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ABSTRACT 

The increasing availability of data from multi-site randomized trials provides a 

potential opportunity to use instrumental variables methods to study the effects of 

multiple hypothesized mediators of the effect of a treatment.  We derive nine assumptions 

needed to identify the effects of multiple mediators when using site-by-treatment 

interactions to generate multiple instruments.  Three of these assumptions are unique to 

the multiple-site, multiple-mediator case: 1) the assumption that the mediators act in 

parallel (no mediator affects another mediator); 2) the assumption that the site-average 

effect of the treatment on each mediator is independent of the site-average effect of each 

mediator on the outcome; and 3) the assumption that the site-by-compliance matrix has 

sufficient rank.  The first two of these assumptions are non-trivial and cannot be 

empirically verified, suggesting that multiple-site, multiple-mediator instrumental 

variables models must be justified by strong theory.  
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1. INTRODUCTION 

 In canonical applications of the instrumental variable method, exogenously 

determined exposure to an instrument induces exposure to a treatment condition  which in 

turn causes a change in a later outcome.  A crucial assumption known as the exclusion 

restriction is that the hypothesized instrument can influence the outcome only through its 

influence on exposure to the treatment of interest (Heckman & Robb, 1985b; Imbens & 

Angrist, 1994).  It may be the case, however, that an instrument affects the outcome 

through multiple treatments, in which case a single instrument will not suffice to identify 

the causal effects of interest.  

 To cope with this problem, analysts have recently exploited the fact that a causal 

process is often replicated across multiple sites, generating the possibility of multiple 

instruments in the form of site-by-instrument interactions.  These multiple instruments 

can, in principle, enable the investigator to identify the impact of multiple processes 

regarded as the mediators of the effect of an instrument.  Kling, Liebman, and Katz (2007), 

for example, used random assignment in the Moving to Opportunity (MTO) study as an 

instrument to estimate the impact of neighborhood poverty on health, social behavior, 

education, and economic self-sufficiency of adolescents and adults.  Reasoning that the 

instrument might affect outcomes through mechanisms other than neighborhood poverty, 

they control for a second mediator, use of the randomized treatment voucher.  To do so, 

they capitalize on the replication of the MTO experiment in five cities, generating ten1 

instruments (“site-by-randomization interactions”) to identify the impact of the two 

                                                 
1 The five sites generate ten site-by-treatment interactions as instruments because there were three 

(randomly assigned) treatment conditions per site. 
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mediators of interest, neighborhood poverty and experimental compliance.  Using a similar 

strategy, Duncan, Morris, and Rodrigues (2011) use data from sixteen implementations of 

welfare-to-work experiments to identify the impact of family income, average hours 

worked, and receipt of welfare as mediators.  

Clearly, this strategy for generating multiple instruments has potentially great 

appeal in research on causal effects in social science.  For example, Spybrook (2008) found 

that, among 75 large-scale experiments funded by the US Institute of Education Sciences 

over the past decade, the majority were multi-site trials in which randomization occurred 

within sites.  In principle, these data could yield a wealth of new knowledge about causal 

effects in education policy.  It is essential, however, that researchers understand the 

assumptions required to pursue this strategy successfully.  To date, we know of no 

complete account of these assumptions. 

 Our purpose therefore is to clarify the assumptions that must be met if this 

“multiple-site, multiple-mediator” instrumental variables strategy (hereafter MSMM-IV) is 

to identify the average causal effects (ATE) in the populations of interest.  For simplicity of 

exposition, and corresponding to the applications of MSMM-IV to date, we consider the 

case of where a single instrument (which we denote as 𝑇) operates through a set of 

mediators 𝐌 = {𝑀1,𝑀2, … ,𝑀𝑃}, that are linearly related to an outcome 𝑌.  We conclude 

that, in addition to the assumptions typically required in the single-site, single-instrument, 

single-mediator case, three additional assumptions are required in the MSMM-IV case.  

 We begin by delineating the assumptions required for identification in the case of a 

single instrument and a single mediator within a single-site study.  We describe the 

assumptions needed to identify the “local average treatment effect” (LATE) described by 
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Angrist, Imbens, and Rubin (1996) and the (slightly different) assumptions needed to 

identify the average treatment effect (ATE) among the population.  Additionally, we 

consider the general case where both the instrument and the mediator may be continuous 

or multi-valued.   

 Following a discussion of the single, site, single mediator case, we then turn our 

attention to the case of primary interest: the MSMM-IV design.  We specify a set of nine 

assumptions required for the MSMM-IV model to identify the average treatment effects of 

the mediators, three of which are specific to the MSMM-IV case, and which we discuss in 

some detail.  

 

2. THE SINGLE-SITE, SINGLE-MEDIATOR CASE 

Notation 

 Suppose that each participant in a single-site study is exposed to a treatment 𝑇 

taking on values in the domain 𝕋 ⊂ ℝ.  We hypothesize that 𝑇 may affect some outcome 𝑌 

through its effect on some mediator 𝑀.  Thus, in our notation, 𝑇 is an instrument that will 

be used to identify the effect of some mediator 𝑀.  We often consider treatments taking on 

values in the domain 𝕋 = {0,1}, where 𝑇 = 1 if the participant is assigned to the 

“treatment” condition or 𝑇 = 0 if she is assigned to the alternative “control” condition.  

Likewise, we often consider mediators taking on values in the domain 𝕄 = {0,1}, where 

𝑀 = 1 if the individual experiences the mediator condition and 𝑀 = 0 if she does not.  

More generally, however, both 𝑇 and 𝑀 may be multi-valued or continuous.   

Note that our terminology and notation differ here from those in standard 

econometric discussions of instrumental variables.  In the econometric tradition, an 
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instrument 𝑍 is used to identify the effect of a treatment 𝑇 on an outcome 𝑌.  In this 

tradition, the reduced form effect of 𝑍 on 𝑌 is often not of substantive interest; rather, 𝑍 is 

of interest to the econometrician largely because it may be “instrumental” in identifying the 

effect of 𝑇 on 𝑌.  In our terminology, however, assignment to a treatment 𝑇 (such an 

intervention or policy condition) is used as an instrument to identify the effect of mediator 

𝑀 on an outcome 𝑌.  Our terminology derives from the program evaluation tradition, in 

which both the reduced-form effect of 𝑇 on 𝑌 and the effect(s) of the mediator(s) through 

which 𝑇 may operate are of interest.  Throughout the remainder of this paper, we shall use 

𝑇 to denote a treatment assignment condition that is used as an instrument, and we shall 

use 𝑀 to denote an experienced mediator condition. 

 Figure 1 summarizes our notation.  We refer to the effect of 𝑇 on 𝑀 as the 

“compliance”; the person-specific compliance is denoted Γ; the average compliance in the 

population is 𝛾 = 𝐸[Γ].  Similarly, the person-specific effect of the mediator 𝑀 on the 

outcome 𝑌 is denoted as Δ; the average effect of 𝑀 on 𝑌 in the population (often the 

estimand of interest) is denoted as 𝛿 = 𝐸[Δ].  Finally, we denote the person-specific effect 

of 𝑇 on 𝑌 as Β; the average effect of 𝑇 on 𝑌 in a the population (often referred to as the 

“intent-to-treat” effect in the program evaluation literature, or the “reduced form” effect in 

the econometrics literature) is therefore 𝛽 = 𝐸[Β]. 

 

Figure 1: 

 

 

 T Y Β 

T M Y Δ Γ 
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Identifying Assumptions 

 In order to define a set of causal estimands of interest, we first require the 

assumption that an individual’s potential outcomes depend only on the treatment 

condition and mediator condition to which that particular individual is exposed (and not on 

the treatment and mediator conditions of others), known as the Stable Unit Treatment 

Value Assumption (SUTVA) (Rubin, 1986).  In the standard potential outcomes framework, 

we typically require a single SUTVA assumption stating that one individual’s potential 

outcomes do not depend on others’ treatment status.  In the IV model, however, the 

presence of three variables of interest—the treatment 𝑇, a mediator 𝑀, and an outcome 

𝑌—necessitates a pair of such assumptions (Angrist, et al., 1996), stated formally below.  

 

Assumption (i): Stable unit treatment value assumptions (SUTVA):  

(i.a)  Each unit 𝑖 has one and only one potential value of the mediator 𝑀 for each 

treatment condition 𝑡: in particular, for a population of size 𝑁, 𝑚𝑖(𝑡1, 𝑡2, … , 𝑡𝑁) =

𝑚𝑖(𝑡𝑖) for all 𝑖 ∈ {1,2, … ,𝑁}. 

(i.b) Each unit 𝑖 has one and only one potential outcome value of 𝑌 for each pair of 

values of treatment condition 𝑡 and mediator value 𝑚: in particular, for a 

population of size 𝑁, 𝑦𝑖(𝑡1, 𝑡2, … , 𝑡𝑁 ,𝑚1,𝑚2, … ,𝑚𝑁) = 𝑦𝑖(𝑡𝑖,𝑚𝑖) for all 

𝑖 ∈ {1,2, … ,𝑁}. 

 

Given the SUTVA assumptions, we can represent the potential outcome 𝑌 for a participant 

who experiences treatment 𝑡 and mediator value 𝑚(𝑡) as 𝑦�𝑡,𝑚(𝑡)� (we drop the subscript 

𝑖 throughout the remainder of this paper except when necessary for clarity).   
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Our second assumption is that 𝑇 affects 𝑌 only through its impact on the mediator 

𝑀. This is the standard exclusion restriction assumption: 

 

Assumption (ii): Exclusion restriction: 

𝑦(𝑡) = 𝑦�𝑡,𝑚(𝑡)� = 𝑦�𝑚(𝑡)�. 

 

The exclusion restriction combined with the second SUTVA assumption (i.b) implies a third 

SUTVA condition: (i.c) Each unit 𝑖 has one and only one potential outcome value of 𝑌 for 

each value of the mediator 𝑚: in particular, for a population of size 𝑁, 𝑦𝑖(𝑚1,𝑚2, … ,𝑚𝑁) =

𝑦𝑖(𝑚𝑖) for all 𝑖 ∈ {1,2, … ,𝑁}. 

