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Abstract Body
Limit 4 pages single-spaced.

Problem / Background / Context:
Description of the problem addressed, prior research, and its intellectual context.

The Comparative Short Interrupted Time Series (C-SITS) design is a frequently employed quasi-
experimental method, in which the pre- and post-intervention changes observed in the outcome
levels of a treatment group is compared with those of a comparison group where the difference
between the former and the latter is attributed to the treatment. The increase in the availability
and quality of extant data (e.g., state test scores, graduation rates, and college application rates in
primary and secondary education and cognitive, language, and socio-emotional assessments in
pre-school settings) has made the use of C-SITS designs a more viable option for assessing the
impacts of interventions. Despite the recent growth in its use, the existing resources on how to
estimate minimum detectable effects for this design are still very limited. One such resource is
Schochet (2008) which shows that the variance of the difference-in-difference estimator (which
can be considered as a special application of C-SITS) critically depends on sample sizes and the
cluster-level (if applicable) and individual-level correlations between the pre- and post-test
outcome measures. Extending Bloom (1999 and 2003), Dong and Maynard (2013) consider a
particular application of the C-SITS model which includes separate linear time trends for the
treatment and comparison group and the treatment effect is estimated separately for each follow-
up year. They show that the variance of this C-SITS estimator depends on (i) sample sizes, (ii)
number of baseline years, (iii) follow-up year of interest, (iv) the proportion of outcome variance
that lies across successive cohorts of treatment and comparison units (i.e., cohort-level intra-class
correlation), and (v) how much of this variance is explained by covariates included in the model.
It is important to note that these studies model the treatment effect as fixed (i.e., it is not assumed
to vary across treatment units). Two limitations of the existing research on this topic are the
unavailability of:

 Plausible values one can use for these critical parameters in the design stage of a study;
 Variance formulae for alternative C-SITS specifications such as models (i) with year

fixed effects in lieu of group-specific time trends, (ii) that estimate an average impact
estimate across all follow-up years, (iii) with cluster-level data only (as opposed to
models with individual-level data nested in clusters), (iv) with various forms of baseline
projections, and (v) that assume random treatment effects.

Purpose / Objective / Research Question / Focus of Research:
Description of the focus of the research.

The proposed paper aims to address the aforementioned limitations by (i) deriving expressions
for the variance of the various C-SITS estimators and (ii) providing plausible values for the
critical variance parameters calculated using school-level test scores from state assessments.
Both of these analyses are underway and below we describe our preliminary findings.

Improvement Initiative / Intervention / Program / Practice:
Description of the improvement initiative or related intervention, program, or practice.
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Not Applicable (Since this proposal is submitted under research methodology)

Setting
(Description of the research location and partners involved, if applicable.)

Not Applicable (Since this proposal is submitted under research methodology)

Population / Participants / Subjects:
Description of the participants in the research: who, how many, key features, or characteristics.

Not Applicable (Since this proposal is submitted under research methodology)

Research Design:
Description of the research design.

Without loss of generality, let us consider the application of the C-SITS design to estimate the
impact of a school-level intervention on school-level test scores. Assume that schools are
indexed by k and there are K1 treatment units and K2 comparison units. Further assume that
time is indexed by j that there are repeated cross-sectional data are available for treatment and
comparison units for J1 pre-treatment periods and J2 post-treatment periods (e.g., 4th grade
average test scores available between 2006-07 and 2012-13 school years and where 2010-11 is
the first year in which the intervention being examined was implemented). To simplify the
presentation, we start with the following model specification implementing the simplest
application of the C-SITS design, which is also known as the “baseline means projection model”
or “difference-in-differences” specification (Bloom, 2003; Somers, Zhu, Jacob, Bloom, 2013):
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where,

jkY is the jth observation on school k,

kTrtGrp = 1 if school is an intervention (treatment) school, 0 if comparison school

jkTrtYr = 1 if observation in year j is an a post-treatment year, =0 if pre-treatment year

pX are other model covariates

kSch are fixed dummy variables for schools

jk residual for jth observation on school k, assumed distributed ),0( 2N

The coefficient 1̂ is the estimate of the treatment effect, which is the pooled effect across all

treatment schools and post-treatment years. We show that the minimum detectable effect size for
this parameter (assuming the outcome measure is standardized to have unit standard deviation)
can be characterized as:

