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Abstract Body 
Limit 4 pages single-spaced. 

 
Background / Context:  
Description of prior research and its intellectual context. 
 
Single case designs (SCDs) are short time series that assess intervention effects by measuring 
units repeatedly over time both in the presence and absence of treatment. For a variety of 
reasons, interest in the statistical analysis and meta-analysis of these designs has been growing in 
recent years (Huitema, 2011; Shadish, Rindskopf, & Hedges, 2008). One of these reasons is that 
SCDs have been identified by groups such as the What Works Clearinghouse as one of the 
acceptable empirical designs that can be included in evidence based practice reviews 
(Kratochwill et al., 2010). When statistically analyzing or meta-analyzing SCD data, one must 
take into account both (a) trend, or systematic, non-zero, change over time that is not dependent 
on the implementation of a treatment, and (b) autocorrelation, or the serial dependence of 
observations nested within the same person. Various methods have been proposed for the 
statistical analysis of SCDs, but all of these methods have flaws when it comes to dealing with 
either trend or autocorrelation, or both. For example, trend is often either ignored or assumed to 
be linear, and autocorrelation is also often ignored, both of which are potentially suspect. Failing 
to address and properly model trend and the trend-treatment interaction can result in biased 
parameter estimates and inflated standard errors (Allison & Gorman, 1993). In addition, large 
autocorrelation of errors within a dataset can affect inferences based on those data (Huitema, 
2011). Properly modeling the trajectory of the data can reduce the inflation of the autocorrelation 
that is due to model misspecification (Shadish, Ridskopf, & Hedges, 2008). 
 
Purpose / Objective / Research Question / Focus of Study: 
Description of the focus of the research. 
 
This paper proposes modeling SCD data with Generalized Additive Models (GAMs), a semi-
parametric method from which it is possible to estimate the functional form of trend directly 
from the data, arguably capturing the true functional form better than ordinary least squares 
regression methods in which the researcher must decide which functional form to impose on the 
data.  In addition, autocorrelation estimates can be inflated when trend is not modeled properly, 
and so this paper also shows how to calculate the autocorrelation from residuals extracted from 
GAM models, which tends to result in shrunken estimates. 
 
Significance / Novelty of study: 
Description of what is missing in previous work and the contribution the study makes. 
 
This work applies a semi-parametric regression method, Generalized Additive Models (GAMs), 
to single case designs (SCDs), which, to our knowledge has not been done previously. Modeling 
SCDs with GAMs, one is able to address questions of non-linearity in the trend and trend-
treatment interaction terms of the model by estimating the linearity of these terms directly from 
the data compared to imposing hypothesized functional forms on the data in parametric 
regression. This may allow more accurate modeling of the functional form of trend and trend-
treatment interactions, more accurate parameter estimates, and shrunken autocorrelation 
estimates.  
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Statistical, Measurement, or Econometric Model:  
Description of the proposed new methods or novel applications of existing methods. 
 

Generalized Additive Models. GAMs are an expansion of generalized linear models 
(GLM). GAM models replace the standard linear terms of a GLM with an additive predictor that 
consists of a sum of smoothing functions, or scatterplot smoothers, applied to some, or all, of the 
model covariates (Hastie & Tibshirani, 1986; Hothorn & Everitt, 2010; Wood, 2006). The basic 
model is: 

Yij = Xiθ + s1(x1ij) + s2(x2ij) + s3(x3ij) +…+ εij  (1) 
where Yij is the outcome 1or response variable for person i at timepoint j, Xiθ is the matrix row 
and corresponding parameter vector of the parametric model components (not including the 
smoothed predictor x’s) for person i, s1(x1i), … sp(xpi) are smoothing functions for each 
corresponding predictor (x’s), and εij is an error term, i.i.d., N(0,σ2). For example, the model 
could include an ordinary parametric dummy-coded treatment variable in the Xi  design matrix, 
but have a smooth function separately for both the trend and the interaction terms, which is not 
possible within fully non parametric regression. 

Within the GAM framework, to be able to estimate the smoothing terms (s’s) using GLM 
methods such as iterative least squares, the smoothing terms have to be represented in such a 
way that the GAM becomes a linear model. To do this, one chooses a basis, or a set of linearly 
independent vectors, that defines a functional space. The functional space is essentially the 
geometric plane, drawn from and defined by a specific dataset, from which the smoothing 
functions are drawn.  The basis vectors, when linearly combined, can represent any potential 
vector in the functional space. All of the potential smoothing terms of the model are an element, 
or basis function, of the chosen basis. So, any potential smoothing term is some linear 
combination of linearly independent vectors in the basis. That is, the linear combination of 
vectors in the basis results in a smoothing function that is directly estimated from one’s data. 
Choosing a basis is an essential step in this process: it allows the estimation of a nonlinear term 
from the data, but constrains the geometrical plane (functional space) from which they can be 
estimated (so that the smoothing does not result in an unrealistic value, such as a 100th order 
polynomial smoother).  
 There are many potential basis options. A common basis is penalized cubic regression 
splines (CRS). Spline bases relate the smoothing function to the entire domain of data rather than 
a single point of the data.  CRSs are constructed from pieces of cubic polynomial curves joined 
together into a continuous function. The curves are joined together at the knots of the data set; 
knots are the places where an inflection in the curve appears. CRSs are computationally efficient, 
and their results are easily interpretable. They also can be implemented on small data sets; almost 
always with 20 or more data points, but also sometimes with as few as six. With CRSs the 
researcher has to specify where to place knots, or the location of the potential bends in the 
functional relationship. One can choose either to manually place the knots across the data set, or 
to equally space these knots across the span of the data. Generally, evenly spacing the knots 
across the data (the computer program default) captures the shape of the data quite well, and so 
this is not an arduous process.  

