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Abstract
Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed
variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in
adjusting for measurement error. So far, however, SEM has not been fully used to develop norms of assessments in educational or
psychological fields. In this article, we highlighted the norming process of the Supports Intensity Scale – Children’s Version (SIS-C) within
the SEM framework, using a recently developed method of identification (i.e., effects-coding method) that estimates latent means and
variances in the metric of the observed indicators. The SIS-C norming process involved (a) creating parcels, (b) estimating latent
means and standard deviations, (c) computing T scores using obtained latent means and standard deviations, and (d) reporting
percentile ranks.
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Norming a scale facilitates the interpretation of test results because

an individual’s score is referenced against the performance of

a standardization sample. Norms are used to identify a person’s

strengths and limitations in planning for appropriate services and

to monitor personal changes over time or across settings. The

Wechsler Intelligence Scale for Children – Fifth Edition (WISC-V;

Wechsler, 2014), for example, provides full scale intelligence

quotient that represents a student’s cognitive ability based on the

norms generated from the standardized sample. The WISC-V also

produces the primary index scores (i.e., verbal comprehension, visual

spatial, fluid reasoning, working memory, and processing speed)

to determine a student’s relative strengths and weaknesses in cogni-

tive processing areas. In describing recommended standardiza-

tion procedures and guidelines, Cicchetti (1994) emphasized

that the standardization of any assessment should systematically

stratify the sample on relevant demographic variables. As such, a

number of previous studies have established norms in proximal

normative reference groups categorized by age, gender, level

of education, or ethnicity (e.g., Diehr, Heaton, Miller, & Grant,

1998; Tombaugh, 2004). Researchers can choose among several

norming techniques (e.g., linear transformations that preserve or

transform the original shape of the raw score distribution, item

response theory-based true scores); however, the majority of

applied scale development in disability research has tended to

use classical test theoretic (CTT) models during the norming

process, relying on the means and standard deviations of the

observed test scores to compute standard scores (e.g., Powell,

MacKrain, & LeBuffe, 2007). In the following section, we (a)

compare the CTT models and SEM applications highlighting the

strengths of SEM approaches and (b) introduce a norming process

that used SEM, which can serve as a guideline for future norming

studies.

Comparisons between CTT models
and SEM applications

A popular CTT model used for norming is analysis of variance

(ANOVA) to examine the mean differences between subgroups

(e.g., score differences among age or ethnicity groups, etc.); how-

ever, the validity of such norms rests on certain restrictive assump-

tions of ANOVA that can be easily violated in the applied social

and behavioral sciences. The most problematic issue of these

assumptions comes hand-in-glove with ANOVA’s use of CTT-

based scale scores as dependent variables. In the CTT tradition,

scale items are assumed to be measured without error, items are

assumed to be interchangeable and equally strong indicators of the

unobserved true score (i.e., tau equivalent), and within group var-

iances of the true scores are assumed to be equal (McDonald,

1999). Each of these easily violated assumptions is necessary to

ensure the validity of scale scores constructed as simple aggregates

(i.e., sums or means) of the observed scores. These assumptions are

either unnecessary or easily corrected for with the SEM-based pro-

cedure that we propose in what follows.

Methodological experts have advocated using structural equa-

tion modeling (SEM) to estimate latent parameters due to the

extreme flexibility of the SEM paradigm and the ability to relaxed
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the assumptions of error-free measurement that plague CTT model-

ing techniques. SEM is a preferred analytic method because its

assumptions are usually more tenable than those of CTT methods,

and violations of many of these assumptions are readily correctable

(Little, 2013). For example, the multiple-group SEM can easily

accommodate heterogeneous population variances by allowing

dis-attenuated variances to be estimated in each group and indepen-

dently corrected to ensure parallel scaling, if necessary, thereby

relaxing one of ANOVA’s most limiting assumptions (Fan &

Hancock, 2012; Green & Thompson, 2006). Within the SEM

framework, between-group differences are most easily tested by

nested model chi-squared difference tests, and any such mean com-

parisons are not influenced by whether the variances are the same or

not, whereas heterogeneous variances can severely bias the t tests

and F ratios that are usually employed to test for between-group dif-

ferences in most CTT models. Furthermore, unlike ANOVA, which

naively assumes that all observed scores reflect the same level of

the latent construct, the SEM approach allows for congeneric indi-

cators. In other words, when using SEM, the degree to which the

observed items are associated with the latent variable can vary

freely, and, therefore, each item can contribute a different degree

of variance to the true score. This is an important strength of the

SEM approach for norming. Unlike CTT scores, latent variables

fully extract the true score variance from each indicator.

While the most common implementations of both SEM and

ANOVA require assuming population-level normality of the

observed scores and independent errors, the additional flexibility

of the SEM paradigm makes it easier to adjust the fundamental

model when these assumptions are violated. For example, most

SEM software allows robust estimation methods that yield unbiased

parameter estimates and hypothesis tests for non-normal data.

Although SEM is no more robust than ANOVA to dependent obser-

vations caused by nested data, it can easily accommodate certain

type of residual dependence that ANOVA cannot address such as

residual covariation between the specific factors of items associated

with different constructs.

One of the most critical advantages of SEM is its ability to auto-

matically correct for measurement error when extracting the latent

variables. CTT models can only partition the observed scores’ var-

iance into two components: true scores that reflect the proportion of

each items variance that is shared with all other items and a single

error term that represents all variance not shared with the other

items. By incorporating a single error component, CTT models

assume that the variables are completely free from measurement

error. CTT approaches thereby yield misleading estimates because

observed scores are not completely reliable and, often, item resi-

duals are conditionally dependent. Although CTT-based scores can

be corrected for measurement error, such corrections must be

applied as an additional post-hoc step whereas SEM automatically

removes measurement error during model estimation. The assump-

tion of error-free measurement is rarely met in the social and beha-

vioral sciences as nearly all measures have some degree of

measurement error and often have correlated residuals. In the SEM

framework, the error term is further refined into an item-specific

factor that represents the reliable variance that is uniquely associ-

ated with each observed indicator and a random error term. Extract-

ing specific factors for each item allows researchers to model

possible residual covariation that remains after extracting the true

score (e.g., by estimating methods factors). Such informative mod-

els of the residual error structure are not possible with CTT

approaches. Unlike CTT approaches, the SEM framework uses

latent variables to represent true scores that adjust for such mea-

surement issues and produce more trustworthy parameter estimates.

Specifically in the norming process, the means and variances,

which are corrected for attenuation and other potential measure-

ment problems, lead to more reliable standard scores that represent

the accurate relative standings of performance of a person.

Furthermore, the process of extracting latent constructs in the

SEM approach actually represents a form of model-based smooth-

ing. In the CTT approach, undesired roughness in the raw score dis-

tribution is often pre-smoothed (e.g., using polynomial log-linear

method or strong true score method) to remove noise in the

observed items or post-smoothed (e.g., using cubic smoothing

splines) to remove noise in the distribution of the scale score to

improve equating accuracy (Kolen & Brennan, 2014). The process

of latent variable modeling, however, maps a set of, possibly, noisy

items onto a latent variable that follows a convenient probability

distribution. This distribution is often taken to be multivariate nor-

mal (as in the application we discuss in what follows), but it can

also be a categorical distribution (as in mixture modeling applica-

tions) or a non-normal continuous distribution. Because the distri-

bution of the latent variable must be chosen by the researcher to

facilitate model estimation, the inherent smoothing of SEM is

automatic and absolute. The only roughness in the model-implied

distribution of the latent true score comes from having too few

observations to accurately represent the probability function. A

series of kernel density plots illustrating the smoothing effect of

SEM for the SIS-C data are available as online supplementary

material at http://www.statscamp.org/sis-c-norming-paper.

