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ABSTRACT 
In this study, we investigated the degree to which the cognitive 
processes in which students engage during reading comprehension 
could be examined through dynamical analyses of their natural 
language responses to texts. High school students (n = 142) 
generated typed self-explanations while reading a science text. 
They then completed a comprehension test that measured their 
comprehension at both surface and deep levels. The recurrent 
patterns of the words in students’ self-explanations were first 
visualized in recurrence plots. These visualizations allowed us to 
qualitatively analyze the different self-explanation processes of 
skilled and less skilled readers. These recurrence plots then 
allowed us to calculate recurrence indices, which represented the 
properties of these temporal word patterns. Results of correlation 
and regression analyses revealed that these recurrence indices 
were significantly related to the students’ comprehension scores at 
both surface- and deep levels. Additionally, when combined with 
summative metrics of word use, these indices were able to 
account for 32% of the variance in students’ overall text 
comprehension scores. Overall, our results suggest that recurrence 
quantification analysis can be utilized to guide both qualitative 
and quantitative assessments of students’ comprehension. 
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1 INTRODUCTION 
Literacy is a critically important skill for success in modern 
society, as individuals are increasingly reliant on text-based 
communication in their daily lives, classrooms, and workplaces 
[17; 40]. The ability to learn from and communicate through text 
relies on an intricate set of processes that include understanding 
the basic content in the text and generating connections between 
this new information and prior knowledge of the concepts [32]. 
Unfortunately, the complexity of these tasks often presents 
difficulties in students’ acquisition of strong literacy skills, as 
evidenced by consistent reports of low performance on 
standardized assessments of reading comprehension and writing 
[37]. Further, teachers often lack the time and resources to provide 
students the individualized instruction and feedback they need to 
improve these skills. 

In response to this need, researchers have developed educational 
technologies with the aim of enhancing the quality of the reading 
and writing training that students receive, as well as their 
opportunities for deliberate practice (see [10] for an overview). 
For instance, automated writing evaluation systems deliver 
automated feedback on students’ essay writing [43; 51]. Similarly, 
Intelligent Tutoring Systems (ITSs) provide students with 
instruction and automated feedback that can be adapted to their 
knowledge and skills. For instance, the DSCoVAR (Dynamic 
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Support of Contextual Vocabulary Acquisition for Reading) 
system targets students’ vocabulary knowledge by providing 
opportunities to practice reading difficult words across multiple 
contexts. Additionally, the system provides individualized 
feedback on students’ performance [16].  

These literacy-focused adaptive technologies build on a strong 
foundation of research on the use of artificial intelligence in 
education. Traditionally, this field has focused on the 
development and use of ITSs that target instruction in well-
defined domains, such as mathematics and physics [36; 38; 47]. 
The strength of these systems is largely grounded in their ability 
to adapt the instruction, practice problems, and feedback that 
students receive based on on-line assessments of their 
performance, affective states, and knowledge. These systems have 
been shown to be highly effective, with a recent overview 
reporting no significant differences in effect size between ITSs 
and expert one-on-one human tutoring [48].  

Despite their obvious similarities, however, educational 
technologies that target literacy skills (as well as skills in other ill-
defined domains) differ from more traditional ITSs in a number of 
important ways. Perhaps the most salient of these differences is 
the nature of students’ responses to the tutoring system. For 
example, ITSs that target math instruction can present students 
with high numbers of multiple-choice questions in a single 
training session, each of which has a set of right and wrong 
answers for students to select. Based on the measured 
performance on these items, the system can adapt additional 
practice problems and feedback to students’ individual needs [47].  

Conversely, ITSs for literacy instruction often prompt students to 
respond to the tutor using natural language. For instance, 
iSTART – an ITS for reading strategy training – prompts students 
to type self-explanations (i.e., explanations of the meaning of the 
text material to oneself) of texts as they read [33]. Similarly, We-
Write – a tutoring system that provides training on self-regulation 
strategies for writing – prompts students to generate and revise 
essays in the system [52]. In the current study, we describe recent 
work that aims to develop more robust assessments of students’ 
natural language responses in ITSs such as these. In particular, we 
extend work on discourse analyses by examining the temporal 
properties of the language that students produce during learning 
tasks and relate these properties to students’ performance at 
multiple levels.  

1.1 Adaptivity in Educational Technology 
Educational technologies rely on assessments of student 
performance to drive adaptive instruction and feedback. In an 
effort to not distract from the learning process, system developers 
have increasingly relied on measures that can be collected within 
the learning task itself [45-46]. These “stealth assessments” can be 
informed by a wealth of data commonly collected by intelligent 
tutoring systems, such as the choices students make during 
learning tasks, the trajectories of their mouse movements, and the 
keystrokes they press while typing. For example, log data (e.g., 
students’ clicks in the system) has been used to develop detectors 
of students’ engagement [24] and affect [5; 13] during learning 
tasks.   

