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While the mathematics education community encourages teachers to support students in developing 
a more meaningful contextual understanding of algebraic symbols, very little is known about 
teachers’ quantitative understandings of algebraic symbols themselves. The goal of this study was to 
fill this gap and examine secondary teachers’ ability to contextualize algebraic symbols, in 
particular notation that results from algebraic generalization. The results led to the identification of 
various conceptual hurdles that teachers encountered as they endeavored to articulate the 
underlying quantities as well as various conceptualizations they invoked, both productive and 
unproductive, in their attempt to overcome these challenges. 
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Introduction 
Traditionally, algebra instruction in the United States has focused on symbol manipulation. 

Teachers tend to emphasize formal methods, involving abstract mathematical symbols, over other 
approaches that involve representations that are more closely grounded in context such as diagrams, 
tables, and graphs (Kieran, 2007; Smith & Thompson, 2007; Yerushalmy & Chazan, 2002). 
Unfortunately, such an approach has failed to meet the needs of many, if not most, students. 
Struggling to cope with abstract notation, abruptly introduced and presented as detached from a 
coherent system of referents, students often fail to develop meaningful interpretations of algebraic 
symbols and the associated operations (Kieran, 2007; Harel (2007); Knuth, Alibali, McNeil, 
Weinberg, & Stephens, 2005; Sfard & Linchevski, 1994).   

The ability for students to not only manipulate symbols, but interpret the contextual quantities 
that expressions represent has been emphasized as a core component to algebraic thinking. The 
Common Core State Standards (2010) underscores this understanding, including it as one of the eight 
practice standards (SMP 2: Reason abstractly and quantitatively) as well as a high school algebra 
content standard (HSA.SSE.A.1). Likewise, many scholars have articulated the significance of this 
understanding. Kaput and colleagues (2008) noted that without such an understanding, students’ 
actions are guided strictly by the rules of the notational system without support from the previously 
learned structure of the reference field. As such, knowledge is more fragile with students tending to 
overgeneralize symbolic rules such as (a + b)2 = a2 + b2.  

To support students in developing a contextual understanding of symbols, researchers have 
advocated for the introduction of algebra through inquiry-based activities grounded in more concrete 
representations such as tables, situations, and words (Koedinger & Nathan, 2004; Nathan, 2012). One 
example of such an approach is through figural pattern generalization. These are tasks in which 
students are provided drawings of sequential stages and asked to find subsequent stages and 
eventually write an expression to model their understanding of a general stage. Exploring these 
patterns affords students the opportunity to convey their generalizations through a variety of 
increasingly abstract representations, leading to a more meaningful interpretation of the eventual 
symbolic forms. 

In order to support students in developing a quantitative understanding of the notation, teachers 
must possess specialized content knowledge that goes beyond simply the ability to write expressions 
(Ball, Thames, & Phelps, 2008). They must understand how to relate, with precision, the various 
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mathematical representations to the contextual quantities they represent. Although several 
researchers have investigated students’ understanding of representations in algebra (e.g., Knuth, 
2000; Nathan & Kim, 2007), less attention has been given to examining teachers' understandings of 
algebraic notation and their ability to draw connections to the context. Stylianou (2010) studied 
middle school teachers’ beliefs about the instructional use of multiple representations, but not their 
knowledge. Harel, Fuller, and Rabin (2008) documented ways in which teachers failed to support 
students to develop meaningful interpretations of symbols, but without exploring teachers’ symbolic 
reasoning or other potential causes for the failure.  

While the field has emphasized the need for students to develop a contextual understanding of 
symbolic representations, we know very little about teachers’ understanding in this area. Having a 
better image of the specific challenges teachers face and how to overcome these challenges will 
inform teacher educators how to better support teachers in working with their students to develop this 
ability. Therefore, the goal of this study was to examine secondary teachers’ understandings of the 
quantitative meanings of algebraic symbols, in particular notation that results from algebraic 
generalization. The results led to the identification of various conceptual hurdles that teachers 
encountered as they attempted to make sense of and connect the underlying quantities and 
quantitative relationships as well as various conceptualizations they invoke, both productive and 
unproductive, in their attempt to overcome these challenges.  

