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Abstract 

Recently Kim (2016) published a meta-analysis on the effects of enrichment programs for gifted 

students. She found that these programs produced substantial effects for academic achievement 

(g = .96) and socioemotional outcomes (g = .55). However, given current theory and empirical 

research these estimates of the benefits of enrichment programs are unrealistically high. In this 

manuscript I make the argument that Kim’s results—and those from a previous meta-analysis on 

the same topic (Vaughn, Feldhusen, & Asher, 1991)—are likely distorted by publication bias. 

Using statistical power analysis, Schimmack’s (2012) incredibility index, and an examination of 

the correlation between sample size and effect size, I present circumstantial evidence that 

publication bias is distorting the enrichment literature. As a result, gifted education scholars and 

practitioners do not really know the effectiveness of enrichment programs. I conclude the 

manuscript by discussing how to reduce publication bias in the gifted education literature. 
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Publication Bias Currently Makes an Accurate Estimate of the Benefits of Enrichment Programs 

Difficult: A Postmortem of Two Meta-Analyses Using Statistical Power Analysis 

 

 One of the definitions for the word “incredible” in Oxford English Dictionary is “. . . of a 

degree beyond what one would a priori have conceived as possible; inconceivable, exceedingly 

great.” Gifted education scholars and practitioners often see incredible accomplishments among 

the people they study. Whether it is impressive performance on psychometric tests (e.g., Gross, 

2004), the amazing talents of child prodigies (e.g., Ruthsatz, Ruthsatz, & Ruthsatz Stephens, 

2014), or the stunning careers that some children with high abilities have in adulthood (e.g., 

Lubinski, Benbow, & Kell, 2014), the word “incredible” suits the accomplishments and abilities 

of many of the people that gifted education specialists work with. Observing these incredible 

individuals is one of the reasons gifted education is such an exciting field to work in. 

 But there is another definition of “incredible” that occasionally applies to work in gifted 

education: “Not credible: that cannot be believed; beyond belief.” This definition of “incredible” 

came to my mind when I read a recent meta-analysis by Kim (2016) on the effectiveness of 

enrichment programs for gifted students. According to Kim, enrichment give gifted students “. . . 

richer and more varied content through modification and supplementation of content in addition 

to standard content in the regular classroom . . .” (2016, p. 103). Kim’s results are incredible in 

this sense because she found that the average effect size (Hedges’s g) for the academic outcomes 

of these add-on enrichment programs for gifted students was .96. For socioemotional outcomes 

the effect size was .55. 

Why I Found Kim’s Meta-Analysis Surprising 

Past Empirical Data 
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Although these numbers are not so high as to be inherently absurd, these effect size 

estimates are much higher than what is normally found in gifted education research. A suitable 

comparison is Rogers’s (2007) meta-analyses of various acceleration and ability grouping 

strategies. Of 23 grouping interventions in Rogers’s report, only one—grade skipping—has a 

stronger effect size (Cohen’s d = 1.00) for academic outcomes than what Kim (2016) found for 

enrichment programs. Of the 14 interventions that had enough research on social or self-esteem 

outcomes none was higher than d = .47 (Rogers, 2007, p. 388). Taken at face value this would 

indicate that enrichment provides more socioemotional and academic benefits for gifted children 

than any ability grouping or acceleration intervention, except grade skipping. 

 What surprised me about Kim’s (2016) results was that they seem contradictory in light 

of much of the empirical research and theory on gifted education and human learning, even 

though her procedures were sound. For example, these results are outliers compared to previous 

meta-analyses, such Kulik and Kulik’s (1992, pp. 75-76) finding (as part of a larger meta-

analysis on grouping programs) that the effect size for academic outcomes of enrichment 

programs was .41. For socioemotional outcomes, the effect size in Kulik and Kulik’s (1992) 

study was merely .10. Another early meta-analysis on enrichment programs (Vaughn, Feldhusen, 

& Asher, 1991) produced an estimate of d = .65 for the academic benefits of enrichment 

programs and d = .11 for self-concept. 

Individual studies on enrichment programs also make Kim’s (2016) meta-analysis appear 

supprising. For example, in one of the largest investigations of an enrichment program Callahan 

and her colleagues investigated the academic impact of a poetry enrichment curriculum and a 

research enrichment curriculum on three cohorts totaling 2,905 students. The median effect size 

(as quantified by Spybrook’s δ, a standardized mean difference effect size analogous to Cohen’s 
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d that is appropriate for hierarchical linear models) was .67 (Callahan, Moon, Oh, Azano, & 

Hailey, 2015). This effect size is noticeably smaller than the .96 effect size in Kim’s (2016) 

meta-analysis, even though Callahan et al.’s (2015) enrichment programs had a very high quality 

curriculum, high treatment fidelity in implementation, and outcomes measured with custom-

designed instruments closely aligned with the curriculum (Cheung & Slavin, 2016). These 

characteristics likely make the Callahan et al. (2015) enrichment program more effective than the 

typical school district enrichment program. And yet, this study did not have an effect size as 

strong as the mean effect size in Kim’s (2016) meta-analysis. 

Theoretical Concerns 

From a theoretical standpoint, leading scholars of gifted education have been critical of 

enrichment. Some experts have discussed the concept of “educational dose,” which refers to the 

strength of an educational intervention for gifted students (Gallagher, 2000; Wai, 2015; Wai, 

Lubinski, Benbow, & Steiger, 2010; Warne, 2016). These authors argue that for an intervention 

to be effective for gifted students it must be robustly different from the regular educational 

curriculum and administered for a long enough period of time to have an impact. Indeed, in some 

respects, Kim’s (2016) results are consistent with the concept of the methodological dose, such 

as when she found that, “Studies with extremely high effect sizes were more intensive programs 

than other studies . . . more intensive enrichment programs influence more academic 

achievement of gifted students” (p. 108). However, the typical enrichment program is a pullout 

program that a gifted child participates in for no more than four hours per week (Callahan, 

Moon, & Oh, 2014, p. 7). Given the concept of an education dose, it is hard to imagine how the 

average enrichment program could have nearly the same educational impact as grade skipping, 

which is an intense intervention that operates every minute a child is in school. 
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 Other experts see the needs of gifted children in a similar context and justify the 

existence of gifted programs or interventions on the basis of an educational need for a child (e.g., 

Ruf, 2005; Stanley, 1977). In one particularly scathing criticism of pull-out enrichment 

programs, VanTassel-Baska (1987) explained how curriculum differentiation and adjustment to 

educational programs is a full-time need for gifted children—which by definition cannot be met 

in a program in which a child spends the minority of their school time. Again, given the 

mismatch between full-time need and part-time intervention, the .96 effect size that Kim (2016) 

found seems unrealistically high when compared to treatments that occupy a larger proportion of 

a gifted child’s school day, such as full-time ability grouping (d = .49), curriculum compacting (d 

= .83), or grade telescoping (d = .45; all effect sizes are for academic outcomes in Rogers, 2007, 

p. 388). 

Although the theorizing is not as strong for the socioemotional impact of enrichment 

programs, it likewise seems difficult to explain why a less intense enrichment program would 

have a stronger impact than immersive programs, like Talent Searches (see Matthews, 2008, for 

a description of the social and emotional benefits of Talent Search programs). The strong effect 

size for socioemotional outcomes in Kim’s (2016) meta-analysis is also difficult to explain when 

one considers that enrichment programs are not designed primarily to improve socioemotional 

outcomes. 

How Did Kim Obtain Such Strong Effect Sizes? 

Possibility 1: Errors in the Meta-Analysis 

Some readers may ponder the strong effect sizes in Kim’s (2016) meta-analysis and 

assume that her results are a consequence of problems with her work. I do not agree with this 

interpretation. Although Kim’s (2016) results do not seem realistic in light of prior empirical 
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research or theory, Kim did not commit any methodological errors in her meta-analysis. Indeed, 

she followed modern standards for meta-analysis, such as the Meta-Analysis Reporting 

Standards (American Psychological Association, 2010), and her methodology conforms to 

guidelines from experts on how to conduct a meta-analysis (e.g., Cooper, 2010; Lipsey & 

Wilson, 2001; Steenbergen-Hu & Olszewski-Kubilius, 2016). For example, her search 

procedures were thorough, and she made an honest attempt to find all the grey literature (i.e., 

studies that were not published in peer reviewed journals) that she could. The transparency of 

Kim’s work and her careful efforts to follow best practice make the possibility of an error on her 

part extremely unlikely.1 

Possibility 2: Problems with the Data 

If Kim performed her meta-analysis correctly, then her unrealistic results did not arise 

from her procedures. Instead, the results must originate with the studies in her meta-analysis. 

Although it is not completely clear what is wrong with the studies that Kim meta-analyzed, I 

argue in this manuscript that the problem may be publication bias. Publication bias occurs when 

studies that retain the null hypothesis are less likely to be submitted or accepted for publication 

(Greenwald, 1975). Publication bias can also manifest itself as a bias against publishing 

replications because gatekeepers (i.e., journal editors and reviewers) reject a study for reasons 

unrelated to its quality, such rejecting studies because they do not present new knowledge 

(Makel & Plucker, 2014, 2015). This bias against null findings and replications has been 

observed in many fields, including medicine (Coronado-Montoya et al., 2016), sociology 

(Gerber & Malhotra, 2008), psychology (Laws, 2013), and education (Makel & Plucker, 2014). 

