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Abstract Body 
 

Background / Context:  
Description of prior research and its intellectual context. 
Beginning with Cornfield et al (1959), statisticians analyzing quasi-experiments have in various 
ways quantified how much a hypothetical omitted variable (OV) could perturb impact estimates, 
and corresponding tests and confidence intervals, as a function of the OV’s relationships with 
measured variables (Rosenbaum and Rubin, 1983a, Rosenbaum, 1987, Marcus, 1997, Copas and 
Eguchi, 2001). In contrast with related econometric approaches aiming to place absolute bounds 
on the perturbation caused by the OV (e.g., Manski 1995), these methods do not aim to “correct” 
for the omission of the variable so much as to inform deliberations about the trustworthiness of 
study findings. The related development of Frank et al (2013) makes OVs less central 
conceptually, but it also seeks to inform speculation about bias rather than to bound it. The best 
known of these sensitivity analysis methods are Rosenbaum’s (2002b, 2010), which work by 
bounding differences between propensity scores that do and do not incorporate the hypothetical 
OV. 
 
The main sensitivity parameter of the Rosenbaum method is “Rosenbaum’s gamma,” which 
quantifies the confounding potential of an OV in terms of that variable’s contribution to a 
subject’s conditional log odds of falling in the treatment group. While natural in the context of 
propensity score analysis, the parameter is potentially confusing to audiences unaccustomed to 
logarithms, odds ratios or formal conditional probability. Frank (2000) and Imbens (2003) 
somewhat broadened the scope of the conversation by phrasing their sensitivity analyses in terms 
of correlations and partial R2 coefficients, respectively, measures that are more broadly 
intelligible. Hosman et al. (2010) also used partial R2, but only for the relationship of the 
hypothetical OV to the outcome, terming this characteristic of the variable its “proportionate 
reduction in unexplained variation.”  These re-parametrizations do advance the cause of 
interpretability, but surely they remain opaque to lay audiences. 
 
Sensitivity analyses are more vivid when accompanied with meaningful anchors for parameters 
determining the impact of the OV’s omission.  Altonji et al (2003) hypothesize an OV with 
associations to the treatment and outcome variables comparable to the treatment and outcome 
associations of all included variables taken together, and Oster (2013) finds this approach to have 
worked well in a comparison of certain observational studies from public health with related 
experiments. More closely related to current research are the proposals of Angrist and Imbens 
(2002), Imbens (2003), Hosman et al. (2010) and Hsu and Small (2013), who calibrate the 
treatment and outcome associations of an OV with reference to treatment and outcome 
associations of the included variables taken one at a time, rather than jointly.  Each of these 
developments extracts reference values for the OV’s relevant relationships with included 
variables from the same sample and variables as are used to estimate program effects, an 
approach we might call “intrinsic” calibration.  If similar associations among comparable 
variables within well-studied samples, even unrelated samples, were available, they would carry 
the  advantage of being less sensitive to idiosyncracies of the quasiexperiment under study; but 
we are not aware of methodological literature exploring such “extrinsic” calibrations. 
 
Covariate balance plots - “Love plots,” after the biostatistician (Thomas Love) who invented 
them - are used after propensity score matching (or weighting) to convey visually the differences 
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between intervention groups and their matched (weighted) controls in terms of measured 
baseline variables. . One at a time, the Love plot takes these baseline measures and treats them as 
if they were outcomes, calculating means of participant/non-participant differences and 
expressing them as effect sizes. Typically this generates large “participation effects” when 
differences are considered without reference to matches, but when only matched individuals are 
compared the resulting “effects” are uniformly small. Since the differences are in terms of pre-
intervention variables, they of course estimate not effects of the program but rather biases, or 
components of bias attributable to measured variables, that would be incurred by in the same 
way averaging and differencing outcomes to estimate program effects.  We are not aware of 
work connecting covariate balance plots to issues of unmeasured confounding. 
 
Method/ Objective / Research Question / Focus of Study: 
Description of the focus of the research. 
The goal of this research is to make sensitivity analysis accessible not only to empirical 
researchers but also to the various stakeholders for whom educational evaluations are conducted.  
To do this it derives anchors for the OV-program participation association intrinsically, using the 
Love plot to present a wide range of possible values in a compact yet intuitive manner. At the 
same time it calibrates anchor points for the OV-outcome association extrinsically, drawing on 
published descriptions of nationally representative samples. 
 
