Interaction Network Estimation: Predicting
Problem-Solving Diversity in Interactive Environments.

Michael Eagle, Drew Hicks, and Tiffany Barnes
North Carolina State University, Department of Computer Science
890 Oval Drive, Campus Box 8206
Raleigh, NC 27695-8206
{mjeagle, aghicks3, tmbarnes}@ncsu.edu

ABSTRACT

Intelligent tutoring systems and computer aided learning en-
vironments aimed at developing problem solving produce
large amounts of transactional data which make it a chal-
lenge for both researchers and educators to understand how
students work within the environment. Researchers have
modeled student-tutor interactions using complex networks
in order to automatically derive next step hints. However,
there are no clear thresholds for the amount of student data
required before the hints can be produced. We introduce a
novel method of estimating the size of the unobserved in-
teraction network from a sample by leveraging Good-Turing
frequency estimation. We use this estimation to predict size,
growth, and overlap of interaction networks using a small
sample of student data. Our estimate is accurate in as few
as 10-30 students and is a good predictor for the growth
of the observed state space for the full network, as well as
the subset of the network which is usable for automatic hint
generation. These methods provide researchers with metrics
to evaluate different state representations, student popula-
tions, and general applicability of interaction networks on
new datasets.

1. INTRODUCTION

Data-driven methods to provide automatic hints have the
potential to substantially reduce the cost associated with
developing tutors with personalized feedback. Modeling the
student-tutor interactions as a complex network provides a
platform for researchers to automatically generate next step
hints. An Interaction Network is a complex network repre-
sentation of all observed student and tutor interactions for a
given problem in a game or tutoring system. In addition to
their usefulness for automatically generating hints, interac-
tion networks can provide an overview of student problem-
solving approaches for a given problem.

Data-driven approaches cannot reliably produce feedback
until sufficient data has been collected, a problem often re-
ferred to as the Cold Start problem. The precise amount of

Proceedings of the 8th International Conference on Educational Data Mining

data needed varies by problem and environment. However,
some properties of Interaction Networks allow us to esti-
mate how much data is needed. Eagle et al. explored the
structure of these student interaction networks and argued
that networks could be interpreted as an empirical sample
of student problem solving [5]. Students employing similar
problem-solving approaches will explore overlapping areas
of the Interaction Network. The more similar a group of
students is, the smaller the overall explored area of the in-
teraction network will ultimately be. Since we expect dif-
ferent populations of students to have different interaction
networks, and different domains to require varying amounts
of student data before feedback can be given, good metrics
for the current and predicted quality of Interaction Networks
are important.

In this work, we adapt Good-Turing frequency estimation
to interaction level data to predict the size, growth, and
“hintability” of interaction networks. Good-Turing frequency
estimation estimates the probability of encountering an ob-
ject of a hitherto unseen type, given the current number
and frequency of observed objects [8]. It was originally de-
veloped by Alan Turing and his assistant 1. J. Good for use
in cryptography efforts during World War II. In our con-
text, network states (vertices) are the object types, and the
student interactions (edges) leading to those states are ob-
servations.

We present several metrics, derived from Good-Turing fre-
quency estimation. Our hypotheses are that these metrics:
H1: Predict the probability that a student interaction will
result in a state which was not previously observed H2: De-
scribe the proportion of the network that has been observed
for a population H3: Predict the expected size and growth
of an interaction network when additional student data is
added H4: Provide a quantitative comparison of different
state representations for their ability to represent greater
proportions of the network H5: Are useful for comparing
different populations of users in how they explore the prob-
lem space

Additionally, we use the metrics to explore the subset of the
interaction network that is useful for providing automati-
cally generated hints. This provides us with estimates of the
size, growth, and coverage of automatically generated hints.
We find that our metrics quickly become accurate after col-
lecting a sample of about 10 students. This has value as a
metric to compare the quality of the interaction networks,

342

and will aid future researchers in determining an adequate
state representation. We also show how two experimental
groups, despite having the same amount of network cover-
age, have substantially different numbers of unique states.
This supports previous work, suggesting that different pop-
ulations of students produce different interaction networks
[5], which has broad implications for generating hints as well
as using the networks to evaluate student behavior.

