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This study surveyed and analysed four secondary school students’ writing about a square. 
Sfard’s discursive approach to understanding mathematical discourse was used to analyse 
the responses collected from 214 Australian secondary school students. The results showed 
that geometric knowledge was developed experientially and not developmentally. This in 
turn helps refining the development of a geometric learning progression, with the 
accompaniment of a set of validated assessment tools and learning tasks that seeks to 
deepen teachers’ understanding of geometric reasoning and support student learning. 

Spatial reasoning plays a pivotal role in succeeding in Science, Technology, 
Engineering and Mathematics disciplines (Wai, Lubinski, Benbow, 2009). Research 
indicates that many students and teachers have difficulties reasoning spatially, including an 
inability to: (1) recognise geometrical shapes in non-standard orientation, (2) perceive class 
inclusions of shapes, (3) visualise geometrical solids in 2D format, and (4) solve problems 
that require spatial reasoning (Elia & Gagatsis, 2003; Marchis, 2012). A lack of spatial and 
geometric reasoning ability can inhibit individuals from engaging in tasks that requires 
visual, logical and deductive thought.  

Funded by the Department of Industry, Innovation, Climate Change, Science, Research 
and Tertiary Education, this research project, Reframing Mathematical Futures II, aims to 
develop, trial and evaluate a set of validated assessment tools and learning tasks that will 
deepen teachers’ understanding of mathematical (multiplicative, algebraic, geometric, and 
statistical) reasoning and support student learning. While students’ difficulties with 
geometry have been documented elsewhere, data on current Australian students’ geometry 
knowledge is lacking. The absence of emphasis on spatial reasoning in the Australian 
national curriculum would lead one to question the state of geometry teaching in 
Australian schools. Accordingly, a survey of students’ geometric knowledge is needed to 
inform the formation of a learning progression, which can then be used to guide the 
development, trialling and evaluation of a set of validated assessment tools and classroom 
tasks to support student learning. 

Theoretical Framework 

The Learning Progression for Geometry 

The learning progression formulated for this study is based on the premise that all 
types of geometric concepts develop over time, becoming increasingly integrated and 
synthesised (Jones, 2002). The term learning progression should not be confused with 
‘developmental progression’ used in the hypothetical learning trajectory model (Clements, 
Wilson & Sarama, 2004). For Clements et al., a developmental progression is constructed 
with a learning goal in mind and supported by specific instructional sequence designed to 
promote key learning tasks. The proposed learning progression is a mapping of the 
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development of geometric knowledge and its corresponding measurement ideas. A 
discussion on learning two-dimensional shapes (2D) is addressed here.  

Acknowledging the work of Battista (2007) and van Hiele (1986), this learning 
progression views the development of geometric knowledge as moving through five levels 
of reasoning: visualising, describing, analysing, and inferring geometric relationships, 
leading to engaging in formal deductive proof. At level 1, students recognise shapes as 
visual wholes. Individuals may attend to at least one feature of the shape but are not able to 
reliably identify all shapes in the family. At level 2, students begin to describe shapes by 
necessary properties using strictly informal language based on visual rather than 
conceptual knowledge. When formal language is used, it is to describe what they ‘see’ 
rather than what they have inferred. At level 3, students begin to look beyond the physical 
images. They describe and reason all the properties generally associated with a shape, 
including diagonal properties, angle and side features and parallelism. At level 4, reasoning 
is based on empirical evidence. Individuals progress from inferring that if a shape has one 
property, it has additional properties, to giving necessary and sufficient definition for a 
particular shape and, finally, recognise the hierarchy of shapes. Formal deductive 
reasoning takes place when students can construct arguments based on the properties of 
shapes. 