                                                 
1 Yij is only the generalized outcome, when the outcome is normally distributed. In this paper, the outcomes are 
either counts or percentages/proportions modeled with the Poisson and binomial distributions, respectively. Both of 
these functions use a log link function, and so in this paper, Yij actually is log(Yij).  
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Introducing smoothing parameters requires estimating the degree of smoothing necessary 
for each covariate, for example, the trend term in the present case. Each s function of a GAM 
model contains a smoothing parameter. The smoothing parameter estimates the optimal amount 
of smoothing to fit the data while simultaneously adding a penalty for increased “wiggliness” of 
the smoothing function. Adding a penalty matrix to the least squares estimation model avoids 
over-fitting the smooth to the data. Within this framework, s approaches a straight line as the 
smoothing parameter approaches infinity. The optimal degree of smoothness can be estimated 
directly from the data. The optimal smoothing parameter is chosen by calculating a generalized 
cross-validation (GCV) score of each iteration. The smaller the GCV score, the better the model 
fit. 

The model output also lists the effective degrees of freedom of the smoothing term. 
When using cubic regression splines, effective degrees of freedom are very roughly equivalent to 
the polynomial order of the smoother plus one (Hothorn & Everitt, 2010, Chapter 10).  An 
example of this phenomenon is shown in the middle row of Figure 1; (please insert Figure 1 
here) a quadratic term (or second degree polynomial) has just over three effective degrees of 
freedom. However, it is important to remember that this rule of thumb is extremely approximate, 
and as the effective degrees of freedom approach one (e.g., between 1 and 3), it no longer 
applies.  

Modeling procedure. For every time series, the analyst runs four different models to 
assess non linearities. Each model includes four terms: 1) an intercept, or the participant’s initial 
outcome level, 2) a continuous trend variable, in the present case measured as calendar time 
across sessions (e.g. two sessions conducted one day apart would be 1, 2; two sessions conducted 
one week apart would be 1, 8; session number can be used if time is not available), 3) a treatment 
variable, usually dummy coded (0 for baseline, 1 for treatment; this could be expanded either by 
adding another dummy code to the model for a second treatment or by changing this dummy 
code into a categorical variable [e.g., with levels 0, 1, 2] if the treatments could be thought of as 
ordinal), and 4) a trend-treatment interaction term, calculated as: 
 Intij = [Xij – (t1)]*zij, (3) 
where X is the trend variable value for data point ij, t1 is the trend variable value for the first data 
point in the first treatment phase, and zi is the treatment dummy code for data point ij. Modeling 
the trend-treatment interaction in this way, rather than perhaps the traditional interaction 
calculation (Xi*zi), has been recommended to capture the change in slope, as well as level 
treatment change, beginning at the implementation of treatment , rather than from the first time 
point (Huitema & McKean, 2000). The four models differ in which terms are smoothed. After 
running all four models, the model that best fits that particular time series data set is selected.  
 The first model is a GAM linear model with no smoothing functions: 
 Yij = β0i+ β1 Xij + β2 zij + β3 Intij + εij. (4) 
This model produces equivalent parameter estimates to a GLM, as long as both are modeled with 
the same data distribution. However, the standard errors are calculated in a slightly different 
fashion for the GAM within the mgcv R package. For more information, see Wood (2010). This 
model is the reference model to which all other models are compared. The second model applies 
a smoother to the interaction term (trend by treatment) only:  
 Yij = β0i+ β1 Xi + β2 zij + s3(Intij) + εij. (5)  
This model implies that nonlinearities in the data are a function of the implementation of 
treatment. That is, trend over time, if it exists, is linear, but once treatment is introduced, the data 
curves. Imagine a case in which a behavior has a floor effect during baseline, and when treatment 
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is introduced, the behavior increases rapidly but then asymptotes. This situation would be 
captured in this model. The third model applies the smoothing function to the trend term only: 
   Yij = β0i+ s1(Xij) + β2 zij + β3 Intij + εij.  (6)  
This model implies that any nonlinearity is a function of time, and not the implementation of 
treatment. Imagine a behavior that follows a cubic order over time, and implementation of the 
treatment does not affect the trajectory of the behavior at all. This model would capture that 
relationship. Lastly, the fourth model applies a smoothing function to both the interaction term 
and the trend term: 
 Yij = β0+ s1(Xij) + β2 zij + s3(Intij) + εij. (7) 
This model is the most complex, and implies that there is both a nonlinear data trajectory without 
the implementation of treatment, as well as a (potentially different) nonlinear data trajectory after 
the implementation of treatment. 
 