1.1 Previous Work

Creation of adaptive educational programs is costly. This is,
in part, because developing content for intelligent tutors re-
quires multiple areas of expertise. Content experts and ped-
agogical experts must work with tutor developers to identify
the skills students are applying and the associated feedback
to deliver [13]. In order to address the difficulty in author-
ing intelligent tutoring content, Barnes and Stamper built
an approach called the Hint Factory to use student data to
build a Markov Decision Process (MDP) of student problem-
solving approaches to serve as a domain model for automatic
hint generation [18]. Hint Factory has been applied in tutor-
ing systems and educational games across several domains
[7, 14, 6], and been shown to increase student retention in
tutors [19].

Early work with the Hint Factory method used a Markov De-
cision Process constructed from students’ problem-solving
attempts. Eagle and Barnes further developed this struc-
ture into a complex network representation of student in-
teractions with the system, called an Interaction Network
[5]. Complex networks are graphs or networks which con-
tain non-trivial topological features unlikely to appear in
simple or random networks. The Interaction Network rep-
resentation can be used as a visualization of student work
within tutors. The effectiveness of Interaction Networks as
visualizations was shown by Johnson et al. who created
a visualization tool InVis to aid instructors in analyzing
student-tutor data [11].

Other approaches to automated generation of feedback have
attempted to condense similar solutions in order to address
sparse data sets. One such approach converts solutions into
a canonical form by strictly ordering the dependencies of
statements in a program [15]. Another approach compares
linkage graphs modelling how a program creates and mod-
ifies variables, with nested states created when a loop or
branch appears in the code [10]. In the Andes physics tutor,
students may ask for hints about how to proceed. Sim-
ilarly to Hint Factory-based approaches, a solution graph
representing possible correct solutions to the problem was
used. However their solution space was explored procedu-
rally rather than being derived from student data, and they
used plan recognition to decide which of the problem deriva-
tions the student is working towards [20].

Interaction networks are scale-free networks. This is a prop-
erty of complex networks whose degree distribution is heavy-
tailed, often a power law distribution. In practice, this
means that a few vertices have degree that is much larger
than the average, while many vertices have degree some-
what lower than average [5]. Eagle et al. argued that stu-
dents with similar problem solving ability and preferences
would travel into similar parts of the network, resulting in

Proceedings of the 8th International Conference on Educational Data Mining

some states being more important to the problem than oth-
ers [5]. Using these “hub” states, sub-regions of the network
corresponding to high-level approaches to the problem were
derived. These sub-regions captured problem-solving differ-
ences between two experimental groups [4].

2. METHODS AND MATERIALS

For the purposes of this work, we are using datasets from
three different environments to build our interaction net-
works. Summaries of these datasets are found in Table 1.
The first dataset is from the Deep Thought tutor, used in
previous work by Stamper et al. [19]. This dataset was col-
lected for a between groups experiment investigating the use
of data-driven hints, so we split the dataset into two groups,
DT1-C, the control group from that experiment, and DT1-
H, the group that received hints. We selected this dataset
to explore and evaluate H5.

The second dataset comes from the game BOTS. Here, we
have the same students and interactions represented in two
different ways: First. using codestates (the programs users
wrote) and second using worldstates (the output of those
programs). The advantages and disadvantages of these state
representations were explored in previous work by Peddy-
cord and Hicks [14]. We split this dataset into two groups
as well (BOTS-C and BOTS-W) one for each state repre-
sentation used. We selected this dataset for evaluation of
H4.

Our third and largest dataset comes from an updated ver-
sion of the Deep Thought tutor, called Deep Thought 3.
Unlike with the other datasets, Deep Thought 3 features an
AT problem selection component [12]. This means that not
all students will have had access to all problems. In addi-
tion, there is a larger number of problems in this dataset.
We selected this dataset, as the larger number of problems
effectively splits student data across multiple networks. H1—
H3 are relevant towards measuring the quality of networks
produced for new problems.

Table 1: Dataset summary: the total number of stu-
dents in the dataset, the number of distinct prob-
lems, and the average number of students repre-
sented in each network.