These five reasoning abilities are seen as interconnected and develop progressively 
with various degrees of emphasis and importance depending on the task demand. They also 
apply to other areas of geometry such as three-dimensions (3D) and transformations of 
shapes. Proficiency in one domain is supported by a good ability developed earlier. Hence, 
the word ‘progression’, as opposed to ‘trajectory’, implying a single pathway, is used to 
reflect the nature of learning as moving within and across domains. Underpinning these 
abilities is the degree of connectedness among visual representations, visualisations and 
mathematical discourse. Visual representations possess both figural and conceptual 
characters (Fischbein, 1993). Figural characters can be external, embodied on paper or 
with other materials, or iconical, centred on visual images. Conceptual characters are the 
‘concept image’, the collective mental pictures and the corresponding properties and 
processes that are associated with the concept (Vinner, 1991). Such images are schematic, 
bound by their ‘formal concept definitions’, a form of words used to specify that concept 
(Tall & Vinner, 1981, p. 152) and developed through the process of visualising. 
Visualisation is a cognitive process in which objects are interpreted within the person’s 
existing network of beliefs, experiences, and understandings (Phillips, Norris, & Macnab, 
2010). Visualisation is needed across all levels of reasoning situations.  

Individuals develop their own personal concept images and concept definitions through 
experience. Initially, geometric representations are understood purely from visual 
recognition. As an individual’s knowledge deepens, so does their ability to look beyond the 
physical images, infer and deduce the geometric relationships the images present. 
Language used to describe shapes also moves from informal to formal, where eventually 
the student is able to provide a necessary and sufficient definition for a particular shape. 
Difficulties arise when there is a disjuncture between personal geometric knowledge 
(concept image and definitions) derived from experience and formal geometric knowledge 
deriving from axioms, definitions, theorems and proofs. In geometry, visual 
representations in the forms of points, lines, angles and shapes are used to take an abstract 
concept and make it concrete. Terms such as square, triangles and circles are 
condensations of definitions (Duval, 2014), not necessary when used in a designative or 
descriptive way but crucial when used to infer or justify a particular geometric argument. 
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Engaging in Mathematical Discourse 

Since thinking is a form of communication and learning mathematics is about changing 
a discourse (Sfard, 2008), the way a student perceives and talks about geometric visual 
representations reveals their thought processes and in turn shapes their thinking. 
Mathematical discourse exhibits four interrelated characteristics:  

 Keywords are used in distinctly mathematical ways to describe and define a 
particular shape. They reveal how a student sees and interprets that shape.  

 Visual mediators are means with which participants in discourse identify the object 
of their talk and coordinate their communication.  

 Narratives are a set of spoken or written utterances used in mathematical discourse 
that are subjected to endorsement or rejection, with the help of discourse-specific 
substantiation procedures. 

 Routines are well-defined repetitive patterns in which mathematical tasks are being 
performed.  

This framework allows any disjuncture between students’ discourse and mathematical 
narratives that are ‘taken-as-shared’ within the mathematics community to be identified. In 
particular, the way in which keywords and visual mediators are used to construct meaning 
reflects the degree of disjuncture between a student’s personal and formal concept 
definition, which in turn assists in the refinement of the learning progression. Since this is 
a self-reporting survey, the studying of classroom routines was not possible. Nevertheless, 
students’ responses may provide a window into how mathematical tasks were performed in 
these classrooms. 

Method 
Teachers from one trial school (Year 8) and 37 (Years 7-9) project schools were given 

the task of asking their students to provide as much details as possible their knowledge of a 
square. The trial school was from an inner suburb of a capital city. Class A (quoted as CA) 
was given a regular curriculum and class B (quoted as CB) was on an accelerated 
curriculum. The school’s mathematics coordinator mentioned that both classes have 
studied geometry prior to the commencement of this study although no details on the type 
of content students received were given. Three project schools (quoted as PM) provided 
the data.  They were situated in low socio-economic areas from across Australia. No 
information was given on the type of geometry learning experience they had received. Data 
from a total of 214 students were collected and analysed. The exact number of students for 
each year level for the project schools is unknown as some students did not indicate their 
year level.  

