
Data-driven Hint Generation from Peer Debugging
Solutions

Zhongxiu Liu
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

zliu24@ncsu.edu

ABSTRACT
Data-driven methods have been a successful approach to
generating hints for programming problems. However, the
majority of previous studies are focused on procedural hints
that aim at moving students to the next closest state to the
solution. In this paper, I propose a data-driven method to
generate remedy hints for BOTS, a game that teaches pro-
gramming through a block-moving puzzle. Remedy hints
aim to help students out of dead-end states, which are states
in the problem from where no student has ever derived a so-
lution. To address this, my proposed work includes design-
ing debugging activities and generating remedy hints from
students’ solutions to debugging activities.

1. INTRODUCTION
Programming problems are characterized by huge and ex-
panding solution spaces, which cannot be covered by man-
ually designed hints. Previous studies have shown fruitful
results in applying data-driven approaches to generate hints
for programming problems. Barnes and Stamper [1] de-
signed the Hint Factory, which gives student feedback using
previous students’ data. The Hint Factory uses a data struc-
ture called an interaction network as defined by Eagle et al.
[3], in which nodes represent the program states and edges
represent the transitions between states. Peddycord et al.
[7] applied the Hint Factory in BOTS, a game that teaches
programing through block-moving puzzles. This study intro-
duced worldstates, which represent the output of a program,
and compared them to codestates, snapshots of the source
code. This study found that using interaction networks
of worldstates can generate hints for 80% of programming
states. Rivers and Koedinger [9] applied the Hint Factory in
a solution space where snapshots of students’ code (program
state) are represented as trees, and trees are matched when
the programs they represent are within a threshold of simi-
larity. Piech et al. [8] applied data-driven approach to pro-
grams from a MOOC. This work compared the methods in
Rivers and Koedinger’s[9] and Barnes’s[1] studies, together
with algorithms that predict the desirable moving direction

from a program state and generate hints to push students
toward the desirable direction.

However, previous studies mainly focused on generating pro-
cedural hints that direct students to the next program state.
Data from previous students’ work may be insufficient to
provide a next-step hint from a ”dead-end state”. Second,
even if a next-step hint could be generated, simply telling
students where to move next is not enough. An example of
this situation is shown in Figure 2 - if a student follows a
path that leads to a dead-end state (marked in blue), then
the only hint we are able to offer is to delete all work since
the last branching point. This may be a bad advice; just
because we have not seen a student solve the problem this
way does not mean that the solution is incorrect. Even with
a correct solution down this path, we are unlikely to see it
since most students solved the problem in a more conven-
tional way, either because they have a better understanding
of the problem or because our hints guide them towards
the more conventional solution. Thus, students in dead-end
states, who may actually have a correct solution in mind,
are unable to receive helpful hints.

In this paper, I propose a data-driven method to generate
remedy hints in Bots. Remedy hints are hints that help
students in dead-end states by telling them why their current
state is wrong, and where to move from their current state.
To address the problem of insufficient data, I will collect data
from debugging activities in BOTS, where students work out
solutions from dead-end states and provide explanations. I
hypothesize that this study will not only help students who
are wheel-spinning on dead-end states, but also the students
who are providing debugging solutions.

2. RESEARCH METHODOLOGY
2.1 Designing Debugging Activities
Debugging activities will be designed as bonus challenges
for students who successfully complete a level. The content
of debugging activities will be the dead-end states from the
problem they completed. Given a dead-end state, a student
will first be asked to explain the error in the program, and
why it led to the dead-end state. The student will then be
asked to explain his/her debugging strategy. Lastly, the stu-
dent will apply his/her debugging strategy and fix the pro-
gram from its current state to a goal state. In this process,
both the student-written explanations and the transitions
of program states will be used as hints. A more detailed
explanation of these are explained in the following section.