Dataset Total N Num Problems Mean Net N

DT1-H 203 11 83.73
DT1-C 203 11 63.82
DT3 341 59 78.41
BOTS-C 125 12 99.75
BOTS-W 125 12 99.75

2.1 Constructing an Interaction Network

An Interaction Network is a complex network representation
of all observed student and tutor interactions for a given
problem in a game or tutoring system. To construct an In-
teraction Network for a problem, we collect the set of all
solution attempts for that problem. Each solution attempt
is defined by a unique user identifier, as well as an ordered
sequence of interactions, where an interaction is defined as
{initial state, action, resulting state}, from the start of the

343

problem until the user solves the problem or exits the sys-
tem. The information contained in a state is sufficient to
precisely recreate the tutor’s interface at each step. Simi-
larly, an action is any user interaction which changes the
state, and is defined as {action name, pre-conditions, post-
conditions}. In Deep Thought, for example, an action would
be the logical axiom applied, the statements it was applied
to, and the resulting derived statement. Figure 1 displays
two Deep Thought interactions. The first interaction works
forward from STEPO to STEP1 with action SIMP (sim-
plification) applied to (Z A =W) to derive =W. The second
interaction works backward from STEP1 to STEP2 with ac-
tion B — ADD (backwards addition) applied to (X V S) to
derive the new, unjustified statement S.

[z5 s [z &~ wi] [weas 5] [~ rvT]

()
STEP 0) A

[z5 ~vs] [za~w] [wvas] [~vT]

=~ Wlgmp

(7)
STEP 1) XS

[z vs0] [za~w] [wyTss)] [~vT]

= Wlgme

STEP 2 l

Figure 1: Example of state to state transitions
within the Deep Thought (DT1) propositional logic
tutoring system.

Once the data is collected. we use a state matching function
to combine similar states. In Deep Thought, we combine
states that consist of all the same logic statements, regard-
less of the order in which those statements were derived.
This way, the resulting state for a step STEP0, STEP1, or
STEP2 in Figure 1 is the set of justified and unjustified state-
ments in each screenshot, regardless of the order that each
statement was derived. In BOTS, two state matching func-
tions were used: one which combined states based on the
code in students’ programs, and another which instead used
the output of those programs. Similarly, we use an action
matching function to combine actions which result in simi-
lar states, while preserving the frequency of each observed
interaction.

2.2 Providing Hints

Stamper and Barnes’ Hint Factory approach generates a
next step Hint Policy by modeling student-tutor interactions
as a Markov Decision Process [18]. This has been adapted
to work with interaction networks by using a Value Itera-

Proceedings of the 8th International Conference on Educational Data Mining

tion algorithm on the states [5]. We generate a graph of
all student interactions, combining identical states using a
state matching function. Then, we calculate a fitness value
for each state. We assign a positive value (100) to each goal
state, that is a state configuration representing a solution to
the problem. We assign an error cost (-5) for error states.
We also assign a small cost to performing any action, which
biases hint-selection towards shorter solutions. We then cal-
culate fitness values V(s) for each state s, where R(s) is the
initial fitness value for the state, v is a discount factor, and
P(s,s') is the observed frequency with which users in state s
take an action resulting in state s’. After this, we use value
iteration [2] to repeatedly assign each state a value based on
its neighbors and action costs, weighted by frequency.

After applying this algorithm, we can provide a hint to guide
the user toward the goal by selecting the child state with the
best value. We can do this for any observed state, provided
that a previous user has successfully solved the problem after
visiting that state. In the original work with Hint Factory
on the Deep Thought tutor, the algorithm was permitted to
backtrack to an earlier state if it failed to find a hint from
the current state. However, not all environments allow the
user to backtrack and there are risks of the backtracking
hints to provide irrelevant information. Because of this in-
consistency across domains, we did not permit backtracking
for the purposes of the comparisons in this paper.

We define a state, S to be Hintable if S lies on a path which
ends at a goal state. We define the Hintable network to
be the subset of the interaction network containing only
Hintable states and edges between hintable states; That is,
the induced subgraph on the set of Hintable states.

2.3 Cold Start Problem

Barnes and Stamper [1] approached the question of how
much data is needed to get a certain amount of overlap in
student solution attempts by incrementally adding student
attempts and measuring the step overlap over a large series
of trials. This was done with the goal of producing automat-
ically generated hints, and solution attempts that did not
reach the goal were excluded. Peddycord et al. [14] used a
similar technique to evaluate differences in overlap between
two different interaction network state representations.

