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Recent longitudinal research
strongly suggests that students
who perform poorly on sim-
ple mathematics problems at
the end of kindergarten and

first grade are likely to continue to perform
poorly in mathematics through fourth grade
(Duncan et al., 2007; Jordan, Kaplan, Ramineni,

& Locuniak, 2009; Morgan, Farkas, & Wu,
2009). In fact, using a nationally representative
sample of students, Morgan et al. (2009) found
that students who remained in the lowest 10th
percentile at both the beginning and end of
kindergarten (often considered an indicator of a
learning disability in mathematics) had a 70%
chance of remaining in the lowest 10th percentile
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ABSTRACT: This article describes key findings from contemporary research on screening for early
primary grade students in the area of mathematics. Existing studies were used to illustrate the con-
structs most worth measuring and the diverse strategies that researchers used to study potential
measures. The authors discussed the strengths and weaknesses of assessing a few key proficiencies (as
is often done in early reading) versus a more full-scale battery, and described the importance of
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5 years later. They also tended to score, on aver-
age, two standard deviation units (48 percentile
points) below students who were in the acceptable
range of mathematics performance in kinder-
garten. Jordan et al. (2009) found that kinder-
gartners’ number sense, that is, their knowledge
of number relationships and the meaning of
number concepts, predicts later mathematics
achievement even when statistically controlling
for IQ and socioeconomic status.

Just as the persistence of reading disabilities
stimulated widespread investment in early inter-
vention and screening in reading, we hope that
the concurrent findings for the persistence of
mathematics difficulties will incite similar leaps
for identifying measures to screen students likely
to experience difficulties in mathematics. In the
past decade, a number of mathematics screening
measures for use in the primary grades have been
developed. We can draw some reliable conclu-
sions from the convergent findings of these
efforts. Using extant studies of early screening in
mathematics, we illustrate principles and draw
attention to issues to help professionals under-
stand what mathematics constructs measure as
well as strengths and weaknesses of contemporary
screening measures.

Additionally, we examine a critical, but rarely
explored, issue in research on screening in educa-
tion: classification accuracy, that is, the precision
with which measures accurately detect which stu-
dents will have trouble in mathematics without
intensive intervention. Because this area of re-
search is underdeveloped in mathematics, this ar-
ticle will describe the concept of classification
accuracy, specifically sensitivity and specificity,
and their relationship to decisions educators must
make when selecting a screening measure.

APPROACHES TAKEN

TOWARDS MEASUR ING

NUMBER PROF IC I ENCY

IN YOUNG STUDENTS

Virtually all math screening measures for the pri-
mary grades rely on assessing aspects of what is
often referred to as number sense. Okamoto and
Case (1996) describe number sense as the devel-
opment of increasingly sophisticated understand-

ing of numbers and understanding that is typi-
cally represented by students’ ability to use
increasingly sophisticated mental number lines.
Individuals with good number sense appear to
develop a mental number line on which they can
represent and manipulate numerical quantities.
However, number sense is more complex than the
development of a mental number line. Berch
(2005) captures the complexities of articulating a
working definition of number sense, remarking,
“Possessing number sense ostensibly permits one
to achieve everything from understanding the
meaning of numbers to developing strategies for
solving complex math problems; from making
simple magnitude comparisons to inventing pro-
cedures for conducting numerical operations” (p.
334). For that reason, the National Research
Council (2009) recommended use of the term
number proficiencies to refer to the specific com-
ponents of number sense that are the focus of an
assessment or an intervention. Because both terms
have been used historically, we use both in this
article.

Researchers have adopted an array of
approaches for developing assessments of early
number proficiency/number sense. The first ap-
proach attempts to develop efficient screening
measures so that schools can discern which stu-
dents are likely to require additional assistance.
Many of these researchers (e.g., Lembke & Foe-
gen, 2009) have focused on the development of a
set of brief, timed measures, each of which gauges
one key aspect of number competence. Typically,
the research team calculates predictive validity
indices for each individual test. Recently,
researchers have used some form of ordinary least
squares regression to develop a composite score
(often the sum or average of each individual mea-
sure) that predicts subsequent mathematics
achievement. The second approach for developing
screening measures includes the development of
one measure of number proficiency that inten-
tionally samples across several different aspects of
number proficiency. Examples are the research of
Bryant, Bryant, Gersten, Scammacca, and Chavez
(2008) and the recent research of Jordan, Glut-
ting, and Ramineni (2010).



PROCEDURE FOR REVIEWING THE

LITERATURE ON EARLY SCREENING IN

MATHEMATICS

We conducted a literature review using the ERIC
and PsycINFO databases. We used the descriptors
screening and mathematics and limited our search
to empirical studies published between 1996 and
2011. We limited our search to studies involving
children ranging in age from birth to 12 years old
and excluded dissertations. We also conducted a
manual search of major journals in special, reme-
dial, and elementary education (Journal of Special
Education, Exceptional Children, Journal of Educa-
tional Psychology, and Journal of Learning Disabili-
ties) to locate relevant studies.

This search resulted in the identification of
48 studies. Of this total, 21 studies were selected
for further review based on analysis of the title,
abstract, and keywords. Of these 21 studies, 16
(76%) met our criteria for inclusion. Out of the
16 studies identified, eleven focused on single
proficiency measures, four included multiple pro-
ficiency measures, and five used diagnostic utility
statistics and receiver operating characteristics
(ROC) analyses to predict mathematics learning
disability (MLD) or low-achieving students.
(Seethaler and Fuchs, 2010, used a single profi-
ciency measure, a multiple proficiency measure,
and diagnostic utility statistics. Geary, Bailey, and
Hoard, 2009, used a single proficiency measure
and diagnostic utility statistics. Clarke et al.,
2011, used a multiple proficiency measure and di-
agnostic utility statistics.)

