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ABSTRACT 
Increased attention to the relationships between affect and 
learning has led to the development of machine-learned models 
that are able to identify students’ affective states in computerized 
learning environments. Data for these affect detectors have been 
collected from multiple modalities including physical sensors, 
dialogue logs, and logs of students’ interactions with the learning 
environment. While researchers have successfully developed 
detectors based on each of these sources, little work has been done 
to compare the performance of these detectors. In this paper, we 
address this issue by comparing interaction-based and video-based 
affect detectors for a physics game called Physics Playground. 
Specifically, we report on the development and detection accuracy 
of two suites of affect and behavioral detectors. The first suite of 
detectors applies facial expression recognition to video data 
collected with webcams, while the second focuses on students’ 
interactions with the game as recorded in log-files.  Ground–truth 
affect and behavior annotations for both face- and interaction-
based detectors were obtained via live field observations during 
game-play. We first compare the performance of these detectors 
in predicting students’ affective states and off-task behaviors, and 
then proceed to outline the strengths and weakness of each 
approach.    
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1. INTRODUCTION 
The development of models that can automatically detect student 
affect now constitutes a considerable body of research [12,31], 
particularly in computerized learning contexts [1,34,35], where 
researchers have successfully built affect-sensitive learning 
systems that aim to significantly enhance learning outcomes 
[4,21,30]. In general, researchers attempting to develop affect 
detectors have developed systems falling into two categories: 
interaction-based detectors [9] and physical sensor-based 
detectors [12]. Many successful efforts to detect student affect in 
intelligent tutoring systems have used visual, audio or 
physiological sensors, such as webcams, pressure sensitive seat or 

back pads, and pressure-sensing keyboards and mice [3,28,37,41]. 

The development of sensor-based detectors has progressed 
significantly over the last decade, but one limitation to this 
research is that much of it has taken place in laboratory 
conditions, which may not generalize well to real-world settings 
[9]. While efforts are being made to address this issue [4], there 
are often serious obstacles to using sensors in regular classrooms. 
For example, sensor equipment may be bulky or otherwise 
obtrusive, distracting students from their primary tasks (learning); 
sensors may also be expensive and prone to malfunction, making 
large-scale implementation impractical, particularly for schools 
that are already financially strained. On the other hand, because 
physical sensors are external to specific learning systems, their 
use in affect detection creates the opportunity for them to be 
applied to entirely new learning systems, though this possibility 
has yet to be empirically tested. 

Interaction-based detection [9] has also improved over the last 
decade. Unlike sensor-based detectors, which rely upon the 
physical reactions of the student, these detectors infer affective 
states from students’ interactions with computerized learning 
systems [5,7,9,14,29,30]. The fact that interaction-based affect 
detectors rely on student interactions makes it possible for them to 
run in the background in real time at no extra cost to a school that 
is using the learning system. Their unobtrusive and cost-efficient 
nature also makes it feasible to apply interaction-based detectors 
at scale, leading to a growing field of research regarding 
discovery with models [8]. For example, interaction-based affect 
detection has been useful in predicting student long-term 
outcomes, including standardized exam scores [30] and college 
attendance [36]. Basing affect detection on student interactions 
with the system, however, give rise to issues with generalizing 
such detectors across populations [26] and learning systems. 
Because interaction-based detectors are highly dependent on the 
computation of features that captures the student’s interactions 
with the specific learning platform, the type of features generated 
is contingent on the learning system itself, making it difficult to 
apply the same sets of features across different systems. 

It has become clear that each modeling approach has its own 
utility; researchers have thus begun to speculate on effectiveness 
across the various approaches and the possible applications of 
multimodal detectors. However, the body of research that 
addresses this question is currently quite limited. Arroyo and 
colleagues [4] applied sensor-based detectors in a classroom 
setting, and compared performances between interaction-only 
detectors and detectors using both interaction and sensor data, in 
predicting student affect. They found that the inclusion of sensor 
data in the detectors improved performance and accuracy in 
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identifying student affect. However, a direct comparison between 
the two types of detectors was not made. Furthermore, the sample 
size tested was relatively small (26-30 instances depending on 
model), and the data was not cross-validated. Comparisons 
between types of detectors were made in D’Mello and Graesser’s 
study [18], which compared interaction, sensor and face-based 
detectors in an automated tutor. They found face-based detectors 
to perform better than interaction and posture-based detectors at 
predicting spontaneous affective states. However, the study was 
conducted in a controlled laboratory setting, and the facial 
features recorded were manually annotated.   