Once these stealth assessments have been developed, they can be 
used to develop models of student users. These models then allow 
the system to individualize the instruction and feedback that 
students receive based on their strengths and weaknesses [7]. 
Importantly, these models can be continuously updated in the 
system as additional data is collected. This ensures that the system 

is appropriately accounting for changes in students’ knowledge 
and skills over the course of their training in the system.  

1.1.1 Language Assessment in Educational 
Technologies 

Albeit still rare, ITS developers increasingly incorporate natural 
language and natural language processing (NLP) techniques into 
tutoring systems in an effort to increase adaptivity and learning 
[18-21; 34; 42]. For instance, Why2 Atlas – a tutoring system for 
physics – engages students in natural language dialogue related to 
their qualitative explanations of physics problems [42]. Prior 
research suggests that these interactions with NLP-based tutoring 
systems lead to significant learning gains compared to non-
interactive learning tasks [18; 49].  

More recently, researchers have begun to use the data collected 
from these natural language responses to develop more nuanced 
stealth assessments of students’ characteristics and performance 
[3; 12; 34]. For instance, D’Mello and colleagues (2009) [12] 
found that they could predict the proportional occurrence of 
students’ affective states through analyses of the cohesion in their 
dialogues with an automated tutor. Similarly, McNamara and 
colleagues (2007) [34] found that natural language processing 
indices could be used to accurately score the quality of students’ 
self-explanations during text reading.  

Despite this significant progress, NLP-based tutoring systems 
have plenty of room for improvement. One issue relates to the 
ability of these systems to measure the on-line cognitive and 
affective processes of student users. Analyses of students’ 
language typically rely on aggregate measures of language use 
(e.g., the most common words used by students, total number of 
words produced) and, as such, provide little information about the 
processes in which students are engaged. In order to provide more 
nuanced assessments that can target students’ needs, ITSs should 
analyze the properties of students’ language as it unfolds over 
time.  

1.1.2 Dynamical Analyses of Natural Language 
In the current study, we rely on computational techniques from 
dynamical systems theory to analyze the temporal organization of 
students’ natural language responses to text. Dynamic 
methodologies provide a novel means with which researchers can 
characterize patterns that emerge from students’ behaviors (e.g., 
language, system choices) during learning tasks. Traditional 
statistics often aggregate variables across time, potentially 
discarding important information about learning and performance. 
In contrast, dynamic methodologies consider time to be a critical 
component of the analysis and explicitly seek to characterize 
temporal patterns. Thus, rather than treating behavior as a static 
process, these dynamic analyses more accurately account for the 
complex, changing nature of behavior. Although the current study 
is one of the first to use dynamic analyses to assess students’ 
natural language responses to an intelligent tutoring system, these 
techniques have previously been used across a wide variety of 
domains as a means to understand the complex patterns that 
manifest in individuals’ behaviors over time [e.g., 4; 11; 41; 44].  

To illustrate the potentially important value of these dynamic text 
analyses, consider that you have been asked to read a text on a 
complex topic and explain the text to yourself as you read. How 
might the topics you reference change over the course of this task, 
compared to when you are reading a text more passively? It may 
be the case that when you read the text passively, you simply 
explain the meaning of the individual sentences to yourself, 



 

without referencing the previous material in the text or your 
outside knowledge. When you are reading the text more deeply, 
however, you might read sentences, but consistently refer to 
previous material in order to generate connections and develop a 
deeper understanding of the concepts in the text.  

The differences described in this example may play an important 
role in modeling the processes that students are engaging in 
during text comprehension, which can ultimately help to develop 
more nuanced assessments of their performance. For instance, it is 
possible that a students’ comprehension of text-based information 
(i.e., information that does not require the reader to make 
connections across sentences or paragraphs in the text) can be 
detected with simple, traditional analyses of the frequent words 
occurring in their natural language responses to the text. Their 
deep comprehension of the text (i.e., their performance on items 
that require the reader to generate inferences), however, may be 
missed if the temporal nature of these responses is not taken into 
account. In this scenario, dynamic analyses that account for the 
temporal distributions of the words in students’ text responses 
may prove more informative than static measures.     

1.1.3 Recurrence Quantification Analysis 
Here, we utilize a dynamic methodology – recurrence 
quantification analysis -- to visualize and quantify the extent to 
which recurrent patterns in students’ natural language text 
responses relate to their reading comprehension processes. 
Recurrence quantification analysis (RQA) is a nonlinear data 
analysis technique that provides information about patterns of 
repeated behavior (i.e., the number and duration of recurrences) in 
a continuous or categorical time series [30]. Like many techniques 
used in the dynamical systems theory framework, this 
methodology has been used in a variety of domains, both within 
and outside the realm of human behavior [11; 44]. For example, 
researchers have utilized recurrence quantification analyses to 
examine patterns of heart-rate variability [30], postural 
fluctuations [41] and eye movements [4].  

