The Validity of the SAT for Predicting Cumulative Grade Point Average by College Major

Emily J. Shaw, Jennifer L. Kobrin, Brian F. Patterson, & Krista D. Mattern

The College Board

April 10, 2011 Annual Meeting of the American Educational Research Association, New Orleans, LA



### **Purpose of Research**

- Examine differential validity and prediction of the SAT and HSGPA for predicting cGPA, by major field.
- First study of the predictive validity of the revised SAT (includes writing) by college major.
- Analyze results by gender, race/ethnicity, and highest parental education level within major.
- Incorporates more specialized college major fields than most previous studies which typically examine the predictive validity within broader academic domains.



### **Prior Research**

- Students choose an academic major for a variety of reasons (e.g. Pascarella & Terenzini, 2005).
- Major fields have their own unique characteristics different grading standards, more clearly delineated paradigms than others.
- Morgan (1990): predictive validity of the SAT by major SAT Math regression weights were higher than SAT Verbal weights in the prediction of FYGPA for technical majors while opposite was true for liberal arts majors.
- Pennock-Román (1994) : while female students' college grades are typically under-predicted by the SAT, controlling for grading leniency by major did reduce the differential prediction of GPA by gender, though it did not completely eradicate the differential prediction.

### Method

#### Sample

- Of 66 four-year institutions from the national SAT Validity Study sample (see Kobrin et al., 2008) supplying 2<sup>nd</sup> year data on the entering class of fall 2006, 39 institutions supplied major field information.
- In order for students at these 39 institutions to be included in the sample for this study, they had to have:
  - taken the SAT;
  - indicated their high school GPA (HSGPA) on the SAT-Q;
  - a valid first-year college GPA;
  - a valid two-year cumulative college GPA (cGPA); and
  - a valid major provided by the college or university.
- Ultimately, there were 39,440 students included in this study.

CollegeBoard inspiring minds

# Method (cont.)

#### Data

- **Demographic information.** Gender, ethnicity, and highest parental education level was self-reported by the students and obtained from the SAT-Questionnaire (SAT-Q).
- **SAT scores**. Obtained from the 2006 College-Bound Seniors cohort database comprised of students who participated in the SAT program and reported plans to graduate from high school in 2006.
- **HSGPA.** Self-reported and obtained from the SAT-Q. Students' HSGPAs were on a 12-point scale ranging from A+ (4.33) to F (0.00). (M = 3.65; SD = 0.50).
- Cumulative Second-Year GPA (cGPA). Each participating institution provided cum 2<sup>nd</sup>-year GPA for their 2006 first-time, first-year students. (*min* = 0.00, *max* = 4.17; *M* = 3.10, *SD* = 0.59).
- **College Majors.** Reported by the institutions at beginning of 3<sup>rd</sup> year, and based on Classification of Instructional Program (CIP) codes or combinations of CIP codes. Students with no academic major at the time of the study were considered to have *undeclared* majors.
- Retention to the 3<sup>rd</sup> year. Each participating institution supplied third-year retention data for their 2006 first-time, first-year students. (1 = Returned for 3<sup>rd</sup> Yr, 0 = Did not Return; M = 0.91, SD = 0.29).



## Method (cont.)

#### Analyses

The **differential validity** of the SAT and HSGPA to predict cGPA by major was examined by computing correlations and multiple correlations.

- Computed at the institutional level (by major, or by major and subgroup), then pooled across institutions, and weighted by sample size.
- Corrected for restriction of range with the Pearson-Lawley multivariate correction with 2006 College Bound Seniors cohort as population (Gulliksen, 1950).

To assess the extent to which the SAT, as well as HSGPA, exhibits **differential prediction** of cGPA, regression equations within each institution were estimated.

- Next, the average residual was computed across the entire sample, separately for each major and major by subgroup. The expected value of the residual for the total group always equals zero; however:
  - If the average residual value is positive for a specific subgroup, then the measure tends to under-predict academic success for that group.
  - If the average residual value is negative, then the measure tends to overpredict academic success for that group

