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In this study, we examine how inservice secondary mathematics teachers working together on a 
contextualized problem negotiate issues arising from the ill-structured nature of the problem such as 
what assumptions one may make, what real-world considerations should be taken into account, and 
what constitutes a satisfactory solution. We conceptualize the process of negotiating these questions 
as the construction of a “problem space,” characterized by the boundary between considerations 
deemed relevant or essential to the problem and ones thought to be beyond the scope of the problem. 
We use data from group discussions of the problem to consider ways in which problem spaces are 
co-constructed by learners, instructors, and problem authors and how these problem spaces evolve 
over time. We conclude by discussing implications of these findings for the design and 
implementation of contextualized mathematics problems. 
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Background 
The focus of this paper is on teacher work on one particular mathematics problem. The problem 

is contextualized and open-ended and involves aspects of both problem-solving and mathematical 
modeling. Lesh and Zawojewski (2007) define problem solving as 

the process of interpreting a situation mathematically, which usually involves several iterative 
cycles of expressing, testing and revising mathematical interpretations – and sorting out, 
integrating, modifying, revising, or refining clusters of mathematical concepts from various 
topics within and beyond mathematics. (p. 782) 

The problem we discuss in this paper requires integration of multiple mathematical concepts, as well 
as interpretation, modification, and revision of ideas within and outside of mathematics. With respect 
to mathematical modeling, when learners work on a problem involving a real-world context, part of 
the problem solving process may involve the construction of mathematical models, or systems of 
objects, relationships, and rules that can explain or predict the behavior of other systems (Doerr & 
English, 2003). Although we do not claim that the problem discussed in this paper is a modeling 
problem per se, participants engage in aspects of the modeling process (e.g., developing a model and 
interpreting solutions) as they solve the problem. The problem used in this study is contextualized 
and ill-structured, and requires that the learner find and use information from the real world. 

Our focus in this paper is on the negotiation of problem spaces. We defined a “problem space” as 
the collection of mathematical ideas and classroom and real-world issues and resources that learners 
take up and use as part of their solution process. These ideas, issues, and resources become visible as 
the boundaries of the problem spaces are constructed and explicitly negotiated. For example, while 
working on the problem of designing an enclosure with the greatest possible area given a fixed 
perimeter, a learner may decide (by themselves or by asking a teacher) that they only need to 
consider rectangular shapes. This decision about the problem boundary leads to a problem space that 
includes rectangles but not other shapes. By investigating the development of problem boundaries, 
we hope to better understand the ways in which problem spaces are created and how they evolve, as 
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well as surface implicit assumptions about problem spaces and boundaries that we may take into our 
own mathematics teaching. 

In our research, we assume that learners’ problem-solving work is situated within particular 
mathematics classroom contexts, with associated norms and expectations that will influence the 
negotiation of the problem space, as will learners’ previous experiences in mathematics classrooms. 
We assume that learners’ beliefs about mathematics, and their mathematical and school-learner 
identities, will influence how problem spaces/boundaries are established, as will power and authority 
relationships among learners and between teachers and learners. Lastly, we assume that the 
establishment of problem spaces is an ongoing negotiation that takes place among learners, teachers, 
and “animated others” such as problem authors or representatives of the real world (e.g., people in a 
town, a business owner, etc.). Within this framework, we address the following questions: 

4. How do mathematics teacher learners, engaged in an ill-structured contextualized problem, 
negotiate the problem space? 

5. What boundaries do the teachers establish and how are they determined? How do the 
boundaries evolve throughout the problem-solving process?  

Method of Study 

Context and Problem Design 
In Summer 2015, the authors taught an 80-hour mathematics content focused professional 

development (PD) course to 33 middle and high school mathematics teachers from three school 
districts in the Southwestern United States. Teachers spent most of their time during the PD working 
in small groups on problem sets and activities meant to highlight key ideas in middle grades and 
secondary mathematics. 

One of these was the “Quantitative Reasoning Cards” activity, in which participants work in 
groups of four on a sequence of problems involving real-world contexts. Each problem consists of a 
statement and several pieces of information. For the problem analyzed in this study, both the 
statement and the information are on a single card given to the group member designated as the 
leader for the task. The text on the card is shown below: 

 

 
Figure 1. The Water Shortage Problem. 