Effects-coding method of identification

Although the advantages of SEM applications over CTT models

have been continuously addressed in the literature, SEM has not

been exploited in the norming process largely because of the prob-

lems caused by arbitrary scaling. The traditional scale setting meth-

ods of SEM (i.e., fixed factor method and marker variable method)

identify mean and covariance parameters in an arbitrary way

(Little, Slegers, & Card, 2006). When estimating latent means of

constructs in the SEM framework (i.e., multi-group confirmatory

factor analysis, subsequently described), the fixed factor method

fixes the variances and the means of the latent constructs to be one

and zero, respectively, in the first group, and allows latent variances

and latent means in subsequent groups to be freely estimated. In this

way, the estimates of the means and variances of latent constructs

are determined in relation to the fixed mean and variance in the

initial group. The marker variable method also provides arbitrary

scaling by fixing the intercept and factor loading of one of the indi-

cators in each construct to zero and one, respectively. The means

and variances of latent constructs are estimated in all groups, but

these estimates are all scaled relative to the marker variable chosen

for identification. The fixed factor and marker variable methods

(the two traditional scaling methods) are not appropriate for deriv-

ing norms because they produce estimates that are in an arbitrary

metric and cannot be conveniently used to create standard scores

during the norming process.

Little et al. (2006) introduced the effects-coding method of iden-

tification, which maintains the metric of the original scale of the

observed indicators and is, therefore, non-arbitrary. The effects-

coding method of identification is accomplished by placing specific

constraints so that the factor loadings of a given construct all
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average to one, and while the average of each constructs intercepts

is constrained to zero (sample Mplus syntax is provided in Figure 1).

The effects-coding method of identification generates the same

model fit and estimates of latent effect sizes as the traditional scaling

methods. However, the meaningful scaling metric obtained from the

effects-coding method is preferable when the study focus is to ‘‘test

whether the mean or variance of one latent variable is different from

the mean or variance of another latent variable within either single-

or multiple-group models’’ (Little et al., 2006, p. 68) because it leads

to differences given in units of the original scales rather than on an

arbitrary metric. This advanced feature of effects-coding scaling

enables confirmatory factor analysis models to become a tool for

norming scales. Because effects-coding produces a metric that is

based on the average of the indicators, all norms are therefore con-

structed as the average, rather than the sum, of the indicators of a

given construct.

Purpose of the study

The purpose of this study is to introduce a series of SEM applica-

tions that use the effects-coding method of identification, so that

researchers can use the latent variable modeling to develop norms

when the type of measurement is not ordinal. To do this, this study

provides an example that used the SEM technique to norm the Sup-

ports Intensity Scale – Children’s Version (SIS-C), a measure of the

intensity of support needs developed for children and youth with

intellectual disability. In the following section, we address a brief

description of the SIS-C, review the norming process in the SEM

framework (see Figure 1), and highlight the benefits of SEM appli-

cations to create standard scores (i.e., T scores and percentile ranks).

The case study (SIS-C)

Support needs is defined as the ‘‘pattern and intensity of supports

necessary for a person to participate in activities linked with norma-

tive human functioning’’ (Thompson et al., 2009, p. 135). The first

tool developed to measure support needs in adults with intellectual

disability was the Supports Intensity Scale – Adult Version (SIS-A,

Thompson et al., 2004; Thompson, Bryant et al., 2015). It was

normed on a sample of 1,306 people between the ages of 16 and

64 years with intellectual disability. There was also a need for stan-

dardized assessments to measure support needs of children and youth

with intellectual disability aged 5 to 16 years, leading to the develop-

ment of the Supports Intensity Scale – Children’s Version (SIS-C,

Thompson, Wehmeyer, et al., in press). The norming procedures that

are being undertaken to standardize the SIS-C are presented in this

article as a case study. The SIS-A was normed using CTT models,

whereas the SEM approach was used to norm the SIS-C. The next

section describes the norming process of the SIS-C.

Sampling

The normative sample consisted of 4,015 children and adolescents

between ages of 5 and 16 with intellectual disability. Data were col-

lected from either state Developmental Disabilities systems

PARCEL 
1. Run an initial confirmatory factor analysis to examine factor loadings 
2. Average items using the balancing approach (3 parcels per a construct) 
3. Check correlation matrices made from the parcel scheme 

 Be aware of when parceling 
is or is not appropriate. 

Be transparent in creating 
parcels.

SUBSCALE MEANS & SDS
COMPOSITE
MEANS & SDS

Measurement 
Invariance 

1. Configural Invariance 
2. Weak Invariance 
3. Strong Invariance 

CFA 

Use subscale 
averages as 
indicators of the 
overall support-
need factor. 

 FIML was used to address 
missing data. 

Make sure the effects-
coding method is used to 
identify models.  

• Mplus Syntax 
Example: 

(1) FACTOR LOADINGS 

HLA by AP1* (L1) 
              AP2 (L2) 
              AP3 (L3); 
Model Constraint: 
L1 = 3 - L2 - L3; 

(2) INTERCEPTS 

[AP1] (T1); 
[AP2] (T2); 
[AP3] (T3); 
Model Constraint: 
T1 = 0 - T2 - T3; 

Latent Mean 
Comparison 

1. Sequential mean comparisons using likelihood ratio tests  
    (a model with non-invariance vs. a model of invariance) 
2. Final models serve as the baseline models for latent variance 

comparisons. 

Latent
Variance 

Comparison 

1. Sequential variance comparisons using likelihood ratio tests  
    (a model with non-invariance vs. a model of invariance) 
2. Estimate means and variances from the final sequential 

variance models. 
3. Extract square roots of variances to obtain standard deviations. 

COMPUTATIONS OF T SCORES  

Z score SD
MXZ –= , where X = raw score, M = mean score, and SD = standard deviation

(M and SD are obtained in the previous step, and provided in upper areas in 
Tables 3 and 4) 

T score 
SUBSCALE SCORE       10)(3 += ZT
COMPOSITE SCORE   100)(15 += ZT

PERCENTILE RANKS BASED ON THE FREQUENCY DISTRIBUTION OF SCORES 

Figure 1. An overview of SIS-C norming process (the total number of norming sample ¼ 4,015).
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(n¼ 2,910; 72.5% of cases) or school districts (n¼ 1,105; 27.5% of

cases) in 23 states, representing all geographic areas of the United

States. Males constituted 67.5% (n ¼ 2,710) of the total sample,

whereas females made up 29.9% (n ¼ 1,202). There were 103 par-

ticipants who did not indicate their gender (n¼ 103, 2.6%). Table 1

provides additional information on demographic characteristics of

children/adolescents who were rated.

As previously mentioned, norming needs to be conducted with

systematic stratification on the relevant demographic variables.

As children experience substantial changes within the span of a year

or two, the SIS-C Task Force decided to stratify six age groups that

varied by 2 years: 5–6-year-olds, 7–8-year-olds, 9–10-year-olds,

11–12-year-olds, 13–14-year-olds, and 15–16-year-olds. Given

these strata, norms and standard scores (seven subscale standard

scores, a composite standard score, and corresponding percentile

ranks) were developed for each age band. As seen in Table 1,

69 cases (1.7% of the sample) did not have age information. These

missing data were imputed 100 times with the R (R Development

Core Team, 2008) package Amelia II (Honaker, King, & Blackwell,

2011) using all SIS-C items as predictors in the imputation model.