## **Descriptive Statistics**

|                                                |    |        |      | SAT-CR |       | SAT-M |       | SAT-W |      | HSGPA |      | cGPA |      | Retention<br>to Year 3 |      |
|------------------------------------------------|----|--------|------|--------|-------|-------|-------|-------|------|-------|------|------|------|------------------------|------|
| Major Category                                 | k  | n      | %    | Mean   | SD    | Mean  | SD    | Mean  | SD   | Mean  | SD   | Mean | SD   | Mean                   | SD   |
| Agriculture/Natural Resources                  | 24 | 514    | 1%   | 564    | 82.6  | 570   | 77.1  | 548   | 80.7 | 3.61  | 0.51 | 3.03 | 0.57 | 0.93                   | 0.26 |
| Biological and Biomedical Sciences             | 39 | 3,329  | 8%   | 582    | 91.4  | 608   | 90.6  | 575   | 92.0 | 3.80  | 0.45 | 3.17 | 0.58 | 0.91                   | 0.28 |
| Business, Management, and Marketing            | 36 | 6,259  | 16%  | 541    | 88.8  | 577   | 91.3  | 537   | 88.8 | 3.58  | 0.52 | 3.07 | 0.59 | 0.91                   | 0.28 |
| Communications/Journalism                      | 35 | 2,616  | 7%   | 553    | 89.0  | 548   | 89.0  | 551   | 86.6 | 3.58  | 0.51 | 3.10 | 0.54 | 0.94                   | 0.25 |
| Computer and Information Science               | 37 | 901    | 2%   | 588    | 94.6  | 633   | 87.4  | 566   | 94.0 | 3.62  | 0.48 | 2.95 | 0.64 | 0.90                   | 0.30 |
| Education                                      | 27 | 2,126  | 5%   | 521    | 85.5  | 531   | 86.8  | 519   | 84.6 | 3.55  | 0.50 | 3.15 | 0.57 | 0.89                   | 0.31 |
| Engineering/Architecture                       | 31 | 5,509  | 14%  | 593    | 84.4  | 657   | 76.1  | 579   | 85.1 | 3.80  | 0.43 | 3.08 | 0.59 | 0.95                   | 0.22 |
| Foreign Languages, Literatures, & Linguistics  | 30 | 603    | 2%   | 606    | 96.4  | 592   | 90.6  | 601   | 97.5 | 3.76  | 0.46 | 3.30 | 0.54 | 0.94                   | 0.24 |
| Health Professions & Related Clinical Sciences | 30 | 2,417  | 6%   | 535    | 84.2  | 557   | 85.4  | 537   | 81.4 | 3.70  | 0.46 | 3.16 | 0.54 | 0.89                   | 0.31 |
| Humanities and Liberal Arts                    | 39 | 5,236  | 13%  | 587    | 93.8  | 568   | 88.9  | 575   | 90.7 | 3.61  | 0.49 | 3.19 | 0.55 | 0.92                   | 0.28 |
| Mathematics and Statistics/Physical Sciences   | 35 | 1,310  | 3%   | 591    | 95.1  | 639   | 89.7  | 577   | 93.5 | 3.78  | 0.45 | 3.14 | 0.60 | 0.93                   | 0.25 |
| Security and Protective Services               | 18 | 623    | 2%   | 501    | 80.1  | 515   | 83.8  | 494   | 81.9 | 3.29  | 0.50 | 2.86 | 0.63 | 0.87                   | 0.33 |
| Social Sciences                                | 39 | 5,527  | 14%  | 584    | 96.0  | 580   | 96.6  | 575   | 94.6 | 3.65  | 0.48 | 3.14 | 0.55 | 0.93                   | 0.26 |
| Social Services and Public Administration      | 20 | 271    | 1%   | 532    | 88.1  | 517   | 92.4  | 520   | 89.8 | 3.51  | 0.50 | 3.03 | 0.59 | 0.90                   | 0.29 |
| Undeclared                                     | 30 | 2,199  | 6%   | 540    | 100.6 | 557   | 103.3 | 533   | 99.3 | 3.46  | 0.54 | 2.72 | 0.65 | 0.70                   | 0.46 |
| Total                                          | 39 | 39,440 | 100% | 566    | 94.3  | 585   | 96.9  | 558   | 92.4 | 3.65  | 0.50 | 3.10 | 0.59 | 0.91                   | 0.29 |