The “Cold Start problem” is an issue that arises in all data-
driven systems. For early users of the system, predictions
made are inaccurate or incomplete [17, 16]. If there are in-
sufficient data to compare to (not enough user ratings, or
not enough student attempts) then the quality of the rec-
ommendations suffers and in some cases no recommendation
can be provided. The term is commonly used in the field
of collaborative filtering and recommender systems, but it
can be used to describe three related issues, the “new user,”
the “new item,” and the “new community” [3] Cold Start
problems. The “new user” problem refers to the difficulty
of making recommendations to a user who has performed
no actions. The “new item” problem refers to the difficulty
of suggesting users visit a newly added, unobserved state.
The new community Cold Start problem refers to situations
where not enough observations exist to make recommenda-
tions for new users. The “new community” definition corre-
sponds most closely to the difficulty of generating hints for

344

an entirely new problem in an intelligent tutoring system or
educational game.

To measure our ability to address this problem, we add all
interactions from a single student, one at a time, to the in-
teraction network. This is in order to simulate the growth
of the network. We repeat this process for each student,
measuring the performance of our model each time. We
measured the proportion of currently observed states to to-
tal observed states for the entire data set, as well as for the
subset of states from which a goal is reachable. To control
for ordering effects, we repeated this trial 1000 times us-
ing a different random ordering of students each time, and
aggregated the results.

2.4 Good-Turing Network Estimation

We present a new method for estimating the size of the un-
observed portion of a partially constructed Interaction Net-
work. Our estimator makes use of Good-Turing frequency
estimation [8]. Good-Turing frequency estimation estimates
the probability of encountering an object of a hitherto un-
seen type, given the current number and frequency of ob-
served objects. It was originally developed by Alan Turing
and his assistant I. J. Good for use in cryptography efforts
during World War II. Gale and Sampson revisited and sim-
plified the implementation [8]. In its original context, given
a sample text from a vocabulary, the Good-Turing Estima-
tor will predict the probability that a new word selected
from that vocabulary will be one not previously observed.

The Good-Turing method of estimation uses the frequency
distribution, the “frequency of frequencies,” from the sample
text in order to estimate the probability that a new word
will be of a given frequency. Based on this distribution,
the probability of observing a new word in an additional
sample is estimated with the observed proportion of words
with frequency one. This estimate of unobserved words is
used to adjust the probabilities of encountering words of
frequencies greater than one.

We adapt the Good-Turing Estimator to interaction net-
works by using the states with an observed frequency of one
to estimate the proportion of “frequency zero” states. In-
teraction networks represent the observed interactions and
therefore we also use this value to estimate the probability
that a new interaction will transition into a new state. We
use Py as the expected probability of the next observation
being an unseen state. Py is estimated by:
Ny

Where N; is the total number of frequency 1 states, and N
is the total number of interaction observations. Since N is
the largest group of states, the observed value of Vi is a rea-
sonable estimate of P;. Py can then be used to smooth the
estimation proportions of the other states. The proportion
of states with observed frequency r is found by:

_ (r+1)S(Nrs1)
P = (2)

where S() is a smoothing function that adjusts the value for
large values of r [8].

Proceedings of the 8th International Conference on Educational Data Mining

Unique Network States Encountered Per Student
BOTS-C BOTS-W \ DT1-C

1000

750-

500-

8 250-
8
° z
g o
DT1-H DT:
-glooc‘ 2 |
=)
=
2 750-
Dataset
BOTS-C
500- — BOTS-W
— DT1-C

== DT1-H
DT3

250-

D 25 50 75 100
Number of Students

Figure 2: The growth of new states as new students
are added for each problem, for each dataset.

Our version of Py is the probability of encountering a new
state (a state that currently has a frequency of zero,) on a
new interaction. We also interpret this as the proportion of
the network missing from the sample. We will refer to an
interaction with a unobserved state as having fallen off of
the interaction network. We will use the complement of Py
as the estimate of network coverage, I, the probability that
a new interaction will remain on the network: Ic =1 — Py.

The state space of the environment is the set of all possi-
ble state configurations. For both the BOTS game and the
Deep Thought tutor the potential state space is infinite. For
example, in the Deep Thought tutor a student can always
use the addition rule to add new propositions to the state.
However, as argued in Eagle et. al. [5], the actions that
reasonable humans perform is only a small subset of the
theoretical state space; the actions can also be different for
different populations of humans. We will refer to this sub-
set as the Reasonable State Space, with unreasonable being
loosely defined as actions that we would not expect a human
to take. An interaction network is an empirical sample of
the problem solving behavior from a particular population,
and is a subset of the state space of all possible reasonable
behaviors. Therefore, our metrics Py and Ic are estimates
of how well the observed interaction network represents the
reasonable state space.