Initial analysis involved classifying aspects of the responses according to keywords. 
Further analysis considered the construction and substantiation of narratives, visual 
mediators used and possible routines in the discourse. Square is a special case in two-
dimensional (2D) shapes. It is a regular polygon and links to other geometric concepts such 
as rectangle, rhombus, parallelogram and symmetry. Surveying the students’ knowledge 
about a square allows the ‘interface’ between students’ mathematical discourse and ‘real-
life’ talk (Sfard, 2008, p.226) be analysed. 
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Findings 

Keywords 

A plane figure with four equal straight sides and right angles is the endorsed narratives 
for defining a square. Initial analysis focuses on the keywords students used to describe the 
lines forming the boundary of a square. As indicated in Table 1, class B students out 
performed the other two groups in using words such as 2D, quadrilateral and parallel sides 
to describe a square. Although more students from project schools stated that a square has 
4 sides, this definition is insufficient. The idea of equal in length is important, and was 
mentioned by 30.8% class A, 50% class B and 52.4% project school students. The other 
necessary component of the definition for a square is right angle. As a multifaceted 
concept, angle may be defined as: a geometric shape, the union of two rays with a common 
end point, a movement, a rotation, a measure, and the amount of turns (Henderson & 
Taimina, 2005).  

Table 1 

Keywords used by the students to describe a square 
Keywords % of responses Keywords % of responses 

 CA CB Project  CA CB Project 
2D 26.9 41.7 15.2 3D 7.7 12.5 1.2 
4 sides 61.9 58.3 80.5 4 corners 50 20.8 43.9 
lines 26.9 0 4.3 4 angles 7.7 41.7 12.2 
4 edges 3.8 25 6.1 right angles 23.1 58.3 15.9 
straight 23.1 12.5 4.9 90 26.9 25 24.6 
equal sides 19.2 37.5 36 points 7.7 0 0.6 
even  11.5 8.3 9.8 vertex 3.8 25 1.2 
same length 3.8 25 7.3 quadrilateral 11.5 50 4.9 
1 face 11.5 16.7 4.3 Flat 0 0 3 
Parallel sides 19.2 33.3 4.3 area and perimeter 0 16.7 6 

 
Since angle derived from the Greek word gonia, to mean ‘corners or knees’, the word 

corner is acceptable for younger children whereas a formal and precise term is preferred 
for secondary years. The data showed that more students from the trial school mentioned 
corners and the class B students out performed others in specifying that a square has to 
have right angles. Moreover, two project school students compared with 3 class A and 10 
class B students mentioned that the sum interior angles for a square is 360º. Collectively, 
15.4% class A, 50% class B and 12.5% project school stated the equivalent of 4 equal sides 
with right angles. Although only one student from each group gave a full definition of 4 
straight equal sides with right angles, analysis of keywords used showed that class B 
students have better understanding of the concept of a square. 

Constructing and substantiating narratives  

In geometry, narratives are constructed through knowledge of axioms and theorem and 
substantiated by deduction. There is evidence that visualisation played a large part in 
students’ ability to visualise, describe, analyse, infer and deduce geometric relationships. 
Initially, direct identification or what Sfard (2008, p.228) termed as object-level utterance 
was based on a physical visual cue, as Year 7 PM4 claimed, ‘everyone knows what a 
square is,’ without even a need to provide a diagram. Around 7.3% of project school 
students made reference to their life experience such as tiles, Spongebob, Minecraft, 
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napkin, used for building, and A5 paper is square (sic); 19% of class A students stated that 
it is a 6 letter word that begins with ‘S’ and two students mentioned that it is worth 15 
points in Scrabble. Three class B students pointed out that squares are used in designs, 
puzzles and pixels.  

The relationship between quadrilaterals is a difficult concept for many students and 
teachers alike. The data showed that students’ understanding varies from seeing a square 
being rotated to stand on a corner as a diamond (one class A, and three class B and project 
school respectively), to using the term rhombus (one project school and three class B 
students). Two project school students drew a parallelogram but did not provide an 
explanation, whereas four class B students stated that a square is a parallelogram. The term 
was not mentioned in any of the class A responses.  

With regards to rectangle, 13 project school students saw a square as distinctly 
different from a rectangle:  

PM5: Can be any size or shape as long as vertical lines aren’t too long because then it would look 
like a rectangle. 