Theoretical Perspective 
Although there is a lack of empirical studies addressing teachers’ understandings of mathematical 

representations, considerable thought has been devoted to establishing the importance and role of 
representations theoretically. Multiple scholars have developed theoretical rationales to explain why 
the ability of expressing the meaning of numeric and algebraic figures is foundational to the 
understanding of mathematical notation. 

Quantitative Reasoning 
In order for students to be able to contextualize algebraic notation, they must possess a strong 

understand of the quantities the symbols represent. Therefore, a key component to possessing a deep 
understanding of algebraic symbols is quantitative reasoning. According to Thompson (1994), 
“quantitative reasoning is not reasoning about numbers, but reasoning about objects and their 
measurements (i.e., quantities) and relationships among quantities” (p. 8). As such, problem solving 
is not about determining the sequence of operations that will result in the correct answer, but about 
developing a conceptual understanding of how the quantities in a given problem are interrelated and 
how they combine to create new quantities. By focusing on the relationship between quantities, 
students develop a deeper understanding of the problem situation. Smith and Thompson (2007) argue 
that students must possess a sophisticated enough understanding of the structure of the problem to 
warrant the use of algebraic tools. Without a grasp of the quantities that shape the problem situation, 
students are unable to see algebraic notation as a representation that communicates quantitative 
relationships and consequently are left interpreting symbolic expressions as simply a tool that serves 
to calculate numerical values. 

Symbolization 
While understanding the contextual situation is foundational for developing meaning of algebraic 

expressions, for such an understanding to become embedded in abstract symbolic forms and for 
students to see notation as communicating the quantitative structure, various cognitive developments 
must take place. Kaput, Blanton, and Moreno-Armella (2008) described a process they refer to as 
symbolization, in which through one's experience in working with mathematical ideas, their related 
understandings become infused in the mathematical objects used to represent the phenomenon. They 
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noted that over time and with multiple iterations of reflection, students’ understanding of the context 
becomes instilled in more and more densely compressed forms of symbolization. Initially, students 
use more contextually connected representations such as oral, written, and drawn descriptions to 
express their experiences. They then use these representations to reflect on this same experience. 
This process leads to a newly mediated conceptualization of the mathematical phenomenon and 
possibly to new representations. Each interaction with the mathematical phenomenon, whether 
individual and or socially mediated, results in a new conceptualization. Eventually these 
conceptualizations converge into a conventional and compact symbolic form, establishing a rich, 
densely packed interpretation of the mathematical phenomenon. Kaput and colleagues noted that in 
the end, instead of the symbols' representing the referent as a separate entity, the two become 
interpreted as one. Actions applied to the symbols are construed as actions on the referent itself. At 
this stage, a student does not look at symbols, but through them, seeing the mathematical 
phenomenon and the notation as one.  

Connections Between Representations 
The role of multiple representations in mathematics and the importance of teachers to engage 

students in making connections among mathematical representations has been recognized by many 
scholars (National Council of Teachers of Mathematics [NCTM], 2014). Several studies have 
demonstrated the ability to translate between representations as a characteristic of more robust and 
flexible knowledge (e.g. Pape & Tchoshanov, 2001; Stylianou & Silver, 2004). In particular, Lesh, 
Landau, and Hamilton (as cited by Lesh, Post, & Behr, 1987) observed that students working through 
mathematics problems seldom came to the solutions successfully using a single representational 
mode. Explaining this phenomenon, Tripathi (2008) noted that using these “different representations 
is like examining the concept through a variety of lenses, with each lens providing a different 
perspective makes the picture richer and deeper” (p. 439). Extending this idea, Dreyfus and 
Eisenberg (1996) argued that representations differ not only in the way information is expressed, but 
also in terms of the information itself. They maintained that "any representation will express some, 
but not all of the information, stress some aspects and hide others" (pp. 267). Subsequently, 
mathematical ideas are not embodied by a single representation but rather lie, at the intersection of 
these representations. Finally, Lesh et al (1987) asserted that establishing a relationship from one 
representational system to another supports students in developing a stronger understanding of the 
various properties within the situation as they are encouraged to focus on what structural 
characteristics are preserved in the mapping. 