The SUTVA assumptions are necessary in order to define the causal estimands of 

interest.  If the treatment variable is binary, for example, the first SUTVA assumption (i.a) 

implies that we can define the person-specific casual effect of the treatment on 𝑀 as 

Γ = 𝑚(1) −𝑚(0).  If, however, the treatment is not binary, it will be useful to assume that 

the person-specific effect of 𝑇 on 𝑀 is linear in 𝑇, in which case Γ = 𝑚(𝑡) −𝑚(𝑡 − 1): 

 

Assumption (iii): Person-specific linearity of the mediator 𝑀 in 𝑇: The person-specific effect 

of 𝑇 on mediator 𝑀 is linear.  That is, 𝑚(𝑡) = 𝑚(0) + 𝑡Γ. 

 

Likewise, it will be useful to assume that the person-specific effect of 𝑀 on 𝑌 is 

linear in 𝑀.  This is a standard, if not unproblematic, assumption in IV models.  In this case, 

the third SUTVA condition (i.c) implies that we can define the person-specific casual effect 

of the mediator 𝑌as Δ = 𝑦(𝑚)− 𝑦(𝑚− 1): 
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Assumption (iv): Person-specific linearity in 𝑚: the person-specific effect of the mediator 

𝑚(𝑡) on 𝑌 is linear.  That is, 𝑦�𝑚(𝑡)� = 𝑦(𝑚 = 0) + 𝑚(𝑡)Δ. 

 

The combination of (ii), (iii), and (iv) implies that the person-specific effect of 𝑇 on 𝑌 is 

linear in 𝑇: 

𝑦�𝑚(𝑡)� = 𝑦(𝑚(0) + 𝑡Γ) 

= 𝑦(𝑚 = 0) + 𝑚(0)Δ + 𝑡ΓΔ 

 (1) 

Thus, defining Β as the person-specific effect of 𝑇 on 𝑌, we can relate the person-specific 

effects of 𝑇 on 𝑀 and of 𝑀 on 𝑌 to the person-specific effect of 𝑇 on 𝑌 by 

 𝑦(𝑡) − 𝑦(𝑡 − 1) = Β = ΓΔ. (2) 

The population average intent-to-treat effect (ITT) of interest here is 𝐸(Β) = 𝛽.  The 

parameter 𝛽 is not directly observable, however, because it is the mean of differences in 

counterfactual outcomes.  If we are justified in assuming that persons are assigned 

ignorably to treatments 𝑇 = 𝑡 for 𝑡 ∈ 𝕋, as would be true in a randomized experiment, we 

can estimate 𝛽 from sample data.   

 

Assumption (v):  Ignorable treatment assignment:  𝑇 ⊥ 𝑌(𝑡), 𝑇 ⊥ 𝑀(𝑡), 𝑡 ∈ 𝕋.  

 

Likewise, assumption (v) enables us to estimate 𝐸(Γ) = 𝛾, the average causal effect of 𝑇 on 

the mediator 𝑀 (which we refer to as the “average compliance”) from sample data.  

Because instrumental variables methods rely on the instrument to induce some exogenous 

variation in the mediator (for at least some individuals), we require 𝛾 to be non-zero:  
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Assumption (vi): Effectiveness of the instrument: 𝛾 ≠ 0. 

 

In the simple case in which we have a single instrument and a single mediator, the target of 

the instrumental variables estimator is the ratio of the intent-to-treat effect to the average 

compliance:  

𝛽
𝛾

=
𝐸[ΓΔ]
𝐸[Γ]

=
𝛾𝛿 + 𝐶𝑜𝑣(Γ,Δ)

𝛾
= 𝛿 +

𝐶𝑜𝑣(Γ,Δ)
𝛾

. 

 (3) 

Equation (3) may be regarded as defining a “compliance-weighted average treatment 

effect” (CWATE) because each person’s treatment effect Δ is weighted by his or her 

compliance, Γ.  This is a rather unsatifying estimand, as we are typically interested in 

estimating 𝛿, the average treatment effect, rather than a weighted average treatment effect, 

particularly where the weights are some unobservable and instrument-specific set of Γ′𝑠 

(Heckman & Robb, 1985a, 1986; Heckman, Urzua, & Vytlacil, 2006).   

 There are two different solutions to this problem that yield a well-defined estimand.  

First, we can simply assume  

 

Assumption (vii a): no person-specific compliance-effect covariance: 𝐶𝑜𝑣(Γ,Δ) = 0, 

 

in which case (3) identifies the population average treatment effect (ATE) as 𝛿 = 𝛽/𝛾. 

However, this assumption may be implausibly strong in some applications. The assumption 

says literally that the person-specific impact of M on Y is uncorrelated with that person’s 

inclination to comply.  However, if persons have some knowledge of how well they will 
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respond to M, they may select a level of compliance accordingly.  For example, a person 

who correctly expects Δ to be large will be motivated to seek a higher value of 𝑀; if 

assignment to treatment facilitates access to a higher value of 𝑀, such a person will comply 

more than will a person who correctly expects Δ to be zero.  

 In the case where both 𝑇 and 𝑀 are binary, we can adopt an alternative assumption 

that may be more tenable than (vii.a).  In this case, Angrist, Imbens and Rubin (1996) note 

that Γ can take on only three possible values: Γ = 1 for those for whom the instrument 𝑇 

determines their mediator value (“compliers”); Γ = 0 for those for whom the instrument 

does not affect the mediator (“always-takers” and “never-takers”); or Γ = −1 for those who 

experience the opposite of the intended mediator condition (“defiers”).   They then assume 

that there are no “defiers” in the population—no one for whom exposure to the instrument 

𝑇 causes them to switch from 𝑀 = 1 to 𝑀 = 0: 

 

Assumption (vii.b): No defiers: Γ ∈ {0,1}. 

 

Under this assumption, we can simplify the expression for the CWATE in Equation (3) to  

𝛽
𝛾

=
𝑃𝑟(Γ = 1) ∙ 𝐸[Γ ∙ Δ|Γ = 1] + 𝑃𝑟(Γ = 0) ∙ 𝐸[Γ ∙ Δ|Γ = 0]

𝑃𝑟(Γ = 1) ∙ 𝐸[Γ|Γ = 1] + 𝑃𝑟(Γ = 0) ∙ 𝐸[Γ|Γ = 0]  

=
𝑃𝑟(Γ = 1) ∙ 𝐸[Δ|Γ = 1] + 𝑃𝑟(Γ = 0) ∙ 0

𝑃𝑟(Γ = 1) ∙ 1 + 𝑃𝑟(Γ = 0) ∙ 0
 

= 𝐸(Δ|Γ = 1) 

=� 𝛿𝑐, 

 (4) 

where Pr (Γ = 1) is the proportion of compliers in the population.  Angrist, Imbens, and 
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Rubin (1996) termed 𝛿𝑐 the “local average treatment effect” (LATE), also known as the 

average treatment effect on the compliers, the complier average treatment effect (CATE) or 

the complier average causal effect  (CACE).  Equation (4) shows that the LATE is a special 

case of the CWATE when both 𝑇 and 𝑀 are binary and the no defiers assumption holds.2 

 

Summary of Single-Site, Single Mediator IV Assumptions 

 Approaching the instrumental variable model from a potential outcomes framework 

is particularly useful when we allow mediator effects to be heterogeneous.  After imposing 

assumptions (i)-(vi) (SUTVA, exclusion restriction, linearity, instrument effectiveness, and 

ignorable treatment assignment), this framework reveals the importance of either (vii.a), 

the no-compliance-effect-covariance assumption, or (vii.b) the no-defiers assumption.  If 

both of these assumptions fail, the instrumental variable estimand is a compliance 

weighted average treatment effect (CWATE): those persons whose mediator is most 

affected by the instrument will be assigned the greatest weight in the estimand.   

 

3. THE IV MODEL WITH MULTIPLE SITES AND MULTIPLE MEDIATORS 

In the single-site, single mediator case, our challenge was to derive assumptions that 

define the ATE (𝛿) or the LATE (𝛿𝑐) as a function of the average intent-to-treat effect 𝛽 and 

the average compliance 𝛾.  We now consider the multi-site, multiple mediator case, where 

subjects within a multi-site trial are exposed to a treatment 𝑇, which may influence 𝑌 

                                                 
2 In some settings (e.g., Little & Yau, 1998), participants assigned to the control cannot gain access to the 

mediator, that is Pr(𝑚(0) = 1) = 0. In this case, there are no “always-takers.” We then see that LATE 

becomes the “treatment effect on the treated” (TOT), that is 𝛿𝐶 = 𝐸(Δ|Γ = 1) = 𝐸(Δ|𝑚 = 1) =� 𝛿𝑇𝑂𝑇 . 
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through 𝑃 distinct mediators 𝑀1,𝑀2, …𝑀𝑃 .  We derive a set nine assumptions required to 

identify the effects of these mediators.  The key insight that enables us to identify these 

effects is that site-specific values of 𝛽 become outcomes in a regression where multiple 

site-specific compliances are predictors.  

Six of our assumptions are straightforward extensions of the assumptions derived 

above in the single-site case, single-mediator case.  These include SUTVA, the exclusion 

restriction, the two linearity assumptions, the assumption of ignorable assignment to T, 

and either a no compliance-effect covariance assumption (to identify ATE) or a “no defiers” 

assumption in the binary treatment, binary mediator case (to identify LATE).  The 

assumption of non-zero average compliance that was needed in the single-site case is 

generalized to the assumption that there exists a full column rank site-by compliance 

matrix, literally a design matrix within a multiple regression framework.  Standard 

requirements of regression then generate two additional assumptions: an assumption that 

one mediator does not affect another, and an assumption of independence among the site-

level compliances and site level causal effects.  These assumptions are described below. 

We first assume that both SUTVA assumptions hold (i.a and i.b) with respect to the 

vector of 𝑃 mediators:   

 

Assumption (i): Stable unit treatment value assumptions (SUTVA):  

(i.a)  Each unit 𝑖 has one and only one potential value of the vector of mediators 

𝐦𝑖 = {𝑚1𝑖,𝑚2𝑖, … ,𝑚𝑃𝑖} for each treatment condition 𝑡: in particular, for a 

population of size 𝑁, 𝐦𝑖(𝑡1, 𝑡2, … , 𝑡𝑁) = 𝐦𝑖(𝑡𝑖) for all 𝑖 ∈ {1,2, … ,𝑁}. 

