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Abstract Body. 
 

Context:  
 
In educational research, outcome measures are often estimated across separate studies or across 
schools, districts, or other subgroups to assess the overall causal effect of an active treatment 
versus a control treatment. Students may be partitioned into such strata or blocks by 
experimental design, or separated into studies within a meta-analysis. In non-randomized studies, 
students may be partitioned into subclasses based on key covariates or estimated propensity 
scores to improve observed covariate balance across treatment groups (e.g., Rosenbaum & 
Rubin, 1983). 
 
Procedures designed to estimate any estimand in the presence of strata, including a simple t-test 
for the difference in mean outcomes (Neyman, Iwaszkiewicz, & Kolodziejczyk, 1935), rely on 
implicit assumptions about the unknowable correlation between potential outcomes under active 
treatment and control treatment. For binary outcomes, the standard procedures used to estimate 
overall odds ratios in the presence of strata were introduced by Cochran (1954), who first 
proposed a hypothesis test for the difference in proportions across strata. Mantel and Haenszel 
(1959) proposed a very similar test and introduced an estimator for a common odds ratio.  
 
Objective: 
 
Consider the following hypothetical studies designed to estimate the causal effect of an existing 
program on high school graduation: 
 
1. Within each of several school districts, half of the schools are randomized to participate in the 
program, and half are randomized not to participate in the program. 
2. Within each of several cities, schools participating in the program are compared to schools not  
participating in the program, though participation was not randomized. 
3. Several separate evaluations of the program are collected, to be combined in a meta-analysis. 
 
In each hypothetical study, a binary outcome (graduation) must be measured over strata (1. 
school districts, 2. cities, 3. evaluations). The effect of the program on graduation rates may be 
measured by a difference in proportions, odds ratio, or some other quantity. A hypothesis test 
will be conducted and a confidence interval constructed for the chosen estimand. 
 
We propose tests and intervals that can be more powerful for any finite population estimand than 
traditional tests and intervals, including t-tests for the difference in means or Cochran-Mantel-
Haenszel procedures for the odds ratio.  
 
Significance: 
 
We show that the asymptotic sampling variance estimators typically used for the point estimates 
in the presence of strata (Neyman, Iwaszkiewicz, & Kolodziejczyk, 1935; Robins, Breslow, & 
Greenland, 1986; Robins, Greenland, & Breslow, 1986) can lead to unnecessarily wide 
confidence intervals and weak hypothesis tests. We propose a Bayesian approach that explicitly 
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imputes missing potential outcomes under the Rubin Causal Model (Holland, 1986; Rubin, 1974; 
Rubin, 1978). We demonstrate, by a simulation study, that in many circumstances the proposed 
estimator has greater precision and leads to more accurate interval coverage rates than traditional 
procedures. The proposed method also avoids homogeneity assumptions; stratified study designs 
are motivated by an assumption that the treatment effects vary across strata, yet standard 
procedures typically assume homogeneous treatment effects. 
 
Unlike traditional methods, our procedure does not rely on assumptions about asymptotic 
normality that may not be met in small samples, and our procedure leads to confidence intervals 
that have Bayesian interpretation in addition to Frequentist coverage. 
 
We also clarify that too-wide intervals that err on the side of failing to reject the null hypothesis 
are often not “conservative”: a cautious researcher considering whether to cancel an academic 
program would err on the side of stating that the program does have a positive effect. 
 
Statistical Model:  
 
Consider a finite population of N students, with Nb students in each stratum b (b = 1,…,B), where 
N1+…+NB=N. Each student i (i = 1,…,N) has a fixed potential outcome under treatment, Yi(1), 
and a fixed potential outcome under control, Yi(0), only one of which can be realized and 
observed. We assume (1) that the outcome Y is binary, such as a graduation indicator, and (2) 
that the stable unit treatment value assumption (SUTVA) holds (Rubin, 1980). 
 
If Yi(1) and Yi(0) were both known for each student, then the finite population difference in 
means, odds ratio, or any other estimand could be calculated rather than estimated. The 
fundamental challenge of causal inference is that at most one potential outcome can be observed 
for each student. Following Rubin (1978), we propose a Bayesian model for explicitly imputing 
the missing potential outcome for each student. We impute the missing potential outcomes using 
binomial models within each stratum, independently imputing the active treatment and control 
potential outcomes. By imputing all of the missing potential outcomes multiple times and 
calculating the estimand for each imputation, we can generate a point estimate and posterior 
interval for any estimand. This model-based imputation approach differs from other model-based 
methods in that the estimand is not forced to be a parameter in some super-population model. 
 
