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Abstract Body 
Limit 4 pages single-spaced. 

 
Background / Context:  
Description of prior research and its intellectual context. 
 
When randomized experiments cannot be conducted in practice, propensity score (PS) 
techniques for matching treated and control units are frequently used for estimating causal 
treatment effects from observational data. Despite the popularity of PS techniques, they are not 
yet well studied for matching multilevel data where selection into treatment takes place among 
level-one units within clusters. For instance, students self-select into treatment conditions within 
schools (or teachers or classrooms). We investigate two different strategies for matching level-
one units (students): (i) within-cluster matching where matches are only formed within clusters 
(schools) and (ii) across-cluster matching where treatment and control units may be matched also 
across clusters. Using a simulation study, we show that both matching strategies are able to 
produce consistent estimates of the average treatment effect. However, across-cluster matching 
requires stronger assumptions than within-cluster matching. We also demonstrate that a lack of 
overlap between treated and control units within clusters cannot directly be compensated by 
switching to a between-cluster matching strategy. 
 
Matching treatment and control units in the context of multilevel data is typically more 
challenging than for data structures with a single level only because (i) units within clusters are 
not independent, (ii) interventions may be implemented at different levels (e.g., student-, 
classroom-, or school-level), and (iii) selection processes may simultaneously take place at 
different levels and involve many stakeholders (students, peers, parents, teachers, school 
management, parent teacher association), differ from school to school or district to district, and 
might introduce selection biases of different directions at different levels. Similarly, also the 
data-generating outcome model might differ across clusters. Because selection processes and 
outcome model might differ considerably across clusters, matching strategies need to take this 
heterogeneity across clusters into account (Authors, in press). 
 
Given that treatment selection takes place among units within clusters, level-one units are ideally 
matched within clusters, mimicking a randomized block or multisite design. However, a within-
cluster matching strategy might not always be feasible. First, with small sample sizes within 
clusters (as often the case in educational research) we might obtain only poor within-cluster 
matches. Second, extreme selection processes within clusters typically results in quite 
heterogeneous treatment and control groups lacking overlap. In both cases, within-cluster 
matching estimators might be considerably biased due to poor matches. Thus, the idea is to allow 
for matches across clusters—as a general strategy or only for units for which no close match 
within a cluster can be found. However, an across-cluster matching strategy relies on much 
stronger assumptions than a within-cluster matching approach: the level-one units’ propensity 
score need to be correctly estimated across clusters, which requires the reliable measurement and 
correct modeling of all level-two covariates that explain selection and outcome differences 
across clusters (this is not necessary for within-cluster matching since the PS is estimated for 
each cluster separately). Using different simulated data scenarios, this paper compares the 
performance of within-cluster and across-cluster matching estimators.  
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Purpose / Objective / Research Question / Focus of Study: 
Description of the focus of the research. 
 
Using a simulation study, the purpose of the study is (a) to demonstrate under which conditions 
within-cluster matching breaks down but across-cluster matching strategies work, (b) to compare 
fixed-effects and random-effects models for estimating the unknown propensity score, and (c) to 
investigate the relative effectiveness of different PS techniques (optimal full matching on the PS, 
PS stratification and inverse-propensity weighting). The results of the simulation study are 
evaluated against the true population effect which is known for the simulation.  
 
Setting: 
Description of the research location. 
(May not be applicable for Methods submissions)  
NA 
 
Population / Participants / Subjects:  
Description of the participants in the study: who, how many, key features, or characteristics. 
(May not be applicable for Methods submissions) 
NA 
 
Intervention / Program / Practice:  
Description of the intervention, program, or practice, including details of administration and duration. 
(May not be applicable for Methods submissions)  
NA 
 
Significance / Novelty of study: 
Description of what is missing in previous work and the contribution the study makes. 
 