(i.b)  Each unit 𝑖 has one and only one potential outcome value of 𝑌 for each 
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treatment condition 𝑡 and each vector of mediator values 𝐦𝑖: in particular, 

for a population of size 𝑁, 𝑦𝑖(𝑡1, 𝑡2, … , 𝑡𝑁 ,𝐦1,𝐦2, … ,𝐦𝑁) = 𝑦𝑖(𝑡𝑖,𝐦𝑖) for all 

𝑖 ∈ {1,2, … ,𝑁}. 

 

We next assume that assignment to 𝑇 influences 𝑌 only through the list of 𝑃 distinct 

and observable mediators 𝑀1,𝑀2, …𝑀𝑃.  Specifically, each participant has potential 

mediator values 𝑚1(𝑡),𝑚2(𝑡), … ,𝑚𝑃(𝑡) for 𝑡 ∈ 𝕋.  The exclusion restriction now requires 

that 𝑇 affects 𝑌 only through its effects on one or more of the mediators.  That is: 

 

Assumption (ii): Exclusion restriction: The treatment 𝑇 affects 𝑌 only through its impact on 

the set of 𝑃 mediators, 𝐌 = {𝑀1,𝑀2, … ,𝑀𝑃}.  That is, 𝑌(𝑡) = 𝑌�𝑡,𝐦(𝑡)� = 𝑌�𝐦(𝑡)�. 

 

As above, we also assume person-specific linearity of each 𝑀 in 𝑇 (iii) and person-specific 

linearity of 𝑌 in each of the mediators (iv).  Specifically, we assume that the outcome 𝑌 is a 

linear function of the mediators, and that there are no interactions among the mediators. 

 

Assumption (iii): Person-specific linearity of each mediator in 𝑇: The person-specific effect of 

𝑇 on each mediator 𝑀𝑝 is linear.  That is, 𝑚𝑝(𝑡) = 𝑚𝑝(0) + 𝑡Γ𝑝 for each 𝑝. 

 

Assumption (iv): Person-specific linearity of 𝑌 in 𝑴: The person-specific effect of each 

mediator 𝑀𝑝 on 𝑌 is linear.  That is, 𝑌(𝐦) = 𝑌(𝐦 = 𝟎) + ∑ 𝑚𝑝Δ𝑝𝑃
𝑝=1 . 

 

These imply, respectively, that the person-specific causal effect of 𝑇 on 𝑀𝑝 is Γ𝑝 = 𝑚𝑝(𝑡) −
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𝑚𝑝(𝑡 − 1), and that that the person-specific causal effect of 𝑀𝑝 on 𝑌 is Δ𝑝 = 𝑦�𝑚𝑝� −

𝑦�𝑚𝑝 − 1�, for all 𝑝 ∈ 1,2, … ,𝑃.  As above, the person-specific causal effect of 𝑇 on 𝑌 is 

Β = 𝑦(𝑡) − 𝑦(𝑡 − 1).  The observed outcome is 𝑦(𝑡) = 𝑦(0) + 𝑡Β. 

We next assume that assignment to 𝑇 does not influence a given mediator 𝑀𝑝 

through any other mediator 𝑀𝑞 .  That is, the mediators do not influence one another.  This 

is required so that the estimation of the effects of a given mediator 𝑀𝑞 on 𝑌 are not 

confounded with the effects of another mediator 𝑀𝑝. 

 

Assumption (v): Parallel mediators:  

𝑚𝑝�𝑡,𝑚1, … ,𝑚𝑝−1,𝑚𝑝+1, … ,𝑚𝑃� = 𝑚𝑝(𝑡)  for all 𝑝 ∈ 1,2, , … ,𝑃. 

 

Together, the five assumptions above define the person-specific intent-to-treat effect as 

Β = 𝑦(𝑡) − 𝑦(𝑡 − 1) 

= 𝑦�𝑚1(𝑡),𝑚2(𝑡), … ,𝑚𝑃(𝑡)� − 𝑦�𝑚1(𝑡 − 1),𝑚2(𝑡 − 1), … ,𝑚𝑃(𝑡 − 1)� 

= �Δ𝑝Γ𝑝

𝑃

1

. 

 (5) 

Equation (5) says that the person-specific effect of 𝑇 on 𝑌 can be written as the sum of the 

products of the person-specific effects of 𝑇 on each mediator and the person-specific effects 

of that mediator on the 𝑌 (we discuss the implications of a failure of the parallel mediator 

assumption in Section IV below).  Taking the expectation of (5) over the population within 

a site 𝑠 yields 
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𝐸(Β|𝑆 = 𝑠) = 𝛽𝑠 = 𝐸 ��Δ𝑝Γ𝑝

𝑃

1

�𝑆 = 𝑠�. 

 (6) 

As in the single-site case, we shall need unbiased estimates of the average 

compliances and intent-to-treat effects within each site.  Letting 𝐾 denote the number of 

sites, we invoke 

 

Assumption (vi): Ignorable within-site treatment assignment: The assignment of the 

instrument 𝑇 must be independent of the potential outcomes within each site: 𝑇 ⊥

𝑌(𝑡)|𝑠, 𝑇 ⊥ 𝐦(𝑡)|𝑠, ∀ 𝑡 ∈ 𝕋, 𝑠 ∈ {1, … ,𝐾}. 

 

As in the single-site case, it will next be useful to make either a set of set of no-

compliance-effect covariance assumptions, analogous to (vii.a), or a set of “no defiers” 

assumptions analogous to (vii.b).  The assumptions made here determine whether the 

model identifies the average treatment effect (ATE) or the complier average treatment 

effect (LATE). 

First, if we wish to identify the average treatment effects (ATEs) of the mediators, 

we may make the assumption that there is no within-site covariance between Δ𝑝 and Γ𝑝 for 

each mediator 𝑝: 

 

Assumption (vii.a): No within-site compliance-effect covariance:  

  𝐶𝑜𝑣𝑠�Γ𝑝,Δ𝑝� = �𝐶𝑜𝑣�Γ𝑝,Δ𝑝��𝑆 = 𝑠� = 0, for all 𝑝 and 𝑠. 
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Alternatively, in the case where both 𝑇 and M are binary and we wish to identify LATE, we 

invoke  

 

Assumption (vii.b): No defiers: Γ𝑝 ∈ {0,1} for all 𝑝. 

 

 Either of these two assumptions, in combination with Assumptions (i-vi) generates 

a multiple regression problem in which an estimable site-average intent-to-treat effect 𝛽𝑠 is 

the outcome and estimable site-average compliances 𝛾𝑝𝑠,𝑝 = 1,2, … ,𝑃 are predictors.  To 

see this, consider first the case of ATE where we invoke Assumption (vii.a) .  Under this 

assumption, Equation (6) is 

𝛽𝑠 = 𝐸 ��Δ𝑝Γ𝑝

𝑃

1

�𝑆 = 𝑠� 

= �𝛿𝑝𝑠𝛾𝑝𝑠

𝑃

1

+ �𝐶𝑜𝑣𝑠�Δ𝑝,Γ𝑝�
𝑃

1

 

= �𝛿𝑝𝑠𝛾𝑝𝑠

𝑃

1

 

= �𝛿𝑝𝛾𝑝𝑠

𝑃

1

+ ��𝛿𝑝𝑠 − 𝛿𝑝�𝛾𝑝𝑠

𝑃

1

 

= �𝛿𝑝𝛾𝑝𝑠

𝑃

1

+ 𝜔𝑠, 

 (7) 

where 𝛿𝑝𝑠 and 𝛾𝑝𝑠 are the average effect of 𝑀𝑝 on 𝑌 in site 𝑠 and the average effect of 𝑇 on 

𝑀𝑝 in site 𝑠, respectively; where 𝛿𝑝 is the average, across sites, of the 𝛿𝑝𝑠’s; and where the 
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error term is 𝜔𝑠 = ∑ �𝛿𝑝𝑠 − 𝛿𝑝�𝛾𝑝𝑠𝑃
1 . 

 If, in contrast, we have a binary M and seek to estimate LATE, we invoke Assumption 

(vii.b), generating a multiple regression problem of exactly the same form.  Specifically, we 

can write (6) as 

𝛽𝑠 = 𝐸 ��Δ𝑝Γ𝑝

𝑃

1

�𝑆 = 𝑠� 

= 𝐸 ���Δ𝑝|Γ𝑝 = 1� ∙ Pr�Γ𝑝 = 1�
𝑃

1

�𝑆 = 𝑠� 

= �𝐸�Δ𝑝�Γ𝑝 = 1, 𝑆 = 𝑠�
𝑃

1

∙ 𝛾𝑝𝑠 

= �𝛿𝑐𝑝𝑠𝛾𝑝𝑠

𝑃

1

 

= �𝛿𝑐𝑝𝛾𝑝𝑠

𝑃

𝑝=1

+ ��𝛿𝑐𝑝𝑠 − 𝛿𝑐𝑝�𝛾𝑝𝑠

𝑃

𝑝=1

 

= �𝛿𝑐𝑝𝛾𝑝𝑠

𝑃

𝑝=1

+ 𝜔𝑐𝑠, 

 (8) 

where 𝛿𝑐𝑝𝑠 is the complier average effect of 𝑀𝑝 on 𝑌 in site 𝑠 (the LATE for mediator 𝑝 in 

site 𝑠); 𝛿𝑐𝑝 is the complier average effect of  𝑀𝑝 on 𝑌 in the population; 𝛾𝑝𝑠 is the average 

effect of 𝑇 on 𝑀𝑝 in site 𝑠 (which, under the no-defiers assumption, is equal to the 

proportion of the population in site 𝑠 who are compliers with respect to mediator 𝑝); and 

𝜔𝑐𝑠 is an error term equal to ∑ �𝛿𝑐𝑝𝑠 − 𝛿𝑐𝑝�𝛾𝑝𝑠𝑃
𝑝=1 .  

