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Abstract Body 
 

Background:  
 
In the past decade, there has been a dramatic increase in the number of group randomized trials 
(GRTs) designed to test the effectiveness of educational programs, policies, and practices 
(Authors, 2012). In order for these GRTs to yield high-quality evidence of whether or not a 
program is effective, among other things, the study must be well designed with adequate power 
to detect a treatment effect of a reasonable magnitude. The field has made substantial progress in 
terms of how to calculate statistical power for GRTs (e.g. Donner & Klar, 2000; 
Konstantopoulos, 2008, Raudenbush, 1997; Raudenbush & Liu, 2001; Authors, 2007; Schochet, 
2008). In addition, there has been new empirical work with respect to the design parameters 
necessary for statistical power calculations for GRTs for reading outcomes, math outcomes, and 
cognitive outcomes for preschoolers (Bloom, Richburg-Hayes, & Black, 2007, Hedges & 
Hedberg, 2007; Jacob, Zhu, & Bloom, 2010; Schochet, 2008). However, there is little empirical 
information available for design parameters for science outcomes. Further, it is unclear whether 
or not the empirical estimates for reading and math design parameters transfer to science for 
reasons such as the fact that unlike reading and math, science is not typically tested annually. 
GRTs of science interventions are becoming more common and hence it is critical to build a base 
of empirical design parameters specific to science outcomes. 
 
Purpose: 
 
The purpose of this study is to calculate empirical estimates of design parameters for science 
outcomes to improve the design of GRTs of science interventions. Using statewide data from 
Texas, we seek to: 
 

1) calculate the unconditional intraclass correlations (ICCs) for science outcomes for 
three types of models including the: 

a. 2-level hierarchical linear model (HLM) with students nested within schools,  
b. 3-level HLM with students nested within schools nested within districts, and  
c. the within district 2-level HLM with students nested within schools.  

2) calculate the percent of variance explained (R-squares) when the following sets of 
covariates are included in the models: 

a. student-level demographics,  
b. student-level pretest,  
c. school-level pretest, and  
d. student-level pretest and school-level pretest. 

Data:  
  
The data for this study comes from the state of Texas. In accordance with FERPA policies, the 
Texas Department of Education provided masked K-12 student data for five academic years. The 
key variables of interest included in the dataset are student ID, race, gender, disadvantaged 
status, science scores, math scores, reading scores, school ID, and district ID. Science is tested in 
grades 5, 8, 10, and 11 in Texas. Reading and math are tested annually. 
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The dataset includes more than 900 districts with approximately 3,500 elementary schools, 1,600 
middle schools, and 1,300 high schools.  The number of student records available for each grade 
in each year ranged from 273,000 to 373,000, with an average of 326,000.  Due to masking and 
missing data (i.e., alternative test format, lack of complete demographic information), sample 
sizes for each grade in each year were reduced by approximately 30 percent, with masking and 
missing data each contributing about half of the total data reduction.   
 
Statistical Models and Analysis:  
 
There are three primary models of interest for this study. The first is the 2-level hierarchical 
linear model (HLM) with students nested within schools. This model ignores the district level. 
The unconditional models are as follows (Raudenbush & Bryk, 2002).  
 
The level-1, or student-level model is: 
 

0ij j ijY eβ= +   ),0(~ 2σNeij      (1)
 

 
where ijy  is the outcome for individual },...,1{ ni =  in school },...,1{ Jj = ; 0 jβ  is the average  at 

school j; and ije  is the residual error associated with each student. 

 
The level-2 model, or school-level model is: 
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The second model is the 3-level HLM with students nested within schools nested within districts. 
This model allows us to calculate two ICCs, the school-level ICC and the district level ICC. The 
level-1, or student-level model is: 
  

 ),0(~ 2
0 σπ NeeY ijkijkjkijk +=     (3) 

where ijky  is the outcome for individual },...,1{ ni =  in school },...,1{ Jj = in district 

{ }Kk ,...,1= ; jk0π  is the average  at school j in district k; and ijke is the residual error associated 

with each student. 
The level-2 model, or school-level model is:  

 ),0(~00000 πτβπ Nrr jkjkkjk +=     (4) 

where k00β is the mean in district k, and πτ  is the variance between schools within districts.  
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The level-3 model, or district-level model is: 
 
 ),0(~000000000 βτγβ Nuu kkk +=     (5) 

where 000γ is the grand mean and βτ  is the variance between districts. In the 3-level HLM, there 

are two ICCs. The between school within district ICC is 
βπ

π

ττσ
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The third model is the within district 2-level HLM with students nested within schools. The 
unconditional models are the same as equation (1) and (2) except that they will be run within 
districts. A within district design is a common GRT which is why we are interested in examining 
within district ICCs. 
 
For research question 1, we ran the three set of unconditional models for grades 5, 8, 10, and 11, 
the grades in which science is tested, for 5 years of data. We took the mean of the ICCs across 
the 5 years for each grade level.  
 
For research question 2, we modified the unconditional models to include different covariates. 
We then calculated the R-square, or percent of variance explained at the relevant levels by the 

covariates. For example, the R-square at level 2 can be expressed as 
π

π

τ
τ XR |2 1−= where X|πτ  is 

the residual level-2 variance in a model with covariates and πτ is the level-2 variance in the 

unconditional model. Due to space restrictions in this proposal, we do not provide the conditional 
models or R-square calculations. They are included in the full paper.  
 