The leader may share the information on the card with other group members and help guide the 
discussion, but they are not permitted to write anything down nor look up any additional information. 
Other group members may write down their thoughts and mathematical work, but are not allowed to 
see nor touch the leader’s card. Once the group reaches a consensus solution, the leader must explain 
it to one of the PD instructors (designated as the “referee”), who may then ask follow-up questions of 
the other group members. The design of the problem is meant to foster interdependence among group 

The town of Squareville (population 25,600) relies on a nearby lake 
for drinking water.  The water has been tainted due to an industrial 
accident.  The lake can be cleaned, but it will take about two weeks to 
do so.  In the meanwhile, the state plans to use trucks to send clean 
water to Squareville from a town 23 miles away.  How many trucks 
will the state need? 

 
In order to proceed to the next task, you (the person holding this card) 
must give a referee a convincing argument answering this question. 
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members (Cohen & Lotan, 2014); because the group leader cannot perform calculations, and other 
members have no direct access to the information on the card, group members must communicate 
about their overall problem-solving strategy as well as the details of the solution so that the leader 
can clearly describe the group’s work to the referee. 

The Water Shortage Problem, designed by one of the authors of this paper, requires participants 
to answer a practical question (how many trucks are needed to deliver water to a town) by analyzing 
rates of water consumption and delivery rather than absolute amounts. The information card 
intentionally leaves some essential questions unanswered, such as how much water a truck can carry, 
and how much water each person will need. The purpose of providing incomplete information is to 
stimulate discussion among participants about what quantities are relevant to the problem’s solution, 
and to encourage participants to seek information from sources external to the activity. 

The problem is designed to elicit thinking from participants about how to estimate quantities 
whose values cannot be determined exactly. For example, if a disaster preparedness website 
recommends that each person receive 2 to 4 gallons of water per day, should one assume that each 
person will receive 2 gallons, 4 gallons, or some amount between these two extremes? We have 
found in our own implementations of this and similar problems, given a range of possible estimates 
for a quantity, participants will often select an estimate at the middle of the range, even when a lower 
or upper bound might be more useful for the situation at hand. 

The problem is also designed so that solutions that do not contain rate thinking (e.g., thinking 
only about how many gallons total are needed for 2 weeks, rather than thinking about gallons per 
day) will likely lead to unreasonably large answers. This problem feature is intended to spur learners 
to reconsider their solutions and seek ways to decrease the number of trucks needed. For this to 
occur, participants must expand the problem space to include consideration of whether a given 
number of trucks is practically feasible; while a request for ten trucks is likely to be honored by an 
emergency management agency, a request for five thousand will almost surely be rebuffed.  

Participants, Data Collection, and Analysis 
During the problem implementation, we captured video and audio recordings of two groups of 

teachers working on the Water Shortage Problem. Each group consisted of four inservice secondary 
mathematics teachers. Group 1 consisted of three female middle school teachers and one male high 
school teacher; Group 2 consisted of one female high school teacher, one female middle school 
teacher, and two male middle school teachers. Group 1 spent 22 minutes on the problem, and Group 
2 spent 30 minutes. 

After the conclusion of the professional development course, the two researchers viewed both 
videos independently and made note of instances in which participants and instructors appeared to 
question or negotiate the boundaries of the problem. For each such instance, we attempted to identify 
factors in the group discussion, the instructor’s comments, or the design of the task that may have 
influenced the group’s decision about how to define the problem space. We repeatedly met together 
to compare analyses and come to consensus on any discrepancies. We report results of this initial 
work here; however, we intend to continue to refine our analysis process as we attempt to apply it to 
the data we have collected (video and audio) for small groups working on other contextualized 
problems. 

Results 
In both groups that participated in the study, the group leader read the task, and the group worked 

gradually toward a consensus solution, making assumptions about the situation described, making 
preliminary estimates, and refining these estimates to produce a reasonable and practically feasible 
solution. Along the way, each group confronted questions about which elements of the real-world 
situation should be taken into account and which considerations lay beyond their co-constructed 
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boundaries. In this section, we analyze each group’s negotiation of the problem space and observe 
how this space evolved over the duration of the group’s work on the problems. All names used below 
are pseudonyms. 

Shifting Responsibility for Boundary-Setting: The Case of Group 1 
Vicki, the leader of Group 1, introduced the problem by reading her card aloud to her teammates 

Tina, Kenny, and Nalda. Shortly after reading the card, Vicki questioned whether the group was 
allowed to consider information not on the card. The question of how much discretion the group has 
in negotiating problem conditions and goals occurred again later, as Vicki asked whether the question 
was about “efficiency” or about how many trucks the state should send. Upon asking this, Vicki said, 
“I don’t know how far we’re allowed to take this,” suggesting that authority for determining problem 
boundaries lay at least partially outside of the group itself. We hypothesize that many teachers’ prior 
experiences with contextual problems (as teachers or learners) may consist mainly of problems for 
which the boundaries are largely pre-determined by the problem statement, or as structured by the 
teacher.  