## **Differential Validity**

Restriction-of-Range Corrected Correlations with 2nd-Year Cumulative GPA by Major

| Major Category                                   | k  | n      | SAT-CR | SAT-M | SAT-W | SAT* | HSGPA | SAT*, HSGPA |
|--------------------------------------------------|----|--------|--------|-------|-------|------|-------|-------------|
| Agriculture/Natural Resources                    | 11 | 474    | 0.56   | 0.56  | 0.57  | 0.61 | 0.58  | 0.68        |
| <b>Biological and Biomedical Sciences</b>        | 37 | 3,317  | 0.55   | 0.59  | 0.58  | 0.63 | 0.58  | 0.70        |
| Business, Management, and Marketing              | 35 | 6,253  | 0.51   | 0.53  | 0.54  | 0.58 | 0.57  | 0.66        |
| Communications/Journalism                        | 30 | 2,593  | 0.52   | 0.51  | 0.54  | 0.57 | 0.57  | 0.65        |
| Computer and Information Science                 | 15 | 808    | 0.43   | 0.46  | 0.47  | 0.50 | 0.52  | 0.58        |
| Education                                        | 23 | 2,109  | 0.53   | 0.50  | 0.58  | 0.59 | 0.56  | 0.66        |
| Engineering/Architecture                         | 22 | 5,474  | 0.52   | 0.57  | 0.55  | 0.61 | 0.60  | 0.69        |
| Foreign Languages, Literatures, and Linguistics  | 16 | 544    | 0.51   | 0.46  | 0.56  | 0.57 | 0.48  | 0.61        |
| Health Professions and Related Clinical Sciences | 24 | 2,393  | 0.54   | 0.55  | 0.59  | 0.62 | 0.58  | 0.68        |
| Humanities and Liberal Arts                      | 38 | 5,234  | 0.50   | 0.49  | 0.54  | 0.56 | 0.58  | 0.65        |
| Mathematics and Statistics/Physical Sciences     | 29 | 1,269  | 0.55   | 0.59  | 0.56  | 0.63 | 0.61  | 0.71        |
| Security and Protective Services                 | 16 | 608    | 0.55   | 0.52  | 0.54  | 0.58 | 0.59  | 0.68        |
| Social Sciences                                  | 37 | 5,518  | 0.52   | 0.51  | 0.55  | 0.58 | 0.56  | 0.65        |
| Social Services and Public Administration        | 11 | 234    | 0.55   | 0.45  | 0.51  | 0.56 | 0.52  | 0.63        |
| Undeclared                                       | 24 | 2,159  | 0.37   | 0.34  | 0.41  | 0.42 | 0.44  | 0.49        |
| Total                                            | 39 | 39,440 | 0.51   | 0.50  | 0.55  | 0.57 | 0.57  | 0.66        |

*Note.* SAT\* indicates that each of the three SAT sections were included as separate predictors in the computation of the multiple correlation.



## **Differential Prediction**

#### **Differential Prediction Analyses with 2nd-Year Cumulative GPA by Major**

|                                                  |    |        |        |       |       |       |       | SAT*, |
|--------------------------------------------------|----|--------|--------|-------|-------|-------|-------|-------|
| Major Category                                   | k  | n      | SAT-CR | SAT-M | SAT-W | SAT*  | HSGPA | HSGPA |
| Agriculture/Natural Resources                    | 24 | 514    | -0.08  | -0.05 | -0.06 | -0.07 | -0.05 | -0.07 |
| Biological and Biomedical Sciences               | 39 | 3,329  | 0.02   | 0.01  | 0.01  | 0.00  | -0.02 | -0.03 |
| Business, Management, and Marketing              | 36 | 6,259  | 0.03   | 0.00  | 0.03  | 0.03  | 0.02  | 0.04  |
| Communications/Journalism                        | 35 | 2,616  | 0.02   | 0.07  | 0.01  | 0.04  | 0.04  | 0.05  |
| Computer and Information Science                 | 37 | 901    | -0.12  | -0.15 | -0.11 | -0.13 | -0.07 | -0.10 |
| Education                                        | 27 | 2,126  | 0.17   | 0.17  | 0.16  | 0.17  | 0.11  | 0.15  |
| Engineering/Architecture                         | 31 | 5,509  | -0.04  | -0.10 | -0.03 | -0.07 | -0.05 | -0.08 |
| Foreign Languages, Literatures, & Linguistics    | 30 | 603    | 0.09   | 0.15  | 0.08  | 0.09  | 0.12  | 0.08  |
| Health Professions and Related Clinical Sciences | 30 | 2,417  | 0.11   | 0.10  | 0.09  | 0.11  | 0.03  | 0.08  |
| Humanities and Liberal Arts                      | 39 | 5,236  | 0.04   | 0.11  | 0.04  | 0.05  | 0.10  | 0.06  |
| Mathematics & Statistics/Physical Sciences       | 35 | 1,310  | -0.01  | -0.07 | 0.00  | -0.04 | -0.03 | -0.06 |
| Security and Protective Services                 | 18 | 623    | -0.09  | -0.10 | -0.08 | -0.07 | -0.07 | -0.04 |
| Social Sciences                                  | 39 | 5,527  | -0.01  | 0.03  | -0.01 | 0.00  | 0.01  | 0.01  |
| Social Services & Public Administration          | 20 | 271    | 0.03   | 0.08  | 0.04  | 0.07  | 0.03  | 0.08  |
| Undeclared                                       | 30 | 2,199  | -0.34  | -0.34 | -0.33 | -0.31 | -0.30 | -0.27 |
| Total                                            | 39 | 39,440 | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |

*Note.* SAT\* indicates that each of the three SAT sections were included as separate predictors in the computation of the multiple correlation.



