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Abstract Body 
Limit 4 pages single-spaced. 

 

Background / Context:  
Description of prior research and its intellectual context. 
 

Recent years have seen an increased interest in the use of randomized experiments to evaluate 

the causal effects of educational policies and practices in the United States (Angrist, 2004; 

Spybrook, Cullen and Lininger, 2011).  Most large scale randomized experiments in education 

utilize the hierarchical structure of the U.S. educational system (students are nested in 

classrooms, classrooms are nested in schools, etc.) in the experimental design. Two basic types 

of designs are typically used. Cluster randomized or hierarchical trials (abbreviated CRT or HT) 

randomly assign entire clusters of students (such as schools) to a treatment group or a control 

group.  Randomized block or multi-site trials (abbreviated RBD or MST) utilize clusters (such as 

schools) as blocks in the experimental design and randomly assign students within these blocks. 

 

Researchers seeking funding to conduct a HT or MST will generally need to complete a power 

analysis in order to reassure the funder that the sample sizes (at the different levels of the design) 

will be sufficient to result in reasonable statistical power. Recent years have seen the 

development of software programs that facilitate the computation of statistical power when linear 

mixed models are used to analyze the types of cluster randomized and multi-site experiments 

described above.  A recent article by Spybrook, Hedges and Borenstein (2014) describes two 

such programs: Optimal Design Plus (OD Plus, Raudenbush et. al., 2011) and CRT Power 

(Borenstein, Hedges and Rothstein, 2012). 

 

In order to compute power in either of the two programs listed above the user must specify 

values for certain crucial design parameters.  For instance, power for a two-level HT in CRT 

Power is computed after the user specifies the sample sizes at both levels of the hierarchy, the 

effect size, and the intracluster correlation coefficient (ICC).  Power for a two-level MST in CRT 

Power is computed after the user specifies the sample sizes at both levels of the hierarchy, the 

effect size, the intracluster correlation coefficient (ICC) and an effect size variance parameter. 

 

The need to specify an ICC and an effect size for the design of experiments in education has 

generated research seeking to clarify likely values for these parameters.  These studies utilize 

survey based data sources (such as state longitudinal databases) to compute ICCs (eg. Hedges 

and Hedberg, 2007; Westine, Spybrook and Taylor, 2013) or benchmark effect sizes (eg. Bloom, 

Hill, Rebeck-Black and Lipsey, 2008; Scammacca, Fall and Roberts, 2015).  Typically the ICCs 

and benchmark effect sizes are entered directly in to the power analysis software by researchers 

planning a MST or HT study. 

 

There has been much less research on the topic of reasonable values for the effect size variance 

parameter.  However, there is some evidence that researchers are beginning to pay more attention 

to obtaining empirical evidence about values of this parameter (Raudenbush, Reardon and Nomi, 

2012; Raudenbush and Bloom, 2015).   

 

Purpose / Objective / Research Question / Focus of Study: 
Description of the focus of the research. 
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The current paper notes that estimates of ICCs and/or effect sizes that come from surveys may 

need to be adjusted before being utilized to compute power for HTs or MSTs.  Current software 

implementations prompt users to make assumptions about heterogeneity in treatment effects 

(effect size variance) only when performing a power analysis for MSTs.  However, heterogeneity 

in treatment effects will impact the appropriate value of the ICC to use when planning a 

hierarchical trial.  In particular, it is likely that ICCs computed from sample surveys will need to 

be adjusted to account for treatment effect heterogeneity when performing a power analysis for a 

hierarchical trial. 

 

Similarly, the denominator of benchmark effect size values computed from sample surveys is 

likely to represent the variance of the outcome variable in the control group.  When there are 

heterogeneous treatment effects, the variance in the treatment group is unlikely to equal the 

variance in the control group.  Hence, benchmark effect size values may also need to be adjusted 

when used in a power analysis. 

 

Significance / Novelty of study: 
Description of what is missing in previous work and the contribution the study makes. 

 

Previous work reporting ICCs and effect size benchmarks has failed to note the need for 

adjustments to these values in order to account for heterogeneity in treatment effects when 

planning a research study.  Furthermore, writings about the computation of power in HT and 

MST designs typically define parameters solely in terms of “observed data” notation (eg. 

Raudenbush and Liu, 2000; Konstantopooulos, 2008).  As a result the connection between these 

two sets of parameters has not been entirely clear.  This has meant that a researcher comparing 

power for a multisite design with power for a hierarchical design could not be sure how 

assumptions about parameters made for one design should inform the assumptions made for the 

other design.  For instance, should the ICC entered in to CRT Power when planning a two level 

HT be the same as the ICC which is entered when planning a two level MST? 

 

The current paper resolves this issue using a potential outcomes approach.  Writing parameters in 

terms of potential outcomes also makes clear how ICCs and/or effect sizes from surveys need to 

be adjusted to result in a correct power analysis for a HT or a MST.  The result is a set of 

correction factors which researchers should use when planning future studies.  

 

Statistical, Measurement, or Econometric Model:  
Description of the proposed new methods or novel applications of existing methods. 