Beyond these physiological measures, RQA has the potential to 
provide important information about recurrence in the content of 
students’ language. Dale and Spivey (2005) [11], for example, 
have revealed that RQA can be applied to categorical data sets, 
such as the words in a particular conversation. This flexibility of 
the RQA technique (i.e., the fact that it can be applied to both 
continuous and categorical data sets) may be particularly salient 
for the study of natural language. In particular, recurrence can be 
measured at multiple levels of the text (e.g., word, semantic), 
rather than relying only on one level of analysis. 

The starting point of RQA is the development of a recurrence plot, 
which is a visualization of a matrix wherein the individual 
elements represent points in a time series that are visited more 
than once (i.e., they recur). In other words, this plot represents the 
times in which a dynamical system visits the same area in a phase 
space [29]. Within this plot, each point represents a particular 
state that is revisited by the system. If multiple points occur 
continuously, they form diagonal lines, which represent times 
when the system is revisiting an entire sequence of states.  

As a simple illustration, consider the following sentence: “The ice 
cream man brought ice cream on Friday.” To generate a 
recurrence plot for this sentence, the words in the sentence are 
first placed on both the X and Y axes of a 2-dimensional plot (see 
Figure 1). Each time a word appears both the X and Y axes, a dot 
is placed in that location on the plot. Because this sentence is 
being plotted against itself, the recurrence plot is symmetrical 

with a diagonal line through the center – the line of identity (LOI). 
The points of interest in these recurrence plots are the points that 
do not occur on the main diagonal. Individual points off the main 
diagonal represent the times that a word is repeated later in the 
sentence. When multiple points occur simultaneously, these points 
form diagonal lines (e.g., “ice cream” in Figure 1), which 
represent sequences of words that are repeated in time.  

 
Figure 1. Example recurrence plot 

Visualizing recurrent patterns is informative, but researchers also 
need to quantify the structure contained in recurrence plots. 
Recurrence quantification analysis offers multiple metrics that 
help to quantify recurrent patterns to allow for statistical 
comparisons of recurrence plots [53]. Below, we briefly describe 
the most commonly used metrics in recurrence quantification 
analyses. For more detailed information, see [9]. 

Recurrence Rate. The recurrence rate is a measure of the density 
of points represented in a recurrence plot. A recurrence plot is 
calculated by dividing the total number of points in a plot by the 
square of the length of the overall time series. This metric 
represents the overall amount of recurrence that is present in the 
recurrence plot, regardless of the distributions of the points.  

Determinism. Determinism is a measure of the number of 
recurrent points that tend to fall on diagonal lines (ignoring the 
LOI) in the recurrence plot. Thus, this metric provides 
information about the distribution of the recurrent points. 
Diagonal lines in recurrence plots reflect time periods when the 
system is revisiting a particular sequence of states. Thus, systems 
with low determinism can exhibit short moments of repetitive 
states; however, they are considered less ordered than highly 
deterministic systems. 

Average Line Length. This metric calculates the average length 
of the diagonal lines in the recurrence plot. Thus, when the system 
repeats a sequence of states, this metric provides information 
about the typical length of those sequences. 

Maximum Line Length. This metric calculates the length of the 
longest diagonal line in the recurrence plot. Therefore, this metric 
reveals whether a system revisits a long sequence of states at 
some point in time.    



 

Entropy. Entropy is calculated as the Shannon entropy of the 
distribution of the line lengths in the recurrence plot. This metric 
quantifies the degree to which the trajectory of the system exhibits 
order. Thus, entropy will be higher if the system revisits a wider 
variety of state sequences over time. Dynamic systems that 
continually revisit the same, or similar, sequences of states, will 
have lower entropy. 

1.2 iSTART 
This study aims to refine the adaptive capabilities of the 
Interactive Strategy Training for Active Reading and Thinking 
(iSTART) system, an intelligent tutoring system that teaches high 
school and college students self-explanation strategies to improve 
their comprehension of complex texts [28; 33]. Self-explanation 
has repeatedly been shown to be beneficial for improving higher 
order skills such as deep comprehension of text, inference 
generation, and problem solving [8]. In this study, we intend to 
maximize iSTART’s ability to produce a user model in order to 
improve the system's adaptability to individual student's needs.  

iSTART is based on the Self-Explaining and Reading Training 
(SERT) intervention, which was created to teach students 
effective strategies for self-explaining a text followed by practice 
on how to use them as they read [31]. Previous research has 
demonstrated the effectiveness of SERT, as well as iSTART, in 
improving students reading comprehension skills of complex texts 
[28]. iSTART focuses on self-explanation training through two 
principal modules within the system: training and practice.  