Final estimates for each missing age value were computed as the

averages of 100 imputed age replicates. It should be noted that mul-

tiple imputation is designed to facilitate estimation of population

parameters and not to correctly replicate the missing data points.

In this study, the person-level ages can be viewed as the parameters

to estimate. The multiple imputation procedure resulted in 100

draws from each participant’s posterior predictive distribution of

age, and, by averaging these 100 draws (i.e., taking the mean of the

100 imputed age variables), we have assigned each participant their

most likely age value. Therefore, our implementation still follows

sound missing data theoretic principles. Although age was not

normally distributed in this sample, semi-parametric imputation

methods (i.e., predictive mean matching) produced unreasonable

imputations of the 69 missing ages (i.e., imputing a constant value

of five for all missing ages) and convergence failures precluded

imputation of the categorized age variable via generalized linear

models explicitly designed for ordinal variables. Running the fol-

lowing analyses without the 69 observations missing age did not

change any of the results. Specifically, two latent means of Home

Life (11–12 and 13–14-year-olds) and five latent means of School

Participation (5–6, 7–8, 9–10, 11–12, and 13–14-year-olds) were

different; however, all differences were found at three decimal

places. The detailed results from this sensitivity analysis are avail-

able at http://www.statscamp.org/sis-c-norming-paper. After using

a best-practice missing data treatment (see below), there were

669 children/youth, on average, in each cell. Estimates in parenth-

eses in Table 1 represent imputed sample sizes for the age bands.

Measure

The SIS-C consists of two main sections: (a) exceptional medical

and behavioral needs and (b) Supports Needs Index Scale. The first

section of exceptional medical and behavioral needs measure med-

ical conditions and challenging behaviors that would influence sup-

port needs of children and youth with intellectual disability.

Exceptional medical and behavioral support needs are rated by a

scale of 0 to 2; these ratings are not included in the standard scores.

The second section of the SIS-C consists of seven life activities:

Home Life, Community and Neighborhood, School Participation,

School Learning, Health and Safety, Social, and Advocacy. Scores

from these seven subscales are used to calculate the composite stan-

dard score, a SIS Support Needs Index, to present an indication of

the intensity of a person’s support needs with respect to the peer

normative sample. Each item on these seven subscales is rated by

three dimensions on a 0–4 Likert scale: frequency, daily support

time, and type of support. The average scores across these three

dimensions were included in the SEM models to maintain identical

scales of metrics for each construct being measured.

Norming step

Figure 1 provides an overview that summarizes each norming step

involved in the SIS-C; (a) parcel as a pre-modeling step, (b) esti-

mate latent means and standard deviations of constructs, (c) calcu-

late T scores using latent means and standard deviations obtained

in the previous step, and (d) find percentile ranks based on the fre-

quency distribution of the scores. Details on each step are addressed

Table 1. Demographic characteristics of normative sample.

Variable n (imputed n) %

Data source

State developmental disabilities systems 2,910 72.5

School districts 1,105 27.5

Gender

Male 2,710 67.5

Female 1,202 29.9

Missing 103 2.6

Age cohort

5–6 513 (513) 12.8

7–8 562 (562) 14.0

9–10 762 (787) 19.0

11–12 804 (844) 20.0

13–14 818 (822) 20.4

15–16 487 (487) 12.1

Missing 69 1.7

Ethnicity

White 2,244 55.9

Black 820 20.4

Hispanic 384 9.6

Multiple ethnic backgrounds 237 5.9

Asian/Pacific Islander 159 4.0

Native American 26 0.6

Other 73 1.8

Missing 72 1.8

Student’s intelligence level

< 25 or profound 459 11.4

25–39 or severe 862 21.5

40–55 or moderate 1,321 32.9

55–70 or mild 1,157 28.8

Missing 216 5.4

Student’s adaptive behavior level

Profound 563 14.0

Severe 1,052 26.2

Moderate 1,335 33.3

Mild 948 23.6

Missing 117 2.9

Note. Sample sizes in parentheses are estimates after imputing missing data.
Adapted with permission from Thompson, J. R., Wehmeyer, M. L., Hughes, C.,
Shogren, K. A., Seo, H., Little, T. D., & Schalock, R. (in press). Supports Intensity
Scale – Children’s Version Users Manual. Washington, DC: American Association
on Intellectual and Developmental Disabilities. Copyright © 2015 by the Amer-
ican Association on Intellectual and Developmental Disabilities.
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in the following section; steps (b), (c), and (d) include comparisons

of parameter estimates obtained from latent and manifest spaces to

present the advantages of SEM applications over CTT models.

Step one: parcel. The primary goal of the SEM application in the

norming process is to obtain reliable latent means and standard

deviations of constructs. As our intent is to understand the nature

of the latent constructs, and not the item-level relationships, we cre-

ated parcels of the observed items to act as indicators of each con-

struct (Little, Rhemtulla, Gibson, & Schoemann, 2013). Parcels, a

meaningful set of items that convey manifest information into the

latent space, reduce the specific variances of each item (i.e.,

increase the proportion of true-score variance leading to higher

reliability and greater communality). This feature of parcels

enhances the psychometric properties of the data, but parceling

can also facilitate model estimation with high-dimensional data.

Models with parcels have fewer parameter estimates and more

parsimonious representations of the latent constructs than original

indicators. The aforementioned feature of parcels is particularly

beneficial in our study as stratifying on age led to a very large

model (i.e., a seven-construct CFA model with a total of 61 items,

and this CFA model was replicated in six age bands). Without par-

cels, this model had considerable problems with convergence and

unstable parameter estimates. Parcels were created by examining

the item-level information and averaging the items in a way that

reduces nuisance variance with no loss of generality regarding

inferences about the latent construct (Little, Rhemtulla, et al.,

2013). It should be noted, however, that parcels are not recom-

mended when the focus of study is the behavior of the items

themselves, especially during the exploratory stage of scale devel-

opment. The use of parcels is only warranted when researchers

examine the relations among latent constructs based on items with

properties and behaviors that are already well-established.

Parcels should be created with careful consideration based on

both theoretical and empirical guidance (Little, Rhemtulla, et al.,

2013). To create the parcels for this study, we first ran an item-

level confirmatory factor analysis (CFA) using the total sample

(n ¼ 4,015) to identify the behavior of items and their relations.

Next, based on factor loadings obtained from the CFA, the balan-

cing approach was used to create parcels by ‘‘assign[ing] the item

with the highest item-scale correlations to be paired with the item

that has the lowest item-scale correlation’’ (Little, 2013, p. 24) and

computing the row-wise averages of the selected items to construct

each parceled indicator. The balancing approach enabled us to find

the location of a construct’s centroid by generating a set of essen-

tially tau-equivalent indicators (i.e., indicators with approximately

equal strengths of association to the construct). Based on Little’s

(2013) suggestion, we created three parcels per each construct so

that each construct can be precisely defined by a just-identified

measurement structure. For a detailed discussion of parcel con-

struction and an illustration of the balancing technique, in particu-

lar, see Little (2013, Chapter 1). Astute readers may have noticed

that there was a small amount of missing data on the SIS-C items

(i.e., < 0.7%) which we averaged over when creating the parcels.

This practice (i.e., averaging available items) is not generally advi-

sable. When creating parcels from incomplete data, we generally

recommend imputing the item-level missingness before parcel cre-

ation. For the current study, however, imputing the item level miss-

ingness and averaging the available items produced equivalent

results due to the trivially low nonresponse rate (with nonresponse

rates < 1%, the missing data treatment will have minimal impact on

the analysis outcomes; Little, Jorgenson, Lang, & Moore, 2013).

