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ABSTRACT

We show that student learning can be accurately modeled
using a mixture of learning curves, each of which specifies
error probability as a function of time. This approach gener-
alizes Knowledge Tracing [7], which can be viewed as a mix-
ture model in which the learning curves are step functions.
We show that this generality yields order-of-magnitude im-
provements in prediction accuracy on real data. Further-
more, examination of the learning curves provides actionable
insights into how different segments of the student popula-
tion are learning.

To make our mixture model more expressive, we allow the
learning curves to be defined by generalized linear models
with arbitrary features. This approach generalizes Additive
Factor Models [4] and Performance Factors Analysis [16],
and outperforms them on a large, real world dataset.

1. INTRODUCTION

In the mid-1980s, a now-famous study demonstrated the po-
tential impact of adaptive, personalized education: students
tutored one-on-one outperformed those taught in a conven-
tional classroom by two standard deviations [3]. Remark-
ably, subsequent research has achieved similar gains using
interactive, computerized tutors that maintain an accurate
model of the student’s knowledge and skills [6]. In the past
few years, widespread access to smartphones and the web
has allowed such systems to be deployed on an unprece-
dented scale. Duolingo’s personalized language courses have
enrolled over 90 million students, more than the total num-
ber of students in all U.S. elementary and secondary schools
combined.

A central component of an intelligent tutoring system is
the student model, which infers a student’s latent skills and
knowledge from observed data. To make accurate inferences
from the limited data available for a particular student, one
must make assumptions about how students learn. How do
students differ in their learning of a particular skill or con-
cept? Is the primary difference in the initial error rate, the
rate at which error decreases with time, the shape of the
learning curve, or something else? The answers to these
questions have implications for the choice of model class
(e.g., Hidden Markov Model, logistic regression), as well as
the choice of model parameters.

Previous approaches to student modeling typically make
strong assumptions about the shape of each student’s learn-
ing curve (i.e., the error rate as a function of the num-
ber of trials). Additive Factor Models [4] use the student
and the number of trials as features in a logistic regression
model, which implies a sigmoidal learning curve with the
same steepness for each student, but different horizontal off-
set. Knowledge Tracing [7] is a two-state Hidden Markov
Model where, conditioned on the trial t at which the student
first transitions from not knowing the skill to mastering it,
the learning curve is a step function.

In empirical studies, it has been observed that aggregate
learning curves often follow a power law, a phenomenon
so ubiquitous it has been called the power law of practice
[13]. Later work suggested that, although error rates fol-
low a power law when averaged over an entire population,
individual learning curves are more accurately modeled by
exponentials [10]. That is, the power law curve observed in
aggregate data is actually a mixture of exponentials, with
each student’s data coming from one component of the mix-
ture.

These observations led us to seek out a more general ap-
proach to student modeling, in which individual learning
curves could be teased apart from aggregate data, without
making strong assumptions about the shape of the curves.
Such an approach has the potential not only to make the
student model more accurate, but also to explain and sum-
marize the data in a way that can produce actionable in-
sights into the behavior of different subsets of the student
population.

This work makes several contributions to student modeling.
First, we present models of student learning that generalize
several prominent existing models and that outperform them
on real-world datasets from Duolingo. Second, we show how
our models can be used to visualize student performance in
a way that gives insights into how well an intelligent tu-
toring system “works”, improving upon the population-level
learning curve analysis that is typically used for this pur-
pose [11]. Finally, by demonstrating that relatively simple
mixture models can deliver these benefits, we hope to in-
spire further work on more sophisticated approaches that
use mixture models as a building block.
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1.1 Related Work
The problem of modeling student learning is multifaceted.
In full generality it entails modeling a student’s latent abil-
ities, modeling how latent abilities relate to observed per-
formance, and modeling how abilities change over time as a
result of learning and forgetting. For an overview of various
approaches to student modeling, see [5, 8].

