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Abstract Body
Background:

In the past decade, there has been a dramati@sere the number of group randomized trials
(GRTSs) designed to test the effectiveness of edutatprograms, policies, and practices
(Authors, 2012). In order for these GRTSs to yielghhquality evidence of whether or not a
program is effective, among other things, the studggt be well designed with adequate power
to detect a treatment effect of a reasonable madmitThe field has made substantial progress in
terms of how to calculate statistical power for GR&.g. Donner & Klar, 2000;
Konstantopoulos, 2008, Raudenbush, 1997; Rauder®usgh 2001; Authors, 2007; Schochet,
2008). In addition, there has been new empiricakwath respect to the design parameters
necessary for statistical power calculations foffTGfor reading outcomes, math outcomes, and
cognitive outcomes for preschoolers (Bloom, Riclgbidayes, & Black, 2007, Hedges &
Hedberg, 2007; Jacob, Zhu, & Bloom, 2010; Scho@@®8). However, there is little empirical
information available for design parameters foesce outcomes. Further, it is unclear whether
or not the empirical estimates for reading and ndaign parameters transfer to science for
reasons such as the fact that unlike reading arthl, m@ence is not typically tested annually.
GRTs of science interventions are becoming morencomand hence it is critical to build a base
of empirical design parameters specific to sciemgeomes.

Purpose:

The purpose of this study is to calculate empirgstimates of design parameters for science
outcomes to improve the design of GRTs of scientaventions. Using statewide data from
Texas, we seek to:

1) calculate the unconditional intraclass correlatig@<s) for science outcomes for
three types of models including the:
a. 2-level hierarchical linear model (HLM) with studemested within schools,
b. 3-level HLM with students nested within schoolstedswithin districts, and
c. the within district 2-level HLM with students negteithin schools.
2) calculate the percent of variance explained (R+sp)avhen the following sets of
covariates are included in the models:
a. student-level demographics,
b. student-level pretest,
c. school-level pretest, and
d. student-level pretest and school-level pretest.
Data:

The data for this study comes from the state ofa§eln accordance with FERPA policies, the
Texas Department of Education provided masked Ktt@ent data for five academic years. The
key variables of interest included in the datasetstudent ID, race, gender, disadvantaged
status, science scores, math scores, reading seohe®l ID, and district ID. Science is tested in
grades 5, 8, 10, and 11 in Texas. Reading and anattested annually.
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The dataset includes more than 900 districts wahr@ximately 3,500 elementary schools, 1,600
middle schools, and 1,300 high schools. The nurabstudent records available for each grade
in each year ranged from 273,000 to 373,000, withwverage of 326,000. Due to masking and
missing data (i.e., alternative test format, laCkamplete demographic information), sample
sizes for each grade in each year were reducegrpxdmately 30 percent, with masking and
missing data each contributing about half of thaltdata reduction.

Statistical Models and Analysis:

There are three primary models of interest for $higly. The first is the 2-level hierarchical
linear model (HLM) with students nested within solso This model ignores the district level.
The unconditional models are as follows (Raudeni@uBhnyk, 2002).

The level-1, or student-level model is:
Y; :,501' *+6 € ~ N(0,0?) (1)

wherey; is the outcome for individudl={1,...,n} in school j ={1...,.3}; £, is the average at
schoolj; andg; is the residual error associated with each student

The level-2 model, or school-level model is:
ﬁo,‘ = Yoo HTy; oj ~ N (0, 7) (2)

where J,, is the grand mean anglis the variance between schools. In this casd(@es the

TOO
T +0°
The second model is the 3-level HLM with studerdstad within schools nested within districts.
This model allows us to calculate two ICCs, theosttevel ICC and the district level ICC. The
level-1, or student-level model is:

between school variance relative to the total venea or p =

Yik = o + €k €, ~ N 0,0%) (3)

where y,, is the outcome for individual={1,...,n} in school j ={1,....,3} in district
k :{L...,K}; 7, s the average at schqoh districtk; and g, is the residual error associated

with each student.
The level-2 model, or school-level model is:

Thj = Book + Mok lojk ~ N@O,rz,) (4)

where £, is the mean in distridt, and 7, is the variance between schools within districts.
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The level-3 model, or district-level model is:
Book = Vooo T Yook Upoe ~ NG, Tﬂ) (5)

where y;,is the grand mean arw, is the variance between districts. In the 3-l¢¥eM, there

are two ICCs. The between school within distric€CIS p,, = —n_ andthe between

Ol +T,+1,

r
district ICC isp,, = ——2——.

Pis ol + r,
The third model is the within district 2-level HLMith students nested within schools. The
unconditional models are the same as equatiom.}2) except that they will be run within
districts. A within district design is a common GR/hich is why we are interested in examining
within district ICCs.

For research question 1, we ran the three setadnditional models for grades 5, 8, 10, and 11,
the grades in which science is tested, for 5 yehdata. We took the mean of the ICCs across
the 5 years for each grade level.