3. RESULTS

In order to evaluate the performance of the unobserved net-
work estimator, Py, and the network coverage estimator,
Ic, for each problem in each of our 5 datasets we randomly
added students from the sample, one at a time until all stu-
dent data had been included. At each step, T, we recorded
the values of our estimators using only the data that had
been encountered up until then. This simulates a real world
use-case, where additional students are added over time. We
repeated this process 1000 times and averaged the results.
Figure 2 shows the growth of unique states as students are
added for the interaction networks generated by each prob-
lem (line) in each of the five datasets.

345

New State Prediction for Full Network

25

Dataset
BOTS-C

-~ BOTS-W

- DT1-C

— DT1-H
DT3

Expected — Observed New States

25 50 75 100
Number of Students

Figure 3: The average absolute error between the es-
timated number of new states and the observed new
states over the number of students for all problems
in each of the four datasets. P, accurately predicts
the observed values after roughly 10 students, rarely
being off by more than one after that.

3.1 H1: Prediction of New States

In order to evaluate P, for the prediction of new states
(states that are frequency = 0 on time Tj, but will be fre-
quency = 1 on T;4+1. At each T we add an additional student
and compare the expected number of frequency 1 states,
FEs1, vs. the observed number, Og1. Across all five datasets,
Figure 3 shows the differences between the expected and ob-
served number of new states. The Po X Interactions predic-
tion for new states follows closely with the observed number,
the estimates increase in accuracy rapidly over the first ten
students and are rarely off by more than a fraction of a state
afterwards. Figure 4 shows the results of running this pro-
cess on only the hintable portion of the interaction network
for each data set.

3.2 H2: Network Coverage

We have defined network coverage Ic as the proportion of
interactions which lie within the previously observed net-
work. Another interpretation is that I is the probability of
an interaction resulting in a state that has been previously
observed. This value is the complement of Py. Figure 5 and
7 display the results of network coverage and its growth as
additional students are added.

3.3 H3: Predicting Future Network Size

In order to further evaluate the use of Py and Ic we cal-
culated a prediction for the final size of the network, given
the number of students in each dataset, at each time stamp.
The equation for this prediction is:

[V(IN)| = (NewSample * Py) + Ur. (3)

Where |[V(IN)| is the number of unique vertices (states) in
the final network, NewSample is the number of new interac-
tions added, P, is the estimation of new states added, and
Ur is the number of unique states observed at time 7. The
results are averaged across all problems for each dataset and

Proceedings of the 8th International Conference on Educational Data Mining

New State Prediction for Hintable Network

25

Dataset
BOTS-C

- BOTS-W

- DT1-C

— DT1-H
DT3

Expected — Observed New States

0 25 75 100

50
Number of Students

Figure 4: For the hintable states, the average differ-
ence between the estimated number of new states
and the observed new states over the number of stu-
dents for all problems in each of the four datasets.
Py accurately predicts the observed values after
roughly 10 students, rarely being off by more than
one after that.

are presented in figures 8 and 9. This prediction rapidly im-
proves and after roughly 20% of the sample is added, can
accurately predict the final number of unique states for the
network. This combined with the accuracy of Py reveals the
short term and long term accuracy for the estimator.

3.4 H4: Comparing State Matching Functions
The network coverage metric, I, allows an easy method of
estimating the differences in state matching functions and
student network overlap. We can use I¢ with two potential
matching functions, and get an estimate of the remaining
network, to quickly compare different potential state repre-
sentations as well as to find a state generalization that will
allow for a desired amount of network coverage.

The estimate based on the above methods has proven useful
for comparing State Matching functions to help determine
which produces more relevant hints. Figure 6 shows the
BOTS interface, with the user’s program (codestate) and
the game world (worldstate) both illustrated. In previous
work investigating the Cold Start problem on the BOTS
data set, we measured "coverage” in terms of how much of
the newly added test data was already present in the training
set [9, 14]. Compare this analysis to Figure 5 which shows
the estimated probability that a student’s next action will
result in an observed state, Ic. After 100 students, the prob-
ability that a student will generate a new codestate is still
quite high, Py > .25. In comparison, after the same num-
ber of students, the probability of generating a new world-
state is extremely low, Py < .02. This result supports both
our intuition and our results from the previous work, that
students will continue to generate new codestates, but that
these different codestates will collapse to previously observed
worldstates.