 Equations (7) and (8) use the same outcome 𝛽𝑠 and the same predictors 



17 
 

𝛾𝑝𝑠, 𝑝 = 1,2, …𝑃.  However, invoking the no-covariance assumption identifies the 

coefficients of this model as the ATEs 𝛿𝑝𝑠, 𝑝 = 1,2, … ,𝑃 with random error 𝜔𝑠 in (7) , while 

invoking the no-defiers assumption identifies the coefficients of this model as 𝛿𝑐𝑝𝑠,𝑝 =

1,2, … ,𝑃 and the errors as 𝜔𝑐𝑠 in (8).  To identify either of these models thus requires 

additional standard assumptions for regression, namely that the design matrix be of full 

rank and that the model errors be ignorable. Thus, in either case, we assume 

 

Assumption (viii): Site-by-mediator compliance matrix has sufficient rank.  In particular, if 𝐆 

is the 𝐾 x 𝑃 matrix of the 𝛾𝑝𝑠′𝑠, we require 𝑟𝑎𝑛𝑘(𝐆) = 𝑃.  This implies three specific 

conditions: 

(viii.a) The compliance of at least 𝑃 − 1 of the mediators varies across sites.  That is, 

𝑉𝑎𝑟�𝛾𝑝𝑠� = 0, for at most one 𝑝 ∈ {1,2, … ,𝑃}. 

(viii.b) There are at least as many sites as mediators: 𝑃 ≤ 𝐾. 

(viii.c) There is some subset of 𝑄 site-specific compliance vectors, 

𝛄𝑠 = {𝛾1𝑠, 𝛾2𝑠, … , 𝛾𝑃𝑠}, where 𝐾 ≥ 𝑄 ≥ 𝑃, that are linearly independent. 

 

The sufficient rank assumption is a generalization of the familiar instrument effectiveness 

assumption (Assumption (vi) in the first section).  Note that when there is a single 

mediator (𝑃 = 1), the site-by-mediator compliance matrix will have rank 1 so long as 

𝛾1𝑠 ≠ 0 for at least one site 𝑠 (the average compliance across sites may be zero, as long as it 

is not zero in every site).  Thus, when there is a single site and a single mediator, the 

sufficient rank assumption is identical to the usual condition that the treatment has a non-

zero average impact on the mediator. 
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 Our final assumption requires that the error term 𝜔𝑠 of Equation (7) or 𝜔𝑐𝑠 of (8) be 

ignorable.  In order to identify the ATEs, we assume 

 

Assumption (ix.a): Between-site compliance-effect independence: The site average 

compliance of each mediator is independent of the site average effect of each mediator.  

That is 𝐸�𝛿𝑞𝑠|𝛾1𝑠, 𝛾2𝑠, … , 𝛾𝑃𝑠� = 𝐸�𝛿𝑞𝑠� = 𝛿𝑞 for all 𝑞 ∈ 1, … ,𝑃. 

 

Likewise, to identify the LATEs, we assume 

 

Assumption (ix.b): Between-site compliance-effect independence: The site average 

compliance of each mediator is independent of the site complier average effect of each 

mediator.  That is 𝐸�𝛿𝑐𝑞𝑠|𝛾1𝑠, 𝛾2𝑠, … , 𝛾𝑃𝑠� = 𝐸�𝛿𝑐𝑞𝑠� = 𝛿𝑐𝑞. 

 

Under Assumption (ix.a), we can write the expected value of the error 𝜔𝑠 in (7) as  

𝐸[𝜔𝑠|𝛾1𝑠, 𝛾2𝑠, … , 𝛾𝑃𝑠] = 𝐸 ���𝛿𝑞𝑠 − 𝛿𝑞�𝛾𝑞𝑠

𝑃

𝑞=1

�𝛾1𝑠, 𝛾2𝑠, … , 𝛾𝑃𝑠� = 0 

= �𝛾𝑞𝑠 ∙ 𝐸��𝛿𝑞𝑠 − 𝛿𝑞�|𝛾1𝑠, 𝛾2𝑠, … , 𝛾𝑃𝑠�
𝑃

𝑞=1

 

= �𝛾𝑞𝑠 ∙ 𝐸��𝛿𝑞𝑠 − 𝛿𝑞��
𝑃

𝑞=1

 

= 0. 

 (9) 
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By the same logic, Assumption (ix.b) implies that the expected value of the error term 𝜔𝑐𝑠 

in (8) is zero.  

Note that Assumptions (ix.a) and (ix.b) are each stronger than an assumption of no 

between-site compliance-effect covariance (the latter requires only no linear association 

between compliance and effect; the former requires no association whatsoever).  

Moreover, note that Assumptions (ix.a) and (ix.b) require not only that there be no 

compliance-effect association for a given mediator, but also that there be no cross-mediator 

compliance-effect association.  That is, the site-average effect of 𝑇 on a given mediator 𝑀𝑞 

cannot be correlated with the site average effect of any mediator 𝑀𝑝 on 𝑌. 

 

4. DISCUSSION  

Summary of Multiple-Site, Multiple-Mediator IV Assumptions 

To summarize, in the case of a multi-site study in which a treatment 𝑇 may affect the 

outcome 𝑌 through multiple mediators, we require a number of assumptions in order to 

identify the average causal effects of the mediators using MSSM-IV methods.  In order to 

identify the average treatment effect in the population, the relevant assumptions are 

 

(i) Stable unit treatment value assumptions 

(ii) Exclusion restriction 

(iii) Person-specific linearity of the mediators with respect to the treatment 

(iv) Person-specific linearity of the outcome with respect to the mediators 

(v) Parallel mediators 

(vi) Within-site ignorable treatment assignment 
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(vii.a) Zero within-site compliance-effect covariance for each mediator 

(viii) Compliance matrix has sufficient rank 

(ix.a) Between-site cross-mediator compliance-effect independence 

 

In order to identify the complier average treatment effect (LATE) in the case of a binary 

treatment and binary mediators, assumption (vii.a) is replaced by assumption (vii.b), no 

defiers for any mediator; and assumption (ix.a) is replace by (ix.b), between-site 

independence of the compliance and complier average effects.  

Note that six of these assumptions—SUTVA, the exclusion restriction, the two 

linearity assumptions, ignorable treatment assignment, and either the zero within-site 

compliance-effect covariance assumption or the no defiers assumption—are identical to 

those required for the single-site, single-instrument, single-mediator case (though often the 

two linearity assumptions are ignored because they are met trivially when the instrument 

and mediators are binary).  Assumptions (v), (viii), and (ix) are specific to the multiple-site, 

multiple-mediator case (though the sufficient rank assumption (viii) is equivalent to the 

instrument effectiveness assumption when there is a single site and single mediator, as we 

note above).  We discuss these three assumptions in more detail below. 

 

The Parallel Mediators Assumption 

The assumption that the mediators impact an outcome in parallel is a non-trivial 

assumption (see Appendix A for a detailed discussion).  Consider the Duncan, Morris, and 

Rodrigues (2011) study described above.  In this study, sixteen implementations of 

random-assignment welfare-to-work experiments were used to estimate the impact of 
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three hypothesized mediators of the programs: income, hours worked, and welfare receipt.  

The multiple-site, multiple mediator IV models used assume that none of these mediators 

affects the others.  However, this is an implausible assumption, given that both hours 

worked and welfare receipt are clearly linked to income.   

 The MTO study analyzed in Kling, Liebman, and Katz (2007) provides an 

opportunity to consider the parallel mediators assumption in concrete terms.  In this study, 

random assignment to a voucher was hypothesized to affect outcomes via two potential 

mediators—use of the voucher and neighborhood poverty.  Because neighborhood poverty 

could not be influenced except through use of the voucher, the implied structural model is 

that shown in Figure 2. 

 

Figure 2: 

 
 
 
 
 
 
 
 

 

In this model, treatment assignment affects neighborhood poverty (𝑁𝑃) only through use 

of a voucher (𝑉).  Both 𝑁𝑃 and 𝑉 may then affect an outcome 𝑌.  As detailed in Appendix A, 

identification of 𝛿2 = 𝐸[Δ2] requires two key sets of additional assumptions.  First, within 

each MTO site 𝑠, both a family’s likelihood of using the voucher if offered it and the change 

in neighborhood poverty experienced by a family if they use the voucher are uncorrelated 

with the effect of neighborhood poverty on that family.  Families for whom a move to low-

Γ1 Δ1∗  
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Δ2 
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poverty neighborhoods would be particularly beneficial are no more likely to use the 

voucher and move to low-poverty neighborhoods than are families for whom such a move 

would be less beneficial.   Second, across MTO sites, there are no correlations between a) 

the average impact of neighborhood poverty and average voucher take-up rate; b) the 

average impact of neighborhood poverty and the average impact of voucher use on 

neighborhood poverty rates; c) the average impact of using of a voucher and the average 

voucher take-up rate; or d) the average impact of using of a voucher and the average 

impact of voucher use on neighborhood poverty rates.  If, for example, sites where the use 

of a voucher had a large impact on neighborhood poverty (because it was relatively easy 

for families to move far from their original neighborhood) were also sites where use of a 

voucher moved families far from family and friendship networks that have a positive effect 

on outcomes, then the assumption of the independence of the direct effect of the voucher 

(through network supports in this example) and the effect of one mediator on another 

would be violated.  Note that, in the MTO example, it would be possible to identify the total 

effect of the first mediator (use of the voucher), because there is no pathway from 𝑇 to 𝑌 

that does not go through 𝑉.  Identifying the effect of 𝑁𝑃 and the direct effect of 𝑉 on 𝑌, 

however, requires additional assumptions about the independence of these effects and the 

effect of 𝑉 on 𝑁𝑃.  Given the correlation of neighborhood poverty and other factors likely to 

influence the outcomes of interest in the MTO study, such assumptions may not be 

warranted. 

 

The Site-Average Compliance-Effect Independence Assumption 

 The assumption that the site-average compliances are independent of the site-
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average effects is non-trivial.  Because site-average compliance effects are not randomly 

assigned to sites, they may not be independent of the site-average mediator effects.  