In this paper, we build detectors of student affect in classroom 
settings, using both sensor-based and interaction-based 
approaches. For feasibility of scaling, we limit physical sensors to 
webcams. For feasibility of comparison, the two types of detectors 
are built in comparable fashions, using the same ground truth data 
obtained from field observations that were conducted during the 
study. We conduct this comparison in the context of 8th and 9th 
grade students playing an educational game, Physics Playground, 
in the Southeastern United States. Different approaches were used 
to build each suite of detectors in order to capitalize on the 
affordances of each modality. However, the methods and metrics 
to establish accuracy were held constant in order to render the 
comparison meaningful. 

2. PHYSICS PLAYGROUND 
Physics Playground (formerly, Newton’s Playground, see [39]) is 
a 2-dimensional physics game where students apply various 
Newtonian principles as they create and guide a ball to a red 
balloon placed on screen [38]. It offers an exploratory and open-
ended game-like interface that allows students to move at their 
own pace. Thus, Physics Playground encourages conceptual 
learning of the relevant physics concepts through experimentation 
and exploration. All objects in the game obey the basic laws of 
physics, (i.e., gravity and Newton’s basic laws of motion). 

 

 

Students can choose to enter one of seven different playgrounds, 
and then play any of the 10 or so levels within that playground. 
Each level consists of various obstacles scattered around the 
space, as well as a balloon positioned at different locations within 
the space (see Figure 1). Students can nudge the ball left and right, 
but will need to create simple machines (called “agents of force 
and motion” in the game) on-screen in order to solve the problems 
presented in the playgrounds. There are four possible agents that 
may be created: ramps, pendulums, levers and springboards. 
Students can also create fixed points along a line drawing to 
create pivots for the agents they create. Students use the mouse to 
draw agents that come to life after being drawn, and use them to 
propel the ball to the red balloon. Students control the weight and 

density of objects through their drawings, making an object 
denser, for example, by filling it with more lines. 

Each level allows multiple solutions, encouraging students to 
experiment with various methods to achieve the goal and guide 
the ball towards the balloon. Trophies are awarded both for 
achieving the goal objective and for solutions deemed particularly 
elegant or creative, encouraging students to attempt each 
playground more than once. This unstructured game-like 
environment provides us with a rich setting in which to examine 
the patterns of students’ affect and behavior as they interact with 
the game platform.   

3. DATA COLLECTION 
Students in the 8th and 9th grade were selected due to the 
alignment of the curriculum in Physics Playground to the state 
standards at those grade levels. The student sample consisted of 
137 students (57 male, 80 female) who were enrolled in a public 
school in the Southeastern U.S. Each group of about 20 students 
used Physics Playground during 55-minute class periods over the 
course of four days.  

An online physics pretest (administered at the start of day 1) and 
posttest (administered at the end of day 4), measured student 
knowledge and skills related to Newtonian physics. In this paper, 
our focus is on data collected during days 2 and 3, during which 
time students were participating in two full sessions of game play.   

The study was conducted in a computer-enabled classroom with 
30 desktop computers. Inexpensive webcams ($30 each) were 
affixed at the top of each computer monitor. At the beginning of 
each session, the webcam software displayed an interface that 
allowed students to position their faces in the center of the 
camera’s view by adjusting the camera angle up or down. This 
process was guided by on-screen instructions and verbal 
instructions from the experimenters, who were available to answer 
any additional questions and to troubleshoot any problems. 

