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Abstract Body 
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Background / Context:  
Description of prior research and its intellectual context. 
 
Many analyses for single-case designs (SCDs)—including nearly all the effect size indicators—
currently assume no trend in the data. Regression and multilevel models allow for trend, but 
usually test only linear trend and have no principled way of knowing if higher order trends 
should be represented in the model. This paper shows how Generalized Additive Models 
(GAMs) can be used to inform this aspect of the analysis.  
 
Purpose / Objective / Research Question / Focus of Study: 
Description of the focus of the research. 
 
It is well known in traditional interrupted time series analysis that correctly modeling trend in the 
data is essential to obtaining an accurate effect size estimate. Nonlinearities can be inherent in 
the data (e.g., weight loss that slows over time resulting in a quadratic trend) or can result from 
interactions of the treatment with time (e.g., after a stable baseline, a treatment slowly becomes 
more effective as more sessions occur). Modeling trend is difficult in SCDs because they rarely 
have the large number of observations on a case over time to allow use of traditional methods 
such as ARIMA modeling. Analyses of SCDs by ordinary regression or multilevel models can 
address trend, but require the researcher to impose the particular functional form, something they 
can only intuit from visual inspection of the graph. GAMs are a semi-parametric regression 
model that allows the data to inform the required functional form. We show how they can be 
applied to SCDs. Given the early stage of this research, we propose the use of GAMs as a 
sensitivity analysis for whether trend might affect the main conclusion about treatment 
effectiveness. We believe, however, they have potential to become a primary data analytic tool 
for SCD data. 
 
Setting: 
Description of the research location. 
(May not be applicable for Methods submissions)  
 
(Not applicable) 
 
Population / Participants / Subjects:  
Description of the participants in the study: who, how many, key features, or characteristics. 
(May not be applicable for Methods submissions) 
 
(Not applicable) 
 
Intervention / Program / Practice:  
Description of the intervention, program, or practice, including details of administration and duration. 
(May not be applicable for Methods submissions)  
 
(Not applicable) 
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Significance / Novelty of study: 
Description of what is missing in previous work and the contribution the study makes. 
 
This work will inform SCD researchers about whether trends in their data are likely to be a 
problem for conclusions about treatment effects. This has obvious implications for the effect size 
measures that currently assume no trend. It also will greatly assist researchers using regression 
and multilevel models in deciding if higher order polynomial or interactions need to be included 
in their models—virtually all of them assume linear trend currently.  
 
Statistical, Measurement, or Econometric Model:  
Description of the proposed new methods or novel applications of existing methods. 
 

GAMs are like generalized linear models (GLM) but they replace one or more of the usual 
terms of a GLM with a predictor that consists of a sum of smoothing functions (Wood, 2006). So 
GAM estimates both parametric and nonparametric terms. Terms with nonparametric smoothers 
(explained in more detail shortly) are used to test assumptions about trend: for instance, to see if 
the outcome is changing over time, whether change is linear, quadratic, or some other form, and 
whether the treatment effect remains constant over time as phases change. In principle, GAMs 
can be applied jointly to a set of several cases, incorporating random effects terms as in other 
hierarchical models, to assess the effects of an intervention on all cases in a study. However, we 
currently know too little about how to do this, and its strengths and weaknesses, to recommend 
GAM for that purpose in more than an exploratory sense. So here we focus on using GAMs to 
model each case separately. Our approach is consistent with the goal of using GAMs as a tool for 
model development and assumption-checking, rather than for summarizing results across an 
entire study. That approach will likely change as we learn more. 

 Within the GAM framework, the smoothing terms have to be represented in such a way 
that the GAM becomes a linear model. Imagine a simple case, in which you have one smoothed 
predictor: Yi = s(xi����İi. Imagine further that you knew that s should result in a quadratic 
relationship. The equation for s would be: s = ȕ1 + [ȕ2 + x2ȕ3. Substituting that in to the model 
equation, you get: Yi = ȕ1 + xiȕ2 + xi

2ȕ3��İi, which is a linear model in the same fashion that all 
GLM predictors are linear, even in the presence higher order polynomial terms. The problem is 
that in the real world one doesn’t know the true order of s. So, one chooses a basis, or a set of 
linearly independent vectors, that defines a functional space. These vectors, when linearly 
combined, can represent any potential vector in the basis space. All of the potential smoothing 
terms of the model are an element, or basis function, of the chosen basis. So, any potential 
smoothing term is some linear combination of linearly independent vectors in the basis. 
Choosing a basis allows the estimation of a nonlinear term from the data, but constrains the 
geometrical space from which they can be estimated (e.g. so that the smoothing does not result in 
an unrealistic value, such as a 100th order polynomial smoother).  