(2) )ˆ()( 12/  SEttMDES 

where 2/t and t are quantiles from a t-distribution. For a two-tailed tests with alpha-level

criterion at the usual  =0.05, and if degrees of freedom are large, the value of 2/t = 1.96, and
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with 80% power t = 0.84. )ˆ( 1SE , (or equivalently, )ˆ( 1Var ), is the standard error of the

treatment estimate, which is given by:

(3) (ଵߚ)ݎܸܽ = (
(ଵିቀோೊ| ೌ�ಾ 

మ ቁ)()
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where:

ܴ|ூ ௧ெ ௗ
ଶ is the r-squared from the impact model shown in equation 1.

AC is a design effect for autocorrelation. If there is autocorrelation present in
the data it will inflate the variance of the treatment effect. For simplicity,
we assume that there is zero autocorrelation and set this to 1.

df is the “error degrees of freedom” from the model shown in equation 1.
These degrees of freedom can be obtained as the total number of
observations (i.e., all years, all schools), minus the number of terms in the
model including the intercept, if present.

തܶ is the proportion of the observations for which the predictor variable,
which is defined as the independent variable that yields the treatment effect
of interest, equals one. Specifically, for the impact model shown in
Equation 1, it is the proportion of observation where jkk TrtYrTrtGrp * =1.

ܴௗ௧| ௧௧ ௦ ௧ ௧ ௗ
ଶ is a measure of the squared correlation between

the predictor variable and all of the other terms on the right hand side of
impact model shown in equation 1. Specifically, it is the r-squared from

the model )()*(
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We also show that the variance formula in equation 3 can be characterized heuristically as:
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Due to lack of space, we cannot provide detailed explanations of the terms in equation 4 in the
main text of the proposal and simply note that the R2 terms in this equation break down the R2

terms in the numerator and denominator of equation 3 into more manageable components (please
see table 1 in the appendix for the detailed description). As discussed in our paper, the R2 terms
in the numerator of equation 4 (or the R2 term in the numerator of equation 3) are related to how
much the outcome measure varies among schools and observation periods. If, during the design
stage of a project, data from pre-treatment years are available, estimates for these terms can be
obtained from those data. Also, as noted in our paper, the R2 terms in the denominator of
equation 4 are functions of the design and depend on the ratio of the treatment units to
comparison units and the ratio of pre-treatment years to post-treatment years. Since these values
do not depend on the outcome data, an analyst can calculate these quantities using a simulated
dataset that is generated based on the intended values of the treatment/comparison and pre-
treatment/post-treatment ratios.
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The proposed paper derives MDES formulae for various extensions of the simple model
specification in equation 1 including those that include (1) year fixed effects; (2) time trends
common to the treatment and comparison units; (3) group-specific time trends; and (4) impacts
that are averaged over all intervention years; and (5) separate impacts for each intervention year.
The paper discusses the implications of these alternative modeling strategies for power. We also
provide a generalized MDES formula which can be used for other implementations of the C-
SITS design.

Data Collection and Analysis:
Description of the methods for collecting and analyzing data or use of existing databases.

We will use school-level state assessment data obtained from school report card databases from
New Jersey, California, and Texas to provide plausible values for the R2 terms shown in equation
4 (as well as the MDES formula derived for alternative C-SITS specifications). Additionally, we
will show the correspondence between the standard error of the impact estimates obtained from
fitting models to actual data, and the approximate standard errors that are estimated using the
formulae presented in the paper. The data collection and analysis is currently underway and will
be completed in time for the conference.

Findings / Outcomes:
Description of the main findings or outcomes, with specific details.