This work focuses on the important subproblem of modeling
error probability as a function of trial number for a particu-
lar task. Following the influential work of Corbett and An-
derson [7], Knowledge Tracing has been used to solve this
problem in many intelligent tutoring systems. Recent work
has sought to overcome two limitations of the basic Knowl-
edge Tracing model: its assumption that each observed data
point requires the use of a single skill, and its assumption
that model parameters are the same for all students. To
address the first limitation, Additive Factor Models [4] and
Performance Factors Analysis [16] use logistic regressions
that include parameters for each skill involved in some trial.
The second limitation has been addressed by adapting the
basic Knowledge Tracing model to individual students, for
example by fitting per-student odds multipliers [7], or by
learning per-student initial mastery probabilities [14].

Our work seeks to address a third limitation of Knowledge
Tracing: its strong assumptions about the shape of the
learning curve. Following Knowledge Tracing, we first at-
tempt to model performance on a task that requires only a
single skill. In §4, we generalize this approach to obtain a
mixture model that includes both Additive Factor Models
and Performance Factors Analysis as special cases, and that
outperforms both on a large, real-world dataset.

2. SINGLE-TASK MIXTURE MODEL

In this section we present a simple mixture model that is ap-
propriate for use on datasets with a single task. This model
is a viable alternative to the basic (non-individualized) ver-
sion of Knowledge Tracing, and is useful for exploratory data
analysis. In §4, we generalize this model to handle datasets
with multiple tasks.

2.1 The Probabilistic Model
A student’s performance on a task after T trials can be rep-
resented as an error vector v ∈ {0, 1}T , where vt = 1 if
the student made an error on trial t and is 0 otherwise.
Thus a task, together with a distribution over students, de-
fines a distribution over binary error vectors. In this work,
we model this distribution as a mixture of K distributions,
where each component of the mixture is a learning curve,
or equivalently a product of Bernoulli distributions (one for
each trial).

To formally define this model, define the probability of ob-
serving outcome o ∈ {0, 1} when sampling from a Bernoulli
distribution with parameter p as

B(p, o) =

{
p o = 1

1− p o = 0 .

A learning curve q ∈ [0, 1]∞ specifies, for each trial t, the

probability qt that the student makes an error on trial t.
The probability of the error vector v according to learning
curve q is

∏
t B(qt, vt). A K-component mixture over learn-

ing curves is a set q1, q2, . . . , qK of learning curves, together
with prior probabilities p1, p2, . . . , pK . The probability of an
error vector v ∈ {0, 1}T according to the mixture model is

K∑
j=1

pj
T∏
t=1

B(qjt , vt) .

Inference in a mixture model consists of applying Bayes’ rule
to compute a posterior distribution over the K components
of the mixture, given an observed error vector. The model
parameters can be fit from data using the EM algorithm,
pseudo code for which is given in Algorithm 1.

Algorithm 1 EM Algorithm for single-task mixture model

Parameters: number of components K, error vector vs

for each student s, prior parameters α ≥ 1, β ≥ 1.
Initialize pj ← 1

k
∀j, and qjt ← Rand(0, 1) ∀j, t.

while not converged do
Ls,j ← pj

∏T
t=1 B(qjt , v

s
t ) ∀s, j

zs,j ← Ls,j∑
j′ Ls,j′

∀s, j

qjt ←
α−1+

∑
s zs,jv

s
j

α+β−2+
∑

s zs,j
∀j, t

pj ←
∑

s zs,j∑
s

∑
j′ zs,j′

∀j
end while

To make Algorithm 1 perform well when data is sparse, it
is useful to place a Bayesian prior over the set of possible
learning curves. In this work we use a product of Beta distri-
butions for the prior: P[q] =

∏
t Beta(α, β)(qt). This choice

of prior gives a simple closed form for the maximization step
of the EM algorithm, which can be thought of computing
the maximum-likelihood estimate of qjt after “hallucinating”
α− 1 correct responses and β − 1 errors (see pseudo code).