In the training module, students are taught the self-explanation 
strategies (comprehension-monitoring, paraphrasing, prediction, 
elaboration, and bridging) through the use of animated videos 
presented by a pedagogical agent.  Each strategy is taught through 
the use of definitions, mnemonic devices, and examples. Students 
then answer a set of checkpoint questions to determine their 
comprehension of the lesson. Once all students have received a 
75% score on each of the lesson checkpoints, they view a 
summary lesson and are then prompted to practice using the 
strategies in an initial practice activity. In this phase, students use 
the self-explanation strategies and receive feedback for two texts. 
Once completed, students are ushered into the practice module of 
the system. 

The practice module is composed of a variety of practice 
activities, all falling in one of two categories: identification and 
generative. Identification mini-games are all games in which 
students are prompted to read a text with an associated self-
explanation and then must select the specific strategy that was 
used for that self-explanation. Generative practice, however, is 
composed of both game-based practice as well as non-game 
practice activities. These activities prompt students to generate 
their own self-explanations to a designated target sentence as they 
read a text. Students are then given feedback on their response 
based on a complex algorithm that uses linguistic indices to 
determine the quality of the student's response. Generative 
practice activities are designed to allow teachers the opportunity 
to insert their own texts for their students, thus the evaluation 
algorithm that iSTART uses to score the self-explanations must be 
flexible and accurate to optimize the system's capabilities to 
improve student learning outcomes.  

1.2.1 iSTART Evaluation Algorithm  
iSTART is designed to assess and score students’ self-
explanations immediately after each individual submission to the 
system. Since analyses are always conducted on a local basis, the 

system is dependent on a limited set of available information. This 
includes the student’s response, the specific target sentence 
prompting the self-explanation, and the previous sentences of the 
text. The algorithm uses both word-based indices and Latent 
Semantic Analyses (LSA) to assess the quality of the self-
explanation and determine the appropriate feedback. Lower-level 
assessments are informed by word-based indices that include 
response length as well as quantity of content-word overlap. 
Typically, these provide an initial report on whether the response 
is too short, too similar or identical to the topic sentence, or 
entirely irrelevant.  After these initial analyses, more information 
is taken into consideration using LSA, which is capable of 
producing a more holistic assessment by determining how well 
the self-explanation is related to the text as well as outside content 
(considered as a student’s prior-knowledge). 

The algorithm produces a score using word-based indices and 
LSA-indices on a scale from 0 to 3. A score of 0 is given when the 
self-explanation is either too short, irrelevant, or too similar to the 
target sentence. A score of 1 demonstrates that the student wrote a 
self-explanation that solely relates to the target sentence. A score 
of 2 is generated if the student wrote a self-explanation that relates 
to both the target sentence and previous portions of the text. 
Students receive a score of 3 when their self-explanations derive 
information from the target sentence, previous sentences of the 
text, as well as external information not directly related, though 
relevant, to the text. This implies that the student not only 
produced inferences throughout the text, but elaborated on the 
available information using background knowledge. Research 
using the iSTART algorithm has shown that it scores as accurately 
as humans and that it can offer a summary of the cognitive 
processes used in reading comprehension [25]. 

1.2.2 Aggregated Self-Explanation Analyses  
Previous research on the iSTART system has relied on NLP 
techniques to analyze student's self-explanation responses [1-3; 
50]. Initial work focused on local sentence-level analyses of 
students’ individual self-explanations to texts. However, recent 
research has begun to observe how a set of self-explanations that 
span an entire text can be aggregated and evaluated to provide 
analyses at a more global level. Such analyses reveal a far more 
comprehensive interpretation of the comprehension processes 
involved in reading a text.  

Research on these “aggregated self-explanations” was motivated 
by the possibility of increasing the bandwidth of available 
information to analyze.  Researchers used analyses of aggregated 
self-explanations to determine whether evaluating responses at a 
larger window size (i.e., aggregated self-explanations for a single 
text as opposed to individual self-explanations) would improve 
upon a student model [3; 50]. Results showed that analyzing the 
aggregated responses accounted for an additional 10% of the 
variance that was already accounted for by the original iSTART 
algorithm [50].  These studies also show a positive relationship 
between the aggregated NLP scores and iSTART algorithm scores 
and pretest reading scores [3].  

Additional research studies have assessed which specific 
linguistic indices provide more accurate predictions of potential 
connections within the text. Studies have determined that indices 
relating to local and global cohesion are most likely to reveal 
relevant connections being made across self-explanations. 
Specifically, when students’ aggregated self-explanations display 
a higher incidence of causal cohesion, these students also exhibit 
better comprehension of the text [1-2]. 



