
 

SREE Spring 2015 Conference Abstract Template 1 

Abstract Title Page 
 

Title: 
Degenerate Power in Multilevel Mediation: The Non-monotonic Relationship Between Power & 
Effect Size  
 
 
Authors and Affiliations: 
Ben Kelcey 
University of Cincinnati 



 

SREE Spring 2015 Conference Abstract Template 2 

Abstract Body 
Background / Context: 

There is a long established tradition of investigating the mechanisms through which a 
treatment is presumed to impact an outcome using mediation analyses (e.g., Baron & Kenny, 
1986). Mediation analyses examine the extent to which a treatment has an indirect effect on an 
outcome by examining how changes in a mediator produced by exposure to a treatment manifest 
as changes in an outcome. Like studies focused on the detection of a main or total effect, a 
principal consideration in the design of studies examining mediation is the power with which 
mediation effects can be detected if they exist (e.g., Raudenbush, 1997). However, unlike studies 
concerning the detection of main effects, literature has not established power formulas for 
detecting mediation effects in multilevel designs and described precisely how changes in 
parameter values can influence and even undermine a study’s power to detect mediation effects. 
 

Purpose / Objective / Research Question / Focus of Study: 
The purpose of this study was twofold. First, we derived power formulas for multilevel 

mediation effects. Second, we developed formulas that delineate the conditions under which 
power is maximized and the rate with which it declines as a function of the magnitude of path 
coefficients and used these results to investigate the behavior of power as a function of design 
parameters. The results indicated that unlike the power to detect total effects, the power to detect 
mediation effects is not a monotonic function of effect size but rather a complex function 
governed by the decomposition of the total effect (see for example Figure 1).  
 

Significance / Novelty of study: 
Despite the widespread use of mediation analyses and the recent emphasis on well-planned 

studies, literature is incomplete in identifying and delineating considerations for designing 
studies adequately powered to detect multilevel mediation effects. In particular, literature is 
incomplete in that (a) there are no available formulas detailing the power to detect multilevel 
mediation effects and (b) there are no available expressions describing the conditions under 
which (i) power is maximized given various parameter constraints and (ii) the conditions under 
which power becomes a non-monotonic function of effect size such that power actually declines 
as effect size increases. In this study, we developed a framework to help researchers design 
multilevel mediation studies by deriving formulas to assess the power of a design, describe the 
complex and atypical behavior of power in studies of mediation, and delineate the conditions 
under which it is maximized for a given set of parameter values. 
 

Statistical, Measurement, or Econometric Model:  
For our first objective concerning the development of power formulas for multilevel 

mediation effects, we outline our derivations by describing the Sobel mediation test for a 2-2-1 
multilevel mediation model but note that the proposed approach extends to other inferential tests 
and designs. Consider a study where students are nested within schools and its hypothesized that 
a school level (level 2) treatment impacts a school level (level 2) mediator which impacts a 
student (level 1) outcome. To assess the extent to which a school level mediator mediates the 
relationship between the treatment program and student achievement, we draw on a multilevel 
linear structural equation framework using the following set of equations 
Mediator model (Level 2)    2

0 1 2 |~ (0, )M M
j j j j j j MM aT W X N         

 
(1) 

Outcome model   (Level 1) 2
0 1 |( ) ~ (0, )Y Y

ij j j ij j ij ij YY X X N          (2a) 

 (Level 2)  ' 2
0 00 01 02 0 0 |~ (0, )j j j j j j j YbM c T W X u u N           (2b) 
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In the mediation equation (1), we use jM as the mediator for school j, W as school level 

covariates, X as school level aggregates of student level covariates, with . as the respective 

regression coefficients, jT as the treatment assignment with coefficient a,  and M
j as the error 

term.  In the outcome equations (2ab), we use a hierarchical linear model such that ijY is the 

outcome for student i in school j, ijX is student level covariates with coefficients . , and Y
ij  is 

the level one error term. At the school level, we introduce . as the respective regression 

coefficients, b as the conditional relationship between the mediator and the outcome, 'c as the 

direct effect of the treatment, and 0 ju as the school level random effects. 