There are many potential basis options. A common basis is penalized cubic regression 
splines (CRS). Spline bases relate the smoothing function to the entire domain of data rather than 
a single point of the data.  CRSs are constructed from pieces of cubic polynomial curves joined 
together into a continuous function. The curves are joined together at the knots of the data set; 
knots are the places where an inflection in the curve appears. CRSs are computationally efficient, 
and their results are easily interpretable. They also can be implemented on small data sets. With 
CRSs the researcher has to specify where to place knots, or the location of the potential bends in 
the functional relationship. One can choose to equally space these knots across the span of the 
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data. Generally, the computer program default spaces the knots evenly across the data, so this is 
not an arduous process.  

Introducing smoothing parameters requires estimating the degree of smoothing necessary 
for each covariate, for example, the degree of smoothing necessary for the trend term in the 
present case. Each s term of a GAM model contains a smoothing parameter. The smoothing 
parameter estimates the optimal amount of smoothing to fit the data while simultaneously adding 
a penalty for increased “wiggliness” of the smoothing function. Adding a penalty matrix to the 
least squares estimation model avoids over-fitting the smooth to the data. Within this framework, 
s approaches a straight line as the smoothing parameter approaches infinity. The optimal degree 
of smoothness can be estimated directly from the data. GAMs are maximized by penalized 
iteratively re-weighted least squares (P-IRLS). The optimal smoothing parameter is chosen by 
calculating a generalized cross-validation (GCV) score of each iteration. The underlying idea is 
to remove one data point from the data set, re-estimate the model, and then estimate the predicted 
value of the removed data point, based on the new model. The observed data point is subtracted 
from the predicted value, and the deviations are squared. This process is repeated for every data 
point, and the squared deviations are averaged. The resulting average is the cross validation 
score. However, this process is computationally tedious. An equivalent score calculation is 

V = ݊σ (௡
௜ୀଵ yi  - መ݂i)2/[tr(I - A)]2. 

yi is the observed data point, መ݂ is the predicted value of that data point, I is the identity matrix of 
the full model, and A is the model influence matrix, a matrix that maps the vector of observed 
values, y, to the vector of predicted or fitted values, f, and describes the influence that each 
observed value has on each fitted value. Tr(I - A) is the trace, or sum of the matrix diagonals, of 
the matrix that results from of the model influence matrix, A, subtracted from I, the identity 
matrix. The smaller the GCV score, the better the model fit. Models can be compared using their 
GVC scores, illustrated in the examples below. 

The model output also lists the effective degrees of freedom of the smoothing term. The 
effective degrees of freedom is defined as the trace of A, the model influence matrix (recall that 
the influence matrix is a matrix that maps the vector of observed values to the vector of predicted 
or fitted values and describes the influence that each observed value has on each fitted value). 
Estimated degrees of freedom equal to one is a linear effect (Wood, 2006). As the effective 
degrees of freedom increase, the parameter smooth becomes wigglier. When using cubic 
regression splines, effective degrees of freedom are very roughly equivalent to the polynomial 
order of the smoother plus one. That is, effective degrees of freedom of 4 would roughly imply a 
third degree polynomial smoothing term for the covariate being tested (Hothorn & Everitt, 2010, 
Chapter 10). This makes interpretation of the nonlinearities of the predictors more intuitive, 
although the effective degrees of freedom are rarely whole numbers. This is also an extremely 
approximate rule of thumb, and as the effective degrees of freedom approach one, this rule of 
thumb no longer applies.  

To simplify notation, we omit the subscript i used in previous sections to index each case, 
retaining only the index for time t. The basic model for a single-case is: 

1
t

t

PLog
P

§ ·
¨ ¸�© ¹

 = Xtș + s1(x1t) + s2(x2t) + s3(x3t) +…+ İt  (0) 
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where 
1

t

t

PLog
P

§ ·
¨ ¸�© ¹  

 is the logit link function for the proportion outcome as before,  Xtș is the 

design matrix and corresponding parameter vector (that is, any of the regression components that 
one wishes to continue to treat in the usual parametric fashion), s1(x1t), …,sp(xpt) are smoothing 
functions for each predictor (x) that one wishes to smooth nonparametrically, DQG�İt is an error 
term with a binomial distribution.  