3.1 Field Observations 
Students were observed by two BROMP-certified observers while 
using the Physics Playground software. The Baker Rodrigo 
Ocumpaugh Monitoring Protocol (BROMP 2.0) is a momentary 
time sampling system that has been used to study behavioral and 
affective indicators of student engagement in a number of learning 
environments [9]. BROMP coders observe each student 
individually, in a predetermined order. They record only the first 
predominant behavior and affect that the student displays, but they 
have up to 20 seconds to determine what that might be.    

In this study, BROMP coding was done by the 6th author and the 
4th author.  The 6th author, a co-developer of BROMP, has been 
validated to achieve acceptable inter-rater reliability 
(kappa >= 0.60) with over a dozen other BROMP-certified coders.  
The 4th author achieved sufficient inter-rater reliability 
(kappa >= 0.60) with the 6th author on the first day of this study. 

The coding process was implemented using the Human Affect 
Recording Tool (HART) application for Android devices [6], 
which enforces the protocol while facilitating data collection. The 
study used coding schema that had previously been used in 
several other studies of student engagement [e.g. 17], and 
included boredom, confusion, engaged concentration, and 
frustration (affective states) as well as on task, on-task 
conversation, and off-task (behavioral states). Consistent with 
previous BROMP research, “?” was recorded when a student 
could not be coded, when an observer was unable to identify the 

Figure 1: Screenshot of Physics Playground 
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student’s behavior or affective state, or when the affect/behavior 
of the student was clearly a construct outside of the coding 
scheme (such as anger).  

Modifications to the affective coding scheme were made on the 
third day of the study, with the addition of delight and dejection. 
Delight was defined as a state of strong positive affect, often 
indicated by broad smiling or a student bouncing in his/her chair. 
This affective state had been coded in previous studies (see [9]), 
and was used to construct detectors. Dejection, defined as a state 
of being saddened, distressed, or embarrassed by failure [9], is 
likely the affect that corresponds with the experience of stuck 
[11,20]. Because it had not been coded in previous research, and 
because it was still quite rare in Physics Playground, it was not 
modeled for this study. 

3.2 Affect and Behavior Incidence 
An initial number of 2,374 observations were made across all 137 
students during the course of the study, culminating in 17.3 
observations made per student across the second and third days of 
the study Only affect observations on the second and third days 
were used in the construction of the detectors, since the first and 
last days mostly consisted of pretests and posttests. Other 
observations were dropped as a result of two students who 
switched computers halfway through data collection, resulting in 
each student being logged under the other student’s ID for part of 
the study. The remaining 2,087 observations recorded during the 
second and third days were used in the construction of both 
detectors. An additional 214 were removed prior to the 
construction of the interaction-based detectors and 863 were 
removed prior to the construction of the video-based detectors. 
Because the criteria for these exclusions were methodologically 
based, further details are provided in the sections describing the 
construction of each detector. 

Within the field observations, the most common affective state 
observed was engaged concentration with 1293 instances 
(62.0%), followed by frustration with 235 instances (11.3%).  
Boredom and confusion were far less frequent despite being 
observed across both second and third days of observation: 66 
instances (3.2%) for boredom and 38 instances (1.8%) for 
confusion. Delight was only coded on the third day, and was also 
rare (45 instances), but it still comprised 2.2% of the total 
observations.  

The frequency of off-task behavior observations was 4.0% (84 
instances), which was unusually low compared to prior classroom 
research in the USA using the same method with other 
educational technologies [27,33]. On-task conversation was seen 
18.6% of the time (388 instances).  

4. INTERACTION-BASED DETECTORS 
To create interaction affect detectors, BROMP affect observations 
were synchronized to the log files of student interactions with the 
software. Features were then generated and a 10-fold student-level 
cross validation process was applied for machine learning, using 
five classification algorithms.  