Consider a simple example.  Suppose we have a multi-site study of the impacts of welfare-

to-work programs, as in Duncan, Morris, and Rodrigues (2011), where the programs are 

hypothesized to affect child outcomes by affecting mothers’ hours worked, income, and 

welfare receipt.  Suppose that entry-level wages and the cost of living are higher in some 

sites than others.  In this case, randomized assignment to a training program may induce a 

greater increase in hours worked and income (higher compliance) in high-wage sites than 

in low-wage sites (because the wage benefits of work are greater); however, the effect of 

increased income on child achievement may be lower in high-wage sites than in low-wage 

sites, because the cost of child care, preschool, and school quality is higher.  Such a pattern 

would induce a negative correlation between the work and income effects of the program 

and the effects of income on children, violating the assumption of site-average compliance-

effect independence. 

 Although the compliance-effect independence assumption is not empirically 

verifiable, it may be falsifiable, given sufficient data.  Equation (9) implies that, in a multi-

site study with 𝑃 mediators and in which each of the nine assumptions is met, a plot in 

(𝑃 + 1)-space of the site-average intent-to-treat effects (the 𝛽𝑠’s) against the 𝑃 site-average 

compliance effects (the 𝛾𝑝𝑠’s) will display a pattern of points scattered (with 

heteroskedastic variance) around a hyperplane passing through the origin with partial 

slopes 𝜕𝛽
𝜕𝛾𝑝

= 𝛿𝑝, for all 𝑝.  A violation of the site-average compliance-effect independence 

assumption, however, implies that 𝐸(𝜔𝑠|𝛾1, … , 𝛾𝑃) ≠ 0 for some value(s) of 𝛾1, … , 𝛾𝑃.  As a 

result, the surface described by 𝐸(𝛽𝑠|𝛾1, … , 𝛾𝑃) will be nonlinear.  With sufficient data (a 
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sufficient number of sites and sufficiently precise estimation of the 𝛽𝑠’s  and 𝛾𝑠’s for each 

site), one might have adequate statistical power to reliably detect such non-linearity, 

allowing one to reject the compliance-effect independence assumption.   

 In Appendices B and C, we derive expressions for the bias in the 2SLS MSMM-IV 

estimator when the site-average compliance-effect independence assumption fails. 

 

The Sufficient Rank Assumption 

 The sufficient rank assumption is relatively straightforward.  In order to identify the 

effects of 𝑃 mediators using an MSMM-IV model, we require at least as many sites as 

mediators; we require that the effect of treatment assignment on the mediators varies 

across sites (for at least 𝑃 − 1 of the mediators); and we require that there are at least 𝑃 

sites among which these effects are linearly independent.  In many practical applications, 

these assumptions are likely to be met.  The average effect of treatment assignment on a 

mediator is likely to vary across sites for a variety of reasons, including differential 

implementation, heterogeneity of populations, and differences among sites in baseline 

conditions or capacity.  Moreover, unless the mediators are conceptually very similar, the 

effects of treatment assignment on the mediators are unlikely to be perfectly collinear. 

Nonetheless, in practical applications, the effects of treatment assignment on the 

mediators are likely to be somewhat correlated (though not perfectly) across sites.  This 

may occur because in sites where a treatment is well-implemented, the treatment may 

affect all mediators more than in sites where it is poorly implemented.  Or it may occur 

because the mediators are correlated in the world, leading to a correlation of compliances.  

For example, because income is correlated with hours worked, sites in which a treatment—
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such as a welfare-to-work experiment—induces large changes in hours worked will tend to 

also be sites in which the same treatment induces large changes in income.   

Although such correlations among the 𝛾𝑠’s do not pose an identification problem for 

the MSMM-IV model (we require no assumption regarding the independence of the site-

average compliances), they may pose a problem for estimation.   Because the identification 

of the effects of the mediators depends on the separability of the site-average compliances, 

statistical power will be greatest—all else being equal—when compliances are not 

positively correlated.  

 

5. CONCLUSION 

If each of the nine assumptions described above is met, the effects of each mediator 

are, in principle, identifiable from observed data.  Such models provide a possible approach 

to estimating the effects of the mediators of treatment effects when such mediators cannot 

themselves be easily assigned at random.  The assumptions necessary for consistent 

identification in MSMM-IV models are not, however, trivial.  In addition to the usual IV 

assumptions, such models require several additional assumptions.  The parallel mediator 

and site-average compliance-effect independence assumptions, in particular, are relatively 

strong, and cannot be empirically verified (though with large samples the compliance-

effect independence assumption may be falsifiable).  Justification of such models must rely, 

therefore, on sufficiently strong theory or prior evidence to warrant these assumptions. 

 Although we have framed our discussion in the context of a multi-site randomized 

trial, where ‘sites’ are specific locations (different cities in the MTO example, different 

studies and cities in the welfare-to-work example), the same logic would apply to any study 
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in which randomization occurs within identifiable subgroups of individuals.  Thus, one 

could stratify the sample of a large randomized trial by sex, age, and race, and treat each 

sex-by-age-by-race cell as a ‘site’ in order to create multiple ‘site’-by-treatment interactions 

as instruments.  This would, in principle, allow one to identify the effects of multiple 

mediators within a single (large) randomized trial, but only under the set of assumptions 

we describe above.   Alternately, one could estimate a set of propensity scores, indicating 

each individual’s ‘propensity to comply’ with each mediator, and then stratify the sample 

by vectors of these propensity scores.  Using such strata as ‘sites’ in an MSMM-IV model 

would have two advantages: it would ensure there is no or little within-site compliance-

effect covariance (because compliance would be near constant within compliance strata); 

and it may allow one to create strata among which the site-average compliances are 

uncorrelated, which may increase the precision of the estimates.  Estimating ‘propensity to 

comply,’ however, is itself a non-trivial enterprise, relying on an additional set of rather 

strong assumptions (which we do not address here). 

 Several important issues remain to be addressed in order to fully understand the 

use of MSMM-IV models.  First, although failure of the assumptions will lead to inconsistent 

estimates, it is not clear how severe the bias resulting from plausible failures of the parallel 

mediators and compliance-effect independence assumptions will be.  Second, we have not 

discussed the properties of specific estimators of MSMM-IV models or the computation of 

standard errors from such models.  Both issues merit further investigation.   

 Finally, although the nine assumptions we outline above ensure the consistent 

estimation of the effects of multiple mediators, they do not ensure unbiased estimation in 

finite samples.  In single-site single-mediator instrumental variables models, finite sample 
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bias is a concern when the average compliance is small relative to its sampling variance.  In 

multiple-site, multiple-mediator models, finite sample bias is more complex.  In general, 

however, finite sample bias is likely to be a concern when both the average compliance 

(across sites) is small and the variance of the site-average compliances is small, relative to 

the sampling variation of the site average compliances.  A full discussion of finite sample 

bias is beyond the scope of this paper, however.  
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APPENDIX A: RATIONALE FOR THE PARALLEL MEDIATORS ASSUMPTION 

For illustration, consider a simple case in which a treatment 𝑇 affects 𝑌 through two 

mediators, 𝑀1 and 𝑀2, one of which affects the other, as illustrated in Figure A1 below. 

 

Figure A1: 
 
 
 
 
  
 
 
 
 
 
 
Let Γ1 and Γ2 be the person-specific effects of 𝑇 on 𝑀1 and 𝑀2, respectively.  Note that  

 Γ2 = Γ2∗ + Γ1Λ12. (A1) 

where Γ2∗  is the direct effect of 𝑇 on 𝑀2 (the effect not mediated by 𝑀1), and Λ12 is the 

effect of 𝑀1 on 𝑀2.  Likewise, let Δ1 and Δ2 be the effects of 𝑀1 and 𝑀2 on 𝑌, respectively.  

Note that  

 Δ1 = Δ1∗ + Λ12Δ2,  (A2) 

where Δ1∗  is the direct effect of 𝑀1 on 𝑌 (the effect not mediated by 𝑀2). 

 Now, the person-specific effect of 𝑇 on 𝑌 is given by 

 B = Γ1Δ1∗ + Γ2Δ2. (A3) 

Typically, we want to estimate 𝛿1 = 𝐸[Δ1] and 𝛿2 = 𝐸[Δ2].  Given a multi-site trial, within 

each site 𝑠, we have 

𝛽𝑠 = 𝐸[𝐵|𝑠] = 𝐸[Γ1Δ1∗ |𝑠 ] + 𝐸[Γ2Δ2|𝑠 ] 

= 𝛿1𝑠∗ 𝛾1𝑠 + 𝛿2𝑠𝛾2𝑠 + 𝐶𝑜𝑣𝑠(Γ1,Δ1∗) + 𝐶𝑜𝑣𝑠(Γ2,Δ2). 
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 (A4) 

Let us assume 𝐶𝑜𝑣𝑠(Γ1,Δ1∗) = 0 and 𝐶𝑜𝑣𝑠(Γ2,Δ2) = 0.  The first of these says that the 

person-specific compliance of 𝑀1 is uncorrelated with the direct effect of 𝑀1 on 𝑌.  The 

second can be written as 

𝐶𝑜𝑣𝑠(Γ2,Δ2) = 𝐶𝑜𝑣𝑠(Γ2∗ + Γ1Λ12,Δ2) 

= 𝐶𝑜𝑣𝑠(Γ2∗,Δ2) + 𝐶𝑜𝑣𝑠(Γ1Λ12,Δ2) 

= 𝐶𝑜𝑣𝑠(Γ2∗,Δ2) + 𝛾1𝑠𝐶𝑜𝑣𝑠(Λ12,Δ2) + 𝜆12𝑠𝐶𝑜𝑣𝑠(Γ1,Δ2)

+ 𝐸[(Γ1 − 𝛾1𝑠)(Λ12 − 𝜆12𝑠)(Δ2 − 𝛿2𝑠)|𝑆 = 𝑠] 

= 0. 

 (A5) 

This says that the person-specific effect of 𝑀2 cannot be correlated with any of the paths 

leading to it (and that the third centered moment of {Γ1, Λ12, Δ2} must be zero, a condition 

that is met if the three terms are linearly related to one another and if each of them has a 

non-skew distribution).  Thus, if the mediators are not parallel, then assumption (vii.a) 

must be expanded to include the assumption that, within sites, the direct effect of any 

mediator cannot be correlated with any upstream pathway leading from the treatment to 

that mediator. 