Three standard deviations of school participation domain (9–10,

11–12, and 13–14-year-olds) were different at three decimal places

when comparing results from two approaches (imputing the item

level missingness vs. averaging the available items). The complete

results from this sensitivity analysis are provided at http://

www.statscamp.org/sis-c-norming-paper.

In order to create a universal parceling structure that functions

equally well across all age groups, we made modifications to this

initial parceling scheme, when testing for configural invariance,

in order to ensure factorial comparability across all age groups.

Table 2 provides the parcel scheme that was optimal across the

age bands; the corresponding correlation matrices are provided

in the Appendix (note that several correlations within the same

construct have weak relations due to inherent sampling errors

around the true population values). This final parcel structure

was used in the entire norming process of the SIS-C. Informa-

tion on the raw score distribution and the parceled score distri-

bution (i.e., mean, standard deviation, skewness, and kurtosis) is

available as online supplementary material at http://www.stats-

camp.org/sis-c-norming-paper.

Step two: estimate latent means and standard deviations.
Multiple-group Mean and Covariance Structures (MACS; Little,

1997) CFA was performed to establish measurement equivalence

of the SIS-C across six age bands as well as to estimate latent means

and standard deviations of constructs. Mplus version 7.0 (Muthén &

Muthén, 2012) was used for the following data analyses. As empha-

sized in the introduction section, the effects-coding method of iden-

tification was used to obtain all latent means and variances. The

example syntax for effects-coding method of identification is pro-

vided in Figure 1. The complete Mplus syntax for MACS CFA is

available as online supplementary material at http://www.statscam-

p.org/sis-c-norming-paper.

Multiple-group confirmatory factor analysis. The multiple-group

CFA is performed by two sets of evaluation: tests of measurement

invariance and tests of the structural parameters (Brown, 2015).

First, the measurement invariance—sometimes referred to as con-

struct comparability or measurement equivalence— is examined

by sequential tests at three invariance levels: configural invariance,

weak invariance, and strong invariance. The purpose of measure-

ment invariance testing is to establish construct comparability

across subgroups (i.e., is the SIS-C measuring each support-need

construct equivalently across six age bands?). Thus, measurement

invariance tests are simply multivariate tests for differential item

functioning (DIF). The test of measurement invariance is an essen-

tial step to test the equality of the structural parameters because

established measurement equivalence eliminates potential con-

founding effects of the grouping variable that can impact differ-

ences in latent means and variances (Little, 2013). In other

words, by confirming equivalent measurement properties in the

subgroups of the population, a concern about ‘‘test bias’’ involved

in scales can be alleviated before obtaining standard scores (Brown,

2015, p. 3), and this feature is one of the key strengths of SEM

applications in norming scales.

Next, after establishing measurement invariance, structural

parameters are evaluated to test differences in latent parameters

(latent means, latent variances) of the SIS-C across six subgroups.

To derive the means used to compute norms within each age group,

a series of models were tested. An omnibus latent mean comparison

Seo et al. 377

http://www.statscamp.org/sis-c-norming-paper
http://www.statscamp.org/sis-c-norming-paper
http://www.statscamp.org/sis-c-norming-paper
http://www.statscamp.org/sis-c-norming-paper
http://www.statscamp.org/sis-c-norming-paper
http://www.statscamp.org/sis-c-norming-paper


Table 2. Parcel schemes for each construct.

Construct Parcel Item

Home

life

activities

AP1 5. Using the toilet

8. Keeping self-occupied during unstructured time (free time) at home

9. Operating electronic devices

AP2 2. Eating

3. Washing and keeping self-clean

6. Sleeping and/or napping

AP3 1. Completing household chores

4. Dressing

7. Keeping track of personal belongings at home

Community

&

neighborhood

activities

BP1 1. Moving around the neighborhood and community

4. Using public services in one’s community or neighborhood

7. Complying with basic community standards, rules, and/or laws

BP2 3. Participating in leisure activities that do not require physical exertion.

6. Shopping

8. Attending special events in the community or neighborhood such as cookouts/picnics, cultural festivals, music/art fairs, or

holiday oriented events

BP3 2. Participating in leisure activities that require physical activity

5. Participating in community service and religious activities

School

participation

activities

CP1 1. Being included in general education classrooms

2. Participating in activities in common school areas (e.g., playground, hallways, cafeteria)

3. Participation in co-curricular activities

CP2 4. Getting to school (includes transportation)

5. Moving around within the school and transitioning between activities

9. Keeping track of schedule at school

CP3 6. Participating in large-scale test taking activities required by state education systems

7. Following classroom and school rules

8. Keeping track of personal belongings at school

School

learning

activities

DP1 2. Learning academic skills

3. Learning and using metacognitive strategies

5. Learning how to use and using educational materials, technologies, and tools

6. Learning how to use and using problem solving and self-regulation strategies in the classroom

DP2 4. Completing academic tasks (e.g., time, quality, neatness, organizational skills)

9. Completing homework assignments

DP3 1. Accessing grade level curriculum content

7. Participating in classroom level evaluations, such as tests

8. Accessing the health and physical education curricula

Health

&

safety

activities

EP1 3. Maintaining emotional well-being

5. Implementing routine first aid when experiencing minor injuries such as a bloody nose

8. Avoiding health and safety hazards

EP2 1. Communicating health related issues and medical problems, including aches and pains

2. Maintaining physical fitness

7. Protecting self from physical, verbal, and/or sexual abuse

EP3 4. Maintaining health and wellness

6. Responding in emergency situations

Social

activities

FP1 2. Respecting the rights of others

4. Responding to and providing constructive criticism

7. Communicating with others in social situations

FP2 3. Maintaining conversation

5. Coping with changes in routines and/or transitions across social situations

8. Respecting others personal space/property

FP3 1. Maintaining positive relationships with others

6. Making and keeping friends

9. Protecting self from exploitation and bullying

Advocacy

activities

GP1 3. Taking action and attaining goals

5. Advocating for and assisting others

7. Communicating personal wants and needs

GP2 1. Expressing preferences

2. Setting personal goals

6. Learning and using self-advocacy skills

GP3 4. Making choices and decisions

8. Participating in educational decision making

9. Learning and using problem solving and self-regulation strategies in the home and community

Note. The total number of norming sample ¼ 4,015. Reprinted with permission from Thompson, J. R., Wehmeyer, M. L., Hughes, C., Shogren, K. A., Seo, H., Little, T.
D., & Schalock, R. (in press). Supports Intensity Scale – Children’s Version Users Manual. Washington, DC: American Association on Intellectual and Developmental Dis-
abilities. Copyright © 2015 by the American Association on Intellectual and Developmental Disabilities.
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was initially performed by imposing seven sets of invariance con-

straints on construct means across age groups in the strong invar-

iance model. Additional tests were subsequently employed to

detect which latent constructs had mean differences across groups

and to further find the age groups that differed from each other

on a given construct. To estimate latent means in each age group,

sequential mean comparisons were conducted by evaluating the

impact of adding equality constraints on factor means across age

groups. For example, we initially equated the Advocacy latent

means between 5–6 and 7–8 age groups. When the Advocacy latent

means between these two age groups were not statistically different

based on the Bonferroni correction (i.e., alpha level .01/ the total

number of comparisons), we additionally imposed an equality con-

straint on the Advocacy of the 9–10 age group to make the Advo-

cacy means of 5–6, 7–8, and 9–10 age groups equated. Then we

conducted the likelihood test (i.e., model with equality constraints

on 5–6 and 7–8 age groups vs. model with equality constraints on

5–6, 7–8, and 9–10 age groups) to examine the impact of an addi-

tional equality constraint.