Though several recent studies already investigated across-cluster matching strategies (Arpino & 
Mealli, 2008; Hong & Raudenbush, 2006; Kelcey, 2009; Kim & Seltzer, 2007; Thoemmes & 
West, 2011) they did not address the full complexity involved in matching units across clusters. 
For instance, none of these studies varied both the data-generating selection model and the 
outcome model, or explicitly investigated situations of small samples or lack of overlap. 
Moreover, the published studies are not explicit about the assumptions that are required for 
identifying average causal effects with an across-cluster matching strategy. Since we 
systematically investigate and compare across-cluster matching to within-cluster matching, this 
study will guide researchers in selecting an appropriate matching strategy and matching 
technique. 
 
Statistical, Measurement, or Econometric Model:  
Description of the proposed new methods or novel applications of existing methods. 
 
In our simulations we used a model with two level-one (p = 2) and two level-two covariates (q = 
2). In using different coefficient matrices, we created target populations that differ in the degree 
of overlap, the heterogeneity of the selection and outcome models across clusters, and the 
complexity of the models (i.e., with or without interaction terms and cross-level interactions). 
Details about how we generated the target populations are given in Appendix B. In simulating 
repeated sampling from an underlying target population of clusters and units, we sampled 30 
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clusters (out of 500) and 40% of units within each sampled cluster. In each iteration of the 
simulation, we first estimated different PS models and then the treatment effect using different 
PS techniques. 
Estimation of PS. In estimating the unknown PS we used several fixed and random effects 
models. We estimated three fixed effects model, the first only including the main effects of level-
one and level-two covariates, the second adds cluster fixed-effect (i.e., dummy variable for 
clusters), and the third also includes all interaction terms of level-two covariates (among each 
other and with level-one covariates). In addition to the three fixed effects models we also 
estimated four random effects models: two random intercept models, one with level-one and 
level-two main effects only, the other with all interaction terms of level-two covariates; two 
random slopes models where the coefficients of the two level-one covariates were modeled as (i) 
simple random coefficient and (ii) as a linear function of level-two covariates plus a stochastic 
error term. The models are shown in the notes to Table 1 in Appendix B. 
Matching Strategies. Using the different estimated PSs, we investigated two main matching 
strategies: within-cluster matching and across-cluster matching. For the within-cluster matching 
strategy we used both the jointly estimated PSs and the PS that was estimated for each cluster 
separately. In estimating the average treatment effect (ATE), we applied three PS techniques: 
optimal full matching on the PS-logit, PS stratification, and inverse propensity weighting (Rubin, 
2006; Schafer & Kang, 2008). Further, combining PS adjustments with an outcome regression 
allows for an estimation of the average treatment effect via a fixed-effects or random effects 
outcome regression. We used two fixed effects models and three random effects models for 
estimating the treatment effect (see the notes to Table 1 in Appendix B).  
 
Usefulness / Applicability of Method:  
Demonstration of the usefulness of the proposed methods using hypothetical or real data.  
 
The findings of this study guide researches in choosing an optimal matching strategy for their 
multilevel data at hand. Depending on their data (e.g., availability of level-two covariates, cluster 
sizes, and overlap of treatment and control cases within clusters) researchers might either 
consider within-cluster matching or across-cluster matching as their primary matching strategy. 
Moreover, the simulation results help to select the best performing combination of a matching 
strategy and analytic method. But our results also demonstrate under which conditions the 
different matching strategies and analytic methods break down, that is, do not successfully 
remove most of the selection bias. 
 
Research Design: 
Description of the research design (e.g., qualitative case study, quasi-experimental design, secondary analysis, 
analytic essay, randomized field trial). 
(May not be applicable for Methods submissions) 
NA 
 
Data Collection and Analysis:  
Description of the methods for collecting and analyzing data. 
(May not be applicable for Methods submissions) 
NA 
 
Findings / Results:  
Description of the main findings with specific details. 
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(May not be applicable for Methods submissions) 
 