Table 1 depicts the grade level and years in which data is available. According to the 
unconditional row in Table 1, the models can be run at the 4 grade levels for all 5 years of data. 
The second row corresponds to the student demographics. The student demographics included 
dummy variables for female, black, Hispanic, and free/reduced lunch status. The models with 
student demographics are also available for all grade levels for all years as indicated in row 2. 
The next set of covariates included student-level pretest, which we defined as students’ science 
score in a prior year. For grade 11, 1 year lags were available since students were also tested in 
science in grade 10. One year lags were not available for any other grade which is why grade 11 
is the only grade listed in the row for 1-year lag. It is also important to note that the availability 
of the lag data depended on the year. For example, for grade 11, 1 year lag was available for the 
data from academic year 2, 3, 4, and 5 but not year 1. For grade 10, 2 year student lags were 
available, since students took the science test in grade 8. For grades 8 and 11, 3 year lags were 
also available since students took the test in grades 5 and 8, respectively. The next set of 
covariates included school means from the same grade lagged one, two, three, and four years. 
Note that these are available for all grades but not for all years since they require data from 
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earlier years. The last set of covariates included student and school lags. The available grades 
match the student lags since this data is more limited. 
 
We also examined prior reading and math scores as covariates. Since math and reading tests are 
administered annually, all student and school level lags were available. The only limitation is in 
the year of the data. For example, 3 year school or student lags were only available for years 4 
and 5 of the data. 
 
Findings:  
 
Table 2 presents the unconditional ICCs for the full data set for the 2-level HLM and 3-level 
HLM. Note that when district is included in the model, the between school variance is reduced 
by almost 70 percent from 0.174 to 0.054. The results from the within district 2-level HLM will 
be completed this fall.  
 
The percent of variance explained by the covariate sets is documented in Table 3. Not all of the 
covariate sets have been run yet for all designs, so only a selection of models from the 2-Level 
design is presented.  We find that in the 2-Level design, adding a one year lagged student pretest 
reduces the between schools variance by over 90 percent and the within schools variance by 
approximately 60 percent.  As the duration of the lagged pretest is increased, both R-square 
values decline, as expected, but at a slow rate of less than 10 percent per year.  In contrast, the 
addition of only demographic covariates explains only 50 percent of the between variance, and 
10 percent of the within variance.  
 
Conclusions:  
 
The capacity of the field to conduct power analyses for GRTs of educational interventions has 
improved over the past decade (Authors, 2009). However, a power analysis depends on estimates 
of design parameters. Hence it is critical to build the empirical base of design parameters for 
GRTs across a variety of outcomes and contexts. This study provides a first step towards 
building this base of design parameters specifically for science outcomes. Unlike reading and 
math, science is not typically tested each year. Preliminary findings from this study suggest that 
although not direct comparisons, ICCs for science outcomes are smaller than grade 3 math and 
reading as reported by Bloom, Richburg-Hayes, and Black (2005; 2007) for five urban districts.  
Similarly, Hedges and Hedberg (2007) found larger ICCs for both reading and math using a 
nationally representative sample of students nested in schools.  R-square values for school level 
covariates have not been computed yet, but a one year lagged student pretest appears to be highly 
effective in reducing variance between and within schools, more so than in reading (R-squares 
less than 0.86) and math (less than 0.63) as reported by Bloom et al. (2005; 2007).  The empirical 
estimates from this study will help improve the accuracy of the power analyses for GRTs of 
science interventions. 
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Appendix B. Tables and Figures 
 
Table 1. Grades in which data is available for models based on prior science scores. 
 
 Year of Data 
 2006/07 2007/08 2008/09 2009/10 2010/11 
 
Models 

 
Grade level analysis is possible 

Unconditional 5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 
Student Demographics 5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 
1 year lag student scores science   11 11 11 11 
2 years lag student scores science   10 10 10 
3 years lag student scores science     8,11 8,11 
1 year lag school level mean from science  5,8,10,11 5,8,10,11 5,8,10,11 5,8,10,11 
2 years lag school level mean from science   5,8,10,11 5,8,10,11 5,8,10,11 
3 years lag school level mean from science    5,8,10,11 5,8,10,11 
4 years lag school level mean from science     5,8,10,11 
1 year lag student science scores and school 
mean 

 11 11 11 11 

2 years lag student science scores and school 
mean 

  10 10 10 

3 years lag student science scores and school 
mean 

   8,11 8,11 

      
 
 
Table 2. Average ICCs for unconditional model by grade, 2007-2011. 
 

  

2-Level 
(students 

in schools)   

3-Level 
(students in schools in 

districts)   

2-Level Within 
District 

(students in schools) 
Grade ICC   ICCL2 ICCL3   Average ICC 

Grade 5 0.1906 0.0693 0.1186 Not Available Yet 
Grade 8 0.1638 0.0547 0.1000 Not Available Yet 
Grade 10 0.1762 0.0454 0.1256 Not Available Yet 
Grade 11 0.1670   0.0486 0.1142   Not Available Yet 
All Grades 
(Average) 0.1744   0.0545 0.1146     
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Table 3. Average R-squared values for select conditional models by grade, 2007-2011 
 

2-Level (students in schools) 
              

Model R^2 Grade 5 Grade 8 Grade 10 Grade 11 

All 
Grades 

(Average) 
Demographics Between 0.5661 0.5962 0.5519 0.5470 0.5653 

Within 0.0688 0.1427 0.0864 0.0819 0.0949 
Student Pretest (Lag 1) Between --- --- --- 0.9303 0.9303 

Within --- --- --- 0.5983 0.5983 
Student Pretest (Lag 2) Between --- --- 0.8252 --- 0.8252 

Within --- --- 0.5659 --- 0.5659 
Student Pretest (Lag 3) Between --- 0.6663 --- 0.8004 0.7334 
  Within --- 0.4258 --- 0.5238 0.4748 
Note: 
Individual grade averages for student pretest models are based on less than five years of data. 

 