346

Growth of Network Coverage

0.9
0.8
PN
o
T
\?/0.7
[}
j=2
go 6 Dataset
2 - BOTS-C
o -+ BOTS-W
X
505 - DT1-C
B —~DT1-H
2 DT3
0.4
0.31
0.24 |) | |
0 25 50 75 100

Number of Students

Figure 5: The estimated network coverage Ic for
each of the 5 datasets, note the poor coverage for
the BOTS-C dataset. The BOTS-W state is more
general and has the much higher coverage.

Move Forward Tum Right Climb Up.

Move Backward Tum Left Climb Down

[command Count:

- 3 = Pick Up Put Doy Wait
‘ Fire Bot (%
@ (] unctions ari les arameters

Action)
SetVariable a 0 Nk

Tum Right
RepeatWhile a €< 3
Move Forward
Move Forward
Move Forward

Tum Right
Function A / F\ ,/’\‘
@l 11 1 -
Tum Left —d
%7\
Tum Left J | N M | !9
)) (v

Function A

Figure 6: An image of the main gameplay interface
for BOTS. The left hand side of the screen shows
the user’s program, used to derive code states. The
right-hand side shows the game world, where the
program output determines the world states.

3.5 HS: Comparing Populations

Samples from different populations have different resulting
interaction networks. The size of the represented network
can tell us about the similarity of student approaches in the
sample. If students are more alike in the types of actions
they perform, fewer students will be needed to achieve a
similar amount of overlap. We can also see that adding stu-
dents from a dissimilar population will not always increase
estimated network coverage (I¢), and can potentially de-
crease it. This has implications about the importance of
building hints for one population and applying it for an-
other. In other work we have already shown that different
groups are likely to visit different parts of the networks [4].
Here we expand on that analysis by showing that the two

Proceedings of the 8th International Conference on Educational Data Mining

10 Growth of Hintable Network Coverage

o
o

Dataset

-»- BOTS-C

-+ BOTS-W

- DT1-C

—- DT1-H
DT3

Hintable Network Coverage (1-P0)

0.0+ | | | |
0 25 50 75 100
Number of Students

Figure 7: For the hintable network: the estimated
network coverage /¢ for each of the 5 datasets. Even
the lowest performing hint network BOTS-C reaches
roughly 70% coverage by 100 students.

Table 2: Different populations have different spread
in problem exploration.

Group P States

Hint 0.09 514.61
Control 0.10 720.12

Interactions F}

2709.84 250.09
3904.92 340.00

groups, while having the same amount of network coverage,
have a different number of unique states. Table 2 shows the
results between the Hint group, which received hints on a
subset of the problems, and the Control group which never
received hints. This corresponds with results from Eagle et
al. [4] in which they uncovered significant differences in the
student overall approaches. This result adds to that an es-
timation of how complete each network was, revealing that
additional data was not likely to change the result. It also
shows some evidence for a trail blazing effect. When pro-
vided hints, students collectively explore a smaller area of
the state space.

3.6 Estimating the effect of filtering

Visualizations must struggle with an "information to ink”
ratio. There is a trade-off between displaying full informa-
tion and overwhelming the viewer, and displaying only the
most frequent states and potentially misleading the viewer
by eliminating information. InVis, a visualization tool for
exploring Interaction Networks allowed users to filter by fre-
quency[11]. We can use the Good-Turing Estimation to cal-
culate the amount of information removed by filtering fre-
quency of a certain degree. P, is the proportion of the net-
work missing, Ic., = Ic —Pi1— .+ Py, where r is a threshold
value for removing low frequency states, and P; — —r is the
sum of P; through P,.. This should be a useful metric for
visualizations for measuring the amount of network that is
hidden by filtering. It is also useful to show that sometimes
a large number of graphical elements can be removed, with
only a small amount of interaction information lost.

347

2,00 Predicting Final Number of Unigue Hintable States

2.75+

2,50
Dataset
BOTS-C
< BOoTS-W
% DT1-C
DT1-H

DT3

2.25+

2.00+

1.754

1.50+

1.254

1.00+

0.75+

0.50+

Percent Incorrect from Final Unique States

0.00+

-0.25+

-0.50-

050
Percent of Sample

Figure 8: Prediction of total final number of states,
as observed number of states increases. Note that
for small ¢, the estimate is very high (up to 300%
over prediction), but becomes fairly accurate after
roughly 20% of the sample is measured.