For research question 2, we modified the unconaadionodels to include different covariates.
We then calculated the R-square, or percent ohuaée explained at the relevant levels by the

T ix
TIT
the residual level-2 variance in a model with ceatass andr . is the level-2 variance in the

unconditional model. Due to space restrictionsia proposal, we do not provide the conditional
models or R-square calculations. They are includeke full paper.

covariates. For example, the R-square at levehZesexpressed &> =1-

wherer ,, is

Table 1 depicts the grade level and years in whath is available. According to the
unconditional row in Table 1, the models can beattine 4 grade levels for all 5 years of data.
The second row corresponds to the student demaggsafihe student demographics included
dummy variables for female, black, Hispanic, argfreduced lunch status. The models with
student demographics are also available for allgtavels for all years as indicated in row 2.
The next set of covariates included student-levetlgst, which we defined as students’ science
score in a prior year. For grade 11, 1 year lag®weailable since students were also tested in
science in grade 10. One year lags were not avaifabany other grade which is why grade 11
is the only grade listed in the row for 1-year Ilgs also important to note that the availability
of the lag data depended on the year. For exarfgplgrade 11, 1 year lag was available for the
data from academic year 2, 3, 4, and 5 but not eBor grade 10, 2 year student lags were
available, since students took the science tegtade 8. For grades 8 and 11, 3 year lags were
also available since students took the test ineg&dand 8, respectively. The next set of
covariates included school means from the samesedagiged one, two, three, and four years.
Note that these are available for all grades buforaall years since they require data from
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earlier years. The last set of covariates inclustadent and school lags. The available grades
match the student lags since this data is moredami

We also examined prior reading and math scores\axiates. Since math and reading tests are
administered annually, all student and school léags were available. The only limitation is in
the year of the data. For example, 3 year schosiuntent lags were only available for years 4
and 5 of the data.

Findings:

Table 2 presents the unconditional ICCs for thedata set for the 2-level HLM and 3-level
HLM. Note that when district is included in the nebdhe between school variance is reduced
by almost 70 percent from 0.174 to 0.054. The testwm the within district 2-level HLM will
be completed this fall.

The percent of variance explained by the covagate is documented in Table 3. Not all of the
covariate sets have been run yet for all designendy a selection of models from the 2-Level
design is presented. We find that in the 2-Leedligh, adding a one year lagged student pretest
reduces the between schools variance by over @@meand the within schools variance by
approximately 60 percent. As the duration of tiggled pretest is increased, both R-square
values decline, as expected, but at a slow ralessfthan 10 percent per year. In contrast, the
addition of only demographic covariates explainky & percent of the between variance, and
10 percent of the within variance.

Conclusions:

The capacity of the field to conduct power analyse$sRTs of educational interventions has
improved over the past decade (Authors, 2009). Hewe power analysis depends on estimates
of design parameters. Hence it is critical to btile empirical base of design parameters for
GRTs across a variety of outcomes and contexts. Sthidy provides a first step towards

building this base of design parameters specifidall science outcomes. Unlike reading and
math, science is not typically tested each yealimmary findings from this study suggest that
although not direct comparisons, ICCs for scienstea@mes are smaller than grade 3 math and
reading as reported by Bloom, Richburg-Hayes, aadkB(2005; 2007) for five urban districts.
Similarly, Hedges and Hedberg (2007) found largt4d for both reading and math using a
nationally representative sample of students nastedhools. R-square values for school level
covariates have not been computed yet, but a cerelagged student pretest appears to be highly
effective in reducing variance between and witltino®ls, more so than in reading (R-squares
less than 0.86) and math (less than 0.63) as expbst Bloom et al. (2005; 2007). The empirical
estimates from this study will help improve thewecy of the power analyses for GRTs of
science interventions.
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Appendix B. Tablesand Figures

Table 1. Grades in which data is available for ni®tased on prior science scores.

Year of

Data

2006/07 2007/08 2008/09 2009/10 2010/11

Models Grade level analysis is possible

Unconditional 5,8,10,11  5,8,10,11  5,8,10,11 5,810, 5,8,10,11
Student Demographics 5,8,10,11 5,8,10,11 5,8,10,15,8,10,11 5,8,10,11
1 year lag student scores science 11 11 11 11
2 years lag student scores science 10 10 10
3 years lag student scores science 8,11 8,11
1 year lag school level mean from science 5,8110,15,8,10,11 5,8,10,11 5,8,10,11

2 years lag school level mean from science 5,

3 years lag school level mean from science

4 years lag school level mean from science

1 year lag student science scores and school 11 11
mean

2 years lag student science scores and school 10
mean

3 years lag student science scores and school

mean

8no 5,8,10,11 5,8,10,11
6,811 5,8,10,11
16,81
11 11
10 10
8,11 8,11

Table 2. Average ICCs for unconditional model bgdg, 2007-2011.

2-Level 3-Level 2-Level Within
(students (students in schools in District
in schools) districts) (students in schools)
Grade ICC ICCL2 ICCL3 Average ICC

Grade 5 0.1906 0.0693 0.1186 Not Available Yet
Grade 8 0.1638 0.0547 0.1000 Not Available Yet
Grade 10 0.1762 0.0454 0.1256 Not Available Yet
Grade 11 0.1670 0.0486 0.1142 Not Available Yet
All Grades
(Average) 0.1744 0.0545 0.1146
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Table 3. Average R-squared values for select camdit models by grade, 2007-2011

2-Level (students in schools)

All

Grades
Model R"2 Grade5 Grade 8 Grade 1Grade 11 (Average)

Demographics Between  0.5661 0.5962 0.5519 0.5470 5658.

Within 0.0688 0.1427 0.0864 0.0819 0.0949

Student Pretest (Lag 1) Between 0.93030.9303
Within 0.5983 0.5983

Student Pretest (Lag 2) Between 0.8252 --- 0.8252
Within 0.5659 0.5659

Student Pretest (Lag 3) Between 0.6663 @80 0.7334
Within 0.4258 0.5238 0.4748

Note:
Individual grade averages for student pretest nsoaed based on less than five years of data.
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