Research Design: 
 
We conducted a simulation study to compare the proposed methods with traditional procedures. 
The simulation parameters (sample size, number of subclasses, outcome rates, and heterogeneity 
of rates across strata) were set to reflect conditions that commonly arise when propensity score 
subclasses are created to address covariate imbalances in randomized or non-randomized studies. 
However, the conditions examined in this simulation also arise in randomized block experiments, 
meta-analyses, and other situations. 
 
Results:  
 
The substantive results of the simulation study did not depend on the simulation parameters; 
therefore, tables of results would be repetitive, and our conclusions can be briefly summarized. 
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Our method and the traditional estimators generate approximately equal mean absolute percent 
biases, though Cochran-Mantel-Haenszel estimates can be more biased than our odds ratio 
estimates in the presence of heterogeneous strata. However, traditional t-tests and the Cochran-
Mantel Haenszel procedure generate intervals approximately 1.4 times wider than the intervals 
produced by our method. 
 
Usefulness / Applicability of Method:  
 
Suppose that in one of the hypothetical studies described above, the graduation rate was 0.6 
among students enrolled in the program of interest and 0.5 among students not in the program. 
An estimate for the average causal effect of the program on graduation rates is 0.1. If the 95% 
confidence interval generated by a t-test was (-.02, .22), the corresponding interval from our 
procedure might be (0.02, 0.19). Our method errs on the side of detecting an effect, while 
traditional methods err on the side of failing to detect an effect. A preference for either method 
depends on the situation: if we are considering eliminating a program that took a long time to 
develop, for example, it would be more cautious to over-estimate rather than under-estimate the 
program’s effect, minimizing the chances that an effective program would be eliminated. 
 
Conclusions:  
 
We propose a Bayesian, multiple imputation procedure for estimating any finite population 
estimand in the presence of subclasses. Intervals from standard t-tests or Cochran-Mantel-
Haenszel procedures are approximately 1.4 times as wide as the corresponding intervals 
generated from our method. Therefore, our method leads to hypothesis tests that are more 
powerful than standard procedures. 
 
The difference in efficiency between traditional procedures and the method we propose is due to 
differing assumptions about the unobservable correlation, conditional on strata, between (a) 
potential outcomes under active treatment and (b) potential outcomes under control treatment. 
The assumption of perfect correlation between active treatment and control potential outcomes 
underlies the Cochran-Mantel-Haenszel procedures and standard Neyman confidence intervals 
(Neyman, Iwaszkiewicz, & Kolodziejczyk, 1935) which tend to cover the true causal effect in 
finite samples at least as often as the nominal coverage. Hypothesis tests based on standard 
Neyman asymptotic confidence intervals are defined to be statistically “conservative" because 
the Type I error tends to be less than or equal to the nominal level in a finite sample. But when 
the goal is to identify small differences between two treatments, a cautious hypothesis test would 
err on the side of rejecting the null hypothesis too frequently, indicating a possible difference, 
rather than rejecting too infrequently. The intervals and corresponding hypothesis tests that we 
propose minimize the Type II error rate, increasing the power of the tests to detect non-null 
values of the estimand. These considerations, and generalizations of the proposed method, apply 
to any statistic or study design. 
 
In many real data sets with strata based on relevant covariates, we believe that the conditional 
correlation between potential outcomes may be closer to zero than to one, suggesting that our 
narrower intervals are more appropriate than traditional ones. This is especially true when the 
strata are based on covariates highly predictive of treatment decisions and outcomes.  
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When the estimand is defined in terms of a broader population from which the observed data is 
thought to be a random sample, the corresponding proposed procedures impute all missing 
potential outcomes: one unobserved potential outcome for each unit included in the sample, and 
two unobserved potential outcomes for all units not included in the sample. These super-
population methods lead to intervals with bias, width, and coverage similar to traditional 
methods, at least in modest to large samples, which is expected because traditional intervals are 
designed to over-cover for the finite population estimand and cover at the nominal rate for the 
super-population estimand, at least asymptotically. However, our methods do not depend on 
asymptotic normality.
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