Our criteria for inclusion limited our review
to studies that targeted kindergarten and first
grade students, included screening measures and
outcome variables specific to mathematics perfor-
mance, and reported predictive validity, ROC
curves, or sensitivity and specificity analyses. Two
of the studies, Locuniak and Jordan (2008) and
Bryant et al. (2008), included both a first- and a
second-grade sample. Although we limit the data
presented in the tables to first grade only, we dis-
cuss the second-grade sample in the text of this
article. We excluded studies that used one or
more norm-referenced standardized measures as a
screener because we were interested in an efficient
screener or screening batteries. Many of the stan-
dardized measures are much longer than we

would recommend for a screener, often taking be-
tween 1 hr and 3 hr.

For the data presented in Tables 1 and 2, we
focused on studies that provided correlations be-
tween screeners administered in the fall and
mathematics outcomes administered in the spring
of that same year (in one case, we included a
screener given in the spring of the preceding year
since this is a practice that some districts use). For
the tables specifically, we compared measures
across a similar time frame because most schools
screen students in the fall as a means of predicting
who is likely to perform poorly at the end of the
year without receiving additional assistance. How-
ever, we did include long-range prediction studies
in Table 3 regardless of when the screener was ad-
ministered (fall, winter, or spring) to include
studies using recent advances in predictive validity
methods.

MEASURES OF CRITICAL ASPECTS OF

NUMBER PROFICIENCY

Most research on screening measures in early pri-
mary grades (e.g., Lembke & Foegen, 2009;
Methe, Hintze, & Floyd, 2008) has focused on
discrete proficiencies, rather than deficiencies—an
approach that seems more appropriate for univer-
sal screening measures. Although these measures
are not designed to be comprehensive, when done
well, their results may be related to students’ per-
formance on other critical aspects of mathematics.
For example, a good measure of magnitude com-
parison may serve as an indicator of likely perfor-
mance in place value or mental calculation. Most
of these measures are easy to administer and typi-
cally take from as little as 1 min to 5 min to com-
plete. Such measures could be used to quickly
identify students whose mathematics achievement
is either on track or at risk in one or more critical
areas related to development of number sense/
number proficiency, the most critical component
of the early elementary grade mathematics cur-
riculum (National Mathematics Advisory Panel,
2008).

However, as with any screening measure,
these brief measures cannot provide a full diag-
nostic profile. As shown in Table 1, the predictive
validity correlations are typically reasonable, but
not high, and often not as high as comparable
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measures in elementary school reading (Foegen,
Jiban, & Deno, 2007). In addition, these mea-
sures are individually administered (at least at the
current point in time). Although this mode may
be preferable in kindergarten and the beginning
of first grade, it is far more burdensome than
computer-administered assessments or even pen-
cil and paper assessments.

Four components of number sense/number
competence deemed most important by cognitive
psychologists include: (a) magnitude comparison
(Booth & Siegler, 2006), (b) strategic counting
(Geary, 2004), (c) the ability to solve simple word
problems (Jordan et al., 2009), and (d) retrieval
of basic arithmetic facts (Jordan, Hanich, & Ka-
plan, 2003). Table 1 provides descriptions of key
elements of the literature base among the four
components of number sense/number compe-
tence.

Magnitude Comparison. Magnitude compari-
son is the ability to discern which number is the
greatest in a set, and to be able to weigh relative
differences in magnitude efficiently (e.g., to know
that 11 is a bit bigger than 9, but 18 is a lot big-
ger than 9). As children develop a more sophisti-
cated understanding of number and quantity,
they are able to make increasingly complex judg-
ments about magnitude. Riley, Greeno, and
Heller (1983) found that, given a hypothetical
scenario with a picture of five birds and one
worm, most preschoolers could answer questions
such as, “Suppose the birds all race over and each
one tries to get a worm. Will every bird get a
worm?” Their answers demonstrate a gross mag-
nitude judgment that there are more birds than
worms. But given a specific question about mag-
nitude, for example, “How many birds won’t get a
worm?” (p. 169), most preschoolers could not an-
swer correctly. The ability to make these finite
types of magnitude comparisons is a critical un-
derpinning of the ability to calculate, and, in the
view of Okamoto and Case (1996) as well as
Booth and Siegler (2006), represents the evolu-
tion of an increasingly sophisticated and accurate
mental number line, as discussed above.

A number of research teams have designed
and tested similar measures of magnitude com-
parison for kindergarten and first grade (See Table
1). All measures included a timed element, but
the range of numbers used in the materials varied

in response to potential concerns about floor or
ceiling effects. One of the first efforts to develop a
measure of magnitude comparison was by Clarke
and Shinn (2004), who tested a timed magnitude
comparison measure with first-grade students
using fall screening to predict performance on the
Woodcock-Johnson Psychoeducational Battery-
Revised (WJ-R) Applied Problems subtest
(Woodcock & Johnson, 1989). Predictive validity
was .79, which is quite high. Clarke, Baker,
Smolkowski, and Chard (2008) extended the
work to a kindergarten sample, only including
numbers between 1 and 10, rather than 1 and 20.
Predictive validity was .62 with a standardized
achievement test.

Table 1 presents additional data on predictive
validity of magnitude comparison measures. Co-
efficients were fairly consistent, with a median of
.62 for first grade and .50 for kindergarten. Many
studies suffer from the limitation of using only
one site, with the exception of Clarke, Gersten,
Dimino, and Rolfhus (2012) and Lembke and
Foegen (2009). However, the fact that kinder-
garten and first-grade findings were replicated
across multiple studies in multiple sites does indi-
cate great promise for a timed measure of magni-
tude comparison.

Strategic Counting. The ability to understand
how to count efficiently and use counting strate-
gies is fundamental to developing mathematical
understanding and proficiency (Siegler & Robin-
son, 1982). Geary (2004) notes that weak ability
in counting strategies is a key indicator of which
young students are likely to have difficulty learn-
ing mathematics. In most cases, competence in
counting strategies is strongly related to burgeon-
ing knowledge of number properties. Once a
child possesses the “count on” strategy, if asked
“what is 9 more than 2?” she will automatically
know that it is much more efficient to reverse the
problem to 2 more than 9, and simply “count on”
from 9. Counting on from the larger addend is
important for learning addition and subtraction
number combinations, and grasping the count on
strategy demonstrates the beginnings of a grasp of
the commutative property of addition.