One estimate of the mediation effect using this system of equations is the product of the a 
and b coefficients (Zhang, Zyphur, & Preacher, 2009). The asymptotic variance of the mediation 
effect can then be estimated using the Delta method (Sobel, 1982)  

2 2 2 2 2
ab a bb a          (3) 

where 2
ab is the variance of the mediation effect, 2

a  is the error variance of the a coefficient in 

equation 2.1, and 2
b  is the error variance of the b coefficient in Equation 2.2b. In turn, the 

statistical significance of the mediation effect can be approximated using the Sobel test 
2 2 2 2/m a bz ab b a  

   

                         (4) 

where mz is approximately normally distributed in large samples (Sobel, 1982). 
In our study, we extend these derivations to develop a closed form expression for the 

Sobel test statistic for multilevel mediation. Based on derivations omitted for space, we show 
that with standardized variables, the Sobel test statistic for multilevel mediation is 

2 1

2 22
2 2

2 2

((1 ) (1 )(1 ) / )(1 )
( ) ( )

(1 ) (1 )
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m

M Y Y

M T Y M

ab
z

R R nR
b a

d R d R

 


   


 
   (5)

 

where  is the intraclass correlation coefficient, n is the within group sample size, d. are the 

degrees of freedom for the mediator (M) and outcome (Y) models, 2
MR is the proportion of 

variance in the mediator explained by the treatment and covariates, 2
TR  is the proportion of 

variance explained in the treatment by covariates (e.g., 2 0TR   under random assignment), and 

2
2

LY
R  and 1

2
LY

R are the proportion of school and student level outcome variance explained by all 

variables. Assuming the alternative hypothesis is true, the test statistic in Equation 5 follows a 
non-central distribution with (5) as the non-centrality parameter. The power of a two-sided test to 
detect a multilevel mediation effect is  

( ) 1 ( ) ( )m critical critical m critical mP z z z z z z           (6) 
where  is the normal distribution and zcritical is the chosen critical value (e.g., 1.96). Using this 
formula, researchers can now assess the power of a proposed study to ensure the design can 
detect mediation effects with a sufficiently large probability if they exist. 

For our second objective concerning the conditions under which power is maximized, we 
continue with the aforementioned Sobel test for a 2-2-1 multilevel mediation model but drop the 
covariates. However, we note that the proposed approach again extends to models which 
incorporate covariates and other inferential tests. We begin by reformulating the test statistic in 
equation (5) in terms of path coefficients  
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where notation is unchanged. Analysis of this function reveals that power is a non-monotonic 
function of effect size because the error variance of the mediation effect is inflated proportional 
to the magnitude of the a path. More conceptually, although the magnitude of the mediation 
effect (ab) increases as the a path increases, an increase in a also amplifies the error variance of 
the mediation effect ( 2

ab ) because it induces collinearity between the mediator and treatment in 
the outcome equation (2ab). As a result, holding other factors constant, increases in the 
magnitude of the a path can serve to increase or decrease power. 

For this reason, we developed expressions to identify the conditions under which 
constrained maximum power is obtained and describe how changes in parameters impact levels 
of power for a given set of constraints. Because the magnitude of the a path can serve to increase 
or decrease power, we describe these conditions using the first derivative of equation (7) in terms 
of a,  

2 2 2 4 2 2 2 3 2 2 ' ' 2
2 2 3 2 2

2 2 2 4 2 3 ' 2 '2 2 2 2 2 2 4 2 3 ' 2 '2 2

1
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

  


       

              

 (8) 

where maximum power then occurs when 
  2 2 2 ' 3 2 '2 4 ' 52 ( 1 2 ) 0b n b na bc na b n c n n a bc na              (9) 
In turn, we use this result along with the power formula derived for objective one to (a) estimate 
power, (b) understand the non-monotonic nature of the power curve in relation to the magnitude 
of the mediation effect, and (c) design efficient studies of multilevel mediation. 
 

Findings / Results:  
 Based on the derivations above, we briefly highlight two conceptual results. First, the 
power to detect a mediation effect is a non-monotonic function of the magnitude of the a path 
but a strictly increasing function of the magnitude of the b and 'c paths and a strictly decreasing 
function of the intraclass correlation coefficient (see Figure 1 and illustration below for an 
example). Both the a and b paths serve to increase the mediation effect (ab) and ultimately 
increase the magnitude of the numerator in equation (7). However, the a path also serves as a 
variation inflation factor because it necessarily introduces collinearity between the mediator and 
treatment in the outcome equation (2ab), thus increasing error variance as captured by the 
denominator in equation (7). Taken as a whole, the uncertainty introduced by this collinearity 
eventually overtakes the increase in the mediation effect supplied by the a path, resulting in a net 
loss of power. With regards to the intraclass correlation coefficient, like power functions for total 
effects, increases in the intraclass correlation coefficient simply operate by amplifying the error 
variance thereby reducing power. In contrast, the 'c path serves to reduce the error variance of 
the mediation effect because its magnitude captures covariance between the outcome and 
treatment that is unrelated to the mediator, resulting in an increase in power. 