2.2 Knowledge Tracing as a Mixture Model
Knowledge Tracing is typically presented as a two-state Hid-
den Markov Model, where the student’s state indicates whether
or not they have mastered a particular skill. In this section,
we show that if the maximum number of trials is T , Knowl-
edge Tracing can also be thought of as a mixture model with
T + 1 components, each of which is a step function. Thus,
Knowledge Tracing can be viewed as a constrained mixture
model, in contrast to the unconstrained model discussed in
the previous section.

To see this relationship, recall that in a Knowledge Tracing
model, the student makes an error with slip probability ps
if they have mastered the skill, and with probability 1− pg
otherwise, where pg is the probability of a correct guess. The
probability of mastery is p0 initially, and after each trial, a
student who has not yet mastered the skill transitions to the
mastered state with probability pT .

Let V be an error vector, so Vt = 1 if the student makes an
error on trial t and is 0 otherwise, and let M be the state
vector: Mt = 1 if the student has mastered the skill at the
beginning of trial t and is 0 otherwise. The distribution over
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Figure 1: Mixture model representation of a Knowl-
edge Tracing model with guess probability pg = 0.2,
slip probability ps = 0.1, transition probability pT =
0.5, and initial mastery probability p0 = 0.

error vectors defined by Knowledge Tracing is given by

P[V = v] =
∑
m

P[M = m]P[V = v|M = m] .

Because the student never leaves the mastered state after
reaching it, there are only T + 1 possibilities for the state
vector M . Letting mj be the jth possibility (mj

t = 0 if t < j,
1 otherwise), and letting pj = P[M = mj ], we have

P[V = v] =

T+1∑
j=1

pj · P[V = v|M = mj ] .

Because the components of V are conditionally independent
given M ,

P[V = v|M = mj ] =

T∏
t=1

B(qjt , vt)

where

qjt =

{
1− pg t < j

ps t ≥ j .

Putting these facts together, we see that the probability of a
particular error vector under Knowledge Tracing is the same
as under a mixture model with T+1 components, where each
learning curve qj is a step function with the same initial and
final height but a different horizontal offset (see Figure 1).

Because the HMM and the mixture model are both gen-
erative models that specify the same distribution over bi-
nary vectors, the conditional distributions over binary vec-
tors given a sequence of observations are also the same, and
Bayesian inference yields exactly the same predictions when
performed on either model.

Viewing Knowledge Tracing in this way, it is natural to con-
sider generalizations that remove some of the constraints, for
example allowing the step functions to have different initial
or final heights (perhaps students who master the skill ear-
lier are less likely to slip later on). In the model presented
in §2.1 we simply remove all the constraints, allowing us to
fit a mixture model over learning curves of arbitrary shape.

We note that later work on Knowledge Tracing allowed for
the possibility of forgetting (transitioning from the mastered

to unmastered state). This version can still be modeled as a
mixture model, but with 2T rather than T + 1 components.

2.3 Statistical Consistency
A model is statistically consistent if, given enough data, it
converges to the ground truth. In this section we show that
the “hard” version of EM algorithm 1 is consistent, provided
the number of components in the mixture model grows with
the amount of available data (the hard EM algorithm is the
same as algorithm 1, except that it sets zs,j = 1 for the j
that maximizes Ls,j , and zs,j = 0 otherwise). For simplicity
we assume the number of trials T is the same for all students,
but this is not essential. Also, though the data requirements
suggested by this analysis are exponential T , in practice we
find that near-optimal predictions are obtained using a much
smaller number of components.

Theorem 1. Consider the “hard” version of EM algo-
rithm 1, and suppose that the number of trials is T for all
students. This algorithm is statistically consistent, provided
the number of curves K in the mixture model grows as a
function of the number of data points n.

Proof. Recall that an event occurs with high probability
(whp) if, as n→∞, the probability of the event approaches
1. The idea of the proof is to show that, whp, each of the
2T possible error vectors will be placed into its own cluster
on the first iteration of the EM algorithm. This will imply
that the EM algorithm converges on the first iteration to a
mixture model that is close to the true distribution.