## **Discussion**

- The relationship between SAT and HSGPA and cGPA varies by major field.
- With the exception of a few major fields, the corrected multiple correlations between the SAT (Critical Reading, Math, and Writing) and cGPA were in the high 0.50s or low 0.60s, representing a strong relationship.
- The starkest differences in the relationship between both SAT and HSGPA with cGPA across majors was found among undeclared students versus students in defined major fields (weaker correlations and greatest over-prediction).
- The strongest correlations tended to be found in the STEM fields, with the exception of Computer Science students who tended to perform differently in high school and college than students in other STEM majors.



## **Discussion (continued)**

- The SAT also slightly over-predicted cGPA in the STEM majors, likely because these majors are considered to be more academically difficult or have more stringent grading practices; and therefore, students earn lower cGPAs than they would have in other academic fields (Biglan, 1973; Goldman & Hudson, 1973).
- There was under-prediction of cGPA by the SAT in a few other majors, most notably for Education majors. This underprediction is also likely related to the less stringent grading practices in these fields (Willingham, Lewis, Morgan, & Ramist, 1990).



### **Future Research**

- Replicate these analyses with a different or broader sample of institutions and students to determine the reliability and generalizability of results.
- Examine differential validity and prediction by major at graduation to determine whether there are any differences in findings when more advanced coursework by major is factored into cGPA.
- Examine the relationship between the SAT and college outcomes by major by the institution-types/characteristics (e.g., whether it is a STEM-focused or more of a liberal arts institution).
- Study the academic trajectories of undeclared students and work on minimizing academic difficulties and focusing on major choice and fit for these students.
- Examine the academic and social cultures within the different majors that serve as supports or barriers for different enrolled student groups.

### **Thank You**

- Researchers are encouraged to freely express their professional judgment. Therefore, points of view or opinions stated in College Board presentations do not necessarily represent official College Board position or policy.
- Please forward any questions, comments, and suggestions to:
  - Emily Shaw at <u>eshaw@collegeboard.org</u>



#### **Presentation References**

- Biglan, A. (1973). The characteristics of subject matter in different academic areas. *Journal of Applied Psychology*, *57*, 195-203
- Goldman, R.D., & Hudson, D.J. (1973). A multivariate analysis of academic abilities and strategies for successful and unsuccessful college students in different major fields. *Journal of Educational Psychology*, *65*, 364-370.

Gulliksen, H. (1950). Theory of mental tests. New York: John Wiley and Sons.

- Kobrin, J. L., Patterson, B. F., Shaw, E. J., Mattern, K. D., & Barbuti, S. M. (2008). *Validity of the SAT® for predicting first-year college grade point average* (College Board Research Rep. No. 2008-5). New York, NY: The College Board.
- Mattern, K. D., Patterson, B. F., Shaw, E. J., Kobrin, J. L., & Barbuti, S. M. (2008). *Differential validity and prediction of the SAT®* (College Board Research Rep. No. 2008-4). New York, NY: The College Board.
- Morgan, R. (1990). Analyses of predictive validity within student categorizations. In W. Willingham, C. Lewis, R. Morgan, & L. Ramist, (Eds.), *Predicting College Grades: An Analysis of Institutional Trends over Two Decades* (pp. 225-238). Princeton, NJ: Educational Testing Service.
- Pascarella, E. & Terenzini, P. (2005). *How college affects students (Vol. II): A third decade of research*. San Francisco: Jossey-Bass.
- Pennock-Román, M. (1994). *College major and gender differences in the prediction of college grades* (College Board Research Report No. 94-2, ETS RR-94-24). New York:The College Board.
- Willingham, W., Lewis, C., Morgan, R., and Ramist, L. (1990). *Predicting college grades: An analysis of institutional trends over two decades*. New York: The College Board and Educational Testing Service.

CollegeBoard inspiring minds