Methods 
To investigate the various conceptual hurdles associated with teachers’ quantitative 

understanding of the algebraic notation used to describe figural generalizations, I engaged four 8th 
grade teachers each in a 1.5-hour individual semi-structured clinical interview (Ginsburg, 1997). 
Wanting to identify particular challenges associated with connecting algebraic notation to quantities 
as well as productive conceptualizations teachers formulate to overcome these difficulties, I chose 
teachers with significant experience with algebraic generalization. The teachers selected all had 
previously participated in multiple days of professional development focused on algebraic 
generalization as well as significant experience teaching and interviewing students in this area. 
Although a study of a more representative group of teachers might provide more generalizable 
information, choosing more knowledgeable participants allowed me to investigate in detail the 
subtleties of contextualizing algebraic notation.  

During the interview, the teachers were presented two different figural generalizing tasks (see 
Figure 1). These afforded many different decompositions including interpretations of groups of 
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varying sizes and overlapping groups. Also, the two patterns picked differed in that one was more 
conducive to being construed as consisting of a constant number of groups of increasing size, while 
the other could be more readily understood as comprising of an increasing number of groups of 
constant size. During the interview the participants were asked to provide numerical expressions for 
specific stages and a general algebraic expression for the nth stage. After each expression they 
formulated, I asked them to explain what each symbol represented. In addition, I asked the 
participants to analyze the quantitative meanings of students’ work to examine their understanding of 
decompositions that might differ from their own. Throughout the interview, questions focused on the 
teachers’ understandings of individual symbols and collections of symbols. In addition, I asked 
participants to comment on their interpretations of various initial symbolic rules as well as on 
intermediate expressions that arise through syntactical manipulation.  

 Each interview was videotaped and transcribed. Teachers’ responses were reviewed using a 
grounded theory approach (Strauss & Corbin, 1994) in which I used open coding and the constant 
comparison method to analyze their responses. I began by identifying particular areas of difficulty 
across the four teachers. I then compared the actions and comments in these areas among the 
participants as well as among similar items on different problems.  

 
 

 
 
 

 

Figure 1. Figural Generalizing Tasks 

Results 
All four teachers approached the generalizing tasks quantitatively.  That is, rather than using a 

procedure based on numerical values to arrive at a correct linear expression, they began by 
decomposing the figures into various quantities and then formulating expressions to express their 
understanding of the quantities they saw.  In addition, all of the participants were successful in 
writing different expressions that corresponded to distinct decompositions of the pattern when asked 
to analyze the pattern differently and were able to explain possible interpretations of the pattern when 
exposed to students’ expressions that differed from their own. That being said, while the teachers 
were able to connect the expressions to the quantities in the pattern in general, they struggled 
articulating the precise contextual quantities that symbols represented. In the end two different 
challenges emerged along with 3 different conceptualizations to overcome each challenge, one 
unproductive and two productive. 

Challenge #1. Interpreting the Coefficient of x    
The first conceptual difficulty centered on the participants’ understandings of the coefficient of x 

and its relationship to the variable.  Initially, all four participants described the coefficient and the 
variable together as representing groups of a particular size (i.e. 5x represents the number of groups 
of 5), but struggled to disentangle the two and articulate the specific meanings of the symbols 
independently.  

Unproductive conceptualization: Detaching meaning of the symbols from details of context. 
To overcome this challenge one participant, Denise, reconceptualized the coefficient as the constant 
difference between stages even when such a construal was inappropriate for the context.  To illustrate 
this type of thinking, I describe Denise’s explanation of the expression 3x+1 for the second task.  
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Initially, she stated that the 3 and the x both represented number of groups of 3.  When asked to 
clarify, she began vacillating between various interpretations (the number of groups of three, three 
tiles, the number 3, the three added on) before ultimately concluding that it represented the three tiles 
that were being added at each stage. When asked to highlight “the three added on” in the figure, she 
seemed to imposed her notion of adding three on the diagram, selecting tiles that did not correspond 
to how the pattern changes between stages.  Initially she said it did not matter which ones, circling 
what seemed like arbitrary groups of 3 dots (see left image of Figure 2), before eventually deciding 
the three additional tiles each stage were the one far left tile and the two far right tiles (see right 
image of Figure 2).  