Consider a particular error vector vs ∈ {0, 1}T , and let j be
the index of the likelihood-maximizing curve on the first iter-
ation of the algorithm (i.e., zs,j = 1). If Q ∈ [0, 1]T is a ran-

dom curve, the probability that
∏T
t=1 B(Qt, v

s
t ) >

1
2

is pos-
itive. Thus, as K → ∞, whp at least one of the K random
curves will satisfy this inequality, and in particular for the
likelihood-maximizing curve qj we have

∏T
t=1 B(qjt , v

s
t ) >

1
2
,

which implies B(qjt , v
s
t ) >

1
2

for all t. For any error vector

vs
′
6= vs, there must be some t such that vst 6= vs

′
t , which

implies B(qjt , v
s′
t ) < 1

2
. This means that whp, qj cannot be

the likelihood-maximizing curve for vs
′
, and so each binary

vector will have a unique likelihood-maximizing curve.

If each binary vector v has a unique likelihood-maximizing
curve qj , then the M step of the algorithm will simply set
qj ← v, and will set pj to the empirical frequency of v within
the dataset. As n→∞, this empirical frequency approaches
the true probability, which shows that the algorithm is con-
sistent.

In the worst case, statistical consistency requires a constant
amount of data for every possible error vector, hence the
data requirements grow exponentially with T . However,
this is not as bad as it may seem. In intelligent tutoring
systems, it is often the case that T is small enough that
even in the worst case we can guarantee near-optimal per-
formance. Furthermore, as we show experimentally in §3.2,
near-optimal performance can often be achieved with a much
smaller number of components in practice.
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2.4 Use in an Intelligent Tutoring System
How should the predictions of a mixture model be used
to schedule practice within an intelligent tutoring system?
When using Knowledge Tracing, a typical approach is to
schedule practice for a skill until the inferred probability
of having mastered it exceeds some threshold such as 0.95.
With a mixture model, we can no longer take this approach
since we don’t make explicit predictions about whether the
student has mastered a skill. Nevertheless, we can define
a reasonable practice scheduling rule in terms of predicted
future performance.

In particular, note that another way of formulating the schedul-
ing rule typically used in Knowledge Tracing is to say that
we stop practice once we are 95% confident that performance
has reached an asymptote. With a mixture model, it is un-
likely that the marginal value of practice will be exactly 0,
so this precise rule is unlikely to work well (it would simply
schedule indefinite practice). However, we can compute the
expected marginal benefit of practice (in terms of reduction
in error rate), and stop scheduling practice once this drops
below some threshold.

Note that when practice scheduling is defined in terms of
expected marginal benefit, the practice schedule is a function
of the predicted distribution over error vectors, so mixture
models that make the same predictions will result in the
same practice schedule even if the model parameters are
different. This is in contrast to Knowledge Tracing, where
multiple globally optimal models (in terms of likelihood) can
lead to very different practice schedules, because the inferred
probability of mastery can be different even for two models
that make identical predictions [2].

2.5 Identifiability
A statistical model is identifiable if there is a unique set of
parameters that maximize likelihood. Our mixture model is
not identifiable, since in general there are many ways to ex-
press a given distribution over binary vectors as a mixture of
learning curves. However, as we argued in the previous sec-
tion, non-identifiability does not pose a problem for practice
scheduling if the schedule is defined in terms of the model’s
predictions rather than its parameters.

3. EXPERIMENTS WITH SINGLE-TASK
MODEL

In this section we evaluate the single-task mixture model
of §2 on data from Duolingo. These experiments serve two
purposes. First, they show that the mixture model can give
much more accurate predictions than Knowledge Tracing
on real data. Second, inspection of the learning curves pro-
duced by the mixture model reveals interesting facts about
the student population that are not apparent from conven-
tional learning curve analysis. In §4 we present a more gen-
eral mixture model that is appropriate for datasets with mul-
tiple skills.

3.1 The Duolingo Dataset
We collected log data from Duolingo, a free language learn-
ing application with over 90 million students. Students who

use Duolingo progress through a sequence of lessons, each
of which takes a few minutes to complete and teaches cer-
tain words and grammatical concepts. Within each lesson,
the student is asked to solve a sequence of self-contained
challenges, which can be of various types. For example, a
student learning Spanish may be asked to translate a Span-
ish sentence into English, or to determine which of several
possible translations of an English sentence into Spanish is
correct.