4.1 Feature Engineering 
The feature engineering process for this study was based largely 
on previous research on student engagement, learning, and 
persistence. The initial set of features comprised 76 gameplay 
attributes that potentially contain evidence for specific affective 
states and behavior. Some attributes included:  

• The total number of springboard structures created in a level  

• The total number of freeform objects drawn in a level  

• The amount of time between start to end of a level  

• The average number of gold and silver trophies obtained in a 
level  

• The number of stacking events (gaming behavior) in a level  

Features created may be grouped into two broad categories. Time-
based features focus on the amount of time elapsed between 
specific student actions, such as starting and pausing a level, as 
well as the time it takes for a variety of events to occur within 
each playground level. Other features take into account the 
number of specific objects drawn or actions and events occurring 
during gameplay, given various conditions.   

Missing values were present at certain points in the dataset when a 
particular interaction was not logged. For example, a feature 
specifying the amount of time between the student beginning a 
level and his/her first restart of the level, would contain a missing 
value if the student manages to complete a level without having to 
restart it. A variety of data imputation approaches were used in 
these situations to fill in the missing values so that we could retain 
the full sample size. We used single, average and zero imputation 
methods to fill in the missing data, and ran the new datasets 
through the machine learning process to identify the best data 
imputation strategy for each affect detector. Zero imputations 
were performed where the missing values were replaced by the 
value 0, while average data imputations took place when the 
average value for the particular feature was computed, and the 
missing values replaced by this average value. In single data 
imputation, we used RapidMiner to build an M5' model [32], a 
tree-based decision model, to predict the values for each feature, 
and applied the model to compute a prediction of the missing 
value.  We also ran the original dataset without any imputation 
through any of the classification algorithms that allowed it.   

Of the 2087 BROMP field observations that were collected, 214 
instances were removed as most of these instances corresponded 
to times when the student was inactive. Additional instances were 
removed where the observer recorded a ?, the code used when 
BROMP observers cannot identify a specific affect or behavior or 
when students are not at their workstation. In total, 171 instances 
of affect and 63 instances of behavior were coded as ?. As a 
result, these instances did not contribute to the building of the 
respective affect and behavior detectors.  

4.2 Machine Learning 
Data collection was followed by a multi-step process to develop 
interaction-based detectors of each affect. A two-class approach 
was used for each affective state, where that affective state was 
discriminated from all others. For example, engaged concentration 
was discriminated from all frustrated, bored, delighted, and 
confused instances combined (referred to as “all other”). 
Behaviors were grouped into two classes: 1) off task, and 2) both 
on task behaviors and on task conversation related to the game.   

4.2.1 Resampling of Data 
Because observations of several of the constructs included in this 
study were infrequent, (< 5.0% of the total number of 
observations), there were large class imbalances in our data 
distributions. To correct for this, we used the cloning method for 
resampling, generating copies of respective positive affect on the 
training data, in order to make class frequency more balanced for 
detector development. 

Proceedings of the 8th International Conference on Educational Data Mining 79



4.2.2 Feature Selection and Cross-Validation 
Correlation-based filtering was used to remove features that had 
very low correlation with the predicted affect and behavior 
constructs (correlation coefficient > 0.04) from the initial feature 
set. Feature selection for each detector was then conducted using 
forward selection. 

Detectors for each construct were built in the RapidMiner 5.3 
data-mining software, using common classification algorithms 
that have been previously shown to be successful in building 
affect detectors: JRip, J48 decision trees, KStar, Naïve-Bayes, 
step and logistic regression. Models were validated using 10-fold 
student-level batch cross-validation. The performance metric of A' 
was computed on the original, non-resampled, datasets.  

4.3 Selected Features 
From the forward selection process, a combination of features was 
selected in each of the affect and behavior detectors that provide 
some insight into the type of student interactions that predict the 
particular affective state or behavior.  

The features for boredom involve a student spending more time 
between actions on average. A bored student would also expend 
less effort to guide the ball object to move in the right direction, as 
indicated by fewer nudges made on the ball object to move it, and 
more ball objects being lost from the screen.   

The features that predict confusion are characterized by a student 
spending more time before his/her first nudge to make the ball 
object move, and drawing fewer objects in a playground level. A 
student who is confused may not have known how to draw and 
move the ball object towards the balloon, thus spending a long 
time within a certain level and resulting in a lower number of 
levels attempted in total.  