 

The paper assumes a design with m schools, each containing 2n students. The statistical models 

considered are the usual linear mixed models used to define a power function for two level 

hierarchical and multisite trails.  In particular, the model for the outcome score of the kth student 

in the jth school in the ith treatment group in the hierarchical design is  

( )

H

ijk i j i ijkY         .    (1) 

The j(i) parameters represent random effects associated with schools and the ijk ) parameters 

represent student level random errors.  The variance of the j(i) parameters is 2

,B H , with the total 
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variance of the outcome measure in the hierarchical design given by 2

,T H .  Let 
E  be the 

average value of the outcome variable when all students are assigned to the experimental 

condition and 
C  be the average value of the outcome variable when all students are assigned to 

the control condition.  Then the effect size and ICC parameters necessary to correctly compute 

power in the hierarchical design are defined as follows:
,

E c
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for the outcome score of the kth student in the jth school in the ith treatment group in the multisite 

design is 
M

ijk i j ij ijkY           .   (2) 

The j parameters represent random variation in school means, the ij are random effects 

representing variation in treatment effects across schools with variance 2

, 2M  and the ijk ) 

parameters represent student level random errors.  Using the parameter definitions in equations 

(3)-(5) for the effect size, ICC and effect size variance will result in a correct power analysis for 

the multisite design.  The symbol 2

,B C  refers to the between school variance in the control group 

and the symbol 2

,W C  refers to the within school variance in the control group. 
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We also write a standard two level hierarchical model in terms of potential outcomes as follows. 

The outcome that would be observed for the kth student in the jth school in the hypothetical world 

where everyone in the experiment was assigned to the control condition is modelled as 

,   1,  , ; 1, ,2 .C C C
jk c j jkY j m k n          On the other hand, in the hypothetical world 

where everyone in the experiment was assigned to the experimental condition we would get the 

following model: ,   1,  , ; 1, ,2 .E E E
jk E j jkY j m k n        ( )C E

j j   are mean zero, 

random effects having variance
2 2

, ,( )B C B E  . The ijk are mean zero random effects assumed to 

have the same variance, 
2

W , in the experimental and control groups. 

 

Usefulness / Applicability of Method:  
Demonstration of the usefulness of the proposed methods using hypothetical or real data.  

 

The usefulness of the method is evident from the description in the Findings/Results section. 

 

Findings / Results:  
Description of the main findings with specific details. 
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Using the models defined above one can show the following relationship between the parameters 

in the hierarchical and multisite designs 2 2 2

, , , ,cov2B H M B C       .  The ,cov symbol 

represents the covariance between treatment effects and school specific means in the control 

group.  Because it is useful to write results in terms of a standardized version of this parameter 

we define
,cov

,cov 2 2

,B C W








 



. 

 

ICCs computed from surveys describe an ICC defined in terms of control group quantities, 

namely,

2

,

2 2

,

B C

s

B C W




 



.  Similarly, benchmark effect sizes from surveys represent a mean 

difference standardized by the total standard deviation in the control group, namely, 

2 2

,

T c
bench

B C W

 


 





. 

 

In the interest of space results are presented only for the case where one is planning a 

hierarchical trial using a survey based ICC and a benchmark effect size.  In this case the ICC can 

be multiplied by a single correction factor that will simultaneously adjust for the impact of 

heterogeneity on the ICC and the impact of heterogeneity on the effect size to result in an 

accurate power analysis. This factor can be expressed as

2

2 ,cov2
1

2 1
b

S

n
k

n

 



 
      

.  Clearly the 

correction factor depends on the covariance between school specific treatment effects and school 

specific control group means.  The possible values for this parameter can be bounded using the 

covariance inequality.  Table 1 in the appendix tabulates values of bk  for various values of 2

2 , 

S  and ,cov .  The notation UB=Upper Bound and LB=Lower Bound is used. 

 

Conclusions:  
Description of conclusions, recommendations, and limitations based on findings. 

 

Current practice for conducting power analyses in hierarchical trials using survey based ICC and 

effect size estimates may be misestimating power because ICCs are not being adjusted to account 

for treatment effect heterogeneity.  Results presented in Table 1 show that the necessary 

adjustments can be quite large or quite small.  Furthermore, power estimates without adjusting  

the ICC could be either too large or too small, depending on the covariance of school specific 

treatment effects with control group school means.  The paper illustrates the need for the field to 

obtain better empirical evidence about likely values of this parameter in order to conduct 

accurate power analyses.
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Appendices 
Not included in page count. 
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Appendix B. Tables and Figures 
Table 1:  Correction factor (kb) when planning a hierarchical study with a survey based ICC and 

a benchmark effect size (n=25). 

  

s  

2

2  ,cov  0.001 0.01 0.05 0.1 0.2 0.3 

0.01 LB 0.490 0.490 0.490 0.490 0.490 0.490 

 

LB/2 3.296 1.000 0.796 0.770 0.758 0.753 

 

0 6.102 1.510 1.102 1.051 1.026 1.017 

 

UB/2 8.908 2.020 1.408 1.332 1.293 1.281 

 

UB 11.714 2.531 1.714 1.612 1.561 1.544 

0.05 LB 0.490 0.490 0.490 0.490 0.490 0.490 

 

LB/2 13.500 2.020 1.000 0.872 0.809 0.787 

 

0 26.510 3.551 1.510 1.255 1.128 1.085 

 

UB/2 39.520 5.082 2.020 1.638 1.446 1.383 

 

UB 52.531 6.612 2.531 2.020 1.765 1.680 

0.1 LB 0.490 0.490 0.490 0.490 0.490 0.490 

 

LB/2 26.255 3.296 1.255 1.000 0.872 0.830 

 

0 52.020 6.102 2.020 1.510 1.255 1.170 

 

UB/2 77.786 8.908 2.786 2.020 1.638 1.510 

 

UB 103.551 11.714 3.551 2.531 2.020 1.850 

0.2 LB 0.490 0.490 0.490 0.490 0.490 0.490 

 

LB/2 51.765 5.847 1.765 1.255 1.000 0.915 

 

0 103.041 11.204 3.041 2.020 1.510 1.340 

 

UB/2 154.316 16.561 4.316 2.786 2.020 1.765 

 

UB 205.592 21.918 5.592 3.551 2.531 2.190 

 

 

 