 Given this assumption, we have  

𝛽𝑠 = 𝛿1𝑠∗ 𝛾1𝑠 + 𝛿2𝑠𝛾2𝑠 

= 𝛿1∗𝛾1𝑠 + 𝛿2𝛾2𝑠 + 𝜔𝑠, 

 (A6) 

where 𝜔𝑠 = (𝛿1𝑠∗ − 𝛿1∗)𝛾1𝑠 + (𝛿2𝑠 − 𝛿2)𝛾2𝑠.  As above, we require the assumption that this 

error term be independent of 𝛾1𝑠 and 𝛾2𝑠: 
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𝐸[𝜔𝑠|𝛾1𝑠, 𝛾2𝑠] = 𝛾1𝑠 ∙ 𝐸[(𝛿1𝑠∗ − 𝛿1∗)|𝛾1𝑠, 𝛾2𝑠] + 𝛾2𝑠 ∙ 𝐸[(𝛿2𝑠 − 𝛿2)|𝛾1𝑠, 𝛾2𝑠] = 0. 

 (A7) 

A necessary, but not sufficient, condition for this to be true is that  

𝐶𝑜𝑣(𝛿1𝑠∗ , 𝛾1𝑠) = 0; 

𝐶𝑜𝑣(𝛿2𝑠, 𝛾1𝑠) = 0; 

𝐶𝑜𝑣(𝛿1𝑠∗ , 𝛾2𝑠) = 0; 

𝐶𝑜𝑣(𝛿2𝑠, 𝛾2𝑠) = 0. 

 (A8) 

The first two of these expressions indicate that the site-average compliance of mediator 1 is 

uncorrelated with the site average direct effects of both mediators 1 and 2.  The third and 

fourth expressions can be written as 

𝐶𝑜𝑣(𝛿1𝑠∗ , 𝛾2𝑠) = 𝐶𝑜𝑣(𝛿1𝑠∗ , 𝛾2𝑠∗ + 𝛾1𝑠𝜆12𝑠) 

= 𝐶𝑜𝑣(𝛿1𝑠∗ , 𝛾2𝑠∗ ) + 𝛾1𝐶𝑜𝑣(𝛿1𝑠∗ , 𝜆12𝑠) + 𝜆12𝐶𝑜𝑣(𝛿1𝑠∗ , 𝛾1𝑠) 

+𝐸[(𝛿1𝑠∗ − 𝛿1∗)(𝛾1𝑠 − 𝛾1)(𝜆12𝑠 − 𝜆12)], 

and 

𝐶𝑜𝑣(𝛿2𝑠, 𝛾2𝑠) = 𝐶𝑜𝑣(𝛿2𝑠, 𝛾2𝑠∗ + 𝛾1𝑠𝜆12𝑠) 

= 𝐶𝑜𝑣(𝛿2𝑠, 𝛾2𝑠∗ ) + 𝛾1𝐶𝑜𝑣(𝛿2𝑠, 𝜆12𝑠) + 𝜆12𝐶𝑜𝑣(𝛿2𝑠, 𝛾1𝑠)

+ 𝐸[(𝛿2𝑠 − 𝛿2)(𝛾1𝑠 − 𝛾1)(𝜆12𝑠 − 𝜆12)]. 

 (A9) 

Thus, we require that the site-average direct effects of each mediator be independent of the 

site-average compliance of each mediator and independent of the site-average effect of 

mediator 1 on mediator 2 (and that the third centered moment of {𝛾1𝑠, 𝜆12𝑠, 𝛿2𝑠} must be 

zero).  In particular, we require 𝐶𝑜𝑣(𝛿1𝑠∗ , 𝜆12𝑠) = 𝐶𝑜𝑣(𝛿2𝑠, 𝜆12𝑠) = 0. 
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 Given these assumptions, and the ignorable treatment assignment and sufficient 

rank assumptions (assumptions viii and ix), we can identify 𝛿1∗ and 𝛿2 from the regression 

model 

 𝛽𝑠 = 𝛿1∗𝛾1𝑠 + 𝛿2𝛾2𝑠 + 𝜔𝑠,  (A10) 

because the 𝛽𝑠’s, 𝛾1𝑠’s, and 𝛾2𝑠’s are directly estimable from the observed data.  

Importantly, however, the assumptions are not sufficient to identify 𝛿1, the total effect of 

𝑀1.  Our assumptions imply that 𝛿1 = 𝛿1∗ + 𝜆12𝛿2, but because our assumptions are, in 

general, insufficient to identify 𝜆12, we therefore cannot identify 𝛿1.  To identify 𝜆12, we 

would require a further assumption regarding the independence of 𝛾1𝑠 and 𝛾2𝑠∗ .3  In general 

then, if we replace the parallel mediators assumption with a stronger set of assumptions 

about the independence of the person-specific and site-specific direct effects of each 

mediator with everything upstream from that mediator, we still can only identify the direct 

effect of each mediator (that part of the effect that does not operate through any other 

mediator in the model).   

 

                                                 
3 To see this, consider the lefthand part of Figure A1.  If we consider 𝑀2 as the outcome, then 𝑇 affects 𝑀2 

both directly and through 𝑀1.  Now construct a second mediator 𝑀∗ that is in the direct pathway between 𝑇 

and 𝑀2.  Let 𝑀∗ = 𝑇 for all individuals, implying that Γ∗, the person-specific effect of 𝑇 on 𝑀∗, is equal to 1 for 

all individuals, and that Δ∗, the person-specific effect of 𝑀∗ on 𝑀2 is equal to Γ2∗  for all individuals.  Now we 

have a case of parallel mediators—𝑇 affects 𝑀2 through two parallel mediators 𝑀1 and 𝑀∗.  Assumption (vii) 

implies that 𝛾1𝑠 is independent of 𝛿𝑠∗, but this is the same as assuming 𝛾1𝑠 ⊥ 𝛾2𝑠∗ .  Thus, to identify 𝜆12, we 

require the additional assumption that the direct effects of 𝑇 on both mediators are independent.  Note that 

nowhere else have we assumed that compliances are uncorrelated; this is a strong, and generally untenable, 

assumption. 
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APPENDIX B: MEAN AND VARIANCE OF MSMM-IV ESTIMATORS 

In this appendix, we first show that using two-stage least squares (2SLS) to estimate 

the MSMM-IV model with site fixed effects and site-by-treatment interactions as 

instruments is equivalent to fitting a site-level weighted least squares regression model 

where the estimated ITT effect in a given site is the outcome and where the site-specific 

first-stage effects (the ‘compliances’) are predictors.  We next show that this estimator is 

unbiased under the assumptions we outline in the paper.  Finally, we derive expressions for 

the sampling variance of the 2SLS MSMM-IV model under conditions of both homogeneity 

and heterogeneity of the mediator effects. 

 

Notation 

We have persons 𝑖 = 1, … ,𝑛𝑠  nested within sites 𝑠 = 1, … ,𝐾.  Let 𝑁 =

∑ 𝑛𝑠𝐾
𝑠=1 .  Person 𝑖 in site 𝑠 is assigned to treatment condition 𝑇𝑖𝑠 (which is measured in an 

interval-scaled metric) and is observed to have a vector of 𝑃 continuous mediators 

𝐌𝑖𝑠 = (𝑀1𝑖𝑠,𝑀2𝑖𝑠, … ,𝑀𝑃𝑖𝑠)′, and outcome 𝑌𝑖𝑠.  Under the nine assumptions outlined above, 

𝑇𝑖𝑠 is an instrument that identifies the vector of effects 𝛅 = (𝛿1,𝛿2, . . , 𝛿𝑃)′ of mediators 

𝑀1,𝑀2, … ,𝑀𝑃 on 𝑌.   

Let 𝐘 be the 𝑁 x 1 vector of observed outcomes.  Let 𝟏 be the 𝑁 x 1 vector with 

elements equal to unity and let 𝜂 be a scalar.  Let 𝐌 be the 𝑁 x 𝑃 matrix of observed 

mediators.  Let 𝐓 be the 𝑁 x 𝑁 matrix with the values of 𝑇 on the diagonals.  Finally, let 𝐒 be 

the 𝑁 x 𝐾 matrix with element 𝑠𝑖𝑠 = 1 if person 𝑖 is in site 𝑘 and 𝑠𝑖𝑘 = 0 otherwise. 
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The Two-stage Least Squares Estimator 

 The 2SLS model is 

𝐘 = 𝐒𝛈 + 𝐸(𝐌|𝐓)𝛅 + 𝐮,    𝐮~(𝟎,𝜎𝑢2𝐈), 

  (B1) 

where 𝛈 is a 𝐾 x 1 vector of site-specific intercepts, and where the conventional “first stage” 

gives us 𝐸(𝐌|𝐓) = 𝐒𝛍 + 𝐓𝐒𝛄, where 𝛍 is the 𝐾 x 𝑃 matrix of site-specific intercepts from 

the first stage equations and 𝛄 is the 𝐾 x 𝑃 matrix of compliance parameters from the first 

stage equations (i.e., 𝛾𝑠𝑝 is the average effect of 𝑇 on 𝑀𝑝 in site 𝑠).4  Thus, (B1) is equivalent 

to  

𝐘 = 𝐒𝛈 + 𝐒𝝁𝛅+ 𝐓𝐒𝛄𝛅 + 𝐮. 

  (B2) 

The fixed effects estimator of 𝛅 can be obtained by centering the elements of (B2) around 

their site means, yielding 

𝐘∗ = 𝐓∗𝐒𝛄𝛅+ 𝐮∗, 

  (B3) 

where 𝐘∗ is the 𝑁 x 1 vector with elements 𝑌𝑖𝑠∗ = 𝑌𝑖𝑠 − 𝑌�∙𝑠; 𝐓∗ is the 𝑁 x 𝑁 matrix with 

diagonal elements 𝑇𝑖𝑠∗ = 𝑇𝑖𝑠 − 𝑇�∙𝑠; and 𝐮∗ is the 𝑁 x 1 vector with elements 𝑢𝑖𝑠∗ = 𝑢𝑖𝑠 − 𝑢�∙𝑠.  

Now, the OLS estimator for (B3) will be 

𝛅� = (𝛄′𝐒′𝐓∗′𝐓∗𝐒𝛄)−1(𝛄′𝐒′𝐓∗′𝐘∗). 