A number of researchers have developed
strategic counting measures that require students
to identify the missing number from a sequence
of numbers. All measures included a timed ele-
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ment, but different ranges of numbers were used.
The Clarke et al. (2008) Missing Number kinder-
garten measure used numbers between 1 and 10,
and their first-grade measure used numbers be-
tween 1 and 20. Lembke and Foegen (2009) de-
veloped a measure of strategic counting in which
students were given 1 min to identify a missing
number from a sequence of four consecutive
numbers. They also included items (20% of the
items) that assessed strategic counting by 5s and
10s (e.g., 5 10 __ 20). The range of numbers used
was up to 20 for count by 1s, up to 50 for count
by 5s, and up to 100 for count by 10s. Unlike
other researchers, they used the same items for
kindergarten and first grade. The predictive valid-
ity was weak for kindergarten (.37), in fact the
weakest in the set of studies. In contrast, it was
moderately strong for first grade (.68), suggesting
that kindergartners and first graders require dif-
ferent sets of items in screening measures.

Each research team found moderate concur-
rent and predictive validities (range = .37–.68)
and strong reliabilities (range = .59–.98). Specifi-
cally, the predictive validities are quite high for
first grade with a median coefficient of .62, but in
the low to moderate range for kindergarten with a
median of .475. This measure thus does not seem
a suitable screener for the beginning of kinder-
garten.

Word Problems Involving Simple Arithmetic
Operations. Jordan, Levine, and Huttenlocher
(1994) found that although adults often think
that children have a hard time solving word prob-
lems, young children, in fact, find them easier
than even simple number sentences. In other
words, before formal schooling, children can
much more easily tell you how many sheep are
left if you start out with 9 and lose 2 than they
can tell you that 9 minus 2 is 7.

For that reason, simple word problems have
been added to early screening batteries in recent
years (Fuchs et al., 2007; Locuniak & Jordan,
2008). Locuniak and Jordan created a simple
eight-item story problem measure with four addi-
tion and four subtraction story problems. Perfor-
mance on the story problem measure in the fall of
kindergarten was moderately related to perfor-
mance on a measure of calculation fluency at the
end of second grade (.51), quite high for predict-
ing performance over the course of 3 school years.

Performance was less related between the word
problem measure and the digital span forward
and backward on the Wechsler Intelligence Scale
for Children-IV (WISC-IV; Wechsler, 2003).

Retrieval of Basic Arithmetic Facts. Some of
the earliest research on mathematics difficulties
focused on correlates of students in the upper ele-
mentary grades who were identified as demon-
strating a learning disability by school personnel.
One consistent finding (Goldman, Pellegrino, &
Mertz, 1988) was that students who struggled
with mathematics in the elementary grades were
unable to automatically retrieve addition and sub-
traction number combinations. Research seems to
indicate that although students with learning dis-
abilities in mathematics often make good strides
in terms of facility with algorithms, procedures,
and simple word problems, severe deficits remain
in their retrieval of basic combinations (Geary,
2004; Jordan et al., 2003). These deficiencies sug-
gest underlying problems with what Geary calls
semantic memory (i.e., the ability to store and re-
trieve abstract information efficiently). This abil-
ity appears to be critical for students to succeed in
mathematics and, ultimately, to understand
mathematics. Jordan et al. (2003), however, argue
that poor fact retrieval has its roots in weak num-
ber sense. It is difficult for children to become au-
tomatic with addition and subtraction number
combinations when they do not have a good
sense of relations between and among numbers
and operations. The ability to solve number com-
binations involving addition and subtraction,
even at the beginning of kindergarten, is consid-
ered a powerful predictive measure of mathemat-
ics achievement through third grade (Jordan et
al., 2009).

It is difficult for children to become
automatic with addition and subtraction
number combinations when they do not
have a good sense of relations between and

among numbers and operations.

Measures of fact retrieval appear to be
promising based on one study by Bryant et al.
(2008), who designed an addition and subtrac-
tion fact screener for first- and second-grade
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students. Students had 1 min to complete basic
facts problems. Concurrent validity correlations
with the Stanford Achievement Test-Tenth Edi-
tion (SAT-10; Pearson, 2003) were .55 for first-
grade students and .59 for second-grade students.
These data suggest that a fact retrieval measure
would be a sensible addition to a screening bat-
tery in the second grade and possibly first grade.
In fact, recent research (Clarke et al., 2012) exam-
ined the predictive validity of a timed fact re-
trieval measure with the widely used mathematics
achievement test Terra Nova (CTB/McGraw-Hill,
2008) for first-grade students and found a corre-
lation coefficient of .50.

Each of the four competencies discussed pre-
viously appears reasonable for use in early screen-
ing. Each of the measures discussed is brief and
easy to administer, important characteristics of a
screening measure.

MULT I PLE NUMBER

PROF IC I ENCY MEASURES

Another promising approach is the use of mea-
sures that cover multiple, but related number
competencies that young children need in order
to be successful in mathematics. Much of the re-
search in this area is quite new, but appears
equally promising as the single proficiency mea-
sures. Research to date demonstrates that mea-
sures encompassing multiple aspects of number
competence, such as the Number Knowledge Test
(NKT; Okamoto & Case, 1996) and Number
Sense Brief (Jordan, Glutting, & Ramineni,
2008), tend to demonstrate somewhat stronger
predictive validity than the briefer, single profi-
ciency measures. Table 2 provides a description of
multiple number proficiency test studies and their
reported predictive validity.

The NKT is an individually administered
measure that is one of the earliest attempts to as-
sess students’ procedural and conceptual knowl-
edge related to whole numbers. The NKT
includes a number of the critical proficiencies de-
scribed previously, such as the ability to make
magnitude comparisons, count, and use basic
arithmetic operations in multiple formats includ-
ing word problems that are read to the student.
The NKT takes about 10 to 15 min to administer

and consists of four levels of increasing difficulty.
For example, children at the second level compare
the numbers 5 and 4 and identify the bigger
number. The same problem type is presented at
the third level using the numbers 19 and 21.