Table 2 presents preliminary plausible parameter values for the simple C-SITS model in equation
1 and the corresponding MDES formulae in equations 3 and 4 under different combinations of
the treatment/comparison and pre-treatment/post-treatment ratios. We will produce similar tables
for alternative model specifications implementing different C-SITS designs.

Conclusions:
Description of conclusions, recommendations, and limitations, based on findings.

We find that when appropriate plausible values are entered into the formulae provided in our
paper that there is a close correspondence between the standard errors estimated from our
formulae and those obtained from fitting models to actual data. We therefore conclude that the
formulae are behaving as they should. The formulae we provide can be easily programmed
using widely accessible software such as Excel or R, or using statistical packages such as SAS,
Stata or SPSS. The formulae and plausible values in our paper will provide analysts with a
flexible basis for estimating MDES for various C-SITS designs, and will serve as a template for
accumulation of relevant information can be used to build databases of plausible values that
inform the designs of future studies.
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Appendices
Not included in page count.

Appendix A. References
References are to be in APA version 6 format.
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Appendix B. Tables and Figures
Not included in page count.

Table 1. Description of the Parameters in Equation 3

ܴ|்ீ∗்
ଶ is the proportion of variance of the outcome explained by the predictor

variable. It is the r-squared from the model:

jkjkkjk TrtYrTrtGrpY   )*(10

During the design phase calculations of MDESs, investigators should
enter the value zero for this term in the formula as they would
presumably be testing the null hypothesis that the treatment effect is zero.
However, when using real data to generate plausible values for future
studies, it is important to account for any variation in the outcome
measure attributable to the treatment effect. This can be accomplished by
using a non-zero value for ܴ|்ீ∗்

ଶ along with ߪ
ଶ in the MDES formula

above, or by omitting the term ܴ|்ீ∗்
ଶ but substituting in a pooled

treatment and comparison group variance term in place of ߪ
ଶ in the

MDES formula provided above.

ܴ|ௌ(்ீ∗்)
ଶ This is the proportion of total variance that is accounted for by adding

terms for schools to the model. This is the semipartial r-squared for
schools1. This term is equal to the r-squared from a larger model that
includes the predictor variable and school fixed effects minus the r-
squared from the smaller model which includes the predictor variable
(ܴ|்ீ∗்

ଶ as described above).

Larger model: jk
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Smaller model: jkjkkjk TrtYrTrtGrpY   )*(10 .

In the design phase, when investigators are conceptualizing ܴ|்ீ∗்
ଶ as

being equal to zero, they can conceptualize ܴ|ௌ(்ீ∗்)
ଶ as being the

proportion of total variance that is between-schools, while the remaining
variance can be conceived of as variation over time within-schools.

ܴ|்௧(ௌ,்ீ∗்)
ଶ This is the proportion of the variance in the outcome that is explained by

adding the TrtYr variable to the model that already includes the predictor
variable and school fixed effects. This term is equal to the r-squared from
a larger model minus the r-squared from a smaller model, where the
larger model includes the predictor variable, school fixed effects, and the
indicator for post-treatment years while the smaller model only includes
the predictor variable and school fixed effects. That is:

1 The terminology “semipartial r-squared” comes from Cohen, J. (1988). Statistical Power Analysis for the
Behavioral Sciences. Lawrence Erlbaum Associates, Hillsdale NJ.
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Larger model: jk

K

k
kkjkjkkjk SchTrtYrTrtYrTrtGrpY   

1
21 )()*(

Smaller model: jk
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This term denotes the proportion of variance that is explained by a term
that allows there to be a different mean of the outcome in post-treatment
years relative to the pre-treatment years (due to factors other than the
treatment itself). Typically, in the design phase, investigators using
Equation 1 as their outcome model would assume that comparison school
means would be unchanged between the pre-treatment and post-treatment
years, and that, in the absence of the intervention the same would be true
of the treatment schools, and therefore that the semipartial r-squared for
this term would be zero.

