this inference was 
supported by 1) Hugo’s knowledge that any triangle is exactly one of acute, right, or obtuse or 2) 
reasoning about the representational structure of the diagram. In either case, he used the 
negation/complement relation. Secondly, he did not affirm the inverse of #6 by the subset meaning, 
but rather notes that anything outside the large circle is not inside the small circle (“if acute, then not 
obtuse”). We call this the empty intersection meaning for conditional truth. This criterion is distinct 
from the subset meaning Elya used during the previous session, but formally equivalent to it. It 
depends upon the presence of not in the latter half of the conditional.  

At the end of the previous quote, Hugo noted that the inverse statements had opposite truth-
values, and anticipated this might be the case more generally. To explore this conjecture, the 
interviewer next asked Hugo about statement #7 and its inverse: 

H (10): My guess is that it would be false ‘cause it’s—it’d be the opposite, but “if not obtuse,” so 
anything that’s outside of this little circle—then it is acute. That’s not necessarily true because—
that would—we still have 90 degree—triangles that are not obtuse but are still not acute. So that 
would still be false. Or that would be false. 

I (11):  Okay, now you anticipated it would be false. What was your basis for anticipating that it 
would be false?  

H (12): That one. We took the inverse of this one, we got the opposite—the opposite truth-value. 
I (13):  […] What about the picture tells me which two [of the four statements] are true? […] 
H (14): That if we limited it to this inner circle—the obtuse triangles. Then obviously we would not 

be talking about if it was outside of the circle. We’re only talking about the inside 
I (15):  What about then this one [inverse of #6]? How can I see it in the picture, this one? 
H (16): That if we’re talking about anything outside of this circle, the bigger circle here, which would 

be all the acute. Then that would exclude anything inside the circle—obtuse triangles are only 
inside the circle. So then we would only be talking about the area out here. 

In turn 10, Hugo denied the inverse of #7 because the non-obtuse triangles were not all acute. 
Hugo associated the negation of obtuse with the complement of the smaller region. He identified 
acute triangles (outside the larger circle) as counterexample to the conditional. Hugo noted that this 
example also affirmed his conjecture that inverse conditionals have opposite truth-values.  
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The interviewer noticed that Hugo was fluidly shifting between subset, empty-intersection, and 
counterexample meanings to assess the given conditionals. So, in turn 13 he asked Hugo to consider 
more generally which of the four statements (#6, #7, and their inverses) were true and how the 
diagram represented this. In turns 14 and 16, Hugo affirmed #7 and its CP both using the empty 
intersection meaning: the inner circle and outer complement were mutually exclusive. While this 
observation could provide a general sense of symmetry regarding the truth conditions for some CP 
statements, there was no evidence of Hugo abstracting this relationship at this point.  

Point 4: CP Equivalence 
To help Hugo see the syntactic relationship between the true statements he affirmed in the last 

interchange, the interviewer asked Hugo to specify all of the syntactic relationships among the four 
statements. Figure 4 shows the results of their discussion (Hugo and his partner used the term 
“switch” for converses). Using this diagram, Hugo noted that CP statements had the same truth-
value: “if we have an if-then statement that’s true, we take the inverse and the switch […] so far 
we’ve proved that it would be true [...] Well I’m observing but I’m trying to articulate why that is.” 
He admitted that this was for him an empirical observation and he could not justify it.  

 
Figure 4: Exploring the syntactic relationship among a conditional quartet. 

Not only did Hugo fail to see a general justification for CP equivalence, he was very inconsistent 
in his use of subset diagrams to assess conditionals about other topics. When asked to discuss the sets 
associated with statement #10 and its CP later in that session, Hugo drew separate and isolated circles 
above the words “rectangle” and “parallelogram” in #10. He recognized that all rectangles were 
parallelograms, but he did not use the topology of the regions to represent this. With prompting, he 
modified these diagrams to match the previous subset diagrams. Regarding the CP, Hugo began new 
circles rather than using the complements of the regions drawn for #10. Throughout the rest of that 
interview and the next, Hugo went on to consider at least three other quartets of conditional, inverse, 
converse, and contrapositive. Once prompted to produce a subset diagram, he consistently 1) 
affirmed the base conditional by the subset meaning, 2) denied the inverse and converse by 
counterexample or by failing to have a subset relation, and 3) affirmed the contrapositive by the 
empty-intersection meaning. However, he did not routinize creating such diagrams without 
prompting or begin anticipating the topological relations that would affirm a conditional and its CP. 
In short he did not construct the concept in such a way as to produce a sense of logical necessity for 
the shared truth-values.  

Conclusions 
Our goals in this paper were to 1) set forth our concept (Simon, 2017) of CP equivalence, 2) 

portray mathematical activity by which this concept could develop, and 3) convey the challenge these 
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abstractions pose through Hugo’s learning process. We claim that Hugo made progress regarding 
each of the first three points in the concept and empirically observed point 4, but did not perceive 
point 4 as a logical necessity. We presented evidence that Hugo understood that conditionals could 
be affirmed via a subset relation (Point 1). It is unclear whether this relationship was universal and 
reversible, or simply a sufficient condition. Hugo was able to represent the relationships between the 
categories in conditionals using closed regions and their topology (Point 2). At times he used these 
diagrams flexibly, as when he created the empty intersection meaning. He did not see such diagrams 
as a universal tool, judging by his alternating strategies and representations. He produced diagrams 
with different referential structures and often bypassed reasoning with the diagram by resorting to 
property-based inferences. While we appreciate that Hugo consistently connected his representation 
to the relevant mathematical categories (cf. Hawthorne & Rasmussen, 2014), he did not consistently 
use the diagram to draw new inferences about the mathematical categories. Hugo at times associated 
the negation of a category with the complement of either region in a diagram (Point 3), but he never 
coordinated two such complement regions simultaneously (as implied in Figure 1). Thus regarding 
each point of the concept, we see why Hugo’s understanding did not support reflexive abstraction.  

We intend for this analysis to emphasize the difficulty and nuance involved in constructing 
logical necessity in diagrammatic reasoning in the course of semantically-rich mathematical activity. 
We also propose that further literature on logic learning should clearly distinguish the kinds of 
understanding they intend. We propose three categories. Reading involves assessing mathematical 
statements in normative ways and drawing normative inferences. Hugo did this throughout. 
Reflecting involves finding general representations and criteria for assessing mathematical 
statements, such as Euler diagrams and the subset criterion. Hugo began this during the study. 
Abstracting involves reflexive abstractions yielding new insights from these representations and 
criterion. Elya, but not Hugo, displayed this kind of learning regarding CP equivalence. We 
anticipate that elaboration of these categories will facilitate future investigation. 
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