For these experiments, we focus on listen challenges, in which
the student listens to a recording of a sentence spoken in
the language they are learning, then types what they hear.
Listen challenges are attractive because, unlike challenges
which involve translating a sentence, there is only one cor-
rect answer, which simplifies error attribution. For these
experiments we use a simple bag-of-words knowledge com-
ponent (KC) model. There is one KC for each word in the
correct answer, and a KC is marked correct if it appears
among the words the student typed. For example, if a stu-
dent learning English hears the spoken sentence “I have a
business card” and types “I have a business car”, we would
mark the KC card as incorrect, while marking the KCs for
the other four words correct. This approach is not perfect
because it ignores word order as well as the effects of context
(students may be able to infer which word is being said from
context clues, even if they cannot in general recognize the
word when spoken). However, the learning curves generated
by this KC model are smooth and monotonically decreasing,
suggesting that it performs reasonably well.

Our experiments use data from the Spanish course for En-
glish speakers, one of the most popular courses on Duolingo.
In this section, we focus on modeling acquisition of a single
skill, using data for the KC una (the feminine version of the
indefinite article “a”). In §4 we consider more general mix-
ture models, and in §5 we evaluate them on datasets with
multiple KCs. The full dataset has roughly 700,000 data
points (there is one data point for each combination of stu-
dent, trial, and KC), while the una dataset contains around
15,000.

3.2 Prediction Accuracy
To evaluate the mixture model’s prediction accuracy, we di-
vided the Duolingo dataset into equal-sized training and test
sets by assigning each student to one of the two groups at
random. We then ran the EM algorithm on the training data
to fit mixture models with various numbers of components,
as well as a Knowledge Tracing model, and computed the
predictions of these models on the test data. We evaluate
prediction accuracy using two commonly-used metrics.

1. Average log-likelihood. Log-likelihood measures how
probable the test data is according to the model. Specif-
ically, if the dataset D consists of n independent data
points D1, D2, . . . , Dn (each data point is the binary
performance of a particular student on a particular
trial), and pi = P[Di|M ] is the conditional probabil-
ity of the ith data point Di given the model M , then

Proceedings of the 8th International Conference on Educational Data Mining 48



1 2 3 4 5 6 7 8
Number of components

0.00

0.01

0.02

0.03

0.04

Lo
g
-l

ik
e
lih

o
o
d
 o

p
ti

m
a
lit

y
 g

a
p

BKT (test)
BKT (training)
Mixture model (test)
Mixture model (training)

1 2 3 4 5 6 7 8
Number of components

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
U

C
 o

p
ti

m
a
lit

y
 g

a
p BKT (test)

BKT (training)
Mixture model (test)
Mixture model (training)

Figure 2: Optimality gaps for log likelihood (left) and AUC (right) as a function of number of components
in the mixture model, compared to Knowledge Tracing (horizontal lines). The optimality gap is the absolute
difference between the model’s accuracy and the maximum possible accuracy on the dataset.
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Figure 3: Learning curves for recognizing the Spanish word una in a Duolingo listen challenge. The population
curve (left) suggests a reasonable rate of learning in aggregate, but the mixture model (right) reveals large
differences among different clusters of students.

average log-likelihood is

1

n
log P[D|M ] =

1

n
log

n∏
i=1

pi =
1

n

n∑
i=1

log pi .

Because both the mixture model and Knowledge Trac-
ing are fit using maximum likelihood, it is natural to
compare them in terms of this objective function.

2. AUC. AUC evaluates the accuracy of the model’s pre-
dictions when they are converted from probabilities
to binary values by applying a threshold. It can be
defined as the probability that p > q, where p is the
model’s prediction for a randomly-selected positive ex-
ample and q is the model’s prediction for a randomly-
selected negative example. This is equivalent to the
area under the ROC curve, which plots true positive
rate against false positive rate (both of which vary as
a function of the chosen threshold).