Usefulness / Applicability of Method:  
Demonstration of the usefulness of the proposed methods using hypothetical or real data.  
 

These model can be implemented in R using the mgcv package (Wood, 2010).  
R. The first author has fully annotated code available. This procedure can be implemented in a 
wide range of data sets, and this paper gives several examples of how to implement and interpret 
these model.  
 
Findings / Results:  
Description of the main findings with specific details. 
 
Table 1 shows the model output of all four model runs on one example case, a SCD intervention 
study in which the authors intervened to increase social and play skills in children with autism, 
using a multiple baseline design (Liber, Frea, & Symon, 2008). (Please insert Table 1 here.)The 
participant in the selected case is a nine-year-old boy (Wally), and the outcome is the percentage 
of unprompted social play skills. In the linear (baseline) model, there was not a significant 
treatment effect. However, in all three models with a smoother, there is a significant treatment 
effect, indicating that properly modeling the data trajectory of this example (the raw data is 
presented in Figure 2 (please insert Figure 2 here)) is essential to assess intervention 
effectiveness.   
 
Conclusions:  
Description of conclusions, recommendations, and limitations based on findings. 
 
Generalized Additive Models provide a flexible way to model SCD data, allowing the data to 
inform the researcher both as to whether significant trend or trend treatment interaction exists, as 
well as which of those terms need nonlinear representations and which can remain linear. GAMs 
often capture the nonlinearities that appear visually in graphs of the outcome variables presented 
in SCD literature, and account for them in their measurement of a treatment effect. For many 
example cases, the model that best fit the data had either the trend or trend-treatment interaction 
term smoothed, indicating at least slight non-linearity for those parameters. Though this is only a 
small subset of available data, these findings cast doubt on the typical assumption of SCD 
researchers that trend, if it exists, is linear. In addition, extracting the residuals from the best 
fitting model resulted in a shrunken autocorrelation.
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Appendices 
Not included in page count. 
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Appendix B. Tables and Figures 
Not included in page count. 
 
Table 1 

     
      GAM and GLM Results for Example 3: proportion of social play skills 
demonstrated during play activities, results in logits and (proportions) 

      GAM Model 1 - all linear terms 
   

      
  

Linear Terms 
  

      
  

Estimate SE T-statistic p-value 
Intercept 

 
-2.66(0.07) 0.47 -5.67 <.001 

Trend 
 

0.05(0.51) 0.04 1.21 0.23 
Treatment 

 
0.21(0.55) 0.43 0.49 0.63 

Interaction   -0.03(0.49) 0.05 -0.61 0.55 

       Smoother Terms - N/A 
            

Adjusted R2 = 0.62 Deviance Explained = 76.4% GCV Score = 0.75 

      GAM Model 2 - interaction smoother 

      
  

Linear Terms 
  

      
  

Estimate SE T-statistic p-value 
Intercept 

 
-2.64(.07) 0.54 -4.88 <0.001 

Trend 
 

0.05(.51) 0.02 2.99 0.005 
Treatment   -0.07(.48) 0.21 -2.97 0.005 

      
  

Smoother Terms 
  

      

  
Estimated DF F-statistic p-value 

Interaction   3.57 44.13 <.001 
Adjusted R2 = 0.97 Deviance Explained = 96.3% GCV Score = 0.13 

      GAM Model 3 - trend smoother 

      
  

Linear Terms 
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Estimate SE T-statistic p-value 
Intercept 

 
-0.99(.27) 0.60 -1.64 0.109  

Treatment 
 

-0.64(.35) 0.22 -2.97 0.005 
Interaction   0.01(.50) 0.03 0.41 0.684 

      
  

Smoother Terms 
  

      

  
Estimated DF F-statistic p-value 

Trend   3.55 45.99 <.001 
Adjusted R2 = 0.97 Deviance Explained = 96.4% GCV Score = 0.13 

      GAM Model 4 - interaction and trend smoother 

      
  

Linear Terms 
  

      
  

Estimate SE T-statistic p-value 
Intercept 

 
-0.76(.31) 0.16 -4.72 <.001 

Treatment   -0.64(.34) 0.22 -2.97 0.005 

      
  

Smoother Terms 
  

      

  
Estimated DF F-statistic p-value 

Trend 
 

3.55 47.40 <.001 
Interaction   1.00 0.17 0.684 
Adjusted R2 = 0.97 Deviance Explained = 96.4% GCV Score = 0.13 
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Figure 1. Graphical example of curvature of data as estimated degrees of freedom increases 
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Figure 8. Example three, time series graph of percentage of social play skills demonstrated 
during play activities with Wally’s peers. 

 
 