Setting: 
Description of the research location. 
Our overall approach requires a quasi-experimental comparison using matching or weighting for 
covariate adjustment. The implementation discussed here is adapted to education evaluations 
based on standard K-12 administrative data, using propensity-score matching for covariate 
adjustment and matched permutation tests for the presence of intervention effects.  It is one of a 
number of adaptations and refinements of such methods being developed for the Evaluation 
Engine, a Gates-funded project to make timely quasi-experimental impact analysis available to 
state- and district-level decision makers.   
 
Significance / Novelty of study: 
Description of what is missing in previous work and the contribution the study makes. 
By a shift of the sensitivity analysis model, and by combining generic reference values for the 
confounder-outcome relationship with study-specific anchors for speculation about the 
treatment-confounder relationship, it becomes possible to present specific, quantitative OV 
sensitivity analyses to lay audiences as well as to empirical researchers.   
 
Statistical, Measurement, or Econometric Model:  
Description of the proposed new methods or novel applications of existing methods. 
Given an outcome Y, let the random variable 𝑌� represent potential response to the control 
condition.  For non-participants (Z=0), Y and 𝑌� take the same value, whereas for the participant 
group (Z=1) 𝑌� is an unobserved, “counterfactual” random variable, and Y – Yc is the program 
effect (on a given participant).  Our method applies to situations in which participants’ outcomes 
have been found to differ significantly from those of their matched controls, and it asks whether 
an unobserved covariate, as opposed to a treatment effect, might explain this difference. For this 
purpose is assumed that there is no effect, i.e. 𝑌 ≡ 𝑌�. 
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Quasiexperimental analyses comparing a participant and a control group require conditional 
independence and overlap conditions, respectively  𝑌�  ⊥ 𝑍| 𝑋 and P (Z =1| X) < 1, where X 
denotes measured covariates (Rosenbaum and Rubin 1983b; Heckman et al 1998).  In 
permutation-based analysis, regression techniques can be used to weaken this condition. Let 𝑓(⋅) 
be a guess at, estimate of or approximation to the regression of 𝑌� on 𝑋, or on a subset 𝑋� of 𝑋 
variables, and write 𝜖� ≡ 𝑌� −  𝑓(𝑋). (The procedure makes no requirement that 𝑓(⋅) 
consistently estimate 𝐸(𝑌�|𝑋), or 𝐸(𝑌�|𝑋�).) Then the weakened condition is that 
 𝜖� ⊥ 𝑍| 𝑋 and  P (Z =1| X) < 1, (1)  
(Hajek et al 1999; Rosenbaum 2002a).  (Our application uses as 𝑓(⋅) an empirical regression on 
pretest scores, this enhancing power and making available standard accommodations for 
measurement error in the pretest [Carroll et al, 2006].)  
 
Propensity matched analysis takes place after estimating and matching on the propensity score, 
the conditional probability of membership in the treatment group, Z=1, given measured 
covariates,  X.  It adds the assumption that paired subjects have precisely the same propensity 
score (Rosenbaum, 2010).  Like conditional independence, this model is frequently employed 
without being thought to be precisely true; in contrast with conditional independence, it is in 
various ways testable from the data (Hansen and Bowers, 2008; Heller et al., 2010).   
 
For each subject i write [𝑖] for the collection of subjects matched to 𝑖, or matched to subjects 
matched to 𝑖.  The present method entertains the possibility of (1)’s failure by relaxing it to  
 𝜖�� ⊥ 𝑍| 𝑋 and  P (Z =1| X) < 1, (2)  
where 𝜖��� = 𝑌�� −  𝑓(𝑋�) −  𝛼[�] −  𝛼�𝑈 =  𝜖�� −  𝑔(𝑈�), with 𝑔(⋅) defined as the least squares 
regression of 𝜖� on matched set fixed effects and on the unmeasured variable 𝑈. 
 
Under (2) the (weighted) mean of paired differences in 𝑌, Δ[𝑌], estimates the effect of treatment 
on the treated, 𝐸(𝑌 − 𝑌�|𝑍 = 1), with a bias that is in turn estimated by  
 𝐵𝐼𝐴𝑆� =  𝑠� 𝜌�� Δ[𝑈/𝑠�], (3)  
where 𝑠� and 𝑠� are residual standard deviations of 𝜖� and U, respectively, after centering around 
matched set means; 𝜌��is the partial correlation of 𝜖� and 𝑈, net of matched set fixed effects; and 
Δ[𝑈/𝑠�] is the mean of paired differences in 𝑈/𝑠�. 2 If 𝑈 can be assumed unrelated, within 
matched pairs, either to 𝜖� or to 𝑍, then 𝐵𝐼𝐴𝑆� = 0 and relaxing (1) to (2) does not change p-
values calculated under (1). Otherwise p-values increase, to an extent governed by 𝜌�� and 
Δ[𝑈 /𝑠�] jointly.  
    