From the features selected, delight appears to ensue from some 
indicator of success, such as a student who is able to achieve a 
silver trophy earlier on during gameplay, and who completes more 
levels in total. We can also portray the student who experiences 
delight as someone who was able to achieve the objective without 
having to make multiple attempts to draw the relevant simple 
machines (such as springboards and pendulums).  

The features for engaged concentration would describe a student 
who is able to complete a level in fewer attempts but erases the 
ball object more often during each attempt, indicating that the 
student was putting in more effort to refine his/her strategies 
within a single attempt at the level. Engaged concentration would 
also depict a student who has experienced success during 
gameplay and achieved a silver trophy in a shorter than average 
time, perhaps because of his/her focused efforts during each 
attempt. 

Table 1. Features in the final interaction-based detectors 
of each construct  

Affect/ 
Behavior Selected features 

Boredom 

Time between actions within a level 

Total number of objects that were “lost” (i.e. 
Moved off the screen) 

Total number of nudges made on the ball 
object to move it 

Confusion Amount of time spent before the ball object 
was nudged to move 

Total number of levels attempted 

Total number of objects drawn within the level 

Delight 

Number of silver trophies achieved 

Consecutive number of pendulums and 
springboards created 

Total number of levels attempted 

Total number of levels completed successfully 

Engaged 
Concentration 

Total number of silver trophies achieved in 
under the average time 

Total number of level re-starts within a 
playground 

Total number of times a ball object was erased 
consecutively 

Frustration 

Total number of silver trophies achieved in 
under the average time 

Total number of level re-starts within a 
playground 

Total number of levels completed successfully 

Total number of levels attempted 

Off-task 
Behavior 

Time spent in between each student action 

Total number of pauses made within a level 

Total number of times a student quits a level 
without completing the objective and obtaining 
a trophy 

 
Unlike engaged concentration, a student who experiences 
frustration failed to achieve the objective and achieved fewer 
silver trophies within the average time taken. Student frustration, 
as seen in the features, would also result in the student having to 
make more attempts at a level due to repeated failure, thus 
resulting in fewer levels attempted in total.  

Lastly, behavior that is off-task involves a student who spends 
more time pausing the level or between actions as a whole. It is 
also apparent in a student who draws fewer objects and quits more 
levels without completing them, implying that he or she did not 
put in much effort to complete the playground levels.  

5. VIDEO-BASED DETECTORS 
The video-based detectors have been reported in a recent 
publication [10]. In the interest of completeness, the main 
approach is re-presented here. There are also small differences in 
the results reported here due to a different validation approach that 
was used to make meaningful comparisons with interaction-based 
detectors. 

Video-based affect detectors were constructed using FACET (no 
longer available as standalone software), a commercialized 
version of the Computer Expression Recognition Toolbox 
(CERT) software [25]. FACET is a computer vision tool used to 
automatically detect Action Units (AUs), which are labels for 
specific facial muscle activations (e.g. lowered brow). AUs 
provide a small set of features for use in affect detection efforts. A 
large database of AU-labeled data can be used to train AU 
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detectors, which can then be applied to new data to generate AU 
labels.   

5.1 Feature Engineering 
FACET provides estimates of the likelihood estimates for the 
presence of nineteen AUs as well as head pose (orientation) and 
position information detected from video. Data from FACET was 
temporally aligned with affect observations in small windows. We 
tested five different window sizes (3, 6, 9, 12, and 20 seconds) for 
creation of features. Features were created by aggregating values 
obtained from FACET (AUs, orientation and position of the face) 
in a window of time leading up to each observation using 
maximum, median, and standard deviation. For example, with a 
six-second window we created three features from the AU4 
channel (brow lowered) by taking the maximum, median, and 
standard deviation of AU4 likelihood within the six seconds 
leading up to an affect observation. In all there were 78 facial 
features. 