Three students from class A and one from class B made similar statement. Only one 
project school student saw square as being ‘similar to rectangle’ whereas 45% class B 
students stated that a square is a type of rectangle. The limitation of surveying through self-
reporting means that in-depth analysis of this knowledge can further be sought through 
interviews.  

While students could construct narratives about square, project school students were 
found to make claims that were unsubstantiated and unendorsed mathematically, such as ‘it 
has 4 sides and it’s a square’ (Year 7, PM20). Some students’ image of square appeared 
stereotypical and static as the word ‘vertical’ and ‘horizontal’ were found in two class A 
and four project schools’ narratives, with project school students further having asserted 
that ‘it cannot move’. Limited transformation language was used as only two class A and 
four project school students mentioned symmetry. Three project school students also talked 
about reflection and one CB student mentioned tessellation.  

The use of visual mediators  

In geometry, diagrams are schematic. They represent the broader, topological features 
of a geometrical object and form part of the logic of an argument (Netz & Noel, 2007). 
Engaging in geometrical conversation necessitates fluent use of diagrams to communicate 
‘taken-as-shared’ mathematical discourse. The data showed that 34.6% class A, 50% class 
B and 30% of project school students used diagrams as mediators. However, many of the 
diagrams did not serve a clear purpose in their explanations, as nearly half of class A 
(44%) and 51% of project school drew a square with no embellishment. Conversely, only 
one class B student drew a simple square.  

Engaging in geometric discourse requires individuals to ‘see’ the inherent geometric 
relationships in diagrams irrespective of orientation and communicate this knowledge 
using discourse-specific procedures. Students’ use of diagrams range from ‘real-life’ 
examples (seeing squares in hashtag), labelling or circling the positions of angles 
colloquially, to mathematical signifiers (Table 2). A cuboid with arms and a house with 
high square window or roof were among some of the diagrams drawn by project schools. 
No such diagrams were found in the trial school.   
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Table 2 

Samples of diagrams students drew to explain the concept of square 
Student’s drawing Students’ descriptions 

    

PM 61: Well a square is a shape that contains four sids, and 4 corners. A square 
also hase 4 right angles, 4 reflex angles, 8 strate angle and 8 revulooshion. This 
shape is a hastag  

    

PM59: Square has 2 tringle in it the square equil 360. You can half a square in 
diffrent ways. You can cut square in to rectangle. If you you put to 2 tringle 
together it will make square. 

 

PM75: A square is a 4 sided shape otherwise known as a quadrilateral. All 4 
sides are the same length. It has 4 vertexes (corners). Each vertex equals 90 

 

CA06: All the same. 

   

PM44: A square is a 4 evan sided shape and corners and 90 angles a square 
looks like this 

 

CA18: 90 of different rotations 

    

CB45: Consists of at least 2 triangles 

 
Mathematical signifiers are words or symbols that function as nouns in utterances of 

discourse participants. As seen in Table 3, the type of mathematical signifiers used by class 
A were restricted to right angles and dissections of squares. A diagram is considered a 
dissection of a square when it was supported with a statement such as ‘it has 4 small 
square’ or ‘it can be divided into triangles’. The diagrams in class A showed dissection of 
square into four parts or eight triangles. Conversely, not only were class B students better 
at conveying the concept of right angles and equal length, their drawings were near 
identical. That is, students who drew a dissection of square did it with one diagonal line. 
Although both classes have studied some geometry, the results suggest that their learning 
experience were quite different. It could also be that students in class B were better at 
retaining knowledge learned than students in class A. 

Table 3 

The type of mathematical signifiers used by the students 
Mathematical signifiers Class A Class B Project Schools 

Right angles 33% 92% 20% 
Equal length 0 83% 14% 
Lines to signify symmetry 0 0 3.6% 
tessellation 0 0.08% 0.02% 
transformation 11% 0 0 
Dissection of square 33% 33% 0.06% 
Cube 0 0 20% 
Net 0 1 0 
* Calculated based on the number of students who use diagrams as mediator per cohort. 
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Of the three groups of students, project school students produced the most diverse 
range of diagrams, including drawing squares to show tessellations, as well as drawing and 
specifying that a square has 4 lines of symmetry. Around 20% of project school students 
also drew a cube. Only one class B student among the cohort attempted to explain 
parallelism in his/her drawing despite of the fact that the concept was mentioned by three 
other class B and two project school students. 

