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Abstract 

We tested whether mental rotation training improved math performance in 6- to 8-year-olds. 

Children were pretested on a range of number and math skills. Then one group received a single 

session of mental rotation training using an object completion task that had previously improved 

spatial ability in children this age (Ehrlich, Levine, & Goldin-Meadow, 2006). The remaining 

children completed crossword puzzles instead. Children’s posttest scores revealed that those in 

the spatial training group improved significantly on calculation problems. In contrast, children 

in the control group did not improve on any math tasks. Further analyses revealed that the 

spatial training group’s improvement was largely due to better performance on missing term 

problems (e.g., 4 + ____ = 11). 
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Spatial training improves children’s mathematics performance 

Previous research has established a link between spatial ability and mathematics —children and 

adults who perform better on spatial tasks also perform better on tests of mathematical ability 

(Burnett, Lane, & Dratt, 1979; Casey, Nuttall, & Pezaris, 2001; Delgado & Prieto, 2004; Geary, 

Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Holmes, Adams, & Hamilton, 2008; Kyttälä, 

Aunio, Lehto, Van Luit, & Hautamaki, 2003; Lubinski & Benbow, 1992; McKenzie, Bull, & 

Gray, 2003; Mclean & Hitch, 1999; Rasmussen & Bisanz, 2005).  This link may be based on 

shared underlying processes.  Brain imaging studies confirm that similar areas are activated 

when people process both spatial and number tasks (See Hubbard et al., 2005 and Umiltà, Priftis, 

& Zorzi, 2009 for reviews). There also is behavioral evidence that the two are connected.  For 

example, studies indicate that number is mentally represented in several spatial formats (e.g., the 

SNARC effect, object files, etc.) (See Mix & Cheng, 2012, for a review).  The connection 

between space and math is so compelling that many now believe spatial training could be an 

important resource for improving performance in STEM disciplines (Lubinksi, 2010; Newcombe, 

2010; Uttal, Meadow, Tipton, Hand, Alden, Warren, & Newcombe, under review). In fact, the 

National Council of Teachers of Mathematics now recommends integrating spatial reasoning 

into the elementary mathematics curriculum (NCTM, 2010).  However, these recommendations 

may be premature as there is not yet direct evidence that spatial training can improve math 

learning.  In the present study, we report what may be the first such evidence. 

The Connection between Spatial Ability and Math 

Many studies have demonstrated that people who are better at spatial tasks also excel in 

mathematics.  Although most of this research has been conducted with teens and adults, there is 

enough evidence in young children to suggest a link that could be leveraged by educators.  For 
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example, strong visuo-spatial working memory is related to superior performance on counting 

tasks (Kyttälä et al., 2003), number line estimation (Geary et al., 2007), and nonverbal problem 

solving (Rasmussen & Bisanz, 2005), as well as better overall math performance (Alloway & 

Passolunghi, 2011; Gathercole & Pickering, 2000; Meyer, Salimpoor, Wu, Geary, & Menon, 

2010; Raghubar, Barnes & Hecht, 2010).  Studies also have found that performance on mental 

rotation tasks, such as the Block Design subtest of the WISC-III, is significantly correlated with 

composite scores of math achievement throughout school age, from kindergarten to 12th grade 

(Markey, 2010; Johnson, 1998; Lachance & Mazzocco, 2006; Mazzocco & Myers, 2003).  It is 

important to know that space and math are related in the early grades, because many studies 

indicate that early intervention is critical for closing achievement gaps in math (Duncan, 

Dowsett, Claessens, Magnuson, Huston, Klebanov, 2007; Jordan, Kaplan, Ramineni & 

Locuniak, 2009; Klibanoff, Levine, Huttenlocher, Vasilyeva, & Hedges, 2006; Saxe, 1987; 

Starkey, Klein, & Wakeley, 2004). 

Additional evidence that space and math are related comes from research on spatio-

quantitative representations, such as the mental number line and object files (Dehaene, Bossini & 

Giraux, 1993; Noles, Scholl & Mitroff, 2005; Siegler & Opfer, 2003; Kahneman ,Treisman, & 

Gibbs, 1992; Trick & Pylyshyn, 1994).  There is excellent evidence, for example, that people 

represent quantitative magnitudes in terms of space as a mental number line starting in early 

childhood and continuing into adulthood.  One indication is that people are faster to identify 

small numbers with their left hand than they are with their right hand (and vice versa) suggesting 

that they represent quantities on a linear number line with their own bodies at the midpoint (i.e., 

the SNARC effect) (Berch, Foley, Hill & Ryan, 1999; Dehaene, Bossini & Giraux, 1993; 