Table 1 in Appendix B shows the estimates for the average treatment effect for a population of 
units and clusters that was generated using main effects, interactions effects, cross-level 
interaction effects, random slopes, and random intercepts in both models (the selection and 
outcome model). Moreover, a slightly heterogeneous treatment effect was modeled in generating 
the outcomes (i.e., a treatment by level-two covariate interaction was included in the outcome-
generating model). Note that Table 1 shows the results only for a single simulated population, 
but our final study will cover results on other populations with different outcome and selection 
models or different cluster sizes as well. 
The first three lines of Table 1 indicate that approximately unbiased estimates result for all three 
PS methods (weighting, stratification and matching) if the true PS is used. PS-based estimates 
are close to the true population effect of 10 points. Results are only “approximately” unbiased 
since weighting and matching estimators are consistent but not unbiased, and PS stratification 
with 5 strata removes only about 90% of the initial selection bias. Within-cluster matching 
(shown in the last column of Table 1) also results in nearly unbiased estimates. 
While fixed-effects PS models [1] and [2] produce biased estimates, PS adjustments based on 
fixed-effects model [3] (which includes cross-level interactions) result in nearly unbiased effect 
estimates although the model does not account for variations in slopes across clusters. We obtain 
similar results for PS models estimated with random effects. If the PS model includes cross-level 
interactions or random slopes nearly unbiased effect estimates can be obtained.  
The results in the first five columns of Table 1 represent the estimates of different outcomes 
models applied to the across-cluster matching strategy. The outcome models differ with respect 
to the fixed- or random-effects modeling of the intercept and the treatment effect (for details see 
the notes to Table 1). At least in this simulation, the choice of a specific outcome model—with 
random or fixed effects—had no significant effect on the point estimates of the average treatment 
effect (but it certainly has an effect on the standard errors which are not shown here). 
 
Conclusions:  
Description of conclusions, recommendations, and limitations based on findings. 
 
The results indicate that matching approaches for causal inference need to reflect the multilevel 
structure of the selection process. If matching does not reflect the cluster-specific differences in 
the selection process biased effect estimates result. Whenever possible, a within-cluster matching 
strategy should be used since it rests on weaker assumptions than across-cluster matching. 
However, the sparseness of observations within clusters or the lack of overlap might force 
researchers to match across clusters. The simulation shows that an across-cluster matching 
strategy successfully removes approximately all the bias if the PS model is (approximately) 
correctly specified across clusters. However, these preliminary results will be complemented by 
further simulations that explore variations in the target populations (like degree of overlap or 
cluster sizes) but also different across-cluster matching strategies (e.g., strategies that only allow 
for an across-cluster matching if no close matches within a cluster can be found).  
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Appendices 
Not included in page count. 

 
 
 
Appendix A. References 
References are to be in APA version 6 format.  
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Appendix B. Tables and Figures 
Not included in page count. 
 
Generation of Simulated Target Populations 
 
Generating potential control and treatment outcomes. In order to investigate different matching 
strategies, we simulated a population of approximately 150,000 units nested within 500 clusters 
with cluster-sizes between 250 and 350 units. For each unit we generated a set of covariates, a 
propensity score, a treatment status, and a set of potential outcomes. Similarly, for each cluster 
we computed a set of level-two covariates. Given a set of p level-one covariates X and q level-
two covariates W (the generation of covariates is described in more detail below), we compute 
for all units i = 1, …, nj of each cluster j = 1, …, J the potential control and treatment outcomes 
according to 

jjjj İȕXY � 00   for the potential control outcomes, and 

jjjj İȕXY � 11   for the potential treatment outcomes, 

where 0
jY  and 1

jY  are the (nj u 1) dimensional vectors of potential control and treatment 

outcomes, respectively 0
jX  and 1

jX  represent the corresponding (nj u pd)-dimensional design 
matrices of predictors including the constant but also interaction terms of the treatment indicator 
with covariates and interaction terms among level-one covariates (thus, pd > p). Design matrices 