 

Recently, Allen, Jacovina, and McNamara (2016) [1] discovered 
that over the course of multiple sessions of practice within 
iSTART, the global cohesion of students’ aggregated self-
explanations increased. This implies that over time students learn 
to generate more inferences and create deeper connections across 
the text they read.  This finding demonstrates that extended 
training within iSTART improves student comprehension 
processes. Ultimately, these linguistic signatures can provide the 
system with information on students' performance over time, thus 
helping to determine what type of practice is optimal for 
individualized training. 

1.3 Current Study 
The purpose of the current study is to investigate the degree to 
which the cognitive processes in which students engage during 
reading comprehension can be examined through dynamical 
analyses of their natural language responses to the text. We use 
dynamic visualizations and quantifications of students’ natural 
language text responses to measure their performance on a 
comprehension test. In particular, we examine whether the 
patterns of students’ word usage during their text responses reflect 
differences in their cognitive processes, as reflected by their 
performance on surface- and deep-level comprehension questions. 
Additionally, we present visualizations of these patterns and 
provide qualitative assessments of these visualizations to 
demonstrate their potential to drive student feedback. 

2 METHODS 
2.1 Participants 
The data for this study was collected as part of a larger, five-
session study. In total, 149 high school and college freshmen 
(6.7%) students participated in this study located in the 
southwestern United States. On average, the students were 15.69 
years of age (range = 13-19). Of these students, 55% were female 
and 16.8% reported speaking English as a second language 
Additionally, 43.6% were Caucasian, 32.2 %were Hispanic, 8.7 % 
were African-American, 7.4 % were Asian, and 8.1 % reported 
other nationalities. Seven students were dropped from the 
analyses due to data loss and attrition; thus, we analyzed data for 
142 total students. 

2.2 Study Procedure 
The data included in this study was collected over the course of 
two sessions, which lasted between one and two hours. In the first 
session, students’ general world knowledge, reading 
comprehension and writing skills, and attitudes were assessed 
using the following measures: Demographics questionnaire, 
Alternate Uses task [22]; selected items from the Remote 
Associative task (RAT) [35]; Motivated Strategies for Learning 
Questionnaire (MSLQ) [39]; Gates MacGinitie Reading test 
(Gates-MacGinitie (4th ed.) reading skill test (form S) level 
10/12) [27]; 30 question multiple-choice test on general 
knowledge in literature, science, and history; 25 minute timed-
essay writing task; and a Component Processes test [23]. 

The data collected in session two was collected one to three days 
after session one and contained the following measures: Cognitive 
Reflection Test (CRT) [15]; Self-Explanation and Reading 
Comprehension Test; On-line Motivation Questions [6]; Learning 
Orientation and Performance Orientation task (LO/PO) [26]; and a 
Grit assessment [14].  

For the purposes of the current study, we only analyzed the data 
from the Demographics questionnaire in session one and the Self-
Explanation and Reading Comprehension test in session two. 

2.3 Self-Explanation and Reading 
Comprehension Test 

A Self-explanation and Reading Comprehension Test was 
administered to students to analyze the on-line reading processes 
students employed during reading, as well as their comprehension 
of the text at the surface (text-based) and deep (bridging) levels. 
Students read and self-explained one of two science texts during 
session two related to heart disease or red blood cells. This text 
was presented one segment (i.e., two to three sentences) at a time, 
with each segment separated by a target sentence in bold. For each 
target sentence, students were instructed to write a self-
explanation of the information they had just read. In total, each 
student wrote nine self-explanations for the text.  

Immediately following this self-explanation and reading 
procedure, the students were asked to answer eight 
comprehension questions. The comprehension test consisted of 4 
text-based and 4 bridging open-ended questions. The text was not 
visible to students while they answered these questions. Text-
based questions were based on information found within one 
sentence in the text, whereas bridging questions required students 
to refer to information from two or more sentences within the text. 
Each question was worth one point, but allowed partial credit. 
Thus, the maximum number of points that a student could receive 
on this test was eight. The comprehension questions were 
independently scored by two expert raters for at least 14% of the 
responses. Raters resolved discrepancies and repeated the process 
until they received 95% exact agreement, with a kappa of at least 
0.8.  Once interrater reliability was achieved, one coder completed 
the remainder of the scoring. 

Table 1. Recurrence Quantification Analysis Indices 

Description 

Recurrence Rate Proportion of the recurrence plot that is 
composed of recurrent points   

Determinism Proportion of recurrent points that form 
diagonal line structures (defined as 2 or 
more recurrent points in a row) 

Line Number Total number of lines in the recurrence 
plot.  