Is square a cube? 

Students’ confusion of square, a 2D concept, with 3D ideas were evident as words such 
as edges, vertex and face were used in their descriptions (see Table 1). For example,  

PM43: a square has 4 sides in 2D, 6 sides in 3D. Squares have 8 corners in 3D. Square have 12 
edges. 

PM12: a 2D square has 4 sides and a 3D square has 6 sides 

CB56: 3D version is a cube. 

CA: Square is a 2D version of a cube. 

Although no students in class A or B drew a cube, two class A and four class B 
students made reference to the idea. Of these six students, one class A student maintained 
that it is not a cube while the remaining cohort said that ‘its 3D version is a cube’. 
Conversely, 20% of project schools who provided a diagram drew a cube in reference to 
3D concept. Their responses range from: it’s a cube (1.2%), can be 3D (4.8%), it’s a 3D 
version of a cube (6%), it’s not 3D but you can make it (1.2% responses with no 
substantiation), and it’s a surface of a cube (1.2%).  

PM4: Goes into a cube if you get another square and put together 

The students linked square to 3D in three ways. First, direct identification where 
students drew a cube and called it a 3D square, or square cube. Second, analytical 
identification where students recognised that a square is 2D but becomes a cube in 3D. 
Third, students made clear distinction and talk about the relationships between squares and 
cubes with the six faces of a cube being squares. Three students explained that squares are 
used to construct a cube, none drew nets to substantiate the claim. Four class B and two 
project school students made reference to square based pyramid. However, only one class 
B student drew a net and a solid to support the statement. 

Discussion and Conclusion 
Sfard’s discursive framework enabled the ‘how’ and ‘what’ of learning to be studied: 

What has been learned? How was it learned? What were the outcomes? The results 
provided some answers to these questions. First, the data showed that not much geometry 
was taught across Australian schools, especially in relation to concept definitions, classes 
of shapes, transformation and 3D space. As such, only one student in each of the group 
was able to provide a necessary and sufficient definition. Students’ discourse revealed the 
way they saw and interpreted square. The lack of exposure to geometric shapes in different 
situations, and the emphasis on visual and concept definitions hinder students’ ability to 
‘see’ beyond the obvious physical appearance. Hence, nearly all the diagrams drawn were 
stereotypical (as in  instead of ). Mathematical signifiers were rarely used. Neglecting 
the teaching of geometry meant that there were few opportunities for students to develop 
inferential and deductive reasoning ability in school, which impacts on their ability to 
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engage in mathematical discourse. Accordingly, even classroom B students who 
understood that a square is a rectangle did not think it was necessary to justify this claim. 

In light of the range of responses across the cohort, it is clear that geometric knowledge 
is more experiential then developmental. This is shown in the identical drawings done by 
class B. Conversely, despite being placed in a regular curriculum, CA18 was able to use 
diagram to show the concept of transformation, a concept that was overlooked by students 
in class B. By mapping the range of responses using the learning progression, the results 
indicated that the majority of the students were reasoning at descriptive and analytical 
levels. While this mirrors studies conducted using van Hiele’s levels, the results reported 
here indicated that the relationship between visual representation, visualisation and 
mathematical discourse is reflexive. A lack of mathematics discourse hinders 
communication, hence mathematical thinking, as reflected in the number of students who 
drew a square without explanation. In view of the fact that these abilities are 
interconnected and develop progressively as students’ discourse becomes increasingly 
mediated, the next stage of the research is currently underway, where assessment and 
learning tasks are designed to encourage the cultivation of inferential reasoning. Further 
data collected will assist in the refinement of the learning progression. 
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