As parallel analyses to test the equivalence of the latent var-

iances and estimate the standard deviations of constructs, seven sets

of equality constraints were placed on construct variances across

groups in previously identified final sequential mean models. When

equality constraints were not tenable, follow-up tests were con-

ducted to determine which constructs had variance differences and

to examine specific patterns of variance differences across groups

on a given construct. As in the latent mean comparisons, sequential

comparisons using the Bonferroni corrections were performed to

test similarities and differences in variances and to provide variance

estimates across age groups. The constructs’ standard deviations

were then estimated by taking square roots of the variances. These

standard deviations, along with the latent means estimated from the

final sequential models, were used to generate norms.

A comprehensive overview of the empirical results and discus-

sions from the aforementioned multiple-group CFA is beyond the

scope of this article. See Shogren et al. (in press) for more informa-

tion on results from the multiple-group CFA described above. The

focus of this study is to introduce the norming procedure within the

SEM approach and to present the strengths of SEM applications by

comparing norms and subscale standard scores in the latent space

with corresponding counterpart estimates at the manifest space.

To obtain the latent means and standard deviations needed to calcu-

late composite standard scores for the age groups, we conducted

additional confirmatory factor analyses that include subscale

averages as parceled indicators of the overall support-need factor.

The effects-coding method of identification was again used to

obtain non-arbitrary latent estimates that are in the metric of the

manifest indicators.

Estimated latent means and standard deviations. Table 3 (upper

area) provides latent means (which are also reported and discussed

in Shogren et al., in press) and the raw means of the constructs.

Here, there are two considerations when comparing latent and man-

ifest estimates. As addressed in the ‘‘multiple-group confirmatory

factor analysis’’ section, the latent means are estimated from con-

strained models. The constrained models provide a better estimate

of age-norms than the unconstrained models because sources of

sampling variability within each age band are minimized (Little,

2013). Table 3 (bottom area) provides all estimates from the uncon-

strained models. The CTT-based and SEM-based analyses also

used two different missing data approaches: full information max-

imum likelihood (FIML; a model-based missing data approach) esti-

mation was used for the latent space analyses; pair-wise deletion

was used for the manifest space analyses (in this sample, the range

of missing data was negligible: 0 to 0.7%). Although utilizing a

modern principled missing data tool for the latent variable analyses

and an antiquated ad hoc missing data treatment for the CTT anal-

yses may seem like an unfair comparison, it is also an accurate rep-

resentation of the state of missing data practice. For many years,

deletion-based techniques have remained the most common

Table 3. Means at both latent and raw levels.

Construct

5–6 7–8 9–10 11–12 13–14 15–16

Latent Raw Latent Raw Latent Raw Latent Raw Latent Raw Latent Raw

< Estimates from constrained models >

Home life 2.64 2.64 2.45 2.47 2.45 2.44 2.28 2.31 2.28 2.24 2.03 2.03

Community and neighborhood 2.90 2.98 2.90 2.89 2.90 2.87 2.78 2.79 2.78 2.77 2.60 2.60

School participation 3.01 3.10 3.01 3.07 3.01 3.03 3.01 2.98 3.01 2.94 2.74 2.74

School learning 3.27 3.26 3.27 3.31 3.27 3.30 3.27 3.29 3.27 3.27 3.14 3.15

Health and safety 3.06 3.10 3.06 3.05 3.06 3.01 2.92 2.95 2.92 2.88 2.70 2.69

Social 3.04 3.08 3.04 3.05 3.04 3.00 2.83 2.88 2.83 2.79 2.59 2.59

Advocacy 2.97 3.03 2.97 2.99 2.97 2.98 2.97 2.94 2.97 2.91 2.76 2.76

< Estimates from unconstrained models >

Home life 2.64 2.64 2.47 2.47 2.44 2.44 2.31 2.31 2.24 2.24 2.03 2.03

Community and neighborhood 2.97 2.98 2.88 2.89 2.86 2.87 2.79 2.79 2.77 2.77 2.60 2.60

School participation 3.11 3.10 3.07 3.07 3.03 3.03 2.98 2.98 2.94 2.94 2.74 2.74

School learning 3.25 3.26 3.29 3.31 3.28 3.30 3.28 3.29 3.25 3.27 3.14 3.15

Health and safety 3.11 3.10 3.07 3.05 3.03 3.01 2.95 2.95 2.89 2.88 2.70 2.69

Social 3.09 3.08 3.05 3.05 3.00 3.00 2.87 2.88 2.79 2.79 2.59 2.59

Advocacy 3.04 3.03 3.01 2.99 2.99 2.98 2.94 2.94 2.90 2.91 2.76 2.76

Total 3.03 3.03 2.98 2.98 2.95 2.95 2.88 2.87 2.83 2.83 2.65 2.65

Note. The total number of norming sample¼ 4,015. Adapted with permission from Thompson, J. R., Wehmeyer, M. L., Hughes, C., Shogren, K. A., Seo, H., Little, T. D.,
& Schalock, R. (in press). Supports Intensity Scale – Children’s Version Users Manual. Washington, DC: American Association on Intellectual and Developmental Disabil-
ities. Copyright © 2015 by the American Association on Intellectual and Developmental Disabilities.
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missing data treatment employed in applied studies that utilize CTT

models, while FIML is consistently chosen to treat missingness

when employing latent variable models (Bodner, 2006; Little, Jor-

genson, et al., 2013; Peugh & Enders, 2004). Thus, we have cho-

sen these methods purposefully to optimize external, ecological

validity rather than unduly prioritizing internal validity and

experimental control. The means obtained from both approaches

were highly congruent, but this congruence should certainly not

be taken as an endorsement of deletion-based missing data treat-

ments which should not be employed in practice (Little, Jorgenson,

et al., 2013).

As expected, however, we found pronounced differences

between latent and raw standard deviations. The dis-attenuated

standard deviations at the latent space provide error-free estimates

of variability for calculating standard scores and understanding the

relative standing of support needs in the normative sample. The raw

score standard deviations contain error variance in the estimates.

Similar to the process used for mean comparisons between latent

and raw levels, we used latent standard deviations estimated from

the constrained models to minimize sampling variability in the

norming scores (upper area in Table 4). For comparative purposes,

we also report, at the bottom area in Table 4, the estimates from the

models that did not have any constraints imposed on the latent var-

iances across groups.

Steps three and four: compute standard scores (T score and
percentile ranks). Two types of score transformations are reported

for each SIS-C subscale: T score and percentile rank. To obtain

T scores as linear transformations of the normal deviate, we first

calculated Z scores using the latent means and standard deviations

of each SIS-C subscale in a given age group (upper areas in Table 3

and Table 4). The equation provided in Figure 1 was used to com-

pute Z scores. Next, we converted these Z scores to T scores with a

mean of 10 and a standard deviation of 3 to maintain a comparable

distribution to the SIS-A and other intelligence and adaptive

behavior scales (see Thompson, Wehmeyer, et al., in press). Figure

1 provides the equation used to obtain T scores for subscale scores.

In addition, percentile ranks are reported for each support-need

construct in a given age group. Percentile ranks are nonlinear score

transformations and serve as auxiliary score scales to improve the

interpretation of raw scores on norm-referenced tests (Kolen,

Table 4. Standard deviations at both latent and raw levels.