We used features computed from gross body movement present in 
the videos as well. Body movement was calculated by measuring 
the proportion of pixels in each video frame that differed from a 
continuously updated estimate of the background image generated 
from the four previous frames. Previous work has shown that 
features derived using this technique correlate with relevant 
affective states including boredom, confusion, and frustration 
[17]. We created three body movement features using the 
maximum, median, and standard deviation of the proportion of 
different pixels within the window of time leading up to an 
observation, similar to the method used to create FACET features. 
Of the initial 2087 instances available for us to train our video-
based detectors on, about a quarter (25%) were discarded because 
FACET was not able to register the face and thus could not 
estimate the presence of AUs and computation of features. Poor 
lighting, extreme head pose or position, occlusions from hand-to-
face gestures, and rapid movements can all cause face registration 
errors; these issues were not uncommon due to the game-like 
nature of the software and the active behaviors of the young 
students in this study. We also removed 9% of instances because 
the window of time leading up to the observation contained less 
than one second (13 frames) of data in which the face could be 
detected, culminating in 1224 instances where we had sufficient 
video data to train our affect models on.  

5.2 Machine Learning 
We also built separate detectors for each affective state similar to 
the interaction-based detectors. Building individual detectors for 
each state allows the parameters (e.g., window size, features used) 
to be optimized for that particular affective state.  

5.2.1 Resampling of Data 
Like the interaction-based detectors, there were large class 
imbalances in the affective and behavior distributions. Two 
sampling techniques, different from the one used in the building 
of interaction-based detectors, were used on the training data to 
compensate for this imbalance. These two techniques included 
downsampling (removal of random instances from the majority 
class) and synthetic oversampling (with SMOTE; [13]) to create 
equal class sizes. SMOTE creates synthetic training data by 
interpolating feature values between an instance and randomly 
chosen nearest neighbors. The distributions in the testing data 
were not changed, to preserve the validity of the results. 

5.2.2 Feature Selection and Cross-Validation 
We used tolerance analysis to eliminate features with high 
multicollinearity (variance inflation factor > 5) [2]) for video-
based detectors. Feature selection was then used to obtain a more 
diagnostic set of features for classification. RELIEF-F [24] was 
run on the training data in order to rank features. A proportion of 
the highest ranked features were then used in the models (.1, .2, 
.3, .4, .5, and .75 proportions were tested). A detailed analysis or 
table of the features selected for the video-based detectors is not 
included because of the large number of features utilized by these 
detectors.  

We then built classification models using 14 different classifiers 
including support vector machines, C4.5 trees, Bayesian 
classifiers, and others in the Waikato Environment for Knowledge 
Analysis (WEKA), a machine learning tool [23]. 

6. RESULTS 
We evaluated the extent to which the detectors for each construct 
are able to identify their respective affect. Both detectors were 
evaluated using a 10-fold student-level batch cross-validation. In 
this process, students in the training dataset are randomly divided 
into ten groups of approximately equal size. A detector is built 
using data from all possible combinations of 9 out of the overall 
10 groups, and finally tested on the last group. Cross-validation at 
this level increases the confidence that the affect and behavior 

Table 2. A’ performance values for affect and behavior using video-based and interaction-based detectors 

Affect/Behavior 
Construct 

Interaction-Based Detectors Video-Based Detectors 

Classifier 
Data 

Imputation 
Scheme 

A' No. 
Instances Classifier A' No. 

Instances 

Boredom Logistic 
regression Zero 0.629 1732 Classification via 

Clustering 0.617 1305 

Confusion Step regression Average 0.588 1732 Bayes Net 0.622 1293 

Delight Logistic 
regression None 0.679 1732 Updateable Naïve 

Bayes 0.860 1003 

Engaged 
Concentration Naïve Bayes Zero 0.586 1732 Bayes Net 0.658 1228 

Frustration Logistic 
regression Average 0.559 1732 Bayes Net 0.632 1132 

Off-Task 
behavior Step regression Zero 0.765 1829 Logistic Regression 0.780 1381 
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detectors will be more accurate for new students. To ensure 
comparability between the two sets of detectors, the cross-
validation process was carried out with the same randomly 
selected groups of students.   