Table 1: Interactions Influencing the Problem Space for Group 1 
Interaction Action/response Possible causes of interaction 

Vicki: Are we allowed to extrapolate 
outside of what is on the card? We 
would need to know how much a truck 
could carry, average family size… 

Tina begins to look 
up information on 
phone. 

Contextual problems encountered in 
school often provide the information 
that is needed; no more, no less. In this 
setting the group must negotiate the 
boundaries of the problem space. 

Nalda: Are we looking for realistic 
solutions to this? Because the state 
isn’t going to pay for that many a 
day… each truck can make four trips… 

Nalda’s teammates 
assert that they are 
counting truckloads, 
not distinct trucks. 

Nalda believes that in this case, issues 
of realism should at least be considered. 
Nalda uses the pronoun “we,” while 
Vicki uses the pronoun “they.” 

Kenny: What if they don’t have 
tankers, they have an average water 
truck? 

Group considers 
both scenarios and 
produces an estimate 
for each. 

The problem is ambiguous on the issue 
of which type of truck the state will use. 
The group does not have the resources 
to resolve this ambiguity, but is willing 
to manage it as a condition of the 
problem. 

Tina: So did we answer the question? 
Vicki: I feel like we would need more 
parameters though to be able to really 
integrate the 23 miles. 
Nalda: I feel like they give us the 23 
miles for us to estimate how many 
trucks. 

Group begins to 
consider multiple 
trips per truck. 

Task design: Tina cannot look at the 
card with the question on it. 
 
Nalda pushes the group not to set aside 
the mileage information. She reframes 
the problem so as to put group members 
inside the real-world situation. 

Kenny: How long is a tanker? 
Nalda: I don’t know. 
… 
Kenny: Where are they storing this? 
Nalda: Well, water towers. 
Kenny: I’m just thinking/ 
Nalda: /Half an hour to fill, half an 
hour to get there…  

Tina pulls up a 
picture of a tanker 
on her phone and 
shows the group. 
Nalda redirects the 
group’s attention to 
the calculation of the 
number of trucks. 

Nalda seems to view Kenny’s queries as 
outside of the problem’s boundaries. 
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The group ultimately developed estimates for the number of trucks needed in two different 
scenarios: if the state sends large tanker trucks, and if it sends smaller water trucks. The group’s 
initial approach assumed that each truck would make only one trip per day, and that each resident of 
the town would receive 90 gallons of water per day. This led to an estimate of 221 tankers per day. 
At this point Nalda raised the concern that sending 221 tankers per day would not be realistic, and 
suggested a model in which each tanker makes several trips per day. The group initially dismissed 
this suggestion, claiming that the problem was to estimate the number of truckloads, not tankers. 
However, by pointing out that the group had not used the information provided about the distance 
between the towns, which we interpret as an appeal to an external source (i.e., the problem author) in 
order to determine a problem space boundary, Nalda later persuaded her teammates to consider the 
possibility of allowing each truck to make several trips per day, and count the number of trucks 
rather than the number of truckloads of water. The group eventually produced an estimate of 56 
tanker trucks. 

Table 1 outlines some instances in which the problem space was negotiated, explicitly or 
implicitly, by members of Group 1. We note here that, for Group 1, interpreting the implicit 
intentions of the problem author appears to be a central part of their effort to negotiate the problem 
boundaries, and thus the problem space. At the same time, the group also attended to whether a 
particular approach or solution was realistic. In the data, we found multiple examples of this push-
pull between school mathematics norms for contextualized problems (e.g., figuring out what the 
problem author intends) and the desire to find a realistic solution. Importantly, we note that attention 
to realism may itself relate back to expectations about how we do mathematics in school when faced 
with contextualized problems for which some information is not given. 

The Instructor’s Role in Expanding the Problem Space: The Case of Group 2 
Vince introduced the problem to his teammates Tobias, Darla, and Violet by summarizing the 

information on his card rather than reading it verbatim. The group immediately began searching the 
internet for information relevant to the problem and found that a water truck can carry 5000 gallons, 
and that the average American uses between 80 and 100 gallons of water per day. Based on this 
information, they obtained an initial estimate of 6450 trucks, which Violet deemed to be “excessive.” 