These unpublished studies tend to have effect sizes closer to zero than published studies. As a 

result, the published studies on a topic generally present stronger effect sizes, and meta-analyses 
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on these studies make phenomena appear more robust and interventions more effective than they 

really are (Cheung & Slavin, 2016). Thus, publication bias is a plausible explanation for Kim’s 

(2016) optimistic results of the impacts of enrichment programs for gifted students. 

Purpose of This Manuscript 

 Given the mismatch between Kim’s (2016) results and those of other meta-analyses and 

of gifted education theory, I chose to investigate the possibility of publication bias in Kim’s 

(2016) meta-analysis and a similar, earlier analysis by Vaughn et al. (1991). Although there is no 

“smoking gun” evidence of severe publication bias in the enrichment literature, I found four 

pieces of circumstantial evidence that suggest the presence of some degree of publication bias. 

Three of these pieces of evidence are based on statistical power analysis—a topic that will be 

explained in the next section. In this manuscript, I will also explain how to evaluate publication 

bias, demonstrate four procedures that can be used with smaller bodies of research, and discuss 

the likelihood of publication bias in the enrichment literature. I will also close the manuscript by 

making suggestions for changes in the culture of gifted education scholarship that would reduce 

the prevalence of publication bias. 

There are three benefits to performing statistical power analysis on these meta-analyses. 

First, statistical power analysis simply and intuitively demonstrates the possible presence of 

publication bias. Second, this manuscript will show that the possible presence of publication bias 

should make educators and scholars cautious about interpreting the actual impact of these 

programs. Finally, statistical power is an important concept in its own right that has been 

neglected in psychological and educational research for too long. Through this study I hope that 

gifted education scholars will be more cognizant of statistical power as they plan their studies 

and evaluate the work of others. I believe that this article will move readers beyond the normal 
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preaching about the importance of statistical power (e.g., Cohen, 1992) or the dangers or 

publication bias (e.g., Greenwald, 1975) by showing a real-world example where publication 

bias may endanger an accurate understanding of the impact of an intervention. 

Evaluating Publication Bias 

There are several ways to evaluate publication bias. One recent development is the 

examination of distributions of p-values to search for a surplus of p-values below .05 (Ginsel, 

Aggarwal, Xuan, & Harris, 2015; Masicampo & Lalande, 2012). Other researchers (e.g., Flore & 

Wicherts, 2015), examine the correlation between sample size and effect size, which should be 

zero without publication bias and negative if publication bias is present. Another popular method 

is to use a funnel plot in a meta-analysis to search for asymmetry in the distribution of effect 

sizes (e.g., Roth et al., 2015). Other methods of investigating publication bias are available (see 

Nuijten, van Assen, Veldkamp, & Wicherts, 2015; Steenbergen-Hu & Olzewski-Kubilius, 2016). 

Much to her credit, Kim (2016) investigated the possibility of publication bias in the 

enrichment literature using the trim-and-fill method. This standard procedure removes extreme, 

small studies from a meta-analysis (this is the “trim”) and imputes missing—usually smaller—

effect sizes (the “fill”), and recalculates the new effect size. If publication bias is not a major 

problem, then the new effect size after the trim-and-fill method should be similar to the meta-

analysis’s effect size (see te Nijenhuis, Willigers, Dragt, & van der Flier, 2016, p. 124, for a 

brief, accessible explanation of this method). When Kim (2016) performed the trim-and-fill 

procedure, she found that the imputed effect size actually increased slightly. This would 

generally indicate that publication bias was not a problem in a meta-analysis, and Kim 

interpreted it as such (see p. 108). 
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Kim’s (2016) test for publication bias undermines my claim that publication bias 

distorted her results. However, the trim-and-fill method requires a large number of effect sizes to 

effectively detect publication bias (Nuijten et al., 2015). With only 13 effect sizes in her meta-

analysis of academic outcomes and 18 effect sizes in her meta-analysis of socioemotional 

outcomes, Kim (2016) did not have the statistical power to detect publication bias in the 

enrichment literature. Again, this is not her fault. It is a deficiency in the research base that there 

are so few studies on the consequences of enrichment programs. 

Statistical Power as a Tool for Investigating Publication Bias 

 Because the trim-and-fill method was inadequate to detect publication bias in the 

enrichment literature, other methods should be used that can detect publication bias in a 

relatively small number of studies. Schimmack (2012) proposed such a method based on 

statistical power. 

What is statistical power? Statistical power is the likelihood of a study to reject a false 

null hypothesis. Studies with high statistical power have a high probability of rejecting a false 

null hypothesis, while rejecting the null hypothesis is unlikely when a study has low statistical 

power—even if the actual effect is strong. Statistical power is the product of four aspects of a 

study: (a) the alpha value of the null hypothesis test, (b) the magnitude of the effect size, (c) the 

sample size, and (d) the study design. The most flexible of these four study characteristics is the 

alpha value of the null hypothesis because alpha is completely arbitrary. However, given the 

ubiquity of the default .05 alpha value, raising alpha is problematic and may in some instances 

appear to be an effort to manipulate the study’s results to produce a desired outcome. Aspect (b), 

the magnitude of the effect size, is largely out of the control of researchers. 
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 This leaves adjusting sample size and study design as the typical methods of increasing 

statistical power. If all other aspects are equal, then studies with larger sample sizes have larger 

power because larger sample sizes make it easier for all statistical tests to reject the null 

hypothesis (Cohen, 1994; Rodgers, 2010; Sedlmeier & Gigerenzer, 1989; Thompson, 1992). In 

regards to study design, usually within-subjects designs have higher statistical power than 

between-subjects designs (Zimmerman, 1997). If a researcher does choose a between-subjects 

design—which is common in gifted education research—then having groups that are balanced in 

size also increases power (Kline, 2013).2 Generally, researchers recommend that statistical power 

for a study be at least .80 (Cohen, 1962), though higher power is always desirable. 

 Why statistical power matters. Statistical power is important because publication bias 

means that studies with low power are less likely to reject the null hypothesis and therefore less 

likely to be published. Therefore, low statistical power contributes to a distorted scientific 

literature in many fields. Paradoxically, studies with low statistical power are not inevitably 

hidden away. Because of sampling error and Type I error, some studies with low power do 

indeed reject the null hypothesis. These studies capitalize on chance and sampling error—often 

unbeknownst to the author—and are less likely to replicate in the future. Yet, they are more 

likely to be published anyway because the null hypothesis was rejected. As a result, the studies 

with low power that are published often seem inconsistent and contradictory (Maxwell, 2004; 

Schimmack, 2012). 

Ironically, this means that low statistical power—when combined with publication bias—

results in “the worst of both worlds.” Studies that fail to reject the null hypothesis languish 

unpublished—often because of low power—and the studies that are published often are not 

replicable. Therefore, the research literature becomes full of unstable findings that are 
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nongeneralizable, unreplicable, and difficult to build a theory around. The distorting effects of 

publication bias and low statistical power are not just some theoretical quirk of methodology. 

There is strong evidence to indicate that the publication bias on psychological topics like 

stereotype threat (Ganley et al., 2013), mindfulness treatments (Coronado-Montoya et al., 2016), 

and social priming (Vadillo, Hardwicke, & Shanks, 2016) is so strong that the true effect sizes 

for these phenomena may be zero. This could be why the research on these topics is so confusing 

and contradictory. The inflated effect sizes in the research on these topics makes planning future 

studies difficult because using inflated effect sizes to estimate statistical power for a study will 

result in inflated statistical power—which will not accurately reflect the true probability of 

rejecting a null hypothesis. 

Using Statistical Power to Investigate Publication Bias 

 Schimmack (2012) proposed a method of investigating publication bias via statistical 

power. His method is based on the fact that if no publication bias is present, then the average 

statistical power of a set of null hypothesis tests (expressed in statistical notation as 1 – β) will be 

equal to the proportion of tests that reject the null hypothesis (which I abbreviate as propreject). 

Schimmack (2012) created the Incredibility Index (IC) to quantify the degree of discrepancy 

between these two values: 

IC = propreject – (1 – β) 

If publication bias favors studies that reject the null hypothesis, then IC is positive. If IC is 

negative, then studies that retain the null hypothesis are more likely to appear in the literature. 

Values close to zero indicate that there is little, if any, publication bias.  

Although the logic of Schimmack’s (2012) Incredibility Index is sound, the mean 

statistical power of a set of studies (1 – β) is a positively biased estimate of the true statistical 
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power of the studies (Yuan & Maxwell, 2005). Therefore, in this manuscript I will calculate IC 

values on the basis of the median power of a set of studies, rather than the mean power. 

 Another method in which propreject and mean statistical power can be used to investigate 

population bias is to use the overall (i.e., median) statistical power to create a binominal 

distribution of expected numbers of rejected and retained null hypotheses under the assumption 

that there is no publication bias. This value can then be compared to propreject in either Fisher’s 

exact test or in a chi-square goodness-of-fit test with one degree of freedom (Ioannidis & 

Trikalinos, 2007). If the null hypothesis is retained, then there is no evidence of publication bias. 

A rejected null hypothesis, however, would suggest the presence of publication bias. 

Methods 

 The first step in using statistical power to estimate publication bias is to calculate the 

power for every effect size in each meta-analysis using the procedures explained in Cohen 

(1988). This required converting all of the Hedges’s g effect sizes in Kim’s (2016) meta-analysis 

into Cohen’s d values. A formula provided by Durlak (2009, p. 928) was used for this purpose. 