Max Line Length of the longest diagonal line in 
the plot, excluding the main diagonal 

Average Line Average length of the lines in the 
recurrence plot 

Entropy Shannon information entropy of 
diagonal line lengths  

Normalized 
Entropy 

Entropy variable normalized by the 
number of lines in the plot 

2.4 Data Processing 
For the purpose of generating and quantifying the recurrence 
plots, students’ individual, sentence-level self-explanations were 
aggregated. Therefore, each student had one “aggregated self-
explanation” file that included the nine self-explanations they 
produced while reading.  

To prepare the data for the RQA, the texts were first cleaned. All 
punctuation in the texts was first removed and the words were all 



 

converted to lower case and stemmed. Once the texts were 
cleaned, the series of words was converted to series of categorical 
numeric codes, which each represented the unique words in each 
self-explanation. For instance, the sentence, “The bird ate bird 
food.” would be converted to the series: {1, 2, 3, 2, 4}. 

2.5 Recurrence Quantification Analyses 
We used the crqa library in R [9] to generate the recurrence plots 
and calculate the recurrence indices for students’ self-
explanations. The resulting indices are described in Table 1.  

2.6 Text Analyses 
In addition to the RQA indices, descriptive indices of students’ 
aggregated self-explanations were calculated to provide summary 
information about the words in students’ self-explanations. 
Specifically, we calculated the total number of words, the number 
of letters per word, and the type-token ratio. The type-token ratio 
is a measure of the number of unique words in the text divided by 
the total number of words. We included these basic text indices in 
our analysis to determine whether the recurrence quantification 
analysis metrics accounted for different and unique variance 
beyond these basic descriptive indices.  

2.7 Statistical Analyses 
To assess the degree to which the patterns of recurrence in 
students’ self-explanations were associated with their 
comprehension of the text, we generated recurrence plots and 
calculated Pearson correlations and regression analyses. The 
recurrence plots allowed us to visualize the recurrent word 
patterns across students’ self-explanations of the text. 
Additionally, these recurrence plots allowed us to quantify the 
properties of these plots with seven RQA indices (see Table 1).   

Normality of the indices was assessed with skew, kurtosis, and 
visual data inspections. Two indices, Line Number and Average 
Line were strongly skewed; therefore, we calculated the log 
transformation for this index.  

Pearson correlations were used to assess relations between word 
recurrence (as defined by the RQA indices) and comprehension 
scores. We calculated these correlations for students’ overall 
comprehension scores, as well as their text-based and bridging 
comprehension scores. Finally, stepwise regression analyses were 
conducted to follow-up the correlation analyses in order to 
provide an indication of the variables that accounted for the most 
variability in the dependent variables. For this analysis, we 
included the three basic descriptive indices and the RQA indices 
to determine whether the RQA indices accounted for unique 
variance in the model once the basic indices were included. 
Multicollinearity was assessed among the indices (r > .90) 
included in the regression analysis; however, no indices 
demonstrated multicollinearity. Additionally, the self-explanations 
of eleven students contained fewer than 100 words, which did not 
provide enough data points for the Entropy RQA indices to be 
calculated. Therefore, we conducted pairwise deletion to account 
for this missing data in our correlation and regression analyses. 

3 RESULTS 

3.1 Qualitative Analysis of Recurrence Plots 
To visualize the temporal distribution of words in students’ self-
explanations, recurrence plots for each student were calculated 
using the procedure described in the previous sections. These 
recurrence plots varied considerably among the students and 
provided us a means to qualitatively analyze differences in the 

word recurrence in the self-explanations of students who received 
low and high scores on the comprehension test.  

 
Figure 2. Recurrence Plot for a Student with a Low Text 

Comprehension Score 

 
Figure 3. Recurrence Plot for a Student with a High Text 

Comprehension Score 

Figures 2 and 3 illustrate two recurrence plots that were generated 
using two students’ actual self-explanations from the current 
study. Although the students’ self-explanations had a similar total 
number of words (Figure 2 = 224; Figure 3 = 251), the plots 
demonstrate that these students exhibited strongly different 
patterns of word recurrence throughout their self-explanations.  

Figure 2 illustrates the recurrence plot of a student who received a 
score of 1 (out of 8) on the comprehension test (text-based 
comprehension score = 1; bridging comprehension score = 0). As 
can be seen in the plot, this student rarely produced self-
explanations with similar words from their previous explanations. 
Additionally, in the situations when this student did exhibit word 



 

recurrence, the words tended to occur in isolation, rather than in 
sequences (diagonal lines) of words.  In other words, the 
recurrence plot suggests that this student did not generate explicit 
connections between the information explained in different 
sections of the text.  

In contrast, the plot depicted in Figure 3 comes from a student 
who received a perfect score of 8 on the comprehension test (text-
based comprehension score = 4; bridging comprehension score = 
4).  Unlike the previous student, this student exhibited a high 
degree of recurrence across self-explanations. Additionally, many 
of the recurrent points fell on diagonal lines, suggesting that this 
student was repeatedly referring to sequences of words, rather 
than individual words. Thus, while reading through the text, the 
student continued to explain the new text information in 
connection with previously encountered text information.  