Denise’s vague and even problematic explanations of the various symbols’ referents are evidence 
that she was not using symbols to communicate her interpretation of the figure.  Instead, she seemed 
to reinterpret the coefficient as representing a decontextualized growth factor and attempted to 
improvise a quantitative interpretation on the figure.   

 
 

 
 
 

 

Figure 2. Denise’s Interpretations of the Coefficient in Pattern 2. 

Productive conceptualizations: Interpreting the variable as the number of groups and 
coefficient as a ratio of tiles per group or vice versa.  While the other three participants also 
struggled identifying the meaning of the coefficient and variable separately, they eventually 
disentangled their meanings, describing the variable as the number of groups and coefficient as a 
ratio of dots or tiles per group for the first task.  Notable was their explanation of the symbols in the 
expression 3(x – 1) + 4 for the second task.  While two of the participants switched their 
interpretation of the symbols relative to the first task, with the coefficient now representing the 3 
constant groups and the variable corresponding to their varying size, the third teacher did not.  To 
make sense of the 3, he imagined orbits of 3 tiles being added to each stage.  Such a 
conceptualization matched his previous interpretation of the variable as the number of groups with 
the coefficient representing its size. While all three participants had quantitative interpretations of the 
symbols, the first two flexibly adapted their interpretations of the symbols to accommodate their 
quantitative understandings of the figure, while the third had a more fixed view of the symbols, 
reconceptualizing the quantities in the figure to match his previously formulated understanding of the 
symbols. 

Challenge #2. Interpreting Expressions Where the Variable Appears More Than Once 
The second conceptual challenge that emerged for the teachers was negotiating the meanings of 

variables that appeared more than once in a single expression or between expressions after algebraic 
manipulation. Such a situation exists in the first pattern when decomposing the figure into 
overlapping groups of 5, first with the expression 5x – (x – 1) and then in the subsequent simplified 
expression 4x + 1.  Initially all four participants interpreted the various xs in these expressions as 
representing different quantities in the figure. They understood the x in 5x as the number of groups of 
5, the x in x – 1 as the number of overlapping dots, and the final x in 4x as the number of groups of 4.  
Expecting a single variable to a have a consistent meaning, they struggled to explain this apparent 
conflict.   

Unproductive conceptualization: Imposing the interpretation of one variable onto another.  



Mathematical Knowledge for Teaching 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

602 

Three	of	the	participants,	in	an	effort	to	coordinate	the	symbols’	referents,	initially	imposed	an	
interpretation	of	the	number	of	groups	of	five	on	the	x	in	the	expression	x	–	1.		In	doing	so	they	then	
incorrectly	reinterpreted	the minus 1 as accounting for the difference in sizes of the groups of five 
and the groups of four (i.e., the difference in the number of dots) rather than the difference between 
the total number of groups of five and the number of overlapping dots. While all three teachers 
devoted at least 5 minutes to this incorrect construal, eventually they all noticed their inappropriate 
interpretation.  Of these three teachers, two then formulated productive conceptualizations of the 
variables to overcome this problem, while the third participant did not. Instead, in an attempt to 
resolve this inconsistency, she oversimplified	the	symbols’	referents,	arriving	at	a	final	
interpretation	of	all	the	xs	as	simply	a	dot.		Accordingly,	she	construed	5x	to	mean	5	dots	and	4x	to	
mean	4	dots,	but	was	unable	to	indicate	which	exact	dots	in	the	figure.	Such a conceptualization of 
x as a dot essentially treats the variable as a label and the coefficients as decontextualized numbers, 
removing any quantitative meaning of the symbols and failing to explain any quantitative 
relationships between the symbols.   

Productive conceptualizations: Coordinating numerical values and reinterpreting symbols 
to align quantitative meanings.  Two of the participants were able to articulate viable, yet different 
solutions to reconcile the diverging meanings of the symbols.  Although both teachers initially tried 
to make sense of the xs by using a literal translation of the words like the participant described 
previously, they eventually formulated productive conceptualizations.  