ܴ|(்௧,ௌ,்ீ∗்)
ଶ This is the proportion of the variance of the outcome measures that is

explained by adding any remaining terms (e.g., covariate Xs) to the
model that already includes the predictor variable, school fixed effects
and the indicator for post-treatment years. This term is equal to the r-
squared from the full model in Equation 1 minus the r-squared from a
smaller model that does not include the other covariates.

AC is a design effect for autocorrelation. If there is autocorrelation present in
the data it will inflate the variance of the treatment effect. For simplicity,
we assume that there is zero autocorrelation and therefore that the design
effect for autocorrelation is equal to 1.

df is the “error degrees of freedom” from the impact model shown in
equation 1.
These degrees of freedom can be obtained as the total number of
observations (i.e., all years, all schools), minus the number of terms in the
model (including the intercept, if present).

തܶ is the proportion of the observations for which the treatment indicator
equals one.
Specifically, for the impact model shown in Equation 1, it is the
proportion of observation where jkk TrtYrTrtGrp * =1.

்ܴீ∗்|ௌ
ଶ This is a measure of the squared correlation between the predictor

variable and the school fixed effects (or indicators). The value of this r-
squared can be determined during the design phase in the following two-
step process. First, the investigator needs to generate a data set that has
the same number of treatment and comparison schools, and the same
number of pre-treatment and post-treatment years as are planned for the
final analysis. The data set needs to include school IDs, and indicators for
TrtGrp and TrtYr, just as they will appear in the final analysis. In the
second step, the investigator fits those data to the following model

jk
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k
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1
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to obtain the relevant r-square, ்ܴீ∗்|ௌ
ଶ .

்ܴீ∗்|்௧(ௌ)
ଶ This is a measure of the squared correlation between the predictor

variable and the term that indicates post-treatment observations, TrtYr
conditional on the school indicators During the design phase, and using
the data generated in the step described above, the value of this r-squared
can be calculated as the difference between the r-squareds from larger
and a smaller model, where the larger model is
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and the smaller model is
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்ܴீ∗்|(ௌ,்௧)
ଶ This is a measure of the squared correlation between the predictor

indicator and the any remaining terms (e.g. covariate Xs) conditional on
school fixed effects and the indicator variable for the post-treatment
years. In the absence of plausible values from prior studies, we
recommend that investigators try calculating MDESs for a range of small
to moderate r-squared values (e.g., ranging from 0 to around .15). For
most studies with the values of the Xs should not or could not have been
influenced by the treatment itself (i.e., excluding clearly endogenous
variables from consideration as covariate Xs) and where comparison
schools were chosen such that they would have similar values of
covariate Xs to treatment schools, the r-squares are likely to be at the
lower end of this range.
If the X values are known during the design phase and can be attached to
the generated design-phase data set, then the r-square shown here can be
calculated as the difference between a larger model and a smaller model
where the larger model is
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and the smaller model is
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Table 2. Plausible Parameter Values and Corresponding MDES for the simple C-SITS
model in Equation 1

Notes:
N= total number of treatment and comparison units
ܴ∗்|ூ
ଶ ≡ ்ܴீ∗்|ௌ

ଶ

ܴ∗்|(ூ)
ଶ ≡ ்ܴீ∗்|்௧(ௌ)

ଶ

ܴ|ூ
ଶ ≡ ܴ|ௌ

ଶ

ܴ|(ூ)
ଶ ≡ ܴ|்௧(ௌ)

ଶ

For simplicity, no additional covariates and related R2 terms are included in the MDES
calculation.

N #Pre #Post MDES

40 0.25 3 3 0.24 0.15 0.85 0.01 0.20

40 0.5 3 3 0.25 0.23 0.85 0.01 0.19

40 0.75 3 3 0.11 0.60 0.85 0.01 0.29

40 0.25 4 2 0.44 0.06 0.85 0.01 0.22

40 0.5 4 2 0.54 0.14 0.85 0.01 0.24

40 0.75 4 2 0.31 0.34 0.85 0.01 0.26