DeHevia & Spelke, 2009; Fias, 2001, Fischer, 2003; van Galen & Reitsma, 2008; Lourenco & 
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Longo, 2009).  Another indication is that people represent small quantities using a spatial 

tracking process.  It has long been recognized that people immediately apprehend small numbers 

(i.e., 1-4) without counting (Jenson, Reese & Reese, 1950; Jevons, 1871; Kaufman, Lord, Reese, 

& Volkmann, 1949; Taves, 1941).  More recent research has revealed these rapid number 

estimates are generated by a spatial individuation process that uses pointers to track object 

locations (Kahneman, Treisman, & Gibbs, 1992; Noles, Scholl & Mitroff, 2005; Trick & 

Pylyshyn, 1994).  Finally, the conventions for written mathematics rely heavily on spatial 

relations, and both adults and children are sensitive to these relations.  For example, adults 

perform worse at solving algebraic equations when the distances among terms were manipulated 

(e.g., 2+3  *  4 vs. 2  +  3* 4) (Fischer, Moeller, Bientzle, Cress, & Nuerk, 2011; Landy & 

Goldstone, 2007).  Perhaps for related reasons, McNeil and Alibali (2004) reported that fourth 

graders struggle to solve math equations in the form 4 + 3 + 5 = 4 + ___ even though they readily 

solve standard forms of the same problem (e.g., 4+ 3 + 5 =___ ). Indeed, extreme deficits in 

visual-perceptual skills are indicative of a particular math learning disability (Geary, 1993; 

Rourke, 1993). 

In summary, the existing literature provides a firm basis for concluding that spatial ability 

and math share cognitive processes beginning early in development.  Correlational studies 

confirm that spatial ability is related to math ability throughout development, including the early 

elementary grades.  Research also indicates that quantities are represented in spatial formats (i.e., 

the mental number line and object files) beginning in early childhood and persisting into 

adulthood.  Finally, spatial ability is required to understand mathematical symbols.  Taken 

together, there is excellent reason to hypothesize that spatial training would improve math 

learning. 
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Can spatial ability be improved through training? 

 A variety of training approaches have led to improved spatial ability.  This finding lends 

support to the idea that spatial training can improve mathematics performance inasmuch as 

spatial ability itself can be trained (Baenninger & Newcombe, 1989; Ehrlich, Levine, & Goldin-

Meadow, 2006; Heil, Rosler, Link, & Bajric, 1998; Hsi, Linn & Bell, 1997; Kail, 1986; 

Newcombe & Frick, 2010; Sorby & Baartmans, 2000; Uttal et al., under review; Vasta, Knott, & 

Gaze, 1996). What remains controversial is whether this improvement leads to gains beyond 

better performance on the training items. 

 Although some studies claim to have demonstrated transfer from training to novel items or 

tasks (e.g., DeLisi & Cammarano, 1996; Terlecki, Newcombe & Little, 2008; Wallace & 

Hofelich, 1992), many have failed to obtain such evidence (Casey et al., 2008; Kail, 1986; Kail 

& Park, 1990; Morgan, Bartram, & Clarke, 1984).  For example, Kail and Park (1990) found that 

whereas 11-year-olds could be trained to recognize alphanumeric symbols in various orientations, 

children did not show similar improvement on untrained items.  Findings like these led some to 

conclude that existing spatial training effects are quite specific and context-bound (National 

Research Council, 2006; Wright, Thompson, Ganis, Newcombe, & Kosslyn, 2008).  However, in 

a recent meta-analysis of the spatial training literature, Uttal et al. (under review) reached very 

different conclusions.  Specifically, they found no differences in the magnitude of training 

effects whether a study tested near or medium transfer (effect sizes = .47 and .49, respectively).  

Unfortunately, there were not enough cases of far transfer to determine whether effect sizes for 

those studies were comparable, but these findings at least suggest that spatial training transfers 

beyond the training task. 

 All that said, it is not clear that spatial training would need to transfer to other spatial tasks 
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in order to have an impact on math.  There may well be productive connections between spatial 

training and math, even if these do not transfer to other spatial tasks, because the transfer could 

occur at a very specific, process level.  In fact, it is possible that certain spatial tasks are more 

similar to certain math tasks than they are similar to other spatial tasks if the same processes are 

engaged. 

Can spatial training improve math performance? 

Although the idea that spatial training might improve math learning is not new (Bishop, 1980; 

Smith, 1964), surprisingly few studies have actually tested it.  The most closely related research 

has demonstrated that experience with spatio-quantitative materials (e.g., walking along a 

number line mat, free play with blocks, or experience with board games/video games) leads to 

improvement in math (Fischer et al., 2011; Graziano et al., 1999; Ramani & Siegler, 2008).  For 

example, Ramani and Siegler (2008) found that experience playing the board game, Chutes and 

Ladders, led to more accurate placement of numbers on a number line. 