0
jX  and 1

jX  only differ with regard to the treatment indicator Z (Z = 1 indicates the treatment 

condition, Z = 0 the control condition); All predictors involving Z are set to zero in 0
jX , thus 0

jY  

is unaffected by treatment. ),(~ 2I0İ VNj  is a (nj u 1)-dimensional vector of normally 
distributed level-one errors with expectation zero and a diagonal matrix of homogeneous 
variances. The (pd u 1)-dimensional vector of level-one outcome coefficients jȕ  is computed as 

a linear combination of level-two predictors d
jW  plus an additive error term jȦ : 

jj
d
jj ȦȖWȕ � , 

where d
jW  is the (pd u qd)-dimensional matrix of level-two predictors (including the constant, 

interaction effects and higher order terms), jȖ  the (qd u 1)-dimensional vector of level-two 
coefficients, and ),(~ ȍ0Ȧ Nj  is the (pd u 1)-dimensional vector of normally distributed level-
two errors with expectation zero and a variance-covariance matrix ȍ . 
 
Generating propensity scores and treatment statuses. In order to create the units’ true PS we use 
a logistic model that creates the cluster-specific logits of the PS as a linear combination level-one 
predictor (j = 1, …, J): 

j
s
jj įXȁ   , 

where jȁ  is the (nj u 1) dimensional vector of PS logits and s
jX  the (nj u ps)-dimensional design 

matrix of predictors in the selection model (including the constant but also interaction terms of 
the treatment indicator with covariates and interaction terms among level-one covariates). The 
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(ps u 1)-dimensional vector of level-one selection coefficients jį  is determined as a linear 

combination of level-two predictors s
jW  and an additive normally error term jȥ , 

jj
s
jj ȥȘWį � , 

where s
jW  is the (ps u qs)-dimensional design matrix of level-two predictors (including the 

constant, interaction effects and higher order terms), jȘ  the (qs u 1)-dimensional vector of level-
two coefficients and jȥ  the (ps u 1)-dimensional vector of normally distributed level-two errors 
with expectation zero and a variance-covariance matrix Ȍ , i.e., ),(~ Ȍ0ȥ Nj . 

 For each level-one unit the PS logit ijO  is transformed into the PS ijS  according to 

))exp(1(1 ijij OS �� . Finally, a random draw from a Bernoulli distribution with selection 

probability ijS  determines each unit’s treatment status ( )(Bernoulli~ ijijZ S ).     
 
Generation of level-one and level-two covariates. Since we simulated level-one covariates that 
depend on level-two covariates we generated the level-two covariates first. For each cluster j = 1, 
…, J, we randomly drew a (1 u q)-dimensional vector of level-two covariates Wj from a 
multivariate normal distribution with expectation Wȝ and a covariance matrix WȈ  
( ),(~ WW ȈȝW Nj ). Then, for each unit ij, with i = 1, …, nj and j = 1, …, J, we randomly 
sampled a (1 u p)-dimensional level-one covariate vector ijX  from a normal distribution, 

),(~ jjij N ȈȝX , with cluster-specific expectation j
x
jj N� ĳWȝ and a covariance matrix jȈ  

with randomly determined variances and covariances. x
jW  is the (p u qx)-dimensional design 

matrix that includes the constant term, interaction and higher-order terms of W, and ĳ  
represents the corresponding (qx u 1)-dimensional coefficient vector. ),(~ Ȁ0NjN  is a 
multivariate normally distributed error term with expectation zero and covariance matrix Ȁ. 
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Table 1. Estimates of the Average Treatment Effect. 