Baker et al. (2002) explored the ability of the
NKT administered at the end of kindergarten to
predict mathematics achievement on the Stanford
Achievement Test-Ninth Edition (SAT-9; Pearson,
1996) at the end of first grade. The predictive va-
lidity coefficient of the NKT was .73 for Total
Mathematics. Note that this lengthier multiple-
proficiency measure tends to demonstrate slightly
higher predictive validity than many of the briefer
measures discussed earlier.

Finally, item response theory (IRT) was used
to establish the internal consistency and reliability
of the NKT and to examine the extent to which
the four levels of the NKT fit item difficulties.
The IRT reliability was .93. Descriptive analyses
revealed that most of the items fit the levels estab-
lished by Okamoto and Case (1996), although a
few were misplaced and a paucity of items were at
the easy level of difficulty, indicating that the
measure would not necessarily be sensitive to
growth for students at the lower end of the distri-
bution.

More recently, Jordan et al. (2008) developed
a screening battery based on the same theoretical
and empirical underpinnings of the Locuniak-Jor-
dan research but much more brief and efficient,
with an administration time of approximately 15
min. Test-retest reliability ranged from .61 to .86
with a predictive validity of .63 from kindergarten
administration to student mathematics achieve-
ment, measured by the Woodcock-Johnson III
Tests of Achievement (WJ-III; Woodcock, Mc-
Grew, & Mather, 2001) in third grade.

Seethaler and Fuchs (2010) administered a
single proficiency measure, a magnitude compari-
son (Chard et al., 2005), and a multiple profi-
ciency measure (the Number Sense, created by
the authors) in September and May of kinder-
garten. At the end of first grade, conceptual and
procedural outcomes were measured on The Early
Math Diagnostic Assessment (EMDA; The Psy-
chological Corporation, 2002) and the KeyMath-
Revised (KM-R; Connolly, 1998). Comparisons
of single and multiple proficiency screeners, fall
versus spring kindergarten screening, and concep-
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tual versus procedural outcomes were conducted
using logistic regression and ROC analyses. Re-
sults indicated that single and multiple profi-
ciency screeners produced good and similar
classification accuracy at the fall and spring
screening occasions on the conceptual outcome.
Interestingly, each of their screeners classified fu-
ture conceptual math difficulties (MD) status
with significantly greater accuracy than future
procedural MD status. During the fall of kinder-
garten, the area under the curve (AUC) for the
three screeners ranged from .80 to .86 for the
EMDA Math Reasoning subtest, indicating good
predictive utility for conceptual MD status,
whereas AUC for the EMDA Numerical Opera-
tions subtest ranged from .67 to .69, indicating
poor predictive utility for procedural MD status.
One possibility is that strategic counting would
theoretically seem to be a strong predictor of
computational proficiency. Another possible
explanation, proposed by the authors, is that
numerical operations are not stressed in kinder-
garten and first grade, whereas foundational
mathematical concepts are heavily stressed.

SCREENERS AL IGNED TO

CURR ICULUM STANDARDS

A different approach to screening has been devel-
oped by Fuchs and colleagues (e.g., Fuchs, Fuchs,
& Zumeta, 2008) and Clarke and colleagues
(Clarke et al., 2012; Clarke et al., 2011). Typi-
cally, this screening approach consists of a group
administered paper and pencil test containing
items that represent the current year’s curricula
scope and sequence (derived, for example, from
current state standards or National Council of
Teachers of Mathematics [NCTM] Focal Points).
A strength of these measures is that they can be
quickly administered and scored by machine.
They also possess strong face validity because of
their focus on key curriculum topics for the cur-
rent year. Typically, these measures demonstrate
acceptable test-retest, inter-rater, and alternate
form reliability above .80. The concurrent and
predictive validities of these measures are between
.50 and .60 (See Foegen, et al. [2007] for an ex-
tensive review). There are some instances of their

use in first grade (e.g., Seethaler & Fuchs, 2010
and Clarke et al., 2011).

OTHER MEASURES TO

CONS IDER INCLUD ING IN

A MORE COMPREHENS I VE

SCREEN ING BATTERY

One might think that only mathematics measures
should be used in screening for potential mathe-
matics difficulties. However, recent research on
early identification of students with problems
learning mathematics has discovered that working
memory and student engagement may also be
useful in predicting problems in mathematics. For
that reason, we discuss both in this article.

WORKING MEMORY

Recent syntheses of the literature on mathematics
disabilities (e.g., Desoete, Ceulemans, Roeyers, &
Huylebroeck, 2009; Geary, 2004) observe that, in
addition to problems with magnitude compari-
son, counting strategies, and computational
strategies, these students often display deficits in
working memory (Geary, Hoard, Byrd-Craven,
Nugent, & Numtee, 2007; Swanson & Beebe-
Frankenberger, 2004) and problems with visual-
spatial memory and elaboration (e.g., Geary,
2004). Contemporary research consistently
demonstrates the importance of working memory
(Baker et al., 2002; Locuniak & Jordan, 2008;
Swanson & Beebe-Frankenberger, 2004) in un-
derstanding mathematical proficiency at many
different age levels. Working memory is often
measured by a reverse digit span task, that is, a
task requiring a student to repeat a set of numbers
read to him (e.g., 9, 4, 17, 8) in precisely the re-
verse order (i.e., 8, 17, 4, 9).

Working memory seems to function less effi-
ciently as a screening measure than as a variable
that adds precision to a set of other predictors
(e.g., Baker et al., 2002; Locuniak & Jordan,
2008). The relationship between working mem-
ory and number sense appears to be complex. We
believe that working memory relates to mathe-
matics proficiency because in mathematics, stu-
dents are asked not only to remember, but also
mentally “juggle” several bits of abstract informa-
tion (e.g., basic facts, positions of numbers on a
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mental line, computational procedures, etc.). Stu-
dents with weak number sense need to rely more
on working memory. Students weak in both areas
are likely to struggle and future research should
target optimal intervention strategies for this
group of students.