We abstract generic reference values for 𝜌�� from the rich body of empirical research developed 
for the planning of randomized field trials.  For instance, let Y represent students’ scores on a 
statewide, grade-level examination, and suppose a U with a relationship to 𝜖� comparable in 
strength to pretest-posttest associations.  Working with nationally representative samples, 
Hedges and Hedberg (2007) calculate values of a quantity, “𝜂�,” that can be transformed onto 
the scale of 𝜌��.  The results vary somewhat by grade and subject, but most translate to partial 
correlations in the neighborhood of .75.  Hedges and Hedberg also study demographic variables 
as predictors of test outcomes, finding them to have substantially less predictive power: partial 

                                                 
2 If some participants are matched to multiple controls then Δ[⋅] downweights the contributions of their paired 
differences to the mean of paired differences so that the total weight of each participant’s paired differences is 1. 
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correlations of  0.1 are typical.  The study of Zhu et al (2012) assisted the planning of school-
level trials by quantifying the additional contribution of classroom-level information, over and 
above school and student data, to the prediction of student test scores; partial correlations of 
roughly 0.1 and 0.75 are again entailed, the former for lower grades and the latter for high 
school.  In this way we externally calibrate anchor points for the omitted variable-outcome 
relationship:  Strong and weak prediction are modeled as having partial correlations with the 
outcome of 0.75 and 0.1, respectively. 
 
Usefulness / Applicability of Method:  
Demonstration of the usefulness of the proposed methods using hypothetical or real data.  
An illustration of the proposed method is presented at the bottom of the Figure.  The main, upper 
part of the figure compares baseline measures of participants in a hypothetical program for 11th 
graders to those of all 11th graders in the state (red circles) and to those of their matched 
counterparts (turquoise squares).  This portion of the plot should be recognizable as a standard 
Love plot.  It presents quantities Δ[𝑋/𝑠�], for 𝑋 equal to various baseline variables – precisely 
the needed material for an internal calibration of the remaining sensitivity parameter,  Δ[𝑈/𝑠�]. 
 
The Love plot presents a large number of possible anchors for  Δ[𝑈/𝑠�], the imbalance in U 
remaining after matching. The relevance of these anchors to each of the program effects that was 
found to be statistically significant is presented below the Love plot, with an indication of how 
large a post-matching imbalance in 𝑈 would be needed to upset that finding. In the figure, for 
example, an apparent math effect is made insignificant either by allowances for a weak outcome 
predictor U with a standard bias | Δ[𝑈/𝑠�] | of .17 or more, or by a strong outcome predictor 𝑈 
with a standard bias as small as .03, these being the positions marked on the x-axis with “m” and 
“M”, respectively.   
 
In this example the most sensitive of the three findings is that of a Math effect, m’s appearing to 
the left of r’s and w’s in both upper and lower case, while the least sensitive is the finding for 
writing, the W and w appearing to the right of all others. A strong predictor of the outcome that 
also is as confounded with participation, in the state population, as is homelessness within the 
past two years, could upset the finding for math (M) but not for reading (R) or writing (W); we 
see this by comparing the horizontal position of the Homeless variable’s red circle to those of the 
M, R and W.   
 
Conclusions:  
Description of conclusions, recommendations, and limitations based on findings. 
Like other modes of sensitivity analyses, ours requires a model, which itself may fail.  Its use of 
generic reference values to calibrate OVs’ proportionate reductions in unexplained variation is in 
effect an additional assumption.  What is gained in return is a vast widening of the audience for 
sensitivity analysis. Broadening participation in this game increases the pool of information 
brought to bear on the inherently subjective assessments required to assess omitted variable 
sensitivity.  This in turn may lead to better decisions regarding whether a quasi-experimental 
finding needs to be replicated, perhaps with a randomized controlled trial, before using it as a 
basis for decision making.
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Figure 1: Annotated Love Plot
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