Overall, these recurrence plots provide a means through which the 
comprehension processes of skilled and less skilled readers can be 
differentiated. Despite the fact that these two students generated a 
similar amount of text during the self-explanation procedure, the 
temporal distribution of the words they used varied widely. In 
particular, these plots reveal that the student who continuously 
repeated words and phrases while self-explaining ultimately 
developed a deeper comprehension of the text. In comparison, the 
student who rarely repeated information across self-explanations 
demonstrated low text comprehension. 

3.2 Text Comprehension 
The qualitative analyses of the recurrence plots provided 
preliminary evidence that skilled and less skilled readers exhibited 
strong differences in their word recurrence during self-
explanation. To empirically test these findings, we conducted 
quantitative analyses of these plots.  

Table 3. Correlations between RQA indices and 
Comprehension Scores 

RQA Index Text-Based Bridging Total 
Recurrence Rate .119 (M) .101  .126 (M) 
Determinism -.058 .071  .001 
Log of Line Number .413** .481**  .505** 
Max Line .132 (M) .142*  .155* 
Log of Average Line .002 .177*  .093 
Entropy .011 .229*  .124 (M) 
Normalized Entropy -.204* .019 -.116 
p <.001**; p <.05*; Marginal = M 

Pearson correlations were first calculated between the RQA 
indices and students’ text comprehension scores (see Table 3). 
Results from these analyses indicated that students’ 
comprehension scores were significantly related to a number of 
the RQA indices. In particular, these results reveal that skilled 
readers did not simply repeat words more often than less skilled 
readers. Rather, they differed from less skilled readers in their 
more frequent repetition of longer sequences of words. 
Importantly, the relations between the RQA indices and 
comprehension scores differed between text-based and bridging 
questions. These findings suggest that these recurrence 
characteristics are able to provide nuanced information about 
students’ comprehension processes that go beyond holistic 
comprehension scores. 

We conducted three stepwise regression analyses with the RQA 
indices and three basic text indices (i.e., total number of words, 

the number of letters per word, and the type-token ratio) as 
predictors and the comprehension scores (i.e., total, text-based, 
and bridging) as the dependent variables. The purpose of these 
analyses was to assess the amount of variance accounted for by 
the RQA indices, as well as to determine whether these indices 
accounted for variance in the comprehension scores when 
summative text measures were taken into account.  

The three regression analyses yielded significant models. The 
analysis of students’ total comprehension scores [F (2, 118) = 
27.58, p < .001; R2 = .32] retained two variables: Log of Line 
Number [β = .54, p < .001] and Number of Letters per Word [β = 
.25, p < .01]. 

The analysis of students’ text-based comprehension scores [F (3, 
117) = 11.60, p < .001; R2 = .23] retained three variables: Log of 
Line Number [β = .48, p < .001], Number of Letters per Word [β 
= .19, p < .05], and Determinism [β = -.18, p < .05]. 

Finally, the analysis of students’ bridging comprehension scores 
[F (4, 116) = 11.18, p < .001; R2 = .38] retained four variables: 
Log of Line Number [β = .70, p < .001], Number of Letters per 
Word [β = .25, p < .01], Normalized Entropy [β = .32, p < .01] 
and Determinism [β = -.26, p < .05]. 

The results of these analyses suggest that students’ text 
comprehension was most strongly predicted by the number of 
diagonal lines in their recurrence plots, as well as the size of their 
words. This provides confirmation of the qualitative analyses by 
indicating that the skilled readers more frequently repeated 
sequences of words, rather than individual words. In addition, the 
words that skilled readers use tend to be longer, or less frequent 
words, which provides a proxy for students’ vocabulary.  
Additionally, the analyses revealed that the recurrence metrics 
were more strongly related to students’ performance on bridging 
questions than text-based questions. Thus, comprehension 
questions that required students to generate connections across 
multiple sentences in the text were more strongly related to the 
word recurrence in students’ self-explanations.   

4 DISCUSSION 
Educational technologies across a variety of domains increasingly 
incorporate natural language components for the purpose of 
increasing interactivity and providing students with adaptive 
instruction and feedback [10; 20; 42]. While these systems 
generally provide accurate holistic feedback [34; 43; 51], they 
often lack the more nuanced information that is needed to drive 
formative feedback related to beneficial learning processes. The 
objective of many natural language assessments is to deliver 
accurate scores that match an expert’s ratings of quality. 
However, the indices used in these analyses often exist in a “black 
box” and can be difficult to translate into actionable feedback for 
students. Additionally, these assessments do not often take the 
temporal aspects of language into account, which may play a 
critical role in the assessment of students’ performance at more 
fine-grained sizes.  