STUDENT ENGAGEMENT AND

ATTENTIVENESS

The relationship between teacher ratings of a stu-
dent’s attentiveness and at-risk status in mathe-
matics also appears to be consistent (Bodovski &
Farkas, 2007; DiPerna, Lei, & Reid, 2007; Fuchs
et al., 2007). Recent research on early identifica-
tion of students with difficulties learning mathe-
matics suggests that measures of a student’s
attentiveness during academic instruction is a
solid predictor of future mathematics achieve-
ment. Utilizing the Early Childhood Longitudi-
nal Study (ECLS–K) database, a number of
researchers have begun to explore the relationship
between student engagement and achievement
growth in mathematics.

Bodovski and Farkas (2007) examined the
growth rates from the fall of kindergarten to the
spring of third grade with a nationally representa-
tive sample of 13,043 students. ECLS–K mea-
sured student engagement by asking teachers to
complete a six-item survey rating each student’s
attention, persistence with tasks, and demonstra-
tion of learning independence. As expected,
higher achieving students displayed greater levels
of engagement. A secondary analysis of the lowest
quarter of students found that within this group,
students with the greatest need showed lower
rates of achievement growth and engagement over
time. Across all grade levels tested (i.e., K–5), the
attention measure contributed a unique propor-
tion of the variance in outcomes, beyond initial
skill status. This effect was striking because the
impact of student engagement was greater than
time spent on instruction and the effect showed
the greatest impact for the lowest achieving stu-
dents. This finding suggests that interventions for
students with problems in mathematics might se-
riously consider adding a component that pro-
motes attentiveness to academic tasks and
activities.

DiPerna et al. (2007) also examined the rela-
tionship between student engagement and
achievement growth in mathematics using the
ECLS-K database from kindergarten entry to
third-grade exit with a nationally representative
sample of 3,240 students. Teachers’ ratings of stu-
dents’ academic attentiveness at the beginning of
kindergarten played a role in predicting subse-
quent mathematics achievement, with predictive
validity correlation coefficients ranging from .28
to .35. Fuchs et al. (2007) also found that teach-
ers’ appraisal of attentiveness was a significant
predictor of future mathematics achievement.

Although these correlations are not nearly as
large as those of the mathematics screening mea-
sures, they suggest that ratings of attentiveness
could be added to a screening battery to create
some type of composite score. They also suggest
that many students requiring some type of early
intervention in mathematics might also struggle
with maintaining attention to academic tasks for
sustained amounts of time.

As researchers build more sophisticated mod-
els for early identification using more extensive
batteries (e.g., Fuchs et al., 2007; Locuniak &
Jordan, 2008), we may begin to generate more
precise screening methods. The more sophisti-
cated models may take into account measures of
working memory, attentiveness, and perhaps
other cognitive variables.

PRED ICT I VE VAL ID I TY AND

D IAGNOST IC CLASS I F I CAT ION

ACCURACY

PREDICTIVE VALIDITY

The main method for evaluating the measures
discussed in this article was to examine predictive
validity using Pearson correlations over the course
of a school year. (A small number of studies were
conducted over a longer timeframe, e.g., 2 to 3
years. We discuss these separately.) All of these
studies involved multiple proficiency measures or
studies that used diagnostic utility statistics.
When designing screening measures in mathe-
matics, a critical variable to consider is the extent
to which performance on those measures relates
to later performance in mathematics. For exam-
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ple, a student’s score on a first-grade screening
measure would need to accurately predict diffi-
culty in mathematics at the end of first grade, and
ideally performance a year later as well. Assess-
ments that show evidence of predictive validity
can aid in instructional decision making. If evi-
dence indicates that a score below a certain
threshold on a kindergarten or beginning of first-
grade measure of mathematics predicts later prob-
lems, then schools and teachers can use that
information to allocate resources for instructional
or intervention services to those students.

This approach provides reasonable estimates
of how well the distribution of scores on the
screener corresponds with the distribution of stu-
dents’ performance on a lengthier achievement
test in mathematics administered later in the
school year. However, for screening measures, we
are more interested primarily in one group of stu-
dents—the 15% to perhaps 30% who are at risk.
Ultimately, a screening measure rises or falls based
on how well it is able to pinpoint which students
need additional help. For that reason, recent
screening research has begun to use measures of
classification accuracy (e.g., Clarke et al., 2011;
Jordan, Glutting, Ramineni, & Watkins, 2010;
Mazzocco & Thompson, 2005; Seethaler &
Fuchs, 2010). Because this information is rela-
tively new to special education research (this is
less true for psychology research), and because the
concepts—classification accuracy, specificity, sen-
sitivity, and ROC curves—are relatively new and
often not well understood, we explain them
below.

CLASS IF ICATION ACCURACY

Classification accuracy refers to the degree to
which the screener provides correct classifications
of children who require additional assistance in
mathematics. There are two types of mistakes a
screener or screening battery can make. The first
is to miss students who truly need help, that is, to
create false negatives. To assess this risk, we report
on the screener’s sensitivity. The second type of
classification mistake is to falsely identify students
as needing help when in fact they do not require
additional instruction or assistance. This group of
students is called false positives. To assess this risk,
we report on the screener’s specificity.

Earlier, the field focused heavily on high sen-
sitivity, and that remains a major concern in
much of the published research (e.g., Seethaler &
Fuchs, 2010). However, the response to interven-
tion (RTI) research community has become in-
creasingly aware of the phenomenal waste of
resources that comes with false positives, and
there has been more focus on specificity (see, for
example, Silberglitt & Hintze, 2005).