These studies are encouraging because they suggest that math learning is sensitive to 

spatial input.  However, none has tested whether training on spatial cognition per se (e.g., mental 

rotation, visuo-spatial working memory, etc.) leads to gains in math, per se (e.g., calculation).  

Instead, this work tends to combine space and math in both the training and the tests.  For 

example, Chutes and Ladders involves moving a number of spaces (as indicated by a spinner) 

along a linear path that is marked with numerals.  Thus, it is a spatial task but also has a strong 

quantitative component.  Similarly, the outcome measure (placement on a number line) has both 

spatial and quantitative components.  In contrast, the present study provides spatial training using 

a mental rotation task that has no obvious quantitative components and then tests its effects on a 

mathematical task (calculation) with no obvious spatial components.  This provides a more direct 



    Spatial training for math  

 

8	  

test of the hypothesis that improved spatial ability will cascade into improved mathematical 

ability. 

Method 

Participants  

Fifty-eight children participated (M = 7.1 years old, range = 6.1 to 8.4 years old).  An additional 

6 children were recruited but excluded because they performed above 75% on the math pretest.  

We targeted 6- to 8-year-olds because basic calculation skills are developing, but not mastered in 

this age range.  Also, previous research had established that, by this age, mental rotation ability 

and math performance are related (Kyttälä et al., 2003) and training can improve mental rotation 

ability (Ehrlich et al., 2006).  Children were randomly assigned to either the spatial training 

group (n = 31) or a no-training control group (n = 27).  Participants were drawn from a diverse, 

but predominantly Caucasian middle class, population in Michigan.  There were 17 boys in the 

spatial training group and 17 boys in the control group. 

Materials and Procedure 

Children first completed three pretests (two spatial tests and one math tests).  On a 

different day (scheduled within one week of the first), they completed one 40-minute training 

session followed immediately by the three posttests. 

For children in the spatial training condition, the session consisted of mental rotation 

practice.  We used a mental rotation task shown to be trainable in previous research with 6- to 8-

year-olds (Ehrlich et al., 2006, see Figure 1).  In this task, children see two parts of a flat shape 

and then point to one of four pictures that shows the shape as a whole.  As feedback, children 

were given the two parts on separate pieces of cardstock and asked to verify or change their 

choices after moving them together, thus creating the whole.  Children in the control condition 
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completed crossword puzzles similar to those used as filler tasks in previous research on spatial 

ability (Cherney, 2008; Rizzo, Buckwalter, Neumann, Chua, van Rooyen, Larson,, Kratz, 

Kesselman, Thiebaux, & Humphrey, 1999). 

The three tests were: 

Mental Rotation Test   This test consisted of 16 novel trials exactly like those used in the mental 

rotation training task, except that the shapes were printed on the bottom of a single sheet of paper 

rather than on movable pieces.  Children responded by circling the resulting shape from among 

four choices at the top of each page.  This test measured whether our training procedure was 

adequate to cause improvement on the same mental rotation task. 

Spatial Relations Subtest (PMA)  To see whether our spatial training led to general improvement 

in spatial ability, we also gave children the Spatial Relations subtest from the Test of Primary 

Mental Abilities (Thurstone, 1974). This test consists of 27 items in which children choose from 

among four incomplete figures the one that will combine with the standard to make a square.  

Children received four familiarization items followed by the 27 test items.  A six-minute time 

limit was imposed. 

Math Test  We tested the effects of spatial training on math performance with a set of 27 addition 

and subtraction problems.  Items included single-digit number fact problems (e.g., 4 + 5 = ____ 

), two- and three-digit calculation problems (e.g., 56 + 6 = ____ ; 124 + 224=___), and missing 

term problems (e.g., 4 + ____ = 12).  Cronbach’s alpha inter-item reliability coefficient for this 

test was .92. 

Results 

  To determine whether the spatial training group outperformed the control group on any of 

the outcome measures and, also to avoid Type 1 error, we first conducted a multivariate analysis 
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of covariance (MANCOVA) with children’s three posttest scores as dependent measures and 

their pretest scores as covariates.  The analysis indicated a significant difference favoring the 

spatial training group (Wilks’s λ = .64), F (3, 51) = 9.64, p < .001, η2= .361)  (see Table 1).  

Univariate tests indicated that this difference was evident on both the Mental Rotation test (F (1, 

55) = 16.23, p < .001, η2= .23), and the Math test (F (1, 55) = 8. 73, p = .005, η2= .14).  There 

was no significant group difference on the Spatial Relations subtest, however, suggesting that 

our mental rotation training did not lead to a general improvement in spatial ability. 