Because Hedges’s g and Cohen’s d are both standardized mean differences, these values are very 

similar, though there are slight discrepancies. Additionally, all of the effect sizes in the Vaughn 

et al. (1991) meta-analysis were recalculated after consulting the original studies because of 

discrepancies arising from contradictory or confusing information in Vaughn et al.’s (1991) 

report. Thus, the effect size values reported in this manuscript differ from those in the previous 

meta-analyses. 

 After all effect sizes were converted to Cohen’s d values, a statistical power value was 

calculated for each of four different effect sizes: (a) the study’s observed effect size, (b) the mean 

effect size reported by the meta-analyst for the group, (c) an effect size of d = .50, and (d) the 
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median effect size reported by Rogers (2007) for ability grouping and acceleration interventions 

for either academic outcomes (d = .45) or socioemotional outcomes (d = .15). The only 

difference among these power values was in the effect size used to calculate them. 

 Using multiple effect sizes is best practice for examining statistical power in a meta-

analysis (Ioannidis & Trikalinos, 2007), and these effect sizes will produce differing estimates of 

statistical power. Using the study’s observed effect size (i.e., option a) in statistical power 

calculations is called post hoc power. Post hoc power is simply a function of a study’s p-value 

(Hoenig & Heisey, 2001) and is inflated when publication bias is present, especially when 

sample sizes are small (Schimmack, 2012). Statistical power calculations based on option (b) 

also is inflated because it is a function of post hoc power from the meta-analysis’s constituent 

studies. Therefore, I presented these statistical power calculations here for comparison purposes 

only. 

 Statistical power calculations based on option (c) have a history that dates to Cohen’s 

(1962) study of statistical power in leading psychology journals. In that article he stated that an 

effect size of d = .50 had a “medium” strength (a benchmark he carried into his landmark 1988 

book) and used that threshold to find that the mean statistical power in psychology was .48. 

Others (e.g., Osborne, 2008) have used the same standard to estimate power in the social 

sciences, including in educational research. I used this value to ensure that my statistical power 

calculations were comparable to similar calculations of power. Finally, statistical power 

calculations based on Rogers’s (2007) median effect sizes for acceleration and ability grouping 

interventions were used because these were empirically derived from gifted education research. 

Because the effect sizes in options (c) and (d) were generally smaller than (a) and (b) in the 

enrichment literature, the statistical power estimates corresponding to effect sizes (c) and (d) 
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were usually lower. Having a range of power estimates is helpful; any one particular value may 

be inaccurate because it is impossible to know beforehand truly whether publication bias is 

present in a meta-analysis. 

 After the four estimates of statistical power have been calculated, an IC value was 

calculated for each article, along with an average IC value across the entire collection of studies. 

I then conducted a chi-square goodness-of-fit test in order to determine whether there was a 

statistically significant difference between the number of effect sizes that rejected the null 

hypothesis and the expected number of rejected null hypotheses if there were no publication bias. 

To provide another source of evidence about publication bias I also calculated the correlation 

between sample size and effect size within each group of studies, which should be zero if no 

publication bias is present. This latter procedure is the only examination of publication bias in 

the article that is not based in some way on statistical power. 

Results 

Description of Effect Sizes 

 All effect sizes from both meta-analyses were compared in two groups: effect sizes 

measuring academic achievement outcomes, and effect sizes measuring all other outcomes. The 

former group consisted of 15 effect sizes. The latter group consisted of 22 effect sizes and 

included socioemotional and critical thinking outcomes, plus one creativity outcome (from 

Kolloff, 1983) reported in the Vaugh et al. (1991) meta-analysis. All effect sizes are listed in 

Kim (2016) and Vaughn et al. (1991). Some of the effect sizes from the latter study were 

eliminated before analysis because statistical power could not be calculated, either because the 

original study was unpublished and now unavailable or because there was not enough 

information to estimate statistical power. Two studies were in both meta-analyses (Aldrich & 
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Mills, 1989; Feldhusen, Sayler, Nielsen, & Kolloff, 1990). For both of these studies I converted 

Kim’s (2016) effect sizes to Cohen’s d for purposes of my analyses. 

Statistical Power and IC Estimates 

 The effect sizes for academic achievement outcomes are reported in Table 1. Across the 

two meta-analyses the effect sizes ranged from d = -0.10 to 2.99, with a median of 0.78. The four 

power estimates for each study are shown in the table. The median value for the four statistical 

power estimates are (a) 0.9424 for post hoc statistical power, (b) 0.9701 for the mean effect size 

from the meta-analyses, (c) 0.5171 for a “medium” effect size, and (d) 0.4376 for the median 

effect size from Rogers’s (2007) report. The corresponding IC values are (a) 0.0464, (b) -0.1110, 

(c) 0.3659, and (d) 0.4374. 

 A powerful influence on statistical power is the choice of a between-subjects or within-

subjects designs, with the latter almost always having higher statistical power (Zimmerman, 

1997). However, within-subjects designs are slightly more vulnerable to several threats to 

internal validity, such as history events and maturation (see Winch & Campbell, 1969). As a 

result, it is likely possible that these effect sizes (and therefore statistical power estimates) are 

inflated. Therefore, the table also displays the average statistical power and IC values for only 

the between-subjects designs. Comparing the statistical power and IC values for the subset of 

between-subjects designs with the entire set of effect sizes from Table 1 shows that the subset 

has marginally lower power and corresponding higher IC values. 

INSERT TABLES 1 & 2 ABOUT HERE. 

 

Table 2 shows the 22 effect sizes for other outcomes, which ranged from d = -0.36 to 

13.42, with a median of 0.46. The four power estimates for each study are shown in the table. 

The average statistical value for the four statistical power estimates are (a) 0.6541 for post hoc 
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statistical power, (b) 0.9945 for the mean effect size from the meta-analyses, (c) 0.9870 for a 

“medium” effect size, and (d) 0.2849 for the median effect size from Rogers’s (2007) report. The 

corresponding IC values are (a) -0.1541, (b) -0.4945, (c) -0.4870, and (d) 0.2151. Again, for the 

non-academic outcomes the studies with a within-subjects design were removed and the power 

estimates were recalculated. Just as in Table 1, the removal of the within-subjects designs 

lowered all of the statistical power estimates, though the IC values did not change in a consistent 

fashion. 

Chi-Square Tests 

 For the academic achievement effect sizes the median statistical power for a “medium” 

effect size of d = .50 was .5171. Therefore, it would be expected that 51.71% of effect sizes 

would be statistically significant. Eleven of these 15 effect sizes (73.33%) did reject the null 

hypothesis. A chi-squared goodness of fit test was conducted to test whether the observed 

number of rejected null hypotheses differed from the expected value, given the statistical power. 

This discrepancy was not statistically significant (χ2 = 2.809, df = 1, p = .094). Using the 

statistical power estimate calculated on the basis of Rogers’s (2007) report, the discrepancy 

between the expected number of rejected null hypotheses (43.76%) and the actual number of 

rejected null hypotheses (73.33%) was statistically significant (χ2 = 5.331, df = 1, p = .021). 

When the within-subjects effect sizes were removed, there were more rejected null hypotheses 

than expected for the academic achievement effect sizes, regardless of whether statistical power 

was calculated on the basis of a “medium” effect size of d = .50 (χ2 = 5.944, df = 1, p = .015) or 

the median effect size of d = .45 from Rogers’s (2007) article (χ2 = 8.925, df = 1, p = .003). 

 For the non-academic outcomes there were 22 effect sizes, 11 (50%) of which rejected 

the null hypothesis. The median statistical power for an effect size of d = .50 was .9870; for 
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Rogers’s (2007) median effect size of .15, the mean statistical power was .2849. For the first 

power estimate the differences between the number of actually rejected null hypotheses and the 

expected number was statistically significant (χ2 = 1,653.88, df = 1, p < .001). These statistically 

significant results occurred because the number of rejected null hypotheses was less than 

expected given the statistical power. (Hence, the strong negative IC value of -0.4870.) When the 

basis of the expected number of rejected null hypotheses was calculated via the smaller statistical 

power value of .2849, then the results were also statistically significant (χ2 = 6.070, df = 1, p = 

.014). However, this was due to a larger number of rejected null hypotheses than would be 

expected. Once the within-subjects studies were removed from analysis the discrepancy in the 

number of rejected null hypotheses was barely statistically significant for the statistical power 

calculated on the basis of an effect size of d = .50 (χ2 = 3.967, df = 1, p = .046), though not for 

the median effect size of d = .15 from Rogers’s (2007) article (χ2 = 1.995, df = 1, p = .158). 

Supplemental Test for Publication Bias 

 The final test for publication bias in this manuscript is to determine the correlation 

between the sample size and effect size within each table. For the academic achievement effect 

sizes this correlation was r = -.162 (p = .252) or ρ = -.131 (p = .664). These results did not 

substantially change when within-subjects designs were removed (r = -.171, p = .612; ρ = -.009, 

p = .979). For the other effect sizes, this correlation was r = -.151 (p = .224) or ρ = -.335 (p = 

.127). When the within-subjects designs were removed, the results changed inconsistently: r = -

.177 (p = .201) or ρ = -.516 (p = .104). 

Discussion 

 There is no perfect test of publication bias when examining a body of literature, and best 

practice is to use multiple tests in combination with one another (Vadillo et al., 2016). 
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Unfortunately, many of these tests are insensitive to publication bias when there are few studies 

in the meta-analyses. The trim-and-fill procedure that Kim (2016) performed is one such test that 

often cannot detect publication bias when the number of effect sizes is small. However, other 

procedures can be effective when there are a small number of effect sizes (e.g., Schimmack, 

2012). When using two additional procedures based on statistical power, there were some 

conflicting results, but some evidence of publication bias emerged. This could explain the 

surprisingly large effect sizes in the enrichment literature. 