SENSIT IV ITY: ENSURING THAT NO ONE

“FALLS THROUGH THE CRACKS”

Jordan provides a practical definition for the term
sensitivity: “Sensitivity is the proportion of indi-
viduals with a disorder (e.g., individuals with low
achievement or learning disabilities) who are cor-
rectly identified by a positive test finding” (Jordan
Glutting, Ramineni, & Watkins, 2010, p. 184).
Researchers have used various working definitions
of how to determine what it means to “require ad-
ditional assistance” in an academic area, realizing
that any of these operational definitions are, at
best, educated guesses.

There is no common standard for determin-
ing what the term “at risk” or “would benefit
from intervention” means. The problem is hardly
unique to education. Public health officials grope
with this issue as they determine categories such
as “at risk for heart disease” or “at risk for a
stroke,” and change criteria to reflect evolving
definitions of at risk.

Some researchers have focused less on RTI
and more on valid early identification of students
who possess a disability in mathematics. These re-
searchers often use a criterion of the 10th per-
centile (e.g., Fuchs et al., 2007; Morgan et al.,
2009), reasoning that about one student in ten
has a learning disability in mathematics or is at
strong risk for developing a disability in mathe-
matics in the future. Others focus on using a
screening measure or battery to determine which
students might benefit from an intervention.
These very different criteria for classifying a stu-
dent as “at risk” have a profound impact on any
discussion of sensitivity, and the professional liter-
ature often does not make this distinction clear.

During the initial development of screening
measures in mathematics and reading, researchers
often argued that it was most important to “catch
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kids early,” and they feared letting any at-risk stu-
dents through the screening battery. Thus, they
often set a high criterion, such as the 40th per-
centile or below, to avoid missing any students
who might have a true problem. However, there
are costs to this approach. The formal means for
assessing those costs is specificity.

SPECIF IC ITY AND THE CONCERN

FOR WASTED RESOURCES

Often neglected but equally important is knowl-
edge of whether students recommended for Tier 2
intervention would succeed without being pro-
vided with any particular intervention. We refer
to this as the specificity of the screener. In the zeal
to make sure that we do all we can to provide
early intervention to students in reading and
mathematics, this topic has been neglected until
recently (Gersten et al., 2009; Silberglitt &
Hintze, 2005). At this time, there is no consensus
or commonly used convention for reporting what
it means to “succeed without any additional inter-
vention.” Deciding what performance criterion
will be used is a key issue that is not easy to re-
solve.

Weak specificity indicates that a screening
measure or battery is over-identifying students
and thus providing services to students who do
not need them. Students who are misclassified as
needing help even though they don’t are called
false positives. False positives are problematic be-
cause resources may be wasted (Gersten et al.,
2009) by providing extra intensive intervention to
students who do not need such help, as often
happens in the field of reading (e.g., Jenkins &
O’Connor, 2002). For schools with finite re-
sources, this is particularly vexing. Resources
spent on providing interventions to students who
do not need them are thus not available to be
spent on other valuable services. False positives
are not only taxing on schools but can also be
detrimental to parents and students “ . . . given
the generally ‘chaotic’ nature of early achievement
and the increased possibility of falsely identifying
students as being ‘at-risk’ when they are merely
distracted, anxious, or unfamiliar with the testing
protocols” (Bryant et al., 2011, p. 9). Students
and parents may suffer adverse effects of thinking

the child has a disability when in fact the student
has no disability whatsoever.

CAN WE BALANCE THESE TWO

CONCERNS? ROC CURVES AS

A POTENTIAL TOOL

A measure with perfect sensitivity ensures that all
students who require intervention receive extra
support. A measure with perfect specificity en-
sures that schools do not spend resources on stu-
dents who do not need extra support. However,
measurement in education, medicine, psychology,
and most human endeavors is far from perfect
and consists of a series of compromises and bal-
ances. For screening, we need to balance two
goals – accurately detecting which students re-
quire early intervention (sensitivity) and detecting
only those students who require additional help
(specificity).

Here we face a bit of a paradox. The more we
increase sensitivity, the more we try to ensure that
we do not miss any students who might need in-
tervention, but in doing so the more we decrease
specificity. Thus, development and refinement of
effective screening measures requires a delicate
balance. The selection of a cut score (the number
at which a score at or above classifies the student
as not at risk and a score below classifies the stu-
dent as at risk) affects both sensitivity and speci-
ficity in a reciprocal fashion (e.g., setting the cut
score to have higher sensitivity leads to lower
specificity).

In the past, most researchers simply skirted
the issue and reported Pearson correlations of pre-
dictive validity. As a field, we are only beginning
to develop conventions for reporting on sensitiv-
ity and specificity. One widely used tool in evalu-
ating the utility of a diagnostic instrument is the
ROC curve (see Table 3 for a summary of studies
utilizing ROC analyses). Although relatively new
to the area of mathematical screening, the classifi-
cation accuracy of diagnostic tests has long been
of interest in medicine. “By systematically using
all possible cut scores of a test and plotting the
true-positive rate (i.e., sensitivity) against the
false-positive rate (i.e., 1-specificity) for each cut
score, diagnostic validity can be displayed for the
full range of the test’s scores” (Jordan, Glutting,
Ramineni, & Watkins, 2010, p. 184). In essence,
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the ROC curve plots sensitivity vs. 1-specificity
and illustrates the inverse relationship between
sensitivity and specificity; changing the cut score
to improve one will lower the other.

EXAMPLE OF AN ROC ANALYS IS

If a researcher chose a score on a screener that
would correctly identify every child who scored
below a given criterion on subsequent mathemat-
ics achievement tests (e.g., the 10th percentile for
MLD or the 25th for at-risk status), they would
invariably include many false positives, thus re-
sulting in unacceptably low specificity. ROC anal-
yses can help inform these decisions.