Proceedings of the 8th International Conference on Educational Data Mining 665



Figure 1: Interaction Network in BOTS.Green is the
solution state;orange is an error state (e.g. the robot
runs off the stage);blue are the dead-end states; yel-
low represents the rest states

To encourage students to participate in debugging activities,
I will introduce a voting system. Completing debugging ac-
tivities will earn points or advantages from the game. Cur-
rently, BOTS applies a rewarding system for students who
solve the puzzle with fewer lines of code, as shown in Figure
2. On the left is the optimal number of lines of code needed
to solve the puzzle. On the right is the current player’s
record for the fewest lines of code. Players earn 4 stars for
reaching the optimal solution, 3 stars for being within a cer-
tain threshold value, down to one star for merely completing
the puzzle. Additionally, clicking the optimal solution shows
the name of the first user to reach the optimal solution.

I will design a similar leaderboard to reward students who
used fewer steps when debugging for a dead-end state. En-
couraging students to use fewer steps will reduce the size
of debugging solutions, and the likelihood that a student
will delete previous work and start from scratch. Moreover,
students will receive rewards for writing good quality expla-
nations on states and debugging strategies. The quality will
be measured by a voting mechanism. Students who received
a student-written explanation will be able to vote for the
hint as “helpful.” The more votes an explanation receives,
the more points its author will get. Students with the most
points will have their names appear in a leaderboard.

2.2 Construct Hint from Debugging Work
Completing a debugging problem is defined as successfully
moving from the current state to the final goal state. The
debugging process will be treated as a self-contained problem
with its own local interaction network. When completed,
this local interaction network will be added to the global
interaction network for the problem. With a more complete

Figure 2: BOTS rewarding system

Figure 3: Two generated hints for a simple puzzle.
The blue is the robot. The ’X’ is a goal. Shaded
boxes are boxes placed on goal spot. Not shaded
boxes are not on goal spot.

global interaction network, Hint Factory [1] can be applied
to generate hints for previously dead-end states.

Student-written explanations will be presented together with
hints generated by the Hint Factory. An example hint from
the current BOTS system is shown in Fig 3. Before present-
ing the hints from the Hint Factory, a student in dead-end
state will see a student-written explanation on where and
why their current program is wrong. This will give students
a chance to reflect on their own program. Then, the stu-
dent can request to see a student-written explanation of the
debugging plan for the current state. This will enable the
student to solve the problem on their own following a de-
bugging plan, instead of blindly following procedural hints.

When multiple debugging approaches are available for a
state, I will experiment with selecting the best debugging
solution to generate hints. Ideally, I would select a debug-
ging approach with the shortest solution path. However,
there may be situations where students debugged by start-
ing over from the beginning, which may or may not be the
best solution. One approach is to evaluate the path that
leads toward the current state. Assume there is a failure
state in the student’s solution; the earlier this failure state
occurs in the path, the more likely the solution is wrong
from the start and back-to-start is a good solution.

When multiple student-written explanations are available
for a debugging solution, I will start by randomly choosing
one explanation. As the voting process goes, I will filter out
the explanations with significantly lower ’helpful’ votes.

3. EVALUATION
My evaluation will focus on the below research questions:

- What percentage of students will participate in the debug-
ging activities, and how many write explanations? Why do
students participate or not?

Proceedings of the 8th International Conference on Educational Data Mining 666



- What is the relationship between students’ involvement in
debugging and their programming performance? Will stu-
dents who complete problems with shorter solutions be more
involved in debugging?

- Will writing or reading student-written explanations and
debugging strategies help learning?

- In the global interaction network, what percentage of the
dead-end program states receive hints from student debug-
ging solutions?

Previous BOTS participants are students from after-school
programming education activities. In my experiment, I will
randomly recruit the same type of students. These students
will be separated into a control group where students will
use the traditional BOTS system, an experimental group A
where students will be given the option to do debugging chal-
lenges, and an experimental group B where students must
do debugging challenges after completing a level.

To answer the first research question, students from the two
experimental groups will do a post survey on their opin-
ions about debugging activities and hints generated from
student-written explanations. For experimental group A, I
will add survey questions on why students chose to partic-
ipate or not participate in debugging activities. To answer
the second question, students’ interaction and compilation
data while playing BOTS will be recorded. These data will
be used to measure the relationship between involvement in
the debugging activities and programming performance. To
answer the third research question, students from all groups
will do pre and post-tests on basic programming and debug-
ging concepts that are related to BOTS content. Learning
gains will be measured as the difference between pre and
post-test. To answer the fourth question, the program state
space coverage will be compared between the three groups.