Testing for Publication Bias With Statistical Power 

 In this manuscript I made four calculations of statistical power based on varying plausible 

effect sizes for the magnitude of the impact of enrichment programs on gifted students. These 

power estimates and propreject were used to calculate IC for each statistical power scenario. 

Statistical power was highest when based on a study’s observed effect size (i.e., post hoc power) 

and for the effect size averages in the Kim (2016) and Vaughn et al. (1991) meta-analyses. On 

the surface, this may seem like an indication that publication bias is completely absent from the 

enrichment literature. However, this is an example of begging the question. Both of these 

statistical power estimates—and therefore the IC values based on them—are based on the 

assumption that there is no publication bias. Therefore, these values cannot be used to test for 

publication bias because the absence of publication bias is already taken for granted. 

 Because the traditional “medium” effect size in power calculation (i.e., d = .50) and the 

median effect size in Rogers’s (2007) report of the effectiveness of acceleration and ability 

grouping interventions for gifted children (i.e., d = .45) were nearly equal, statistical power 

estimates and IC values were similar. The statistical power for academic achievement effect sizes 

were .5171 and .4376, and IC values were positive (.2162 and .2957). These statistical power 
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estimates indicate that approximately half of studies in the enrichment literature were not capable 

of detecting a “medium” sized effect. It is noteworthy that these estimates are similar to what 

Cohen (1962) found over half a century ago when he calculated the mean statistical power of the 

abnormal and social psychology literature as .48. The corresponding IC values indicate that a 

larger percentage of studies rejected the null hypothesis of d = 0 than would be expected, 

providing modest evidence of publication bias. The chi-square test supports this modest evidence 

of publication bias, with the test based on the higher effect size (i.e., d = .50) showing no 

publication bias, but the test based on the slightly smaller effect size of d = .45 indicating 

publication bias. The ability of this chi-squared test to show publication bias is inhibited by the 

small number of effect sizes (15). 

 It is important to note, though, that some of these results are driven by the inclusion of 

within-subjects designs in the analyses. When only between-subjects designs were investigated, 

the evidence of publication bias strengthened. Statistical power decreased (to .4523 and .3808) 

and IC values approximately rose (to .3659 and .4374). Additionally, even though there were 

now fewer effect sizes, the chi-squared tests were statistically significant, indicating that more 

studies were rejecting the null hypothesis than would be expected with a population effect size of 

d = .50 or d = .45 and the total absence of publication bias. In other words, the large proportion 

of studies that show benefits for enrichment programs are literally “too good to be true” and 

would be unlikely if there were no publication bias. Supporting the claim of publication bias in 

the enrichment literature is the negative correlation between sample size and effect size, though 

these results were not statistically significant, perhaps because of the small number of effect 

sizes. 
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 When the non-academic achievement effect sizes were tested for publication bias, the 

results were more inconsistent, likely because the two relevant effect sizes used to calculate 

statistical power varied more (i.e., d = .50 and d = .15). The IC values for these effect size 

estimates provided inconsistent results. For a population effect size of d = .50, the IC was -

.4870—indicating that (if anything) there was a publication bias against statistically significant 

results. Although this is not unheard of (e.g., Roth et al., 2015), this is surprising. On the other 

hand, for a population effect size of d = .15 (based on Rogers’s, 2007, report), the IC was .2151, 

indicating weak evidence of modest publication bias. The removal of within-subjects designs did 

not substantially change these results, though statistical power did decrease greatly. 

 Like in the academic effect sizes, when comparing the number of actual and expected 

rejected null hypotheses, given the statistical power estimates, the results for non-academic 

achievement effect sizes were contradictory. Using a “medium” population effect size estimate 

of d = .50, the results—again—indicated a publication bias in favor of the null hypothesis. 

However, for an effect size of d = .15, the chi-square test indicated a publication bias against the 

null hypothesis. When the within-subjects designs were removed from analysis, these results 

change substantially: the statistical test based on a population effect size of d = .50 indicated 

publication bias against the null hypothesis, while the chi-squared test based on a population 

effect size of d = .15 did not indicate any publication bias. 

Supplemental Test of Statistical Power 

 The other test for publication bias that I performed was a calculating a correlation 

between the effect size and sample size. Although none of the correlations were statistically 

significant (probably as a result of the small number of effect sizes), it is noteworthy that all were 

negative, ranging from -.009 to -.516. This is circumstantial evidence for publication bias against 
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the null hypothesis; if there were no publication bias, an approximately equal number of 

correlations would be positive and negative. 

Is there Publication Bias in the Enrichment Literature? 

 The difficulty of testing for publication bias is that the researcher uses published studies 

to estimate the presence and size of the unknown, unobservable body of research. Indeed, it is 

difficult to state confidently (a) whether publication bias exists in a field and (b) the size of the 

unpublished corpus of studies unless publication bias is extremely strong (e.g., Vadillo et al., 

2016) or the body of literature is large and tailored around a very specific research question (e.g., 

Flore & Wicherts, 2015; Ganley et al., 2013). Neither of these situations applies to the literature 

on the effectiveness of enrichment programs for gifted children. 

 Nevertheless, there are tantalizing clues that indicate that publication bias is a problem in 

the enrichment literature. First, statistical power is low—especially for the more internally valid 

between-groups design—indicating that some studies that are published may be flukes that 

perhaps capitalize on Type I error to obtain statistical significance, and therefore publication. 

Second, IC values tend to be positive for the enrichment literature, indicating that more studies 

are published that reject the null hypothesis than one would expect without publication bias. This 

is especially true for studies where the dependent variable was academic achievement; among 

these studies the IC value reached a value as high as .4374—indicating that the percentage of 

studies that reject the null hypothesis may be up to 43.74 percentage points too high. These 

results generally are supported by the chi-square tests, though this support is often ambiguous 

because of—ironically—low statistical power arising from the small number of effect sizes. 

Finally, there are the negative correlations between sample size and effect size—an indication 

that smaller studies with less statistical precision dominate the enrichment literature. This seems 
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especially true when considering that the mean n was 71.3 (median n = 54), and only a single 

study (McCoach, Gubbins, Foreman, Rubenstein, & Rambo-Hernandez, 2014) had an n larger 

than 100. 

Do Meta-Analyses Accurately Estimate the Benefits of Enrichment Programs? 

 All this talk of publication bias is irrelevant if a meta-analysis still provides accurate 

estimates of population effect sizes. Therefore, a skeptic may state that with a large effect size of 

g = .96 (in Kim, 2016, meta-analysis) or d = .65 (in Vaughn et al., 1991) that surely enrichment 

programs must be beneficial. After all, pooling together these studies produces a total sample 

size of 1,069 for the academic effect sizes and 4,767 for the non-academic effect sizes. I imagine 

that some readers would think that these n’s are large enough to produce accurate estimates of 

population effect sizes. 

 However, this line of thinking is fallacious. When a publication bias exists against 

retaining the null hypothesis—even in a small amount—the result is inflated effect sizes. Nuijten 

et al. (2015) called this the “replication paradox” (p. 172), wherein adding additional studies to 

the research literature actually makes population effect size estimates less accurate when there is 

a publication bias against retaining the null hypothesis. This effect is actually strongest when the 

population effect size and the average study size are both small. Both of these conditions are 

plausible characteristics of the enrichment literature—especially for academic achievement 

effect sizes. Therefore, the strong effect sizes in Kim (2016) and Vaughn et al.’s (1991) meta-

analyses are no indication that enrichment programs are effective interventions. 

 Another possible argument against the presence of publication bias would be that the 

large number of studies showing the benefits of enrichment programs for gifted children cannot 

all be wrong. After all, the tables in this manuscript show that a majority (22 of 37) effect sizes 
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indicate a benefit for gifted children participating in enrichment programs. And most of the 

remaining effect sizes are statistically equal to zero. In fact, only one (from Coleman & Fults, 

1982) is negative and statistically significant. Therefore, a tally of the effect sizes seems to 

indicate a clear “victory” for positive studies (22), compared to neutral (14) or negative (1) 

studies. 

 This methodology is called “vote counting,” and meta-analysis experts have long 

recognized that it is an inherently flawed methodology that produces inaccurate estimations of 

the impact of treatments (Glass, 1976; Meehl, 1990), especially when the sample sizes in the 

body of literature are small (Hedges & Olkin, 1980; Schimmack, 2012; Vadillo et al., 2016). In 

fact, one of the reasons that social scientists accepted meta-analyses so quickly was because a 

few prominent early meta-analyses showed that vote counting was innately unsound (e.g., 

Schmidt & Hunter, 1977; Smith & Glass, 1977). Given the small sample sizes of studies of 

enrichment programs (especially for academic achievement outcomes), vote counting cannot 

provide accurate view of the literature. 

 Conversely, a skeptic could point to the 14 effect sizes that were statistically equal to zero 

as evidence that there is no publication bias against the null hypothesis in the enrichment 

literature. It seems surprising that over one-third of effect sizes would be statistically equal to 

zero if there were really bias against the null hypothesis. However, this ignores the fact that 

meta-analyses simplify the original articles they are based on. For example, in Carter’s (1986) 

study, Vaughn et al. (1991) found that the effect size was a statistically insignificant d = 0.24, 

which I have verified independently. But the original study had three outcome measures. Carter 

used the highly statistically significant difference in one outcome—higher level thinking 

scores—to argue that the enrichment program was effective. Thus, even though the effect size of 
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interest to Vaughn et al. (1991) was not statistically significant, publication bias in favor of 

rejecting the null hypothesis could still exist. The fact that Carter did not reject the particular null 

hypothesis that meta-analysts were interested in does not indicate an absence of publication bias. 