ROC analyses select the cut score mathemat-
ically to maximize sensitivity and specificity in a
balanced way. In an ROC analysis, the outcome is
specified a priori. For example, Fuchs et al.
(2007) specified a score below the 10th percentile
on various mathematics achievement measures as
representing MLD. Then, using the AUC in the
ROC analysis, which provides a metric for accu-
racy of group discrimination based on the a priori
cut score, they were able to identify how accu-
rately the number sense measure discriminated
between the MLD and non-MLD groups based
on their performance. By examining the ROC
curve, one can actually examine the impact of
various cut scores on accurate group identification
(e.g., MLD or at risk for MLD). However, al-
though an ROC analysis increases sensitivity, it
does not concomitantly increase specificity. The
role of the cut score is an integral one. Recent re-
search demonstrates how ROC analyses can assist
researchers in development of accurate measures,
but there are trade-offs that necessitate acknowl-
edgement.

CONTEMPORARY RESEARCH USING

ROC ANALYSES : THE SEARCH FOR

AN IDEAL BALANCE

Earlier studies that pioneered the use of ROC
analyses typically reported the AUC and noted
whether it was higher than .80. If so, they re-
ported that the AUC was “good” following a
standard of clinical significance, with .80 to .89
being “good” and .90 to 1.00 being “excellent”
(Cicchetti, 2001). In contrast, Seethaler and

Fuchs (2010) perform a much more sophisti-
cated, useful analysis. In addition to reporting
sensitivity, specificity, and the AUC, the authors
provide the number of students incorrectly iden-
tified by the screener as MD (false positives), the
number of students incorrectly identified as non-
MD (false negatives), the number of students
correctly identified as MD (true positives), and
the number of students correctly identified as
non-MD (true negatives). They did this analysis
separately for students classified as MD-concep-
tual and MD-procedural. Students received an
MD-conceptual designation if they scored below
the 16th percentile on the EMDA Math Reason-
ing subtest and MD-procedural if they scored
below the 16th percentile on the EMDA Numer-
ical Operations subtest. As can be seen in Table
3, Seethaler and Fuchs report sensitivity of
89.8% for the quantity discrimination (Clarke &
Shinn, 2004) screener in predicting MD-proce-
dural status. However, the number of students
incorrectly identified as MD was also high (93).
In other words, despite high values of sensitivity,
nearly half of the students testing positive were
actually false positives, resulting in a specificity of
32.1%. Thus, simply relying on sensitivity can
produce misleading conclusions about the diag-
nostic accuracy of a test.

Clarke et al. (2011) performed a similar anal-
ysis on the first-grade version of a newly designed
measure called easyCBM (http://www.easycbm
.com/). In this case, they used a criterion devel-
oped by Silberglitt and Hintze (2005). These
researchers specify a specific means for use of an
ROC curve. This entails (a) only including cut
scores so that both specificity and sensitivity are
equal or greater than .70, and (b) performing an
intricate titration process so that sensitivity is in-
creased as much as possible while specificity re-
mains at least .70. This process is described in
detail in Clarke et al. (2011) and demonstrates a
promising method for balancing the need to cor-
rectly identify as many students who need help as
possible while not casting such a wide net that
students who would do fine without help are
given costly assistance.

439Exceptional Children



D ISCUSS ION

The recent report on early childhood mathemat-
ics learning (National Research Council, 2009)
concluded:

Further exploration is needed to better un-
derstand what early number competencies
are predictive of future success in mathemat-
ics. Such research can help identify children
at risk for learning difficulties or disabilities
in mathematics . . . [and] develop targeted
interventions for such children and test their
effectiveness. (p. 350)

The authors were primarily addressing
preschool, but the need is as critical for students
in the primary grades. The longitudinal studies
documenting the persistence of mathematics dis-
abilities and difficulties in learning mathematics
from kindergarten to the upper elementary grades
create a compelling case for future research on de-
velopment and refinement of valid universal
screening measures for students in the primary
grades.

In the remainder of this section, we highlight
several areas for future research. We also note
pragmatic issues faced by school personnel at-
tempting to implement some of the screening
measures discussed earlier.

GRAPPLING WITH THE CONCEPT

OF RISK STATUS

Determining risk status is as much an art as a sci-
ence. This is true in all fields. However, it remains
a vexing issue in the area of mathematics for sev-
eral reasons. A source of confusion in the field is
that criteria for determining at-risk status in
mathematics have varied from below the 25th
percentile on a normed mathematics measure
(Locuniak & Jordan, 2008) to below the 10th
percentile (Fuchs et al., 2007; Morgan et al.,
2009). In the first case, the researchers mirrored
what a school district might do: cast a relatively
broad net to ensure that all students who may
need intervention receive it. However, as districts
have learned from experiences with RTI in read-
ing, and as researchers have begun to consistently
note, there are real drawbacks to casting too
broad a net. For one thing, a good deal of time
and money is wasted because intervention is pro-
vided to students who would do fine without it.

In addition, resources that are usually sorely
needed are pulled away from intermediate grades
and middle school.

POTENTIAL LIMITATIONS OF ROC
ANALYSES

Because there remains no clear definition of what
constitutes “at risk,” decisions made regarding at-
risk classification are often complex. Normally, re-
searchers select one specific cut score and students
who do not achieve that predetermined score are
determined likely to be at risk in the area targeted
by the assessment. However, researchers have a lot
of discretion in selecting the precise score to use.
The decisions have a significant impact on the
classification accuracy of any screening instru-
ment selected and the number of students identi-
fied for additional support in mathematics. The
recent research focusing on classification accuracy
using ROC analyses to evaluate the sensitivity and
specificity of a screening system is certainly a step
forward over simply presenting a predictive valid-
ity correlation coefficient. However, ROC analy-
ses are based on various, usually unstated,
mathematical assumptions (i.e., normality of
noise [or error] distributions). A recent article by
VanDerHeyden (2011) provides one of the most
probing discussions of the limitations of sensitiv-
ity and specificity for both practitioners and re-
searchers using these analyses. The author
proposes a more probabilistic, Bayesian approach,
inspired by the work of Robyn Dawes (1962).
VanDerHeyden highlights the importance of con-
sidering positive predictive power, that is, the
probability that a score below benchmark is an ac-
curate indicator of risk. She also provides impor-
tant cautions:

Sensitivity and specificity offer little informa-
tion about the value of a test finding for rul-
ing-out or ruling-in a condition. Generally,
predictive power quantifies the value of a test
finding for ruling in (positive predictive
power) and ruling-out (negative predictive
power) a condition in a way that is easily in-
terpreted and used. (VanDerHeyden, 2011,
p. 342)

In other words, predictive power can tell a
teacher or psychologist whether a particular stu-
dent is really at risk for learning problems in
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math. However, positive and negative predictive
power estimates are problematic because the field
has no precise definition of what it means to be
“at risk” for a learning problem in math or to pos-
sess a math learning disability.