4. DISCUSSION

Good-Turing Estimation works well in the contexts of in-
teraction networks. We were able to provide an easily cal-
culable estimate of the proportion of the network not yet
observed Py. This value alone is a useful high level metric
for the percentage of times a student interaction results in a
previously unobserved state. The Py score for the hintable
network is likewise an estimate of the probability that a stu-
dent will “fall off” of the network from which we can provide
feedback. Our network coverage metric I¢ allows a quick
and easy to calculate method of comparing different state
representations, as well as quantifying the difference. We
believe that this metric can replace the commonly used cold
start method of evaluating the “hintability” of a network. I
is also valuable to quickly gauge the applicability of a new
domain to interaction networks. The majority of the cal-
culations can be performed on the transactional data. The
growth trends for our five datasets were often clear after
only ten students.

Our network estimators also have implications given our pre-
vious theories on the network being a sample created from
biased (non-random) walks on the problem-space, as the
more homogeneous the biased walkers are, the faster the net-
work will represent the population and the fewer additional
states will be explored. We revisited our previous results [4],
and found that students with access to hints explored less
overall unique states. This implies that the students were
more similar to each other in terms of the types of actions
and states they visited within the problem. Overall, this re-
sult supports the idea that different populations of students
will have different interaction networks. The implications of
this for generating hints are great. Building hints on one
population might not work as well in another, and adding
interventions or hints can dramatically reduce the number of
states visited by the students. Future work should explore
the possibility of having multiple network representations

Proceedings of the 8th International Conference on Educational Data Mining

200 Predicting Final Number of Unigue Hintable States

2.75+

2501
Dataset
BOTS-C
< BOTS-W
% DT1-C
DT1-H

DT3

2.25+

2.00+

1.75+4

1.50+

1.25

1.00+

0.75+

0.50+

Percent Incorrect from Final Unique States

0.00+

-0.25+

-0.50 . | |
0.00 0.25 0.50
Percent of Sample

Figure 9: Prediction of total final number of goal
states, as observed number of states increases. Note
that for small ¢, the estimate is very high, but be-
comes an underestimate as t increases. P, can pre-
dict the number of additional hintable states that
can be added for a additional sample of data.

and choosing to match the student with the one closely re-
sembling them.

As you can see in figure 8, our estimator starts out drasti-
cally overestimating the number of unobserved states in the
network. As we collect data, this eventually becomes a slight
underestimate, eventually converging on the correct number
of states. One explanation for why this might be the case is
the method by which undiscovered states are added to the
network. By using this model for our estimator, we are mak-
ing an assumption that states are selected independently of
one another. At the beginning, when data is sparse, this
assumption is not particularly harmful, since undiscovered
states are relatively common. However, as our dataset be-
comes richer, we underestimate the probability of adding
an unobserved state because we do not take into account
the effect of “trail-blazing” which increases the probability
of adding additional unobserved states after the first. Eagle
and Barnes found that interaction networks had properties
of scale-free networks. [5]. In particular, their degree distri-
butions follow a power law, with a few vertices having much
higher degree than the average for the network. It is likely
that taking into account the scale-free and hierarchical na-
ture of the networks will provide methods to improve on our
estimators.

S. CONCLUSIONS AND FUTURE WORK

We have adapted Good-Turing frequency estimation for use
with networks built from student-tutor interactions. We
found that the estimator for the missing proportion of the
network Py was accurate in predicting the number of new
states discovered with new data. We also found that we
could accurately measure network coverage with Ic for both
the regular network, as well as the network of hintable states.
This provides us with a metric to compare different state
representations as well as determine the suitability of inter-

348

action network methods to different tutoring environments.
We were also able to use these metrics to provide accurate
predictions for the size of networks expected given more
data samples, which will be useful for predicting the amount
of additional data needed to provide a desired amount of
hintable network coverage. Finally, we used the estimate of
network coverage to compare different student populations
to show that the addition of hints in one environment had
an effect on the number of states explored by students.

Future work will include expanding on these global measures
of the network and exploring local measures of coverage.
Rather than compute coverage for the entire network we
can use methods such as approach map regioning [4] to find
meaningful sub-networks and calculate the metrics for those.
The region level values of Py can estimate the “riskyness” of
certain approaches to the problem. The I metric can direct
attention to parts of the network that are not well explored,
perhaps allowing additional hints to be obtained by starting
advanced users in those areas.

6. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. #0845997, #1432156,
#1015456, #0900860 and #1252376.

7. REFERENCES

[1] T. Barnes and J. Stamper. Toward automatic hint
generation for logic proof tutoring using historical
student data. Proceedings of the 9th International
Conference on Intelligent Tutoring Systems (ITS
2008), pages 373-382, 2008.

[2] R. Bellman. A markovian decision process. Technical
report, DTIC Document, 1957.

[3] J. Bobadilla, F. Ortega, A. Hernando, and J. Bernal.
A collaborative filtering approach to mitigate the new
user cold start problem. Knowledge-Based Systems,
26(0):225 — 238, 2012.

[4] M. Eagle and T. Barnes. Exploring differences in
problem solving with data-driven approach maps.
Proceedings of the Seventh International Conference
on Educational Data Mining, 2014.

[5] M. Eagle, D. Hicks, P. III, and T. Barnes. Exploring
networks of problem-solving interactions. Proceedings
of the Fifth International Conference on Learning
Analytics and Knowledge (LAK 15), 2015.

[6] M. Eagle, M. Johnson, T. Barnes, and A. K. Boyce.
Exploring player behavior with visual analytics. In
FDG, pages 380—-383, 2013.

[7] D. Fossati, B. Di Eugenio, S. Ohlsson, C. Brown,

L. Chen, and D. Cosejo. I learn from you, you learn
from me: How to make ilist learn from students. In
Proceedings of the 2009 conference on Artificial
Intelligence in Education: Building Learning Systems
that Care: From Knowledge Representation to

Proceedings of the 8th International Conference on Educational Data Mining

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

Affective Modelling, pages 491-498, Amsterdam, The
Netherlands, The Netherlands, 2009. IOS Press.

W. A. Gale and G. Sampson. Good-turing frequency
estimation without tears*. Journal of Quantitative
Linguistics, 2(3):217-237, 1995.

A. Hicks, B. Peddycord III, and T. Barnes. Building

games to learn from their players: Generating hints in
a serious game. In Intelligent Tutoring Systems, pages

312-317. Springer, 2014.

W. Jin, T. Barnes, J. Stamper, M. J. Eagle, M. W.
Johnson, and L. Lehmann. Program representation for
automatic hint generation for a data-driven novice
programming tutor. In Intelligent Tutoring Systems,
pages 304—309. Springer, 2012.

M. W. Johnson, M. Eagle, and T. Barnes. Invis: An
interactive visualization tool for exploring interaction
networks.

B. Mostafavi, M. Eagle, and T. Barnes. Towards
data-driven mastery learning. Proceedings of the Fifth
International Conference on Learning Analytics and
Knowledge (LAK 15), 2015.

T. Murray. Authoring intelligent tutoring systems: An
analysis of the state of the art. International Journal
of Artificial Intelligence in Education (IJAIED),
10:98-129, 1999.

B. Peddycord III, A. Hicks, and T. Barnes.
Generating hints for programming problems using
intermediate output.

K. Rivers and K. R. Koedinger. Automating hint
generation with solution space path construction. In
Intelligent Tutoring Systems, pages 329-339. Springer,
2014.

J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In The
adaptive web, pages 291-324. Springer, 2007.

A. 1. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock. Methods and metrics for cold-start
recommendations. In Proceedings of the 25th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 253-260.
ACM, 2002.

J. Stamper, T. Barnes, L. Lehmann, and M. Croy. A
pilot study on logic proof tutoring using hints
generated from historical student data. Proceedings of
the 1st International Conference on Educational Data
Mining (EDM 2008), pages 197-201, 2008.

J. Stamper, M. Eagle, T. Barnes, and M. Croy.
Experimental evaluation of automatic hint generation
for a logic tutor. International Journal of Artificial
Intelligence in Education (IJAIED), 22(1):3-18, 2013.
K. Vanlehn, C. Lynch, K. Schulze, J. A. Shapiro,

R. Shelby, L. Taylor, D. Treacy, A. Weinstein, and

M. Wintersgill. The andes physics tutoring system:
Lessons learned. International Journal of Artificial
Intelligence in Education, 15(3):147-204, 2005.

349