PS�model Matching�method FEͲY[1] FEͲY[2] FEͲY[3] REͲY[1] REͲY[2]
true�PS weighting 10.01 10.10 10.16 10.10 10.14 10.14

stratification 10.32 10.31 10.35 10.31 10.35 10.13
matching 10.15 10.17 10.22 10.17 10.20 10.13

FEͲPS[1] weighting 13.07 11.79 11.81 11.80 11.82 10.88
stratification 12.52 11.62 11.67 11.63 11.67 10.87
matching 12.27 11.47 11.51 11.48 11.51 10.88

FEͲPS[2] weighting 11.92 11.90 11.88 11.90 11.89 10.88
stratification 11.98 11.85 11.86 11.85 11.87 10.88
matching 11.75 11.72 11.73 11.72 11.74 10.87

FEͲPS[3] weighting 9.64 9.79 9.95 9.79 9.94 10.15
stratification 10.25 10.27 10.40 10.27 10.39 10.16
matching 10.07 10.11 10.23 10.11 10.22 10.14

REͲPS[1] weighting 12.05 11.87 11.86 11.87 11.87 10.85
stratification 12.09 11.84 11.84 11.84 11.85 10.84
matching 11.83 11.70 11.69 11.70 11.70 10.84

REͲPS[2] weighting 9.60 9.80 9.97 9.80 9.96 10.17
stratification 10.16 10.21 10.35 10.21 10.35 10.17
matching 9.94 10.03 10.18 10.03 10.16 10.15

REͲPS[3] weighting 10.16 10.15 10.20 10.15 10.19 10.06
stratification 10.44 10.33 10.36 10.33 10.35 10.06
matching 10.19 10.12 10.16 10.12 10.14 10.05

REͲPS[4] weighting 9.83 9.91 9.97 9.91 9.96 10.01
stratification 10.22 10.16 10.20 10.16 10.19 10.01
matching 9.95 9.95 10.00 9.95 9.98 10.00

acrossͲcluster�matching withinͲ
cluster�

matching
Outcome�model

 
 

Notes to Table 1. 
(i) The true effect in the population is 10. 
 
(ii) The “within-cluster matching”-column shows the results one obtains when the cluster-
specific treatment effects are estimated using the PS from the joint multilevel model. Results 
where the PS is estimated for each cluster separately are not shown (but they are close to the 
within-cluster matching estimates using the true propensity score as shown in the first three 
lines).  
 
(iii) PS models (the PS logit lij is modeled) 
Fixed effects models (FE) with/without cluster dummies Dg: 
FE-PS[1]  ¦¦   

�� 
2

1 0
2

1 000 k kjkh hijhij wxl KKK  

FE-PS[2]  ¦¦¦ �

   
��� 

1

1

2

1 0
2

1 000
J

g gjgk kjkh hijhij Dwxl GKKK  

FE-PS[3]  ¦¦ ¦¦¦ �

     
���� 

1

1

2

1

2

1

2

1 0
2

1 000
J

g gjghijh k kjhkk kjkh hijhij Dxwwxl GKKKK  

Random effects models (RE): 
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RE-PS[1]  jk kjkh hijhij wxl 0
2

1 0
2

1 000 \KKK ��� ¦¦   
 

RE-PS[2]  jhijh k kjhkk kjkh hijhij xwwxl 0
2

1

2

1

2

1 0
2

1 000 \KKKK ���� ¦ ¦¦¦     
 

RE-PS[3]  jh hijhjk kjkh hijhij xwxl 0
2

1

2

1 0
2

1 000 \\KKK ���� ¦¦¦    
 

RE-PS[4]  jhijh k hjkjhkk kjkh hijhij xwwxl 0
2

1

2

1

2

1 0
2

1 000 )( \\KKKK ����� ¦ ¦¦¦     
 

 
(iv) Outcome models 
Fixed effects models (FE) with/without cluster dummies Dg: 
FE-Y[1]  ijijij Zy HJJ �� 1000  

FE-Y[2]  ij
J

g gjgijij DZy HGJJ ��� ¦ �

 

1

11000  

FE-Y[3]  ij
J

g gjijg
J

g gjgijij DZDZy HGGJJ ���� ¦¦ �

 

�

 

1

1

1

11000  

Random effects models (FE): 
RE-Y[1]  ijjijij Zy HZJJ ��� 01000  
RE-Y[2]  ijjijjijij ZZy HZZJJ ���� 001000  
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