Second, the location of the inflection point of the power curve does not depend on the 
school level sample size (see equation 9 and Figure 2). However, the maximum attainable power 
and the rate with which power decreases are proportional to school sample size. As a result, the 
scale and non-monotonic nature of power is practically relevant only when school sample sizes 
are less than say 150 and/or when a study anticipates the a path to be large relative to the b path. 

 

Usefulness / Applicability of Method:  
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Consider an example in which intact schools are randomly assigned to participate in a 
whole school reform program or business as usual. A critical feature of whole school reform 
programs is that they mobilize educators to coordinate teaching across subjects to achieve 
common aims (Raudenbush, 2003). Literature has suggested that a critical mediator of the 
impact of whole school reform on student achievement is school climate (e.g., MacNeil, Prater, 
& Busch, 2009). In theory, participation in a whole school reform program (treatment) should 
improve the school climate (mediator) which in turn improves achievement (outcome).  

Let us assume that we intend to design a study of 50 schools with 20 students per school 
with an intraclass correlation coefficient of 0.20 and assume researchers anticipate a b path 
magnitude of about 0.25 with complete mediation. Based on the results of our derivations, we 
should conduct power analyses for a range of coefficients to identify reasonable study designs 
that are robust to reasonable variations in these (and other) parameters. For instance, we can 
begin by plotting the power as a function of the magnitude of the mediation effect in terms of the 
a and b paths (see Figure 1). Our range of the b coefficients might include b=0.15, 0.25, 0.35.  
Evident from Figure 1, when the magnitude of the b path is 0.25, our design will have power at 
the nominal level of 0.8 only when the a path is 0.61. If the b path is somewhat smaller than 
anticipated, say 0.2 or 0.15, the power to detect multilevel mediation will never exceed 0.6 or 
0.4, respectively, for any value of the a path. That is, with an expected b path of 0.25, the 
proposed design will almost never achieve .8 power regardless of the magnitude of the a path. In 
this way, the proposed design would seem to be sensitive to reasonable variations in design 
parameters such that we should consider modifying design parameters, e.g., larger sample sizes. 
 

Conclusions:  
Our findings suggest that the power to detect mediation is more complex than the power 

to detect total effects. Perhaps most notably is that power is a non-monotonic function of the 
magnitude of the a path. Although potentially counterintuitive based of the monotonic nature of 
power curves typically associated with total effects, consideration of collinearity issues quickly 
illuminates this discrepancy and delineates the basis for this non-monotonic relationship.  

The complex nature of the power curve suggests that researchers investigating mediation 
need to carefully consider the far reaching effects of study features and design choices. For 
instance, the results of our analysis indicated that when designing a study of multilevel 
mediation, one must consider the individual magnitudes of the a and b paths and not just the 
magnitude of their product. In this way, researchers will need to either heavily anchor the 
expected magnitudes of these individual paths in previous empirical research and/or consider 
sample sizes that are sufficiently large to withstand the potential for variance inflation effects. 
The results also imply that designs which call upon mediators that are proximal to the outcome 
(i.e., b is relatively large) will be better suited to detect mediation effects than designs which call 
for mediators more proximal to the treatment (i.e., a path is large relative to the b path). 
Similarly, the results suggest that, when possible, partially mediated designs may be desirable 
because they tend to reduce the variance of the estimated mediation effect. 

Although the study presented focused on inferences drawn from the Sobel test for 
multilevel mediation, the results extend to other designs and tests including single level designs 
and bootstrapped confidence intervals. In this way, the findings from this study expand the scope 
and quality of designs for studies of mediation because they equip researchers with the tools to 
consider how study features and design choices impact the probability with which they can 
detect effects.  
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Appendix B. Tables and Figures 
 
Figure 1 
Power as a function of the magnitude of the a and b paths 
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Figure 2:Power as a function of the magnitude of the a path and level two sample size 
 

 
 
 
 