We examined four GAM models on each case of the Lambert et al. (2006) data, all 
modeled in R using the mgcv package (Wood, 2010). Each model includes: (a) an intercept, or 
the participant’s initial outcome level, (b) a continuous time (trend) variable Xt measured as 
calendar time across sessions (e.g. two sessions conducted one day apart would be 1, 2; two 
sessions one week apart would be 1, 8), (c) a dummy-coded treatment variable zt (0 for baseline, 
1 for treatment), and (d) a time-by-treatment interaction: 

[Xt – (n1 + 1)]zt, 
where n1 is the time of the last data point in the first baseline phase (the data point directly 
preceding the initial introduction of treatment). This interaction captures the change in slope 
beginning at the start of treatment (Huitema & McKean, 2000).   
 The first GAM model is a linear model with no smoothers (Model 1): 

1
t

t

PLog
P

§ ·
¨ ¸�© ¹

 = ȕ0+ ȕ1Xt + ȕ2zt + ȕ3[Xt – (n1 + 1)]zt + İt.    (0) 

This model yields identical results to a GLM with binomial errors; it will differ somewhat from a 
GLM that assumes normality, the latter being a common but incorrect analysis for this kind of 
outcome. The second GAM model applies a smoother to the interaction term (Model 2):  

1
t

t

PLog
P

§ ·
¨ ¸�© ¹

= ȕ0+ ȕ1Xt + ȕ2zt + s3([Xt – (n1 + 1)]zt) + İt.    (0) 

The third model applies the smoother to the trend term (Model 3): 

1
t

t

PLog
P

§ ·
¨ ¸�© ¹

 = ȕ0+ s1(Xt) + ȕ2zt + ȕ3[Xt – (n1 + 1)]zt + İt.    (0) 

The fourth model applies a smoother to both the interaction term and the trend term (Model 4): 

1
t

t

PLog
P

§ ·
¨ ¸�© ¹

 = ȕ0+ s1(Xt) + ȕ2zt + s3([Xt – (n1 + 1)]zt) + İt.    (0) 

Each GAM analysis gives standard regression output (i.e. regression coefficient, standard error, 
t-test of the coefficient, p-value) for each parametric term. For smoothed terms, output lists the 
effective degrees of freedom. The effective degrees of freedom are a rough measure of the 
complexity of the fitted spline model; edf = 1 corresponds to a linear model, and as edf increases 
towards edf = k, the spline model is approximately as complex as a polynomial of degree k - 1 
(Hothorn & Everitt, 2010, Chapter 10). Smoothed terms also have a corresponding F-statistic 
and p-value that are conservative and approximate. To determine which model fits the data best, 
one compares various model fit statistics (R2, deviance) along with examining significance tests 
(more details are in Sullivan and Shadish, 2012).  
 
Usefulness / Applicability of Method:  
Demonstration of the usefulness of the proposed methods using hypothetical or real data.  
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We will apply GAMs to a large set of SCDs drawn from a survey of SCD literature in 2008 
(Shadish & Sullivan, 2011). We will report results on the following questions: (1) Does the 
conclusion about treatment effect from the usual generalized linear model change when GAMs 
are used to include higher order smoothing functions in the model? (2) When GAMs indicate the 
need for higher order smoothing functions, what degree of polynomial do they suggest? (3) How 
well will a simple model with linear trend do compared to a GAM with nonlinear trends, where 
the evaluative criterion is the size and significance of the treatment effect.  
 
Research Design: 
Description of the research design (e.g., qualitative case study, quasi-experimental design, secondary analysis, 
analytic essay, randomized field trial). 
(May not be applicable for Methods submissions) 
 
(Not applicable) 
 
Data Collection and Analysis:  
Description of the methods for collecting and analyzing data. 
(May not be applicable for Methods submissions) 
 
(Not applicable) 
 
Findings / Results:  
Description of the main findings with specific details. 
(May not be applicable for Methods submissions) 
 
We have already applied GAMs to about a score of cases (Shadish, Hedges, Pustejovsky, 
Rindskopf, Boyajian, & Sullivan, in press; Shadish & Sullivan, 2011). Results suggest treatment 
effects are not sensitive to trend (linear or nonlinear) about half the time, but for the rest of the 
cases a failure to include higher-order smoothing functions can result in incorrect conclusions 
about treatment effects.  
 
Conclusions:  
Description of conclusions, recommendations, and limitations based on findings. 
 
This research should inform SCD researchers about the need to take linear or nonlinear trend into 
account. With further study, it may also be that GAMs may prove to be a primary analytic 
method for use in SCDs.  
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