Another argument that a skeptic could make against my analysis is that power analysis 

requires setting an effect size a priori. Anyone could make a claim about publication bias via 

power analysis if they just set the effect size in the statistical power calculation to be small 

enough.3 This would, in turn, increase the IC and produce an apparent surplus of rejected null 

hypotheses in the chi-square analyses. Thus, to the skeptic statistical power appears to be 

tautological. However, this argument ignores the fact that there are good reasons to test statistical 

power at the effect sizes in Tables 1 and 2. The “medium” effect size of d = .50, for example, “. . 

. would be a fairly noticeable phenomenon . . .” (Cohen, 1962, p. 147) in everyday life. It is 

reasonable to expect a program to be defined as “providing benefits” if its results are “fairly 

noticeable,” and it is not unrealistic to ask that studies be designed to detect such an effect. 

Additionally, the median effect sizes from Rogers’s (2007) collection of effect sizes are not 

plucked randomly from the ether. Rather, these are effect sizes that—based on prior data from 

other gifted education interventions—are reasonable standards by which to judge the enrichment 

literature. 

Finally, those who still take Kim’s (2016) findings at face value still must explain how 

enrichment programs can provide such strong benefits for gifted children when other, apparently 

more intensive interventions (e.g., subject acceleration) are apparently less effective. The weaker 

educational dose of enrichment programs should correspond to weaker effect sizes—but this is 

not true when comparing Kim’s results with other meta-analyses (e.g., Rogers, 2007; Kulik & 

Kulik, 1992). Even if the theory of educational dose is flawed, it is still up to those who view 



ENRICHMENT META-ANALYSIS POSTMORTEM 26 

 

enrichment as being highly effective to provide a coherent theoretical explanation of why 

enrichment is more effective than other interventions for gifted children. 

This section is a longwinded answer to the question in the heading: do meta-analyses 

accurately estimate the benefits of enrichment programs? I believe the short answer is no. There 

are just too many clues that the enrichment literature is the product of publication bias. When 

publication bias is present, meta-analyses cannot provide an accurate representation of the 

impact of a treatment. Indeed, publication bias may grossly inflate the apparent effectiveness of 

that treatment. It also inflates the a priori statistical power estimates that future researchers may 

calculate if they use Kim’s (2016) mean effect sizes as their estimates of population effect sizes, 

thus perpetuating the problem of underpowered studies in the research literature. 

One astute reviewer of this manuscript argued that Kim’s (2016) meta-analysis results are 

empirical data and that a proper course of action would be to change my beliefs to match the 

data. I admit that if Kim’s results had not been so different from my preconceived notions of the 

effectiveness of enrichment programs, I would not have examined her data more closely.4 

However, my belief in the distorting effect of publication bias on the enrichment literature is not 

a blind faith. Rather, I also have empirical data—in the form of four “clues” described above—

that supports my beliefs. If my investigations of publication bias had been fruitless or if only one 

of these tests indicated a distorted literature base, then I would change my beliefs on the 

effectiveness of enrichment programs. While it is clear that none of these data unambiguously 

indicate publication bias, they do provide circumstantial evidence of that publication bias could 

be distorting the enrichment literature. As a result, I believe that a healthy skepticism towards 

massive effect sizes showing the effectiveness of enrichment interventions is in order. Kim’s 

(2016) results of g = .96 seem too high, but I think that it would be unjustified to say that the 
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effect size should be zero. As to the true value of the population effect sizes, I am agnostic, and I 

believe that the publication bias is probably too severe at this time to provide an accurate 

estimate. 

Dealing With the Aftermath 

If I am correct and meta-analyses cannot tell gifted education scholars and practitioners 

the magnitude of the benefits of enrichment programs, then the next step is to decide how to deal 

with gifted education research and practice in light of the existence of a distorted literature 

summarized through distorted meta-analyses and literature reviews. Previously, the course of 

action for handling publication bias was for the meta-analyst (and their readers) to blame the 

research literature and wash their hands of the problem by stating that the estimated population 

effect size was the best estimate available. I have—even recently—been guilty of this practice 

(see Slade & Warne, 2016; Warne, 2011). Within the past few years assessing publication bias 

has become an essential step in conducting a meta-analysis, as demonstrated by Kim’s (2016) 

work. However, the mere assessment of publication bias is no longer a sufficient course of action 

when confronting publication bias. Researchers must take more proactive action on this issue, 

and I have a few recommendations for improvement.  

First, gifted education scholars and practitioners should admit their ignorance about the 

impact of many of their educational interventions. Publication bias is common in the social 

sciences, and there is no reason to believe that gifted education is any different. It is likely that 

every meta-analysis in the field (including the Rogers, 2007, study) is tainted by an unknown 

level of publication bias. The sooner gifted education scholars and practitioners admit this, the 

sooner they can remedy the problem of publication bias. 
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Second, researchers, peer reviewers, and editors should cease to think of rejecting the null 

hypothesis as the equivalent of a “successful” study and retaining the null hypothesis as a 

“failure.” This mistaken belief leaders peer reviewers and editors to recommend rejection for 

manuscripts that retain the null hypothesis. It is unclear how common this belief is among gifted 

education scholars, but I have encountered peer reviewers in related fields (e.g., school 

psychology) who have this erroneous belief. The mistaken belief that rejecting the null 

hypothesis is always desirable also leads researchers to not submit their studies to journals, 

which leads to the infamous “file drawer problem” where an unknown number of studies are 

squirreled away in researchers’ file drawers, forever hidden from public view (Rosenthal, 1979). 

The result is a distorted literature that contains a surplus of statistically significant results and 

positively biased estimates of effect sizes. 

Third, researchers, reviewers, and editors should work under the assumption that every 

study is worth publishing in some venue. All pilot studies (Meehl, 1990), replications (Makel & 

Plucker, 2014, 2015), and local program evaluation studies—all of which have traditionally been 

underrepresented in the literature—should be disseminated to the widest audience possible. This 

is not an invitation to eliminate publication standards in Gifted Child Quarterly or any other 

journal. However, criteria that exasperate publication bias should not be considered in the 

publication decision. Some of these criteria include a study’s novelty, the magnitude of its effect 

size, and whether the research questions are “interesting.” Rather, every ethically and 

methodologically sound study warrants publication. If a study is still rejected by a journal (or 

was never worthy of publication, perhaps because of pervasive problems with internal validity), 

then it should still be disseminated publically, and authors should deposit their work in online 

archival sites, such as ERIC, researchgate.net, academia.edu, the Social Science Research 
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Network, and the newly launched SocArXiv and PsyArXiv. In this way other scholars can 

discover their work, and the problem of publication bias will be reduced. 

Fourth, researchers need to increase the statistical power of their studies. The statistical 

power calculations in Tables 1 and 2 show that few studies meet the suggested .80 level of power 

(Cohen, 1962) when an effect size is of “medium” magnitude (i.e., d = .50). For example, for the 

between-subjects designs the average power for studies of academic achievement outcomes was 

.4523 for a medium effect size. This means that the odds that a study would reject the null 

hypothesis for a medium strength effect size were about as good as flipping a coin. Although this 

rate is comparable to other studies of statistical power (e.g., Cohen, 1962; Osborne, 2008; 

Sedlmeier & Gigerenzer, 1989), it still shows how poorly equipped most studies on academic 

enrichment are for detecting an effect of a program. Future researchers should try—whenever 

possible—to increase statistical power. This is not an easy recommendation to follow; the 

required sample sizes may be surprising to some. Assuming the use of a between-subjects 

design, the required sample size to detect a population effect size of d = .50 effect with .80 power 

is 63 individuals in each group. However, if the population effect size is d = .20, then the 

required effect sample size rises to 392 individuals in each group. Table 1 shows that in the 

enrichment literature only one study on academic achievement outcomes and three studies on 

other outcomes met the former threshold, and only one study (Olenchek, 1990) met the latter 

threshold. Although this may seem daunting, it is necessary because one large study provides 

more stable information—and is less susceptible to publication bias—than a collection of smaller 

studies (Schimmack, 2012). 

Finally, gifted education should focus on performing meta-analyses with larger numbers 

of studies in order to make publication bias easier to detect. Rogers’s meta-analyses of grouping 
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and acceleration interventions had a median of 15 eligible studies (mean = 19.0, SD = 14.9) 

eligible, which shows that Kim’s (2016) meta-analysis is probably a typical meta-analysis for 

gifted education, with 13 effect sizes for academic achievement outcomes and 18 effect sizes for 

socioemotional outcomes. Thus, it is likely difficult to detect publication bias in most gifted 

education meta-analyses. Increasing the number of studies in a meta-analysis may be the hardest 

suggestion of all to implement because gifted education is a theoretically fractured field with few 

unifying ideas (Ambrose, Van Tassel-Baska, Coleman, & Cross, 2010), and research funding is 

scare compared to other branches of the social sciences. Nevertheless, I believe that an initiative 

from the National Association for Gifted Children (NAGC) encouraging researchers to target 

specific research questions and/or highly desired replications would make later meta-analyses 

stronger. Incentives, such as guaranteed publication in Gifted Child Quarterly, reserved 

presentation time at NAGC’s annual conference, funding, and co-authorship on a later meta-

analysis, could help to reign in the maverick spirit of gifted education and help the field 

concentrate on building up a deeper research base on vital issues. In addition to making 

publication bias easier to detect, implementing this would give the field stronger answers to its 

most pressing questions, instead of a shallower understanding of many topics. 