ADVANCES IN THE USE OF ROC
ANALYSES

Ultimately, we envision that ROC can help us se-
lect a benchmark, but we then need to ensure that
our cut score demonstrates adequate validity in
terms of consequential validity (Gersten, Keating,
& Irvin, 1995; Messick, 1980), that is, use of a
given screening procedure must be linked to in-
creases in the mathematics performance of stu-
dents at the lower end of the distribution in
math. We need to study the impacts of imple-
menting specific screening measures or batteries
and specific benchmarks on practice, using occa-
sional case study and descriptive research.

The concern for false positives (low speci-
ficity), especially in the early grades, has received
increased attention in both reading and mathe-
matics. Recently, Siegel, Fuchs, O’Connor and
Vaughn (2011) experimented with a method for
reducing this rate in the primary grades. Although
the impact was not statistically significant, this
does seem to be a promising method for future
study. Students who score below the cut score in
the fall are not immediately placed in a Tier 2 in-
tervention. Rather, they continue to receive only
typical classroom instruction, but their progress is
monitored closely (e.g., weekly) for a period of 6
to 8 weeks. Only those with unacceptably low
rates of progress receive Tier 2 interventions. In
our view, this type of approach warrants further
research and is worthy of serious consideration.

We are only beginning to understand how to
use the concepts of sensitivity, specificity, and
classification accuracy in our research and how
these analyses can provide critical information for
districts or schools making decisions about what
type of screening measures to use. For example, a
district may decide to select a more efficient
screening measure over a more comprehensive
(less efficient) measure if the shorter measure
demonstrates similar rates of accurate classifica-
tion. Earlier studies merely reported that AUC
was over .80 and concluded it was good based on

clinical significance criteria and stopped there.
The contemporary research by Seethaler and
Fuchs (2010) and Clarke et al. (2011) seems to be
a timely advance in the increasingly sophisticated
use of ROC to balance the competing demands of
specificity and sensitivity—of wasting resources
versus letting students fall through the cracks.
Despite its limitations, ROC remains a useful tool
for establishing criteria for cut scores and can now
be used by individual school districts (or individ-
ual schools) if appropriate technical support is
provided.

OUR PERSPECTIVE ON THE FUTURE

With the advent of the Common Core State
Standards (http://www.corestandards.org/the-
standards/mathematics) and increased use of tech-
nology, notions of efficiency change. Whereas
even 5 to 10 years ago, the main consideration for
efficiency was how long a test took to administer
and score, with the use of technology, scoring can
be done almost automatically. Testing, at least
beginning sometime in first grade, would not
require high degrees of adult supervision. Most
importantly, use of IRT allows technology to cali-
brate screening measures more precisely.

We are only beginning to understand
how to use the concepts of sensitivity,

specificity, and classification accuracy in
our research and how these analyses can
provide critical information for districts
or schools making decisions about what

type of screening measures to use.

At this point in time, we understand a good
deal more about what comprises a comprehensive
assessment battery, but are less certain of the ele-
ments of an efficient assessment battery. A crucial
criterion for use of a screening measure is effi-
ciency. Jordan et al. (2008) have developed an
efficient 33-item untimed screening measure that
has good predictive validity, and the NKT is a
relatively efficient screening tool, typically taking
10 to 15 min to administer. Both of these are far
more comprehensive than measures of one
component of number sense, such as magnitude
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comparison. However, the realities of universal
screening require use of the most efficient
measures.

It is critical to note that the development of
mathematical thinking is broader than the set of
skills assessed by any one of the measures de-
scribed previously, which focus almost exclusively
on the domain of numbers. Some challenges the
field will face will be to explore the role of student
performance in other critical areas (e.g., geome-
try), to determine how to measure performance in
those domains, and to determine their relation-
ship to proficiency in algebra and other advanced
mathematical topics (G. J. Duncan, personal
communication, May 7, 2011). As our under-
standing of mathematical development advances,
so too should our design of screening instruments
that reflect the complexity of mathematics. How-
ever, the insights about the importance of the so-
phistication of an individual’s mental number line
as a sensitive snapshot of mathematical develop-
ment made by Okamoto and Case (1996) remain
robust, as the evidence described in this article
demonstrates.

Each year in school brings about new chal-
lenges for students and new material to master in
order to further their mathematical understand-
ing and build a foundation for future content.
Because the demands of the mathematics curricu-
lum continue to change over the years, it is possi-
ble that certain students may initially learn math
at acceptable levels only to experience problems
once content moves to a more abstract level (e.g.,
with the introduction of decimals, improper frac-
tions, ratios and proportions, negative numbers).
Therefore, as in the reading field (Scarborough,
2001), we will likely see students whose perfor-
mance in mathematics is acceptable in the pri-
mary grades, but deteriorates in later grades.

Future research needs to address several criti-
cal areas. The first is valid screening measures for
Grades 3 and above, using IRT and important
policy frameworks such as the Common Core
Standards as a basis. Another potential research
area is measurement of skills related to geometry
and an examination of whether there are precur-
sors of geometry proficiency that are different
than those of proficiency with number concepts
and operations.

Last, we would be remiss if we did not em-
phasize that the collection of screening data in
and of itself does not change student outcomes.
Any advances that schools make in screening stu-
dents in mathematics must occur alongside efforts
to improve instructional practices and to develop
effective interventions. The body of research on
this topic is sparse, but expanding rapidly.

Any advances that schools make
in screening students in mathematics
must occur alongside efforts to improve

instructional practices and to
develop effective interventions.
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