Spurred in part by the infeasibility of this estimate, the group then began to identify ways they 
could significantly decrease this estimate. Tobias suggested researching the minimum amount of 
water a person needs each day; based on his research, the group accepted a much lower estimate of 5 
gallons per person per day. The group thus arrived at a more modest estimate of 358 trucks, still 
reflecting the implicit assumption that each truck will make only one run over the two-week period. 
The group presented this solution to Nancy, one of the PD facilitators. Nancy stated that the state did 
not have 358 trucks to spare, and that the group should try to determine the minimum number of 
trucks needed. After she left the group, Violet pointed out that the question did not ask for the least 
possible number of trucks, and Tobias claimed that Nancy had changed the question. 

After this exchange, Tobias suggested considering how many trucks are needed per day (rather 
than for the entire two-week period); this brought the group’s estimate from 358 down to 26. The 
group then gradually developed a plan in which six trucks take turns dropping water off at 
Squareville; at any given time, one truck is in Squareville dropping water, one truck is in the nearby 
town collecting water, and four other trucks are in transit between the two towns. Vince presented 
this solution to the other PD instructor, who endorsed it as an acceptable solution. 

As the group worked on the problem, the problem space grew to encompass considerations of 
how much water a person needs during an emergency, and how much water an “average” truck can 
hold. However, only after Nancy visited the group and encouraged members to develop a more 
feasible solution did they seriously consider the possibility of having trucks perform multiple runs on 
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the same day. This consideration entered the problem space at least in part due to Nancy’s 
intervention. Table 2 below shows some instances in which Group 2 interacted to define the problem 
space and its boundaries, and our interpretations of possible causes of the interactions. 

Table 2: Interactions Influencing the Problem Space for Group 2 
Interaction Action/response Possible causes of interaction 

Violet: Do we know how much water 
the trucks hold? Or how much each 
person needs? 
Vince: No. 

Tobias starts to look 
for information on 
the internet using his 
tablet. 

The problem cannot be solved without 
information that is not on the card. 

Violet: Are they telling the people to 
limit the water? Because I feel like 
that would be beneficial. 

Tobias determines 
that on average, a 
person uses between 
80 and 100 gallons 
per day. The group 
doesn’t pursue 
Violet’s idea yet. 

The group seems to feel that limiting 
water is beyond the boundaries of the 
problem. 

Violet: It’s 80-100 gallons per day, so 
do we just want to use 90? 

Group calculated 90 
x 14 x 25,600 = 
32,256,000 gallons. 
Divided this by 
5000 to obtain 6451 
trucks. 

Using the midpoint of a range as an 
estimator is possibly related to prior 
experience with school math problems; 
in this case, it may actually be 
worthwhile to use the lower end of the 
range in order to minimize the number 
of trucks needed. 

Violet: 6451 trucks, that seems really 
excessive. 
Tobias: Let’s see how much a person 
needs in a day. 
Violet: We don’t know what 
limitations have been set for this 
town. 

Group discusses 
different uses of 
water and eventually 
settles on 5 gallons 
per person per day, 
leading to an 
estimate of 358 
trucks. 

Initially, Violet seems to view the issue 
of water rationing as outside the 
boundaries of the problem. Eventually, 
the group shifts the boundaries to 
encompass this question. 

Nancy: Yeah, well Circleville’s also 
having a water issue, and I just don’t 
have 358 trucks, so what’s the 
minimum number I need? 
… 
Nancy: So think just a little more 
about how many trucks you need. 
Like what’s the minimum number I 
can give you? 

Group turns to the 
question of how 
long it takes for a 
truck to complete 
one cycle of 
loading, driving to 
town, unloading, 
and driving back. 

Nancy observes that the group has not 
incorporated the possibility of trucks 
making multiple deliveries per day into 
the problem space; she uses the 
impracticality of a request for 358 
trucks to encourage the group to 
reconsider the problem boundaries 
they have constructed. 

Darla: How long does it take to 
unload a water truck? 
Violet: And how do you decide who 
gets water first? Are we figuring out 
the least? Is that the question? The 
least number? It just said how many 
trucks need to be sent, it didn’t say 
least! 
Vince and Tobias: She changed it. 

Group estimates 
how much time is 
needed for a 
delivery cycle and 
how many cycles 
are needed per day, 
and eventually 
decides upon 6 
trucks. 