 To understand the significant group differences on the math test, we carried out separate 

analyses of covariance (ANCOVA) for each of the specific problem types (number fact problems, 

multi-digit calculation, and missing terms problems).  There was a significant difference favoring 

the spatial training group on missing term problems (e.g.,  2 + ____ = 7 or ____= 9 – 4) (F (1, 

55) = 7. 80, p = .007, η2= .12).   However, no significant differences between conditions emerged 

for either the number fact problems or multi-digit calculation (see Table 2).  A slightly different 

pattern was revealed using paired sample t-tests (one-tailed) to compare children’s pre- and 

posttest scores.  For spatial training children, there was significant improvement on missing term 

problems (t (30) = 2.79, p = .005) and multi-digit calculation (t (30) = 1.65, p = .05) but not on 

number fact problems (t (30) = .36, p = .36).  In contrast, children in the control group failed to 

show significant improvement on any of the math subskills (missing term: t (26) = 1.19, p =. 13; 

multi-digit: t (26) = .49, p = .32; number fact: t (26) =. 34, p = .37). 

Discussion 

          Although previous studies have demonstrated that learning math with spatial tools can lead 

to improvement in quantitative tasks (e.g., Moeller et al, 2011; Ramani & Siegler, 2008), our 

study is the first to show a direct effect of spatial training per se on math performance in early 
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elementary-aged children.  We found that even a single session of spatial training led to 

significant improvement on certain problems.  This result adds further support to claims that 

spatial cognition and mathematical reasoning are connected, but it is unique in that it is the only 

study to demonstrate a causal link. 

 It is interesting that the spatial training effect was strongest on missing term problems.  

Previous research has shown that children have an inflexible understanding of the equal sign and 

prefer to solve equations in a familiar, left-to-right order (Knuth, Stephens, McNeil, & Alibali, 

2006; McNeil & Alibali, 2005).  Perhaps our results reflect children’s attempts to solve missing 

terms problems by mentally rotating missing term equations into a more conventional format 

(e.g., 2 + ___= 7 becomes ____= 7 – 2 or 9 – ___= 5 becomes ___= 9 – 5).  If so, our brief 

mental rotation practice may have facilitated or primed this underlying process, rather than 

leading to deep conceptual change.  Nonetheless, our findings are indicative of shared cognitive 

processing that is sensitive to input, thus raising the possibility that more extensive training 

would lead to more pervasive changes.  

 Another possible mechanism by which mental rotation training improved children’s math 

performance could be increasing VSWM capacity.  Recall that children with better VSWM also 

exhibit better math performance (Alloway & Passolunghi, 2011; Gathercole & Pickering, 2000; 

Geary et al., 2007; Kyttälä et al., 2003; Rasmussen & Bisanz, 2005; Meyer et al., 2010; 

Raghubar, Barnes & Hecht, 2010).  Perhaps mental rotation training improved children’s VSWM 

which, in turn, supported better calculation performance. If so, it is interesting that children’s 

spatial improvement did not transfer to performance on the Spatial Relations subtest (PMA).  

After all, improvements in VSWM should lead to very broad improvements in both space and 

math, but our effects were relatively narrow—appearing mainly on missing term problems.  Still, 
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there was improvement on the calculation test as a whole and on both missing term and multi-

digit problems.  Also, any interpretations must be tempered by the fact that our spatial training 

was very brief.  It is possible more extensive improvements would be observed with additional 

training. 

 It also would be interesting to see if the same patterns are evident given different kinds of 

spatial training.  We chose a training task that had been successful in previous work aimed at 

improving spatial ability in young children, but there were many alternatives.  For example, we 

did not find an effect of mental rotation training on place value concepts, but perhaps such 

effects would be obtained with visuo-spatial perception training (e.g., figure matching) if visuo-

spatial perception shares processes with place value notation whereas mental rotation does not. 

 Further research is clearly needed to completely understand the nature of these effects—

the critical variables that mediate these training effects and a full description of the links between 

specific spatial skills and specific math skills.  However, the present findings are important 

because they provide at least an existence proof that spatial training can improve math 

performance.  This suggests there is great instructional potential in further exploration of the 

causal relations between spatial cognition and mathematics. 
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Footnotes 

1. We estimated effect size using eta squared (η2), which is appropriate for use with analyses of 

covariance. For this measure, .02 is considered a small effect,.13 is considered a medium effect, 

and .26 is considered a large effect (Bakeman, 2005; Cohen, 1988). 

 

 

 

 

 

 

 

 

 

 

 