Limitations 

 Some of the limitations of my analyses have become apparent already in this manuscript. 

One problem is that most of my analyses are reliant on statistical significance tests, which are 

inherently sensitive to sample size. With relatively few studies in the enrichment literature, some 

of the procedures (e.g., the chi-squared tests, or the correlation between effect size and sample 

size) had lower statistical power than may be needed to detect publication bias. This shows the 



ENRICHMENT META-ANALYSIS POSTMORTEM 31 

 

difficulty of detecting publication bias and estimating its size and distorting effect on the 

scientific literature. 

 Another shortcoming of this analyses is that the IC was developed by Schimmack (2012) 

to examine multi-study articles on the same topic—not meta-analyses that were a collection of 

studies from many different researchers. However, I do not believe this is a barrier to the IC’s 

use in this context. The equations and statistical concepts that the IC is built upon do not know 

whether a collection of studies all originated from a single article or from a collection of articles 

from many authors. The principles of statistical power are the same regardless of the origin of 

the studies. Thus, there is no conceptual or statistical difficulty with using the IC to evaluate a 

meta-analysis. One more substantive problem with using the IC is that there are no widely agreed 

upon standards for an IC that is “too high.” More work needs to be done to establish guidelines 

for the use and interpretation of this new statistic. 

 A more important issue to be aware of is that an excess of statistical significant findings 

may not be due solely to publication bias (Ioannidis & Trikalinos, 2007). For years, social 

scientists have been aware that the little decisions researchers make as they collect, analyze, and 

report data can influence their final p-values (Greenwald, 1975; Kerr, 1998; John, Loewenstein, 

& Prelec, 2012; Simmons, Nelson, & Simonsohn, 2011). These questionable research practices, 

such as selectively reporting results, adding or dropping covariates until results are statistically 

significant, or stopping data collection when the desired results are obtained, can drive down p-

values and increase IC values. One could make an argument that these practices are not the same 

as publication bias—which would indicate that my results are not evidence of publication bias at 

all, but rather that “something else” is going on with how the studies in the enrichment literature 

are conducted. Yet, this argument ignores why a researcher would engage in questionable 
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research practices: to get the “right” results, which usually entails obtaining low p-values. Why 

do researchers want low p-values? Because of the bias in the social sciences among researchers, 

reviewers, and journal editors against the null hypothesis (Greenwald, 1975). Thus, even when 

the immediate cause of a surplus of rejected null hypotheses is due to questionable research 

practices, the ultimate cause is still publication bias. For those who wish to make the distinction 

between the file drawer problem and questionable research practices occurring before a 

manuscript is submitted to a journal, a survey of gifted education researchers asking about 

completed, unpublished studies could help scholars understand how much of the surplus of 

rejected null hypotheses is due to either cause. 

Conclusion 

Publication bias is a well-known problem in the social science, and many researchers can 

probably explain that it distorts the scientific literature. I have written this manuscript to show 

readers a contemporary, real-life example of how publication bias may have distorted the 

research base on a topic relevant to their substantive interests. I hope that this manuscript moves 

beyond the abstract warnings of the dangers of publication bias and instead serves as a wakeup 

call to researchers about how truly serious the problem of publication bias can be—as it likely 

distorts their knowledge of the phenomena they study. As the work of Kim (2016) demonstrates, 

the most diligent efforts of a careful meta-analyst cannot correct for this distortion. Statistical 

power analysis provides circumstantial evidence for the existence of publication bias in the 

enrichment literature. As a result, the true impacts of enrichment programs for gifted children are 

unknown—and likely cannot be known unless publication bias can be reduced. 

Although Kim’s (2016) surprisingly strong results for her meta-analysis were the inciting 

incident in this discussion of publication bias, it is unlikely that only the enrichment literature is 
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susceptible to this problem. I believe that the enrichment research is representative of many other 

branches of the educational psychology literature. Therefore, I suggest that researchers take 

active steps to reduce publication bias in gifted education and related fields. This includes 

disseminating unpublished studies, eliminating publication criteria that contribute to publication 

bias, increasing the statistical power of research studies, and increasing the number of studies in 

their meta-analyses. Some of these changes will be slow or may contradict years of professional 

practice, but these changes are necessary if gifted education is going to have a strong empirical 

research base. If gifted education scholars make these changes now, then the field may gain a 

reputation for producing trustworthy, high quality empirical research. As a result, gifted 

education can go back to being “incredible” in the sense of “exceedingly great,” because of a 

strong, credible research literature. 

 

  



ENRICHMENT META-ANALYSIS POSTMORTEM 34 

 

References 

Aldrich, P. W., & Mills, C. J. (1989). A special program for highly able rural youth in grades 

five and six. Gifted Child Quarterly, 33, 11-14. doi:10.1177/001698628903300102 

Ambrose, D., Van Tassel-Baska, J., Coleman, L. J., & Cross, T. L. (2010). Unified, insular, 

firmly policed, or fractured, porous, contested, gifted education? Journal for the 

Education of the Gifted, 33, 453-478. doi:10.1177/016235321003300402 

American Psychological Association. (2010). Publication manual of the American Psychological 

Association (6th ed.). Washington, DC: Author. 

Callahan, C. M., Moon, T. R., & Oh, S. (2014). National surveys of gifted programs: Executive 

summary. Retrieved from 

http://www.nagc.org/sites/default/files/key%20reports/2014%20Survey%20of%20GT%2

0programs%20Exec%20Summ.pdf 

Callahan, C. M., Moon, T. R., Oh, S., Azano, A. P., & Hailey, E. P. (2015). What works in gifted 

education: Documenting the effects of an integrated curricular/instructional model for 

gifted students. American Educational Research Journal, 52, 137-167. 

doi:10.3102/0002831214549448 

Carter, K. R. (1986). A cognitive outcomes study to evaluate curriculum for the gifted. Journal 

for the Education of the Gifted, 10, 41-55. doi:10.1177/016235328601000104 

Cheung, A. C. K., & Slavin, R. E. (2016). How methodological features affect effect sizes in 

dducation. Educational Researcher, 45, 283-292. doi:10.3102/0013189x16656615 

Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review. The 

Journal of Abnormal and Social Psychology, 65, 145-153. doi:10.1037/h0045186 



ENRICHMENT META-ANALYSIS POSTMORTEM 35 

 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence 

Erlbaum Associates. 

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159. doi:10.1037/0033-

2909.112.1.155 

Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49, 997-1003. 

doi:10.1037/0003-066x.49.12.997 

Coleman, J. M., & Fults, B. A. (1982). Self-concept and the gifted classroom: The role of social 

comparisons. Gifted Child Quarterly, 26, 116-120. doi:10.1177/001698628202600305 

Cooper, H. (2010). Research synthesis and meta-analysis (4th ed.). Thousand Oaks, CA: Sage. 

Coronado-Montoya, S., Levis, A. W., Kwakkenbos, L., Steele, R. J., Turner, E. H., & Thombs, 

B. D. (2016). Reporting of positive results in randomized controlled trials of 

mindfulness-based mental health interventions. PLoS ONE, 11(4), e0153220. 

doi:10.1371/journal.pone.0153220 

Durlak, J. A. (2009). How to select, calculate and interpret effect sizes. Journal of Pediatric 

Psychology, 34, 917-928. doi:10.1093/jpepsy/jsp004 

Feldhusen, J. F., Sayler, M. F., Nielsen, M. E., & Kolloff, P. B. (1990). Self-concepts of gifted 

children in enrichment programs. Journal for the Education of the Gifted, 13, 380-387. 

doi:10.1177/016235329001300407 

Flore, P. C., & Wicherts, J. M. (2015). Does stereotype threat influence performance of girls in 

stereotyped domains? A meta-analysis. Journal of School Psychology, 53, 25-44. 

doi:10.1016/j.jsp.2014.10.002 

Gallagher, J. J. (2000). Unthinkable thoughts: Education of gifted students. Gifted Child 

Quarterly, 44, 5-12. doi:10.1177/001698620004400102 



ENRICHMENT META-ANALYSIS POSTMORTEM 36 

 

Ganley, C. M., Mingle, L. A., Ryan, A. M., Ryan, K., Vasilyeva, M., & Perry, M. (2013). An 

examination of stereotype threat effects on girls’ mathematics performance. 

Developmental Psychology, 49, 1886-1897. doi:10.1037/a0031412 

Gerber, A. S., & Malhotra, N. (2008). Publication bias in empirical sociological research: Do 

arbitrary significance levels distort published results? Sociological Methods & Research, 

37, 3-30. doi:10.1177/0049124108318973 

Ginsel, B., Aggarwal, A., Xuan, W., & Harris, I. (2015). The distribution of probability values in 

medical abstracts: An observational study. BMC Research Notes, 8, 721-725. 

doi:10.1186/s13104-015-1691-x 

Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 

5(10), 3-8. doi:10.3102/0013189X005010003 

Greenwald, A. G. (1975). Consequences of prejudice against the null hypothesis. Psychological 

Bulletin, 82, 1-20. doi:10.1037/h0076157 

Gross, M. U. M. (2004). Exceptionally gifted children (2nd ed.). New York, NY: Routledge. 