Construct

5–6 7–8 9–10 11–12 13–14 15–16

Latent Raw Latent Raw Latent Raw Latent Raw Latent Raw Latent Raw

< Estimates from constrained models >

Home life .83 .89 .83 .84 .83 .86 .83 .89 .95 .95 .95 1.04

Community and neighborhood .72 .78 .72 .76 .72 .72 .72 .72 .72 .73 .80 .82

School participation .75 .78 .75 .76 .75 .76 .75 .78 .75 .82 .89 .92

School learning .68 .73 .68 .67 .61 .60 .61 .64 .61 .65 .75 .77

Health and safety .76 .84 .76 .78 .76 .73 .76 .77 .76 .82 .91 .93

Social .86 .88 .86 .83 .86 .83 .86 .90 .86 .92 .99 1.02

Advocacy .77 .85 .77 .79 .77 .73 .77 .77 .77 .82 .87 .89

< Estimates from unconstrained models >

Home life .86 .89 .80 .84 .82 .86 .85 .89 .92 .95 1.01 1.04

Community and neighborhood .77 .78 .75 .76 .70 .72 .70 .72 .70 .73 .80 .82

School participation .74 .78 .73 .76 .73 .76 .75 .78 .79 .82 .89 .92

School learning .70 .73 .66 .67 .59 .60 .62 .64 .63 .65 .75 .77

Health and safety .82 .84 .75 .78 .71 .73 .75 .77 .80 .82 .91 .93

Social .86 .88 .81 .83 .82 .83 .88 .90 .90 .92 .99 1.02

Advocacy .83 .85 .76 .79 .71 .73 .75 .77 .80 .82 .87 .89

Total .72 .73 .68 .69 .64 .66 .68 .70 .71 .73 .81 .83

Note. The total number of norming sample¼ 4,015. Adapted with permission from Thompson, J. R., Wehmeyer, M. L., Hughes, C., Shogren, K. A., Seo, H., Little, T. D.,
& Schalock, R. (in press). Supports Intensity Scale – Children’s Version Users Manual. Washington, DC: American Association on Intellectual and Developmental Disabil-
ities. Copyright © 2015 by the American Association on Intellectual and Developmental Disabilities.

Table 5. Comparisons of home life subscale standard scores calculated

with latent and raw estimates in the 5–6 age band.

Standard

score

Latent level Manifest level

Score Real limit

Percentile

rank Score Real limit

Percentile

Rank

14 3.75 3.61–3.88 93.6 3.82 3.68–3.96 95.1

13 3.48 3.34–3.60 82.7 3.53 3.38–3.67 85.8

12 3.20 3.06–3.33 68.8 3.23 3.08–3.37 71.5

11 2.92 2.78–3.05 54.6 2.94 2.79–3.07 54.6

10 2.64 2.51–2.77 43.7 2.64 2.49–2.78 43.7

9 2.37 2.23–2.50 30.6 2.35 2.20–2.48 30.6

8 2.09 1.95–2.22 25.0 2.05 1.90–2.19 24.8

7 1.81 1.67–1.94 19.5 1.75 1.61–1.89 18.5

6 1.53 1.40–1.66 14.6 1.46 1.31–1.60 13.5

5 1.26 1.12–1.39 9.6 1.16 1.01–1.30 8.6

4 0.98 0.84–1.11 4.5 0.87 0.72–1.00 4.3

3 0.70 0.56–0.83 3.7 0.57 0.42–0.71 2.3

2 0.42 0.29–0.55 0.8 0.28 0.13–0.41 0.2

1 0.15 0.01–0.28 0.2 – – –

0 – – – – – –

Note. The total number of norming sample ¼ 4,015. For more subscale standard
scores computed in the latent space, refer to the SIS-C Manual. Rounding error
may exist. Adapted with permission from Thompson, J. R., Wehmeyer, M. L.,
Hughes, C., Shogren, K. A., Seo, H., Little, T. D., & Schalock, R. (in press). Supports
Intensity Scale – Children’s Version Users Manual. Washington, DC: American Asso-
ciation on Intellectual and Developmental Disabilities. Copyright © 2015 by the
American Association on Intellectual and Developmental Disabilities.
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2006). For example, at a certain point in the distribution of scores, a

given raw score is greater than or equal to 80% of the scores of the

normative sample; this score would be at the 80th percentile rank.

Table 5 provides subscale standard scores (T scores), real limits,

and percentile ranks of the Home Life domain within the 5–6 age

band that are calculated using both latent and manifest means and

standard deviations. The real limits of class intervals were provided

for the convenience of the SIS-C users; real limits are defined as

‘‘the point falling exactly halfway between the two score values,

indicating the upper boundary of one interval and the lower boundary

of the other interval’’ (Shavelson, 1996, p. 51). The average score of

items leads to different T scores and percentile ranks depending on

the approach used. For example, the average score of Home Life

domain of 3.75 is converted to a subscale T score of 14 and a percen-

tile rank of 94 in the latent metric, whereas a slightly higher score of

3.82 is converted to the same subscale T score of 14 but with a dif-

ferent percentile rank of 95. In addition, with regard to real limits of

class intervals, a person with a 3.61 score would have the subscale T

score of 14 at the latent level, whereas the same score leads to the

subscale T score of 13 at the manifest level.

To obtain composite standard scores (i.e., SIS-C Support Needs

Index) for each age group, we undertook the same procedures used

to compute the subscale standard scores. First, Z scores were calcu-

lated with latent means and standard deviations obtained from the

confirmatory factor analyses. Next, we obtained T scores of the

overall support needs by applying a mean of 100 and a standard

deviation of 15 (Thompson, Wehmeyer, et al., in press). Equations

for these Z and T scores are provided in Figure 1. Percentile ranks

were also reported to clarify the interpretation of raw scores (i.e.,

averaged subscale scores were the raw scores used to compute com-

posite standard scores). Table 6 compares the composite standard

scores (T scores), real limits, and percentile ranks in the 5–6 age

band calculated at both latent and raw spaces. Differences were

found between the two different approaches used.

Implications for future directions

The approach to norming that we have advocated here is relatively

novel in the norming literature. As such, some researchers and sta-

keholders who are not well versed in the merits of latent variable

modeling may hold undue skepticism regarding our procedures.

However, the merits of latent variables are well established from

various perspectives, including statistical theory and established

practice in many fields of inquiry. A primary reason that SEM has

not been used for norming purposes in the past has been the prob-

lem of scaling. The effects-coding method of identification that

was introduced in 2006 provided a scaling method that retained

the inherent metric of the observed scores. This one-to-one corre-

spondence between the metric of the latent variables and the metric

of the observed scores is the key that allows SEM to be used for

norming purposes. Some users who are used to summing scores

Table 6. Comparisons of composite standard scores calculated with latent and raw estimates in the 5–6 age band.