  (B4) 

                                                 
4 Note that (B1) assumes that errors are i.i.d.; this is a standard (though potentially problematic) assumption 
in 2SLS models.  In particular, if the 𝛿𝑝𝑠’s vary across sites, the i.i.d. assumption is likely to be invalid.  Note 
that the i.i.d. assumption is an assumption of a specific IV estimator, rather than an identifying assumption of 
the MSMM-IV method in general.   
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Now we note that 𝐖 = 𝐒′𝐓∗′𝐓∗𝐒 will be the diagonal 𝐾 x 𝐾 weight matrix with diagonal 

elements equal to 𝑤𝑠 = 𝑛𝑠𝜎𝑇𝑠2 , where 𝜎𝑇𝑠2  is the variance of 𝑇 in site 𝑠.  So we have 

 

𝛅� = (𝛄′𝐖𝛄)−1(𝛄′𝐒′𝐓∗′𝐘∗). 

  (B5) 

Now note that if we fit the reduced form fixed effects model 𝐘 = 𝐒𝛉 + 𝐓𝐒𝛃, where 𝛉 is a 

𝐾 x 1 vector of site-specific intercepts and 𝛃 is the 𝐾 x 1 vector of ITT effects (i.e., 𝛽𝑠 is the 

average effect of 𝑇 on 𝑌 in site 𝑠), using the same centering strategy as above, we get  

𝛃� = 𝐖−1(𝐒′𝐓∗′𝐘∗) 

𝐖𝛃� = 𝐒′𝐓∗′𝐘∗. 

  (B6) 

Substituting (B6) into (B5) yields 

𝛅� = (𝛄′𝐖𝛄)−1�𝛄′𝐖𝛃��. 

  (B7) 

We can therefore reformulate the 2SLS regression model in (B2) as a site-level weighted 

least squares regression of the estimated ITT effects on the site-specific compliances, 

where the weights are 𝑤𝑠: 

𝛃� = 𝛄𝛅+ 𝛚, 𝛚~(𝟎,𝜎2𝐖−1). 

  (B8) 

Equation (B8) implicitly assumes that 𝛅 is homogenous across sites.  More generally, 

however, the effect of the mediators may vary among sites.  In order to compute the bias 

and variance of the MSMM-IV 2SLS estimator, we consider the general case where the 

effect of each mediator may be heterogenous.  First we define 𝛄𝑠 as the 𝑠𝑡ℎ row of 𝛄 (that is 
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𝛄𝑠 is the 1 x 𝑃 vector of compliances in site 𝑠) and we define 𝛅𝑠 is the 𝑃 x 1 vector of effects 

of the mediators in site 𝑠.  Note that we can write the estimated ITT effect in site 𝑠 as  

 

𝛽̂𝑠 = 𝐸(Β|𝑠) + 𝑒s 

= �𝐸(Γ𝑟 ∙ Δ𝑟|𝑠)
𝑃

𝑟=1

+ 𝑒s 

= �𝛾𝑟𝑠𝛿𝑟𝑠 + 𝑐𝑜𝑣(Γ𝑟 ,Δ𝑟)|𝑠
𝑃

𝑟=1

+ 𝑒s 

= �[𝛾𝑟𝑠𝛿𝑟 + 𝛾𝑟𝑠(𝛿𝑟𝑠 − 𝛿𝑟) + 𝑐𝑜𝑣(Γ𝑟,Δ𝑟)|𝑠]
𝑃

𝑟=1

+ 𝑒s 

= 𝛄𝑠𝛅 + 𝛄𝑠(𝛅𝑠 − 𝛅) + 𝐶𝑠 + 𝑒s 

= 𝛄𝑠𝛅 + 𝛄𝑠𝐛𝑠 + 𝐶𝑠  + 𝑒s, 

  (B9) 

where 𝑒𝑠 = 𝛽̂𝑠 − 𝛽𝑠~𝑁(0,𝜎2/𝑤𝑠); 𝐛𝑠 = 𝛅𝑠 − 𝛅 ~ 𝑁(𝟎, 𝝉), 𝝉 being a 𝑃 x 𝑃 covariance matrix, 

and where 𝐶𝑠 = ∑ 𝑐𝑜𝑣(Γ𝑟 ,Δ𝑟)|𝑠𝑃
𝑟=1 .  We can then write (B9) as 

⎝

⎛
𝛽̂1
𝛽̂2
⋮
𝛽̂𝐾⎠

⎞ = �

𝛄1
𝛄2
⋮
𝛄𝐾

�𝛅 + �

𝛄1 0 ⋯ 0
0 𝛄2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝛄𝐾

��

𝐛1
𝐛2
⋮
𝐛𝐾

� + �

𝐶1
𝐶2
⋮
𝐶𝐾

� + �

𝑒1
𝑒2
⋮
𝑒𝐾

�, 

  (B10) 

Or, more compactly, as 

𝛃� = 𝛄𝛅 + 𝐙𝐛 + 𝐂 + 𝐞, 

  (B11) 
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Where 𝐂 and 𝐞 are the 𝐾 x 1 vectors of the 𝐶𝑠’s and 𝑒𝑠’s and 𝐙 is the diagonal matrix 

containing the 𝛄𝑠 vectors.  Substituting (B11) into (B7) yields 

𝛅� = (𝛄′𝐖𝛄)−1�𝛄′𝐖𝛃�� 

= (𝛄′𝐖𝛄)−1𝛄′𝐖(𝛄𝛅+ 𝐙𝐛 + 𝐂 + 𝐞) 

= 𝛅 + (𝛄′𝐖𝛄)−1𝛄′𝐖(𝐙𝐛 + 𝐂 + 𝐞). 

  (B12) 

 

Bias of the 2SLS Estimator 

 To find the bias in the 2SLS estimator, we take the conditional expectation of (B12), 

given 𝛄:  

𝐸�𝛅��𝛄� = 𝛅 + (𝛄′𝐖𝛄)−1𝛄′𝐖[𝐙𝐸(𝐛|𝛄) + 𝐸(𝐂|𝛄) + 𝐸(𝐞|𝛄)]. 

  (B13) 

Under the assumption of ignorable assignment of 𝑇, 𝐸(𝐞|𝛄) = 𝐸(𝐞) = 𝟎.  Under the no 

within-site compliance-effect covariance assumption, 𝐂 = 𝟎, so 𝐸(𝐂|𝛄) = 𝐸(𝐂) = 𝟎.  

Finally, under the between-site compliance-effect independence assumption, 𝐸(𝐛|𝛄) =

𝐸(𝐛) = 𝟎.  Therefore, 𝐸�𝛅��𝛄� = 𝛅 and the estimator is unbiased. 

 

Variance of the 2SLS Estimator 

 Noting that 𝑉𝑎𝑟�𝛃�� =  𝐙𝝉𝐙′ + 𝜎2𝐖−1, we can write the variance of the 2SLS MSMM-

IV estimator as 

𝑉𝑎𝑟�𝛅��𝛄� = (𝛄′𝐖𝛄)−1𝛄′𝐖�𝑉𝑎𝑟�𝛃���𝐖′𝛄(𝛄′𝐖𝛄)−𝟏 

= (𝛄′𝐖𝛄)−1𝛄′𝐖[𝐙𝝉𝐙′]𝐖′𝛄(𝛄′𝐖𝛄)−𝟏 + 𝜎2(𝛄′𝐖𝛄)−𝟏. 

  (B14) 
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Note that if the effects are homogenous, that is, if 𝝉 = 𝟎, then (B14) becomes simply 

𝑉𝑎𝑟�𝛅��𝛄� = 𝜎2(𝛄′𝐖𝛄)−𝟏. 

  (B15) 

 

APPENDIX C: EXPRESSIONS FOR THE BETWEEN-SITE  

COMPLIANCE-EFFECT COVARIANCE BIAS WHEN 𝑃 = 1 OR 𝑃 = 2. 

 Here we derive expressions for the bias due to non-independence of the site-specific 

compliance and effect parameters in the 2SLS MSMM-IV estimator when there are one or 

two mediators.  In order to simplify these expressions somewhat, and express them in 

terms of the means, variances, and covariances of the site-specific compliance and effect 

parameters, we require several simplifying assumptions. 

 First, we assume 𝑤𝑠 is constant across sites (sample sizes and treatment variance 

are constant across sites).  We also assume there is no within-site compliance-effect 

covariance (i.e., 𝑐𝑜𝑣(Γ1,Δ1)|𝑠 =  𝑐𝑜𝑣(Γ2,Δ2)|𝑠 = 0 for all 𝑠 ∈ 1, … ,𝐾).  Next we assume that 

the 𝛾𝑠’s and 𝛿𝑠’s are linearly related to one another (i.e., we allow them to be correlated, but 

constrain them to have a linear relationships such that there are constants 𝑎𝑝 and 𝑏𝑏such 

that 𝛾𝑝𝑠 = 𝑎 + 𝑏𝛿𝑝𝑠 + 𝑒𝑝𝑠,𝐸�𝑒𝑝𝑠|𝛿𝑝𝑠� = 𝐸�𝑒𝑝𝑠� = 0, for all 𝑝 ∈ 1, … ,𝑃).  Finally, we assume 

that the 𝛾𝑠’s and 𝛿𝑠’s have non-skew distributions (i.e, that ∑ �𝛾𝑝𝑠 − 𝛾𝑝�
3

= ∑ �𝛿𝑝𝑠 −𝐾
𝑠=1

𝐾
𝑠=1

𝛿𝑝�
3

= 0).  Under these assumptions, (B12) becomes 

𝐸�𝛅� − 𝛅�𝛄� = (𝛄′𝛄)−1𝛄′𝐙𝐛. 