Hedges, L. V., & Olkin, I. (1980). Vote-counting methods in research synthesis. Psychological 

Bulletin, 88, 359-369. doi:10.1037/0033-2909.88.2.359 

Hoenig, J. M., & Heisey, D. M. (2001). The abuse of power. The American Statistician, 55, 19-

24. doi:10.1198/000313001300339897 

Ioannidis, J. P. A., & Trikalinos, T. A. (2007). An exploratory test for an excess of significant 

findings. Clinical Trials, 4, 245-253. doi:10.1177/1740774507079441 

John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable 

research practices with incentives for truth telling. Psychological Science, 23, 524-532. 

doi:10.1177/0956797611430953 



ENRICHMENT META-ANALYSIS POSTMORTEM 37 

 

Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social 

Psychology Review, 2, 196-217. doi:10.1207/s15327957pspr0203_4 

Kim, M. (2016). A meta-analysis of the effects of enrichment programs on gifted students. Gifted 

Child Quarterly, 60, 102-116. doi:10.1177/0016986216630607 

Kline, R. B. (2013). Beyond significance testing: Statistics reform in the behavioral sciences 

(2nd ed.). Washington, DC: American Psychological Association. 

Kolloff, M. B. (1983). The effects of an enrichment program on the self-concepts and creative 

thinking abilities of gifted and creative elementary students (Unpublished doctoral 

dissertation). Purdue University, West Lafayette, IN.  

Kulik, J. A., & Kulik, C.-L. C. (1992). Meta-analytic findings on grouping programs. Gifted 

Child Quarterly, 36, 73-77. doi:10.1177/001698629203600204 

Laws, K. R. (2013). Negativland - a home for all findings in psychology. BMC Psychology, 1(2), 

1-8. doi:10.1186/2050-7283-1-2 

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage. 

Lubinski, D., Benbow, C. P., & Kell, H. J. (2014). Life paths and accomplishments of 

mathematically precocious males and females four decades later. Psychological Science, 

25, 2217-2232. doi:10.1177/0956797614551371 

Makel, M. C., & Plucker, J. A. (2014). Facts are more important than novelty: Replication in the 

education sciences. Educational Researcher, 43, 304-316. 

doi:10.3102/0013189x14545513 

Makel, M. C., & Plucker, J. A. (2015). An introduction to replication research in gifted 

education: Shiny and new is not the same as useful. Gifted Child Quarterly, 59, 157-164. 

doi:10.1177/0016986215578747 



ENRICHMENT META-ANALYSIS POSTMORTEM 38 

 

Masicampo, E. J., & Lalande, D. R. (2012). A peculiar prevalence of p values just below .05. 

The Quarterly Journal of Experimental Psychology, 65, 2271-2279. 

doi:10.1080/17470218.2012.711335 

Matthews, M. S. (2008). Talent Search programs. In J. A. Plucker & C. M. Callahan (Eds.), 

Critical issues and practices in gifted education (pp. 641-654). Waco, TX: Prufrock 

Press. 

Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research: 

Causes, consequences, and remedies. Psychological Methods, 9, 147-163. 

doi:10.1037/1082-989x.9.2.147 

McCoach, D. B., Gubbins, E. J., Foreman, J., Rubenstein, L. D., & Rambo-Hernandez, K. E. 

(2014). Evaluating the efficacy of using predifferentiated and enriched mathematics 

curricula for grade 3 students: A multisite cluster-randomized trial. Gifted Child 

Quarterly, 58, 272-286. doi:10.1177/0016986214547631 

Meehl, P. E. (1990). Why summaries of research on psychological theories are often 

uninterpretable. Psychological Reports, 66, 195-244. doi:10.2466/pr0.1990.66.1.195 

Nimon, K., Zientek, L. R., & Henson, R. K. (2012). The assumption of a reliable instrument and 

other pitfalls to avoid when considering the reliability of data. Frontiers in Quantitative 

Psychology and Measurement, 3(102), 1-13. doi:10.3389/fpsyg.2012.00102 

Nuijten, M. B., van Assen, M. A. L. M., Veldkamp, C. L. S., & Wicherts, J. M. (2015). The 

replication paradox: Combining studies can decrease accuracy of effect size estimates. 

Review of General Psychology, 19, 172-182. doi:10.1037/gpr0000034 



ENRICHMENT META-ANALYSIS POSTMORTEM 39 

 

Olenchak, F. R. (1990). School change through gifted education: Effects on elementary students' 

attitudes toward learning. Journal for the Education of the Gifted, 14, 66-78. 

doi:10.1177/016235329001400108 

Osborne, J. W. (2008). Sweating the small stuff in educational psychology: How effect size and 

power reporting failed to change from 1969 to 1999, and what that means for the future 

of changing practices. Educational Psychology, 28, 151-160. 

doi:10.1080/01443410701491718 

Rodgers, J. L. (2010). The epistemology of mathematical and statistical modeling: A quiet 

methodological revolution. American Psychologist, 65, 1-12. doi:10.1037/a0018326 

Rogers, K. B. (2007). Lessons learned about educating the gifted and talented: A synthesis of the 

research on educational practice. Gifted Child Quarterly, 51, 382-396. 

doi:10.1177/0016986207306324 

Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological 

Bulletin, 86, 638-641. doi:10.1037//0033-2909.86.3.638 

Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M. (2015). 

Intelligence and school grades: A meta-analysis. Intelligence, 53, 118-137. 

doi:10.1016/j.intell.2015.09.002 

Ruf, D. L. (2005). Losing our minds: Gifted children left behind. Scottsdale, AZ: Great Potential 

Press. 

Ruthsatz, J., Ruthsatz, K., & Ruthsatz Stephens, K. (2014). Putting practice into perspective: 

Child prodigies as evidence of innate talent. Intelligence, 45, 60-65. 

doi:10.1016/j.intell.2013.08.003 



ENRICHMENT META-ANALYSIS POSTMORTEM 40 

 

Schimmack, U. (2012). The ironic effect of significant results on the credibility of multiple-study 

articles. Psychological Methods, 17, 551-566. doi:10.1037/a0029487 

Schmidt, F. L., & Hunter, J. E. (1977). Development of a general solution to the problem of 

validity generalization. Journal of Applied Psychology, 62, 529-540. doi:10.1037/0021-

9010.62.5.529 

Sedlmeier, P., & Gigerenzer, G. (1989). Do studies of statistical power have an effect on the 

power of studies? Psychological Bulletin, 105, 309-316. doi:10.1037/0033-

2909.105.2.309 

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed 

flexibility in data collection and analysis allows presenting anything as significant. 

Psychological Science, 22, 1359-1366. doi:10.1177/0956797611417632 

Slade, M. K., & Warne, R. T. (2016). A meta-analysis of the effectiveness of trauma-focused 

cognitive-behavioral therpay and play therapy for child victims of abuse. Journal of 

Young Investigators, 30(6), 36-43. 

Smith, M. L., & Glass, G. V. (1977). Meta-analysis of psychotherapy outcome studies. American 

Psychologist, 32, 752-760. doi:10.1037/0003-066x.32.9.752 

Stanley, J. C. (1976). The case for extreme educational acceleration of intellectually brilliant 

youths. Gifted Child Quarterly, 20, 66-75. doi:10.1177/001698627602000120 

Stanley, J. C. (1977). Rationale of the Study of Mathematically Precocious Youth (SMPY) 

during its first five years of promoting educational acceleration. In J. C. Stanley, W. C. 

George & C. H. Solano (Eds.), The gifted and the creative: A fifty-year perspective (pp. 

75-112). Baltimore, MD: The Johns Hopkins University Press. 



ENRICHMENT META-ANALYSIS POSTMORTEM 41 

 

Steenbergen-Hu, S., & Olszewski-Kubilius, P. (2016). How to conduct a good meta-analysis in 

gifted education. Gifted Child Quarterly, 60, 134-154. doi:10.1177/0016986216629545 

te Nijenhuis, J., Willigers, D., Dragt, J., & van der Flier, H. (2016). The effects of language bias 

and cultural bias estimated using the method of correlated vectors on a large database of 

IQ comparisons between native Dutch and ethnic minority immigrants from non-Western 

countries. Intelligence, 54, 117-135. doi:10.1016/j.intell.2015.12.003 

Thompson, B. (1992). Two and one-half decades of leadership in measurement and evaluation. 

Journal of Counseling and Development, 70, 434-438. doi:10.1002/j.1556-

6676.1992.tb01631.x 

Vadillo, M. A., Hardwicke, T. E., & Shanks, D. R. (2016). Selection bias, vote counting, and 

money-priming effects: A comment on Rohrer, Pashler, and Harris (2015) and Vohs 

(2015). Journal of Experimental Psychology: General, 145, 655-663. 

doi:10.1037/xge0000157 

VanTassel-Baska, J. (1987). The ineffectiveness of the pull-out program model in gifted 

education: A minority perspective. Journal for the Education of the Gifted, 10, 255-264.  

Vaughn, V. L., Feldhusen, J. F., & Asher, J. W. (1991). Meta-analyses and review of research on 

pull-out programs in gifted education. Gifted Child Quarterly, 35, 92-98. 

doi:10.1177/001698629103500208 

Wai, J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2010). Accomplishment in science, 

technology, engineering, and mathematics (STEM) and its relation to STEM educational 

dose: A 25-year longitudinal study. Journal of Educational Psychology, 102, 860-871. 

doi:10.1037/a0019454 



ENRICHMENT META-ANALYSIS POSTMORTEM 42 

 

Wai, J. (2015). Long-term effects of educational acceleration. In S. G. Assouline, N. Colangelo, 

J. VanTassel-Baska & A. Lupkowski-Shoplik (Eds.), A nation empowered: Evidence 

trumps the excuses holding back America's brightest students (Vol. 2, pp. 73-83). Iowa 

City, IA: Belin-Blank Center. 