Violet, Tobias, and Vince indicate their 
belief that they have been asked to 
enter a different problem space. 
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The push-pull between school mathematics and associated expectations of problem authors on 
the one hand and concerns for realism played out somewhat differently in this group. The group 
seemed initially unconcerned with limiting water, an aspect of the situation that would most certainly 
come into play in the real world. Yet, an unrealistic number of trucks did spur the group to reconsider 
water consumption, and this then became a part of the problem space. At this point, Violet raised 
another issue related to negotiating the problem boundaries, namely that the group did not know what 
limitations on water use had been put in place for the town in question. The group expressed 
frustration with the ambiguous nature of the problem space after the instructor questioned whether 
358 was realistic. 

Discussion 
We offer this report as an initial analysis of the construct of “problem space” as it applies to 

contextual problems in mathematics. We make no claim that our findings generalize across all 
classes of mathematics problems and all groups of learners. The negotiation of a problem space may 
look markedly different in the context of a more closed-ended task, and may also vary according to 
the age and mathematical background of learners. One may argue that in this particular study the 
participants’ shared familiarity with rate reasoning allowed them to devote additional attention to 
considering boundary issues such as which quantities in the problem should influence the problem’s 
solution and which should not. Further study, with different types of tasks and with different 
populations of learners, is needed for a better understanding of how problem spaces develop in 
different settings. 

The expectations that learners have of teachers, problems, and genres of mathematical tasks are 
central to the establishment of problem boundaries and spaces within them. If learners are 
accustomed to tasks in which all relevant and necessary information is explicitly provided, they may 
initially hesitate to consider external sources of information when presented with an open-ended 
problem. This may lead to learners attempting to work within a problem space that is too narrow to 
provide the intellectual resources necessary to construct a solution. At the same time, learners may 
make decisions to expand the problem space when faced with a problem that does not explicitly 
provide all the resources necessary for its solution. However, the boundaries defining the problem 
space cannot expand endlessly; learners must, at some point, accept that the situation they are 
attempting to analyze contains some details that are inaccessible to them and therefore cannot be 
modeled mathematically. 

Our analysis of the negotiation of problem boundaries has implications for the practice of 
designing open-ended problems. In analyzing the groups’ work on the Water Shortage Problem, we 
found that the problem worked as intended in at least one respect: both groups originally obtained 
infeasibly large estimates for the number of trucks needed, and thus were encouraged (without 
external feedback) to revise their assumptions. Both groups decided that the problem space should 
include some consideration of whether the solution obtained was fiscally responsible. Additionally, 
both groups decided to include some analysis of whether the solution obtained was physically 
feasible; for example, Group 2 developed a scheme in which six trucks rotate in and out of 
Squareville in succession, dropping off water as they arrive. Thinking about the problem at this level 
of detail helped the group develop confidence that a solution with six trucks was feasible and would 
deliver enough water. We posit that open-ended problems that contain supports for the development 
of detailed models and that encourage winnowing out unreasonable solutions may support learners in 
expanding problem spaces to include practical considerations. 

Our analysis also has implications for the orchestration of open-ended problems. Both groups had 
questions that one could easily imagine asking of a teacher; for example, Vicki might have wanted to 
ask a PD instructor whether it was permissible to consider information outside of the problem 
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statement. However, in the absence of instructor guidance, the group quickly decided that 
information from the real world lay squarely within the boundaries of the problem, since the 
information on the card was inadequate. Because problem spaces evolve over time, a teacher 
implementing an open-ended problem may wish to take an observer role initially and allow the 
problem space to develop according to the explicit and implicit demands of the problem. 

We conclude this report by highlighting two ways in which the problem space of the Water 
Shortage Problem may communicate with the broader space of students’ real-world experience. 
Since the time of the creation of this problem, serious water crises have occurred in places such as 
Flint, Michigan and Corpus Christi, Texas. In subsequent implementations of the Water Shortage 
Problem, the authors have noticed that teachers who have experienced water crises such as these 
sometimes interact differently with the problem; they are more knowledgeable about how water is 
actually distributed during a water crisis, and more attentive to logistical issues such as how a town 
should time and manage water collection. We offer this as an example of learners’ real-world 
experiences interacting with the problem space. As an example of the problem space talking back to 
the broader world in which the learners live, consider the following comment from Violet: “If this 
[90 gallons per day] is what I use on a regular basis and this [4-6 gallons] is what I use in a disaster… 
like… I feel like this is the disaster!” Seeing the disparity between everyday water usage in the U.S. 
and recommended water usage during an emergency may heighten learners’ awareness of the 
possibility of scaling back water consumption and using natural resources at a more sustainable rate.  

Endnote 
Alphabetical listing of author names is intended to indicate equal contributions to the paper. 
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