The first participant did so by associating the quantities numerically.  By evaluating the 
expressions multiple times and stating the quantities and their numerical relationships, she was able 
to see that the number groups, initially of 5 dots, is always equal to the number of overlapping dots to 
be removed, which is equal to the number of groups of 4 dots. In the end, although she continued to 
interpret the same variable as different referents, she realized that the numerical value of each of 
these quantities is always equal.  

The second productive conceptualization resulted through a reinterpretation of the quantitative 
meanings of the variables. Similar to the previous participant, the third teacher verbalized his 
understanding of the various variables in the expression 5x–(x+1) and 5x–x+1, while carefully 
examining their values. This process helped him to not only coordinate the values of the two 
quantities (groups of 5 and overlapping dots), but also to connect them physically, noticing that the 
overlapping dots were members of the same groups of 5. In addition, he had added, apparently 
somewhat serendipitously, a coefficient of 1 in front of the second expression (resulting in 5x–1x–1).  
Together, these various semiotic acts supported him in reconceptualizing the overlapping dots as 
group of size 1.  This conceptualization allowed him to reinterpret x as the purely the number of 
groups, without attaching a size, and the varying coefficients as the size. In the end, he was able to 
formulate an understanding of the variable so that it retained consistent quantitative meaning 
throughout as well as explained the varying coefficients.  

Discussion 
As this analysis reveals, contextualizing algebraic notation is challenging, even for experienced 

teachers.  There are many nuances that experts overlook when they use algebraic expressions to solve 
problems and communicate their generalizations.  In this final section I will revisit some of these 
challenges and discuss implications that I see stemming from these results. 

Conceptual Complexities of Interpreting Algebraic Expressions 
To highlight the complexity of contextualizing algebraic notation, I want to revisit a particular 

conceptualization that emerged. This example serves to not only illustrate the sophisticated 
understanding necessary, but also emphasizes that the quantities the teachers came to see in the 
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notation were not intrinsic properties in the figure but rather, mental constructs that they themselves 
created.    

One challenge identified in this study was articulating, with precision, separate meanings for the 
variable and coefficient that explained the relationship between the two.  To overcome this difficulty, 
participants not only interpreted x as the number of groups and the coefficient as the size of each 
group, but also reversed this mapping and conceptualized the coefficient as the number of groups and 
the variable as the group size. To see both ways requires an abstract and flexible interpretation of the 
symbols. To illustrate the abstraction of perceiving both ways, I will use an alternative figure (see 
Figure 3) in which the transition between these two views requires only a subtle, cognitive shift in 
defining the group.  As I point out, while this pattern can be modeled by the expression of 3n, 
depending on your perspective, the 3 and then n can take on different meanings.  In interpretation 1, 
the n indicates the number of groups of size 3 and in interpretation 2, the n represents the number of 
dots in the constant 3 groups.  

 

 
Figure 3. Flexible Conceptualization of Variable and Coefficient. 

As this example illustrates the quantitative structure of the pattern is not an inherent characteristic 
of the figure or of the corresponding notation used to communicate it. The capacity to interpret 
symbols in multiple ways is an understanding that must be explicitly developed. 

Implications 
While I see several implications that stem from this study, I will highlight two which are 

interrelated. As noted in the introduction, algebra classrooms are dominated by a symbolic focus 
without attention to meaning.  While only a few studies have specifically tackled this issue from the 
teacher’s perspective, the consensus seems to be that the primary cause is teachers’ orientations. The 
results of this study indicate that the challenge to transform the current symbolic focus in algebra 
classrooms is not simply an issue of beliefs. By detailing teachers’ struggles with the complexity of 
this topic, this study demonstrates that, at least in part, the difficulties teachers experience in shifting 
their instruction is connected to their knowledge bases.  Consequently, a second, related implication 
is the need for teacher preparation programs to explicitly develop this understanding. While 
definitely a daunting task, the results of this study contribute to this endeavor by identifying both 
conceptual hurdles and conceptual resources on which to focus instructional attention to support 
teachers in developing this knowledge and ultimately helping their students foster a deeper, 
quantitative understanding of the notation. 
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