Warne, R. T. (2011). A reliability generalization of the Overexcitability Questionnaire–Two. 

Journal of Advanced Academics, 22, 671-692. doi:10.1177/1932202x11424881 

Warne, R. T. (2016). Five reasons to put the g back into giftedness: An argument for applying 

the Cattell–Horn–Carroll theory of intelligence to gifted education research and practice. 

Gifted Child Quarterly, 60, 3-15. doi:10.1177/0016986215605360 

Winch, R. F., & Campbell, D. T. (1969). Proof? No. Evidence? Yes. The significance of tests of 

significance. The American Sociologist, 4, 140-143. doi:10.2307/27701483 

Yuan, K.-H., & Maxwell, S. (2005). On the post hoc power in testing mean differences. Journal 

of Educational and Behavioral Statistics, 30, 141-167. doi:10.3102/10769986030002141 

Zimmerman, D. W. (1997). Teacher’s corner: A note on interpretation of the paired-samples t 

test. Journal of Educational and Behavioral Statistics, 22, 349-360. 

doi:10.3102/10769986022003349  



ENRICHMENT META-ANALYSIS POSTMORTEM 43 

 

Footnotes 

1. Indeed, if Kim had not been so clear in her explanation of her decisions and procedures, 

then it would have been impossible for me to investigate the cause of her high effect 

sizes—much less write an entire article about it. 

2. Other study characteristics can strengthen observed effect sizes slightly, such as higher 

reliability of variables and stronger treatment fidelity (Nimon, Zientek, & Henson, 2012), 

but these adjustments have usually have relatively minor effects on statistical power. 

3. In fact, if one believes that the population effect size is d = 0, then IC values based on this 

estimate will be equal to the post hoc statistical power. This would indicate an estimated 

level of publication bias so rampant that every rejected null hypothesis would be a Type I 

error. 

4. If forced to take a guess, I would have estimated that the effect sizes for the academic 

benefits of enrichment programs would be between d = .20 and d = .50. For 

socioemotional benefits, I would have estimated that the effect sizes would be between d 

= 0 and d = .30.
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Table 1 

Effect Sizes and Statistical Power of Studies on Academic Impacts of Enrichment Programs 

Study n Design d p < .05? 

Post hoc 

power 

Power for 

mean ES in 

meta-analysis 

(d = 0.96 or 

0.65)a 

Power for 

medium 

effect size 

(d = 0.50) 

Power for Rogers’s 

(2007) median effect 

size (d = 0.45) 

Aldrich & Mills 

(1989) 

77 Between 

groups 

0.58 Yes 0.5933 > 0.9999 0.4868 0.4108 

Aljughaiman 

(2011) 

88 Within 

groups 

0.73 Yes > 0.9999 > 0.9999 0.9963 0.9866 

Aljughaiman & 

Ayoub (2012) 

42 Between 

groups 

2.75 Yes > 0.9999 0.8427 0.3675 0.3086 

Delaney (1978) 60 Between 

groups 

0.77 Yes 0.7342 0.5883 0.3898 0.3274 

Farleigh-Lohrfink 

et al. (2013) 

66 Between 

groups 

2.05 Yes > 0.9999 0.9292 0.5235 0.4433 

Gubbels et al. 

(2014) 

66 Between 

groups 

0.38 No 0.3249 0.9738 0.5291 0.4483 

Lee et al. (2010) 45 Within 

groups 

0.69 Yes 0.9926 > 0.9999 0.9069 0.8398 

Lynch & Mills 

(1990) 

64 Between 

groups 

2.99 Yes > 0.9999 0.9701 0.5171 0.4376 

Mahmoud (2014) 30 Within 

groups 

1.00 Yes 0.9993 > 0.9999 0.7548 0.6644 

McCoach et al. 

(2014) 

301 Between 

groups 

0.41 Yes 0.9424 > 0.9999 0.9906 0.9726 

Miller & Gentry 

(2010) 

54 Between 

groups 

0.12 No 0.0704 0.9144 0.4523 0.3454 

Newman (2005) 54 Between 

groups 

0.95 Yes 0.9278 0.9418 0.4523 0.3808 

Sastre-Riba (2013) 49 Within 

groups 

1.28 No > 0.9999 > 0.9999 0.9293 0.8703 
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Shi et al. (2013) 48 Between 

groups 

0.80 Yes 0.7718 0.7718 0.4111 0.3454 

Wilson (1959) 25 Between 

groups 

-0.10 No 0.0575 0.3695 0.2401 0.2034 

Median power (all effect sizes): 0.9424 0.9701 0.5171 0.4376 

Incredibility Index: -0.2091 -0.2368 0.2162 0.2957 

Median power (effect sizes from between groups 

designs): 

0.7718 0.9292 0.4523 0.3808 

Incredibility Index: 0.0464 -0.1110 0.3659 0.4374 
aMean effect size was d = .96 for effect sizes that appeared in Kim’s (2016) meta-analysis. For the two studies that only appeared in 

Vaughn et al.’s (1991) meta-analysis (i.e., Delaney, 1978; Wilson, 1959), d = .65. 
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Table 2 

Effect Sizes and Statistical Power of Studies on Academic Impacts of Enrichment Programs 

Study n Design d p < .05? 

Post hoc 

power 

Power for 

mean ES in 

meta-analysis 

(d varies) 

Power for 

medium 

effect size 

(d = .50) 

Power for Rogers’s 

(2007) median effect 

size (d = .15) 

Alujughaiman 

(2011) 

88 Within 

groups 

2.61 Yes > 0.9999 0.9992a 0.9963 0.2849 

Beckwith (1982) 43 Between 

groups 

0.44 No 0.3037 0.3037b 0.3754 0.3152 

Carter (1986) 48 Between 

groups 

0.24 No 0.1328 0.3328b 0.4111 0.3454 

Cho & Lee (2006) 76 Within 

groups 

0.49 Yes 0.9850 0.9972a 0.9904 0.2518 

Cohen et al. (1994) 202 Between 

groups 

0.50 Yes 0.8788 0.9308a 0.8788 0.1559 

Coleman & Fults 

(1982) 

134 Between 

groups 

-0.36 Yesc 0.5489 0.0979d 0.8242 0.1401 

Cunningham & 

Rinn (2007) 

140 Within 

groups 

0.50 Yes > 0.9999 > 0.9999a > 0.9999 0.4218 

Dai et al. (2012) 291 Within 

groups 

0.02 No 0.0526 > 0.9999a > 0.9999 0.7225 

Feldhusen et al. 

(1990), elementary 

38 Between 

groups 

0.57 Yes 0.3967 0.9740a 0.3193 0.0735 

Feldhusen et al. 

(1990), middle  

22 Between 

groups 

0.34 No 0.1031 .2104a 0.1820 0.0617 

Fraleigh-Lohrfink 

et al. (2013) 

66 Between 

groups 

0.67 Yes 0.7593 .6028a 0.5235 0.0933 

Gubbels et al. 

(2014) 

66 Between 

groups 

0.68 No 0.7773 .6087a 0.5291 0.0939 

Hay et al. (2000) 20 Between 

groups 

13.42 Yes > 0.9999 .2342a 0.2018 0.0634 
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Kolloff (1983), 

elementary 

392 Between 

groups 

0.13 No 0.2519 —e 0.9986 0.3186 

Kolloff & Moore 

(1989), middle 

439 Within 

groups 

0.81 Yes > 0.9999 > 0.9999a > 0.9999 0.8802 

Kolloff & Moore 

(1989), high school 

69 Within 

groups 

0.79 Yes > 0.9999 0.9945a 0.9836 0.2323 

Olenchak (1990) 1935 Between 

groups 

0.01 No 0.0559 > 0.9999a > 0.9999 0.9095 

Olenchak (1995) 108 Within 

groups 

0.82 Yes > 0.9999 > 0.9999a 0.9993 0.3391 

Phillips et al. 

(2002) 

32 Within 

groups 

0.19 No 0.1653 0.8546a 0.7830 0.1277 

Rinn (2006) 140 Within 

groups 

0.30 Yes 0.9412 > 0.9999a > 0.9999 0.4218 

Stake & Mares 

(2001) 

330 Within 

groups 

0.04 No 0.1083 > 0.9999a > 0.9999 0.7755 

Stake & Mares 

(2005) 

88 Within 

groups 

0.03 No 0.0463 0.9992a 0.9963 0.2849 

Median power (all effect sizes): 0.6541 0.9945 0.9870 0.2849 

Incredibility Index: -0.1541 -0.4945 -0.4870 0.2151 

Median power (effect sizes from between groups designs): 0.3967 0.3534 0.5235 0.1401 

Incredibility Index: -0.0331 0.0102 -0.1599 0.2235 
aMean effect size was d = 0.55 for these socioemotional effect sizes in Kim’s (2016) meta-analysis. 
bMean effect size was d = 0.44 for these critical thinking effect sizes in Vaughn et al.’s (1991) meta-analysis. 
cThis result was statistically significant, but not in the expected direction. Therefore, it is not counted as demonstrating publication 

bias. 
dMean effect size was d = 0.11 for the socioemotional effect sizes in Vaughn et al.’s (1991) meta-analysis. 
eThese effect sizes combine effect sizes from multiple areas (e.g., creativity and socioemotional). 

 