4. PROPOSED CONTRIBUTION
My work will generate a new type of hint that may lead to
different pedagogical results than the procedural hint, espe-
cially for students in dead-end states. My work will demon-
strate the feasibility of collecting data from peer students’
debugging processes, and generating helpful hints.

My work will design a feature that supports both program-
ming and debugging activities in an educational game. This
design will have several pedagogical benefits. First, Kin-
nunen and Simon’s[6] research have shown that novice pro-
grammers experienced a range of negative emotions after
errors. Practicing debugging will help novice programmers
proceed after errors, and enjoy programming experiences.
Second, students will make self-explanations on the observed
flaw and debugging strategy, and decades of research such as
Johnson and Mayer’s[5], and Chi et al.[2] have shown that
self-explanation is extremely beneficial to learning. Third,
students in dead-end states will not only receive help, but
also learn what peer students think given the same situation.

5. ADVICE SOUGHT
Johnson and Mayers[5], and Hsu et al. studies[4] have shown
that merely adding self-explanation features did not help
learning, but students’ engagement in self-explaining did.

Therefore, I want to seek advice on the design of debugging
activities that engage students in debugging and writing ex-
planations, and produce quality work. I also want to seek
advice on the evaluation. Given the previous question, how
should I measure the level of engagement in debugging and
self-explaining?

Moreover, introducing debugging challenges as extra activ-
ities will affect other measurements. For example, students
who spend a significant amount of time in debugging may
complete less problems given the time constraint, and ex-
haust earlier. How should I address this problem and mea-
sure students’ performance fairly? Moreover, how to design
pre and post-tests to measure learning gains from debug-
ging process? Lastly, what are the potentials, benefits, and
risks to expand this work into programming problems using
mainstream programming languages?

6. REFERENCES
[1] T. Barnes and S. John. Toward automatic hint

generation for logic proof tutoring using historical
student data. In Proceedings of the 6th International
Conference on Intelligent Tutoring System, pages
373–382, 2008.

[2] M. T. Chi, N. Leeuw, M. H. Chiu, and C. LaVancher.
Eliciting self–explanations improves understanding.
Cognitive Science, 18(3):439–477, 1994.

[3] M. Eagle, M. Johnson, and T. Barnes. Interaction
networks: Generating high level hints based on network
community clusterings. In Proceedings of the 6th
International Conference on Intelligent Tutoring
System, pages 164–167, 2012.

[4] C. Y. Hsu, C. C. Tsai, and H. Y. Wang. Facilitating
third graders’ acquisition of scientific concepts through
digital game–based learning: The effects of
self–explanation principles. The Asia–Pacific Education
Researcher, 21(1):71–82, 2012.

[5] C. I. Johnson and R. E. Mayer. Applying the
self-explanation principle to multimedia learning in a
computer-based game–like environment. Computers in
Human Behavior, 26(6):1246–1252, 2010.

[6] P. Kinnunen and B. Simon. Experiencing programming
assignments in cs1: the emotional toll. In Proceedings of
the 6th international workshop on Computing education
research, pages 77–86, 2010.

[7] B. Peddycord III, A. Hicks, and T. Barnes. Generating
hints for programming problems using intermediate
output. In Proceedings of the 7th International
Conference on Educational Data Mining, pages 92–98,
2014.

[8] C. Piech, M. Sahami, J. Huang, and L. Guibas.
Autonomously generating hints by inferring problem
solving policies. In Proceedings of Learning at Scale,
2015.

[9] K. Rivers and K. R. Koedinger. Automatic generation
of programming feedback: A data-driven approach. In
Proceedings of the 1st workshop on AI-supported
Education for Computer Science, th 16th International
Conference on Artificial Intelligence on Education,
pages 50–59, 2013.

Proceedings of the 8th International Conference on Educational Data Mining 667