Total standard score

Latent level Manifest level

Score Real limit Percentile rank Score Real limit Percentile rank

120 3.98 3.96–4.00 96.5 4.00 3.98–4.00 100.0

119 3.93 3.91–3.95 94.2 3.95 3.93–3.97 95.1

118 3.89 3.86–3.90 93.2 3.91 3.88–3.92 93.8

117 3.84 3.81–3.85 91.4 3.86 3.83–3.87 92.8

116 3.79 3.77–3.80 90.3 3.81 3.78–3.82 91.0

115 3.74 3.72–3.76 87.7 3.76 3.73–3.77 88.7

114 3.70 3.67–3.71 84.4 3.71 3.69–3.72 84.8

113 3.65 3.62–3.66 81.9 3.66 3.64–3.68 82.7

112 3.60 3.58–3.61 77.0 3.61 3.59–3.63 78.6

111 3.55 3.53–3.57 74.3 3.56 3.54–3.58 74.7

110 3.50 3.48–3.52 70.4 3.51 3.49–3.53 71.5

109 3.46 3.43–3.47 67.6 3.47 3.44–3.48 68.6

108 3.41 3.39–3.42 62.2 3.42 3.39–3.43 62.4

107 3.36 3.34–3.38 59.7 3.37 3.34–3.38 60.0

106 3.31 3.29–3.33 56.7 3.32 3.29–3.33 57.1

105 3.27 3.24–3.28 55.2 3.27 3.25–3.28 55.4

104 3.22 3.19–3.23 51.1 3.22 3.20–3.24 51.7

103 3.17 3.15–3.18 48.0 3.17 3.15–3.19 48.1

102 3.12 3.10–3.14 46.0 3.12 3.10–3.14 46.0

101 3.08 3.05–3.09 42.9 3.07 3.05–3.09 42.9

100 3.03 3.00–3.04 40.7 3.03 3.00–3.04 40.7

99 2.98 2.96–2.99 38.0 2.98 2.95–2.99 38.0

98 2.93 2.91–2.95 36.7 2.93 2.90–2.94 36.5

97 2.88 2.86–2.90 33.9 2.88 2.85–2.89 33.7

96 2.84 2.81–2.85 31.4 2.83 2.81–2.84 31.4

95 2.79 2.76–2.80 30.0 2.78 2.76–2.80 29.4

94 2.74 2.72–2.75 28.1 2.73 2.71–2.75 27.7

Note. The total number of norming sample ¼ 4,015. For more information on the composite standard scores computed in the latent space, refer to the SIS-C Manual.
Rounding error may exist. Adapted with permission from Thompson, J. R., Wehmeyer, M. L., Hughes, C., Shogren, K. A., Seo, H., Little, T. D., & Schalock, R. (in press).
Supports Intensity Scale – Children’s Version Users Manual. Washington, DC: American Association on Intellectual and Developmental Disabilities. Copyright © 2015 by
the American Association on Intellectual and Developmental Disabilities.
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may find the use of average scores somewhat unfamiliar; however,

the ‘‘learning curve’’ to use and interpret averages will be minimal

because sums and averages are isomorphic regarding individual

differences.

In terms of future directions, we suggest the widespread adop-

tion of this approach to re-calibrate prior norms of other instru-

ments. Accordingly, the approach we present here should become

the new standard for norming continuous variable scales. The meth-

ods discussed above represent a very powerful and useful way to

construct norms for continuously distributed data or data that

closely approximates continuity (e.g., Likert-type items). When

data are strictly categorical (e.g., binary testing items), however,

IRT-based methods may represent more effective norming tools.

This statement could be especially true when a rich understanding

of the item-level measurement properties (e.g., individual item dif-

ficulty or discrimination abilities) is a necessary component of the

norming context. Yet, in multidimensional cases, the methods we

described here may still hold merit because multidimensional IRT

(MIRT) is not as fully developed as methods for categorical vari-

able SEM. Thus, future work should incorporate categorical indica-

tors into the framework described above and compare the SEM-based

approach we describe to IRT approaches (i.e., IRT true score equat-

ing), especially when there are differences in difficulty among alter-

native forms of a test. The case-study reported here was merely

given as an example to demonstrate the strengths of SEM-based

norming for social and behavioral researchers. Future research

should employ simulation studies to rigorously explore the capabil-

ities of SEM-based norming, particularly in comparison to IRT-based

approaches.
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Appendix

1. Correlations in the 5–6 and 7–8 age bands

2. Correlations in the 9–10 and 11–12 age bands

AP1 AP2 AP3 BP1 BP2 BP3 CP1 CP2 CP3 DP1 DP2 DP3 EP1 EP2 EP3 FP1 FP2 FP3 GP1 GP2 GP3

AP1 1 .79 .83 .59 .72 .70 .55 .63 .59 .51 .46 .50 .64 .66 .60 .57 .58 .57 .61 .62 .53

AP2 .77 1 .81 .55 .70 .67 .61 .64 .58 .51 .49 .52 .63 .65 .61 .57 .59 .57 .59 .58 .55

AP3 .80 .81 1 .64 .75 .72 .63 .68 .63 .58 .53 .56 .68 .69 .66 .59 .59 .60 .63 .64 .57

BP1 .65 .63 .70 1 .79 .76 .65 .70 .66 .62 .53 .63 .71 .67 .71 .64 .62 .61 .66 .69 .66

BP2 .73 .72 .78 .84 1 .87 .71 .72 .65 .64 .60 .64 .77 .73 .74 .64 .64 .65 .70 .70 .68

BP3 .72 .70 .74 .82 .89 1 .66 .69 .60 .60 .54 .64 .72 .72 .70 .58 .58 .60 .66 .66 .62

CP1 .57 .59 .64 .69 .73 .70 1 .81 .76 .74 .69 .75 .72 .69 .67 .64 .65 .65 .68 .67 .66

CP2 .63 .65 .72 .76 .77 .73 .79 1 .81 .71 .67 .73 .75 .74 .72 .69 .69 .69 .71 .70 .67

CP3 .60 .58 .67 .71 .70 .66 .77 .83 1 .71 .67 .68 .72 .68 .69 .72 .71 .70 .69 .69 .66

DP1 .53 .50 .56 .62 .64 .60 .77 .71 .75 1 .83 .85 .69 .68 .71 .65 .64 .68 .72 .70 .69

DP2 .48 .50 .54 .57 .63 .56 .72 .67 .70 .83 1 .77 .64 .62 .63 .58 .57 .63 .63 .62 .62

DP3 .51 .48 .55 .62 .67 .62 .77 .69 .72 .87 .83 1 .69 .70 .68 .63 .59 .64 .71 .67 .69

EP1 .61 .58 .65 .73 .75 .70 .71 .70 .70 .69 .64 .71 1 .85 .84 .77 .76 .79 .79 .79 .75

EP2 .64 .56 .64 .73 .75 .72 .70 .68 .67 .65 .62 .70 .83 1 .82 .71 .69 .76 .76 .78 .70

EP3 .58 .56 .62 .69 .71 .66 .68 .67 .68 .66 .62 .67 .84 .82 1 .73 .73 .75 .78 .78 .74

FP1 .54 .52 .56 .69 .64 .59 .67 .64 .72 .68 .61 .65 .79 .71 .72 1 .91 .86 .79 .77 .73

FP2 .55 .55 .58 .70 .66 .62 .68 .66 .73 .69 .64 .64 .79 .71 .73 .92 1 .85 .78 .76 .72

FP3 .55 .55 .58 .65 .67 .62 .69 .64 .71 .68 .63 .66 .79 .72 .74 .86 .86 1 .82 .80 .75

GP1 .60 .53 .59 .69 .67 .65 .68 .68 .71 .67 .64 .69 .81 .76 .74 .78 .77 .77 1 .89 .82

GP2 .58 .52 .58 .70 .67 .65 .64 .62 .64 .64 .60 .65 .77 .75 .72 .75 .75 .75 .88 1 .81

GP3 .48 .46 .49 .61 .63 .60 .59 .55 .56 .59 .60 .64 .69 .73 .68 .64 .66 .66 .75 .77 1

Note. Correlations for the 9–10 age band (n ¼ 787) are presented below the diagonal and correlations for the 11–12 age band (n ¼ 844) are provided above the
diagonal.