Detector performance was assessed using A' values that were 
computed as the Wilcoxon statistic [22]. A' is the probability that 
the given algorithm will correctly identify whether an observation 
is an example of a specific affective state. A' can be approximated 
by the Wilcoxon statistic and is equivalent to the area under the 
Receiver Operating Characteristic (ROC) curve in signal detection 
theory. A detector with a performance of A' = 0.5 is performing at 
chance, while a model with a performance of A' = 1.0 is 
performing with perfect accuracy. 

Table 2 shows the performance of the two detector suites. Both 
interaction-based and video-based detectors’ performance over all 
six affective and behavior constructs was better than chance 
(A' = 0.50). On average, the interaction-based detectors yielded an 
A' of 0.634 while the video-based detectors had an average A' of 
0.695. This difference can be mainly attributed to the detection of 
delight, which was much more successful for the video-based 
detectors. Accuracy of the two detector suites was much more 
comparable for the other constructs, though the video-based 
detectors showed some advantages for engaged concentration and 
frustration, and were higher for 5 of the 6 constructs. 

The majority of the video-based detectors performed the best 
when using the Bayes Net classifier, except for boredom, delight 
and off-task behavior. In comparison, logistic and step regression 
composed the classifiers that produced the best performance for 
most of the interaction-based detectors, with the exception of 
engaged concentration.  

7. DISCUSSION 
Affect detection is becoming an important component in 
educational software, which aims to improve student outcomes by 
dynamically responding to student affect. Affect detectors have 
been successfully built and implemented via different modalities 
[3,16,41], and each have their own advantages and disadvantages 
when implemented in a noisy classroom environment. This study 
is an extension of previous research conducted on both video-
based and interaction-based detectors. Having been mostly built in 
controlled laboratory settings [12], we now test the performance 
for video-based detectors within an uncontrolled computer-
enabled classroom environment that is more representative of an 
authentic educational setting. Although interaction-based 
detectors have been built to some degree of success in whole 
classroom settings [5,7,29], we now test the performance of these 
affect detectors in an open-ended and exploratory educational 
game platform.   

In this paper, we compared the performances of six video-based 
and interaction-based detectors on student affect and behavior in 
the game-based software. We will discuss the implications of 
these comparisons in this section, as well as future work.  

7.1 Main Findings 
The performances of both detectors in the six affects and off-task 
behavior appear to be at similar levels above chance for five of the 
constructs, with video-based detectors performing slightly better 
than interaction-based detectors on the whole, and with video-
based detector showing a stronger advantage for delight. Several 
factors may have help to explain the relative performances.   

Performance of video detectors could be influenced by the 
uncontrolled whole-classroom setting in which video data is 
collected, where there are higher chances of video data being 
absent or compromised due to unpredictable student movement. 
While there were initially 2,087 instances of affect and behavior 
observed and coded, a moderate proportion of facial data 
instances were dropped from the final dataset when building the 
models. There were 44 instances of affect observation that were 
dropped either because the video was corrupted or incomplete, or 
because no video was recorded at all. In addition, there were 520 
instances where video was recorded, but facial data were not 
detected for some reason, perhaps because the student had left the 
workstation, or when the face could not be detected in the video. 
An additional 211 instances were removed even though facial data 
was detected, because the facial data recorded was present for less 
than 1 second, such that no features could be calculated.  

For interaction-based detectors, the exploratory and open-ended 
user-interface [40] constitutes a unique challenge in creating 
accurate models for student affect and behavior. The open-ended 
interface included multiple goals and several possible solutions 
that students could come up with to successfully complete each 
level. During gameplay, there are also multiple factors that could 
contribute to a student’s failure to complete a level, such as 
conceptual knowledge as well as implementation of appropriate 
objects. A student with accurate conceptual knowledge of simple 
machines and Newtonian physics may still fail the level because 
of problems implementing the actions needed to guide the ball to 
the target. On the other hand, a student with misconceptions about 
the relevant physics topics may nevertheless be able to complete 
the level successfully through systematic experimentation. The 
possible combinations of student actions that result in failure or 
success in a playground level would hence contribute to the lower 
accuracy of interaction-based detectors on identifying students’ 
affect based on their interactions with the software.  