Figure 2 presents accuracy on the una dataset as a function
of the number of components in the mixture model, both on
training and held-out test data. To make relative improve-
ments clearer, we plot the optimality gap rather than the
raw value of the prediction accuracy metric. For example,
the optimality gap for test set log likelihood is the difference
between the optimal log likelihood on the test data (which
can be computed in closed form) and the model’s log likeli-
hood on the test data.

For both AUC and log-likelihood, the improvement in ac-
curacy is largest when going from one component to two,
and there are diminishing returns to additional components,

particularly in terms of performance on held-out test data.
With more than 5 components, log-likelihood on test data
gets slightly worse due to overfitting, while performance on
training data improves slightly. In practice, the number of
components can be selected using cross-validation.

For both metrics, Knowledge Tracing is similar to the one-
component model but significantly worse than the two com-
ponent model in terms of accuracy, both on training and test
data. Furthermore, all mixture models with two or more
components outperform Knowledge Tracing by an order of
magnitude in terms of the optimality gap for log-likelihood
and AUC, both on training and on held-out test data. We
observed very similar results for datasets based on other
Spanish words, such as come (eat), mujer (woman), and
hombre (man).

3.3 Learning Curve Mixture Analysis
In this section we examine the learning curves that make up
the components of the mixture model fit to Duolingo data.
This analysis can be viewed as a more general version of
learning curve analysis [11], which examines the population
learning curve (this is equivalent to the curve for a one-
component mixture model).

Figure 3 presents learning curves for the una dataset. The
left pane of the figure shows the aggregate learning curve,
while the right pane shows the curves for a 3-component
mixture model fit using the EM algorithm. Examining the
right pane, we see that the mixture model clusters students
into three quite different groups.
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• Around two-thirds of the students belong to a cluster
that in aggregate has an error probability around 5%
on the first trial, and this error rate does not change
with increased trials.

• A second, smaller cluster contains 30% of the students.
These students, in aggregate, have an initial error rate
of 33% which decreases to around 11% after 7 trials.

• The third cluster contains only 3% of students. These
students have a very high initial error rate of 96%,
which declines to about 65% after 7 trials.

The existence of this third, high-error-rate cluster surprised
us, so we went back to the log data to examine the behavior
of students in this cluster in more detail. It turned out that
almost all of these students were simply giving up when
presented with a listen challenge (although they correctly
answered other types of challenges). Further examination of
the log data revealed that some of these students skipped
all listen challenges, while others would skip all listen chal-
lenges for long stretches of time, then at other times would
correctly answer listen challenges. We conjecture that the
former set of students are either hearing-impaired or do not
have working speakers, while the latter do not want to turn
their speakers on at certain times, for example because they
are in a public place. Duolingo attempts to accommodate
such students by offering a setting that disables listen chal-
lenges, but not all students realize this is available. As a
result of these insights, Duolingo is now exploring user in-
terface changes that will actively detect students that fall
into this cluster and make it easier for them to temporarily
disable listen challenges.

This analysis shows how mixture modeling can produce valu-
able insights that are not apparent from examination of the
population learning curve alone. We hope this will inspire
the use of mixture modeling more broadly as a general-
purpose diagnostic tool for intelligent tutoring systems.

4. GENERAL MIXTURE MODEL

The single-task model is appropriate for datasets where there
is a single knowledge component (KC) and many students.
In an actual intelligent tutoring system, a student will learn
many KCs, and prediction accuracy can improved by using
student performance on one KC to help predict performance
on other, not yet seen KCs. In this section we present a more
general mixture model that accomplishes this.

In this more general model, student performance is again
modeled as a mixture of K learning curves. However, in-
stead of treating each point on the learning curve as a sepa-
rate parameter, we let it be the output of a generalized linear
model with features that depend on the student, task, and
trial number. In particular, for a student s and task i, the
probability of a performance vector v1, v2, . . . , vT is

k∑
j=1

pj
T∏
t=1

B(qj(s, i, t;βj), vt)

where

qj(s, i, t;βj) = g−1(φs,i,t · βj),

where φs,i,t is the feature vector for student s, task i, trial
t, and g is the link function for the generalized linear model
[12]. Our experiments use logistic regression, for which the
link function is g(p) = logit(p).