AP1 AP2 AP3 BP1 BP2 BP3 CP1 CP2 CP3 DP1 DP2 DP3 EP1 EP2 EP3 FP1 FP2 FP3 GP1 GP2 GP3

AP1 1 .75 .80 .71 .76 .73 .62 .65 .62 .58 .51 .59 .64 .68 .62 .57 .58 .55 .63 .63 .54

AP2 .85 1 .77 .62 .68 .67 .58 .64 .57 .51 .49 .51 .57 .59 .53 .49 .50 .52 .56 .52 .48

AP3 .85 .84 1 .72 .77 .74 .67 .68 .67 .57 .56 .58 .65 .64 .61 .58 .57 .55 .63 .61 .56

BP1 .66 .65 .74 1 .87 .84 .70 .73 .73 .70 .66 .71 .78 .71 .74 .70 .69 .66 .73 .73 .71

BP2 .74 .74 .78 .87 1 .90 .75 .77 .72 .72 .68 .73 .80 .75 .75 .70 .69 .70 .76 .74 .71

BP3 .71 .72 .78 .83 .91 1 .75 .73 .70 .68 .61 .74 .76 .76 .73 .65 .65 .67 .74 .73 .67

CP1 .62 .64 .66 .67 .71 .67 1 .82 .80 .78 .73 .79 .69 .64 .64 .66 .67 .64 .68 .66 .61

CP2 .70 .71 .73 .70 .77 .72 .79 1 .82 .74 .71 .74 .70 .67 .67 .66 .67 .65 .67 .65 .64

CP3 .63 .61 .69 .70 .69 .62 .77 .80 1 .74 .73 .73 .73 .67 .66 .70 .71 .67 .69 .67 .64

DP1 .63 .63 .69 .70 .73 .70 .76 .77 .75 1 .83 .89 .71 .66 .69 .67 .67 .67 .71 .68 .63

DP2 .56 .56 .63 .65 .69 .66 .73 .74 .69 .86 1 .78 .66 .59 .61 .64 .64 .59 .65 .62 .63

DP3 .56 .55 .63 .69 .71 .67 .76 .73 .73 .86 .83 1 .72 .70 .72 .63 .62 .62 .72 .69 .65

EP1 .67 .68 .73 .77 .78 .74 .66 .71 .69 .68 .63 .68 1 .85 .85 .77 .76 .77 .81 .76 .72

EP2 .67 .70 .73 .75 .79 .76 .63 .70 .67 .67 .63 .69 .88 1 .82 .68 .65 .71 .77 .74 .70

EP3 .60 .63 .69 .78 .78 .75 .66 .69 .65 .67 .64 .68 .88 .86 1 .68 .67 .68 .77 .74 .69

FP1 .62 .61 .67 .74 .73 .67 .66 .66 .73 .70 .64 .70 .78 .76 .72 1 .90 .87 .80 .76 .71

FP2 .63 .66 .69 .73 .74 .69 .68 .70 .73 .69 .63 .66 .79 .74 .73 .92 1 .85 .75 .72 .68

FP3 .65 .63 .67 .73 .73 .71 .66 .66 .68 .69 .59 .65 .78 .76 .75 .88 .86 1 .79 .76 .69

GP1 .61 .62 .68 .74 .72 .70 .66 .68 .70 .66 .65 .69 .76 .78 .77 .79 .77 .77 1 .89 .80

GP2 .61 .62 .67 .73 .73 .69 .63 .65 .67 .64 .62 .67 .75 .78 .75 .77 .74 .75 .93 1 .79

GP3 .54 .56 .62 .74 .71 .68 .62 .65 .66 .63 .61 .65 .73 .74 .75 .73 .71 .72 .86 .87 1

Note. Correlations for the 5–6 age band (n ¼ 513) are presented below the diagonal and correlations for the 7–8 age band (n¼ 562) are provided above the diagonal.
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3. Correlations in the 13–14 and 15–16 age bands

AP1 AP2 AP3 BP1 BP2 BP3 CP1 CP2 CP3 DP1 DP2 DP3 EP1 EP2 EP3 FP1 FP2 FP3 GP1 GP2 GP3

AP1 1 .82 .85 .69 .74 .72 .65 .69 .68 .53 .52 .55 .73 .71 .66 .63 .65 .61 .64 .67 .57

AP2 .80 1 .85 .70 .75 .72 .67 .70 .64 .57 .59 .59 .73 .75 .70 .63 .66 .66 .64 .64 .61

AP3 .83 .80 1 .74 .78 .74 .71 .74 .73 .60 .62 .61 .77 .76 .73 .69 .69 .69 .70 .69 .66

BP1 .66 .60 .69 1 .85 .82 .74 .75 .73 .70 .68 .71 .82 .79 .80 .78 .77 .76 .77 .77 .76

BP2 .72 .69 .75 .79 1 .90 .79 .78 .70 .71 .72 .72 .83 .83 .81 .74 .72 .76 .77 .76 .77

BP3 .70 .66 .71 .78 .84 1 .75 .76 .67 .66 .65 .66 .81 .80 .76 .69 .69 .71 .73 .74 .71

CP1 .60 .57 .63 .69 .72 .7 1 .86 .81 .78 .78 .80 .76 .76 .73 .71 .71 .73 .74 .75 .76

CP2 .68 .64 .68 .75 .73 .72 .82 1 .84 .71 .70 .72 .79 .79 .75 .73 .73 .72 .73 .75 .73

CP3 .63 .60 .64 .67 .66 .62 .76 .83 1 .73 .72 .71 .75 .74 .71 .77 .77 .75 .75 .75 .74

DP1 .54 .48 .56 .65 .65 .59 .75 .74 .75 1 .89 .91 .73 .75 .72 .71 .69 .73 .76 .73 .79

DP2 .48 .47 .50 .55 .60 .57 .70 .70 .70 .82 1 .87 .69 .73 .70 .66 .63 .71 .71 .70 .76

DP3 .54 .49 .55 .65 .64 .63 .76 .75 .71 .87 .82 1 .70 .73 .71 .65 .64 .68 .73 .71 .74

EP1 .67 .63 .70 .78 .75 .71 .71 .77 .73 .70 .62 .68 1 .91 .89 .84 .83 .83 .82 .82 .81

EP2 .70 .66 .70 .73 .75 .75 .70 .76 .70 .68 .64 .69 .85 1 .87 .82 .80 .85 .84 .83 .82

EP3 .64 .62 .70 .76 .74 .70 .70 .74 .69 .70 .60 .68 .85 .82 1 .81 .79 .81 .78 .81 .81

FP1 .60 .54 .61 .73 .65 .63 .67 .68 .72 .68 .60 .64 .79 .72 .73 1 .93 .90 .85 .85 .86

FP2 .61 .58 .62 .72 .65 .62 .66 .69 .71 .66 .58 .62 .79 .73 .73 .90 1 .87 .83 .84 .84

FP3 .58 .58 .61 .69 .66 .65 .68 .69 .71 .69 .64 .65 .80 .77 .75 .88 .85 1 .85 .84 .86

GP1 .64 .57 .66 .72 .70 .66 .68 .71 .71 .74 .66 .72 .79 .79 .77 .80 .80 .81 1 .92 .89

GP2 .63 .57 .65 .70 .69 .66 .68 .72 .72 .73 .65 .71 .78 .80 .76 .79 .79 .80 .92 1 .88

GP3 .57 .55 .61 .70 .71 .65 .71 .72 .72 .75 .70 .73 .79 .75 .77 .77 .75 .79 .85 .84 1

Note. Correlations for the 13–14 age band (n ¼ 822) are presented below the diagonal and correlations for the 15–16 age band (n ¼ 487) are provided above the
diagonal.
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