Another issue with the Physics Playground software could be that 
there are fewer indicators of success per unit of time, as compared 
to other learning software that have been studied previously, such 
as the Cognitive Tutors [e.g. 5]. During gameplay, the system is 
able to recognize when combinations of objects the student draws 
forms an eligible agent. However, this indicator of success or 
failure is not apparent to the student until after he or she creates 
the ball object and applies a relevant force to trigger a simulation. 
Since students often spend at least several minutes building agents 
and ball objects, this results in coarser-grained indicators and 
evaluations of success and failure. This is in comparison to affect 
detectors created in previous studies for the Cognitive Tutor 
software, in which there was regular evaluation of each question 
attempted, thus resulting in more indicators of success over a 
given time period. The combination of open-endedness and lack 
of success indicators per unit of time consequently leads to greater 
difficulty translating the semantics of student-software 
interactions into accurate affect predictions.  

When comparing between the two sets of detectors, physical 
detectors make direct use of students’ facial features and bodily 
movements captured by webcams and constitute embodied 
representations of students’ affective states. On the other hand, 
interaction detectors were built based on student actions within 
the software, which serves as an indirect proxy of the students’ 
actual affective states. These detectors rely, therefore on the 
degree to which student interactions with the software are 
influenced (or not) by the affective states they experience. Perhaps 
not surprisingly, video-based detectors perform somewhat better 
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in predicting some affective states (e.g., delight, engaged 
concentration, and frustration). Although the video detectors are 
limited by missing data, interaction-based detectors can only 
detect something that causes students to change their behaviors 
within the software, which can be challenging given the issues 
arising from the open-ended game platform. Simply put, face-
based affect detectors appear to provide more accurate affect 
estimates but in fewer situations, while interaction-based affect 
detectors provide less accurate estimates, but are applicable in 
more situations. The two approaches thus appear to be quite 
complementary. 

7.2 Limitations 
In comparing the performances between interaction and video-
based detectors, there exist several limitations in ensuring an 
equivalent set of methods for a fair comparison to be made.  

Although both types of detectors were built based on the same 
ground truth data, varying sets of limitations exist that are unique 
to each set of detectors. A smaller proportion of instances were 
retained to build video-based detectors due to missing video data, 
which may influence performance comparison. Interaction-based 
detectors, on the other hand, are relatively more sensitive to the 
type of educational platform it is built upon, as compared to 
video-based detectors. The type of learning platform thus affects 
the variety of features that are relevant and useful in building the 
affect and behavior detectors, which in turn impacts its 
performance relative to previous work.  

For both detectors, the sample size available for some of the 
affective states was quite limited, which made it necessary to 
oversample the training data in order to compensate for the class 
imbalances. However, because each detector was built on 
different platforms, different methods were used in oversampling 
the datasets. The need to conduct data imputations was also 
unique to interaction-based detectors due to the nature of some of 
the computed features, and not required for video-based detectors. 
The difference in these methods may in turn affect performance 
comparison between the two types of detectors.  

7.3 Concluding Remarks 
Given the various advantages and limitations to each type of 
detector in accurately predicting student affect, it may be 
beneficial for affect detection strategies to include a combination 
of video-based and interaction-based detectors. While video-based 
detectors provide more direct measures of student affect, practical 
issues may lead to video data being absent or unusable in 
detecting affect, simply because there is no facial data available to 
detect affect in. These situations may be alleviated by the 
presence of interaction data that are recorded automatically during 
students’ use of the software. On the other hand, video-based 
facial data would be able to provide support to interaction data 
and boost the accuracy in which affective states are detected 
among students. This form of late-fusion or decision-level fusion 
can also be complemented by early-fusion or feature-level fusion, 
where features from both modalities are combined prior to 
classification. Whether this leads to improved accuracy, as 
routinely documented in the literature on multimodal affect 
detection [15,16] awaits future work. 
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