In this study, we addressed these research gaps through 
computational analyses of students’ natural language responses to 
a text. We leveraged dynamic modeling techniques to capture the 
temporal properties of students’ language use and to relate those 
properties to students’ performance on a comprehension test. 
Importantly, this analysis did not solely rely on statistical 
assessments of student performance. We were able to generate 
metrics that could provide both qualitative and quantitative 
information about students’ comprehension performance. We 
anticipate that these metrics will be able to drive summative 



 

feedback in educational technologies, but also provide students 
with meaningful visualizations of their work. These visualizations 
may ultimately help students to ground the system feedback in 
specific examples from their own work, which can lead to 
improvements in their understanding and uptake of the feedback.  

The results of the current study support our hypotheses that the 
temporal, recurrent properties of students’ text responses can 
provide important information about their comprehension. The 
qualitative analyses of students’ recurrence plots indicated that 
successful comprehension processes could be observed through 
visualizations of students’ word use over time. Specifically, the 
skilled reader depicted in Figure 3 consistently repeated sequences 
of words across self-explanations, whereas the less skilled reader 
(Figure 2) referred to previously mentioned concepts much less 
frequently. This is an important finding because it indicates that 
the temporal variability in students’ natural language responses 
can provide important information about their comprehension 
processes. Further, these analyses revealed that visualizations of 
these language sequences can be used to deliver meaningful 
information about these different comprehension processes.  

The RQA indices generated from these recurrence plots were 
additionally able to provide important information about students’ 
comprehension performance. In particular, the results of the 
correlation and regression analyses indicated that 32% of the 
variance in students’ comprehension scores were accounted for 
using a combination of summative metrics of word use (i.e., total 
number of words, the number of letters per word, and the type-
token ratio), as well as indices related to recurrent patterns of this 
word use. These analyses speak to the importance of accounting 
for temporal patterns in analyses of students’ language. Natural 
language processing techniques tend to rely on summative metrics 
of text features; however, the results of the current study suggest 
that expanding these analyses to include temporality can provide 
critical information about students’ learning processes.   

The correlation analyses additionally revealed similarities and 
differences between the relationships between these recurrence 
metrics and the text-based and bridging comprehension scores. 
Performance on both the text-based and bridging questions was 
related to a greater number of recurrent word sequences (Log of 
Line Number) and a longer maximum recurrent sequence (Max 
Line). This is an interesting finding and suggests that 
comprehension at multiple levels can be enhanced through the 
generation of connections among text information. In particular, 
both text-based and bridging scores demonstrated medium 
relationships to the number of lines in students’ recurrence plots. 
Thus, feedback driven by these metrics could potentially be 
developed to prompt students to generate greater connections 
among ideas in order to improve their understanding of the text 
content.   

In addition to this similarity in recurrent lines, the correlations 
were indicative of some interesting differences between the text-
based and bridging scores. For instance, while bridging scores 
were positively associated with the raw entropy index for the line 
lengths in students’ plots, text-based comprehension scores were 
negatively related to the normalized entropy metric. This suggests 
that the processes underlying students’ surface- and deep-level 
comprehension performance may differentially manifest in the 
temporal properties of their response to texts. This has important 
implications for future system adaptability. If these findings were 
to be replicated with more descriptive information in follow-up 
studies, it suggests that text-based and bridging comprehension 

performance could be assessed and, therefore, addressed in 
different ways through system feedback.  

As a final note, in the current study, we only focused on the 
individual words in students’ self-explanations, and did not 
account for the numerous properties that can be calculated in 
linguistic analyses. This methodological choice was made to 
provide a demonstration of the power of the recurrence 
quantification technique when only words are considered. In 
reality, however, this technique is highly flexible and can be used 
to analyze any number of features of language. For instance, 
categorical recurrence quantification analyses (such as this one) 
can be used to analyze recurrent patterns in the parts-of-speech or 
topics of students’ language. Additionally, recurrence 
quantification analyses can be applied to model continuous data, 
such as word frequency or similarity to the topic. Future studies 
should be conducted to build on the results of the current study to 
account for the multi-dimensional properties of the language that 
students generate.  

Overall, our results suggest that recurrence quantification analysis 
can be utilized to guide both qualitative and quantitative 
assessments of students’ comprehension. Our eventual goal is to 
use these indices to develop more nuanced stealth assessments 
and formative feedback in the iSTART system. More broadly, the 
current study suggests that dynamic visualizations and analyses 
can be used as a step towards more adaptive educational 
technologies for literacy, as well as for any system that collects 
students’ natural language responses. Although this is only a first 
step, and a number of studies remain to be conducted, this study 
provides a strong initial foundation because it demonstrates the 
feasibility of such measures for modeling student performance.  
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