= (𝛄′𝛄)−1�𝛄s′𝛄s

𝐾

𝑠=1

(𝛅𝑠 − 𝛅) 
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= (𝛄′𝛄)−1�(𝛄s′ − 𝛄�′)(𝛄s − 𝛄�)(𝛅𝑠 − 𝛅) + (𝛄�′𝛄𝑠 + 𝛄𝑠′ 𝛄� − 𝛄�′𝛄�)(𝛅𝑠 − 𝛅)
𝐾

𝑠=1

 

= (𝛄′𝛄)−1�(𝛄s′ − 𝛄�′)(𝛄s − 𝛄�)(𝛅𝑠 − 𝛅)
𝐾

𝑠=1

+ (𝛄�′(𝛄𝑠 − 𝛄�) + (𝛄𝑠′ − 𝛄�′)𝛄� + 𝛄�′𝛄�)(𝛅𝑠 − 𝛅) , 

  (C1) 

where 𝛄� is the 1 x 𝑃 matrix containing the averages of the 𝛾𝑝𝑠’s across sites.  Under the 

linearity and non-skew assumptions above, ∑ (𝛄s′ − 𝛄�′)𝐾
𝑠=1 (𝛄s − 𝛄�)(𝛅𝑠 − 𝛅) = 𝟎.  Likewise, 

it is straightforward to show that ∑ 𝛄�′𝛄�(𝛅𝑠 − 𝛅)𝐾
𝑠=1 = 𝟎.  After applying these assumptions, 

(C1) is now 

𝐸�𝛅� − 𝛅�𝛄� = (𝛄′𝛄)−1�(𝛄�′(𝛄𝑠 − 𝛄�) + (𝛄𝑠′ − 𝛄�′)𝛄�)(𝛅𝑠 − 𝛅)
𝐾

𝑠=1

. 

  (C2) 

Bias in the 𝑃 = 1 Case 

 When 𝑃 = 1, (C2) becomes  

𝐸�δ� − δ�𝛄� = �𝛾12 + 𝑣𝑎𝑟(𝛾1𝑠)�
−1
�2γ1(𝛾1𝑠 − 𝛾1)(𝛿1𝑠 − 𝛿1)
𝐾

𝑠=1

 

=
2𝛾1𝐶𝑜𝑣(𝛾1𝑠, 𝛿1𝑠)
𝛾12 + 𝑣𝑎𝑟(𝛾1𝑠) . 

  (C3) 

Note that (C3) can be rewritten as  

𝐸�δ� − δ�𝛄� = 2𝜌𝛾𝛿𝜎𝛿
𝐶𝑉(𝛾)

𝐶𝑉(𝛾)2 + 1
, 

  (C4) 
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where 𝜌𝛾𝛿 is the correlation between 𝛾1 and 𝛿1; 𝜎𝛿  is the standard deviation of 𝛿1 across 

sites; and 𝐶𝑉(𝛾) = 𝜎𝛾
𝛾

 is the coefficient of variation of 𝛾.  For given values of 𝜌𝛾𝛿 and 𝜎𝛿 , the 

bias is maximized when 𝐶𝑉(𝛾) = 1.  The bias decreases to 0 as 𝐶𝑉(𝛾) ⇒ 1 and as 

𝐶𝑉(𝛾) ⇒ ∞.  Thus, under some simplifying assumptions about the joint distribution of 𝛾 

and 𝛿 (linear association, non-skew distributions), the asymptotic bias in the mulitiple-site 

IV estimator can be written as a relatively simple function of the variances and covariances 

of 𝛾 and 𝛿.  It may be possible to bound the bias term using information about the plausible 

distributions of the 𝛾’s and 𝛿’s obtained from other analyses. 

 

Bias in the 𝑃 = 2 Case 

 When 𝑃 = 2, (C2) becomes 

𝐸�𝛅� − 𝛅�𝛄� = (𝛄′𝛄)−1�(𝛄�′(𝛄𝑠 − 𝛄�) + (𝛄𝑠′ − 𝛄�′)𝛄�)(𝛅𝑠 − 𝛅)
𝐾

𝑠=1

 

= 𝐾(𝛄′𝛄)−1 �2𝛾1𝑐𝑜𝑣
(𝛾1𝑠, 𝛿1𝑠) + 𝛾1𝑐𝑜𝑣(𝛾2𝑠, 𝛿2𝑠) + 𝛾2𝑐𝑜𝑣(𝛾1𝑠, 𝛿2𝑠)

𝛾2𝑐𝑜𝑣(𝛾1𝑠, 𝛿1𝑠) + 2𝛾2𝑐𝑜𝑣(𝛾2𝑠, 𝛿2𝑠) + 𝛾1𝑐𝑜𝑣(𝛾2𝑠, 𝛿1𝑠)� 

= 𝐾2 � 𝛾12 + 𝑣𝑎𝑟(𝛾1𝑠) 𝛾1𝛾2 + 𝑐𝑜𝑣(𝛾1𝑠, 𝛾2𝑠)
𝛾1𝛾2 + 𝑐𝑜𝑣(𝛾1𝑠, 𝛾2𝑠) 𝛾22 + 𝑣𝑎𝑟(𝛾2𝑠) �

−1

∙ �2𝛾1𝑐𝑜𝑣
(𝛾1𝑠, 𝛿1𝑠) + 𝛾1𝑐𝑜𝑣(𝛾2𝑠, 𝛿2𝑠) + 𝛾2𝑐𝑜𝑣(𝛾1𝑠, 𝛿2𝑠)

𝛾2𝑐𝑜𝑣(𝛾1𝑠, 𝛿1𝑠) + 2𝛾2𝑐𝑜𝑣(𝛾2𝑠, 𝛿2𝑠) + 𝛾1𝑐𝑜𝑣(𝛾2𝑠, 𝛿1𝑠)� 

=
1
𝐷
�

𝛾22 + 𝑣𝑎𝑟(𝛾2𝑠) −𝛾1𝛾2 − 𝑐𝑜𝑣(𝛾1𝑠, 𝛾2𝑠)
−𝛾1𝛾2 − 𝑐𝑜𝑣(𝛾1𝑠, 𝛾2𝑠) 𝛾12 + 𝑣𝑎𝑟(𝛾1𝑠)

�

∙  �2𝛾1𝑐𝑜𝑣
(𝛾1𝑠, 𝛿1𝑠) + 𝛾1𝑐𝑜𝑣(𝛾2𝑠, 𝛿2𝑠) + 𝛾2𝑐𝑜𝑣(𝛾1𝑠, 𝛿2𝑠)

𝛾2𝑐𝑜𝑣(𝛾1𝑠, 𝛿1𝑠) + 2𝛾2𝑐𝑜𝑣(𝛾2𝑠, 𝛿2𝑠) + 𝛾1𝑐𝑜𝑣(𝛾2𝑠, 𝛿1𝑠)� , 

  (C5) 

where  
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𝐷 = �𝛾12 + 𝑣𝑎𝑟(𝛾1𝑠)��𝛾22 + 𝑣𝑎𝑟(𝛾2𝑠)� − �𝛾1𝛾2 + 𝑐𝑜𝑣(𝛾1𝑠, 𝛾2𝑠)�
2

. 

  (C6) 

After a bit more matrix algebra and rearrangement, we have 

𝐸�𝛿1 − 𝛿1|𝛾� = 𝐴11𝐶𝑜𝑣(𝛾1𝑠, 𝛿1𝑠) + 𝐴12𝐶𝑜𝑣(𝛾1𝑠, 𝛿2𝑠) + 𝐴21𝐶𝑜𝑣(𝛾2𝑠, 𝛿1𝑠) + 𝐴22𝐶𝑜𝑣(𝛾2𝑠, 𝛿2𝑠) 

𝐸�𝛿2 − 𝛿2|𝛾� = 𝐵11𝐶𝑜𝑣(𝛾1𝑠, 𝛿1𝑠) + 𝐵12𝐶𝑜𝑣(𝛾1𝑠, 𝛿2𝑠) + 𝐵21𝐶𝑜𝑣(𝛾2𝑠, 𝛿1𝑠) + 𝐵22𝐶𝑜𝑣(𝛾2𝑠, 𝛿2𝑠), 

  (C7) 

where 

𝐴11 =
1
𝐷

[𝛾1𝛾22 + 2𝛾1𝑉𝑎𝑟(𝛾2𝑠) − 𝛾2𝐶𝑜𝑣(𝛾1𝑠, 𝛾2𝑠)] 

𝐴22 =
−1
𝐷

[𝛾1𝛾22 + 𝛾1𝑉𝑎𝑟(𝛾2𝑠) + 2𝛾2𝐶𝑜𝑣(𝛾1𝑠, 𝛾2𝑠)] 

𝐴12 =
1
𝐷

[𝛾23 + 𝛾2𝑉𝑎𝑟(𝛾2𝑠)] 

𝐴21 =
−1
𝐷

[𝛾12𝛾2 + 𝛾1𝐶𝑜𝑣(𝛾1𝑠, 𝛾2𝑠)] 

 

𝐵11 =
−1
𝐷

[𝛾12𝛾2 + 𝛾2𝑉𝑎𝑟(𝛾1𝑠) + 2𝛾1𝐶𝑜𝑣(𝛾1𝑠, 𝛾2𝑠)] 

𝐵22 =
1
𝐷

[𝛾12𝛾2 + 2𝛾2𝑉𝑎𝑟(𝛾1𝑠) − 𝛾1𝐶𝑜𝑣(𝛾1𝑠, 𝛾2𝑠)] 

𝐵12 =
−1
𝐷

[𝛾1𝛾22 + 𝛾2𝐶𝑜𝑣(𝛾1𝑠, 𝛾2𝑠)] 

𝐵21 =
1
𝐷

[𝛾13 + 𝛾1𝑉𝑎𝑟(𝛾1𝑠)]. 

  (C8) 

The key thing to note here is that the bias in 𝛿1 depends not only on the covariance 

between 𝛾1𝑠 and 𝛿1𝑠, but also on 𝐶𝑜𝑣(𝛾1𝑠, 𝛿2𝑠), 𝐶𝑜𝑣(𝛾2𝑠, 𝛿1𝑠), and 𝐶𝑜𝑣(𝛾2𝑠, 𝛿2𝑠).  Similarly, 
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the bias in 𝛿2 depends not only on the covariance between 𝛾2𝑠 and 𝛿2𝑠, but also on 

𝐶𝑜𝑣(𝛾1𝑠, 𝛿2𝑠), 𝐶𝑜𝑣(𝛾2𝑠, 𝛿1𝑠), and 𝐶𝑜𝑣(𝛾1𝑠, 𝛿1𝑠).   Moreover, the biases are very complex 

functions of these covariances, so it will not be easy to predict their magnitude or direction 

in practical applications. 
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