Note that this model generalizes the single-task mixture
model presented in §2. In particular, the single-task model
with curve qj(t) is recovered by setting φs,i,t = et, an indi-
cator vector for trial t, and setting βjt = g(qj(t)).

As with the single-task model, we can estimate the param-
eters of this model using the EM algorithm. The main dif-
ference is that the maximization step no longer has a closed
form solution. However, it is a convex optimization and can
still be solved exactly using a number of algorithms, for ex-
ample stochastic gradient descent.

To define the EM algorithm, first define the likelihood func-
tion

Ljs,i(β) =

T∏
t=1

B(qj(s, i, t;β), vt) .

For the E step, we define hidden variables zjs,i, which give
the probability that the data for student s and task i follows
curve j.

zjs,i =
pjLjs,i∑

j′ p
j′Lj

′
s,i(β)

.

For the M step, we optimize the coefficient vector for each
component j so as to maximize expected log-likelihood.

βj = argmaxβ

{∑
s

∑
i

zjs,i log(Ljs,i(β))

}
.

When performing inference for a new student, we solve a
similar optimization problem, but we only update the coef-
ficients for that particular student.

4.1 Relationship to Other Models
This mixture model is quite general, and with appropri-
ate choices for the feature function φ can recover many
previously-studied models. In particular, any modeling ap-
proach that is based on a logistic regression using features
that depend only on the student, task, and trial number can
be recovered by using a single component (K = 1), choosing
g = logit, and defining φ to include the appropriate fea-
tures. This includes both Additive Factor Models [4] and
Performance Factors Analysis [16]. By choosing a larger
K, we immediately obtain generalizations of each of these
methods that have the potential to more accurately model
the behavior of individual clusters of students. Because the
trial number (together with the student and task) identifies
a unique learning event, we can also include features that de-
pend on the trial type, elapsed time, and previous learning
history, as in learning decomposition [1].

Note that for the mixture model to add value over a sim-
ple regression, we must define “task” in such a way that we
observe multiple trials for a given (student, task) pair. For
datasets where each item requires the use of multiple KCs,
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Figure 4: Performance of a mixture of Additive Factor Models on training data (left) and test data (right),
as a function of the number of components in the mixture model.

Table 1: Performance on Duolingo dataset
Method Training log loss Test log loss Training AUC loss Test AUC loss
Knowledge Tracing 0.3429 0.3441 0.3406 0.3460
Performance Factors Analysis 0.3248 0.3285 0.2774 0.2865
Additive Factor Model 0.2869 0.3250 0.1629 0.2789
A.F.M. Mixture (3 components) 0.2818 0.3220 0.1598 0.2760

this entails either (a) defining a task for each combination
of KCs, or (b) using error attribution to create a dataset in
which each example involves only a single KC, and having
one task per KC. We use the latter approach in our exper-
iments in §5. This approach is different from the one taken
by algorithms such as LR-DBN [17], which make predictions
on multiple-KC items directly.

4.2 Parameter Sharing
To make more efficient use of available data when fitting this
generalized mixture model, it can be useful for certain coef-
ficient values to be shared across components of the mixture
model. To illustrate this issue, consider fitting a mixture
of Additive Factor Models. In this case, φ includes an in-
dicator feature for each student. If we fit a K component
mixture, we must estimate K separate coefficient values for
each student, which increases the variance of the estimates
compared to the basic Additive Factor Model. For students
for whom we do not yet have much data, this can result in
larger values of K giving worse performance.

To overcome this difficulty, we allow certain coefficients to
be shared across all components of the mixture model, while
others have a separate value for each component. This re-
quires only minor changes to the M step of the EM algo-
rithm. Instead of solving K separate optimization problems,
we solve a single larger optimization problem of the form:

argmaxβ1,β2,...,βj

{∑
j

∑
s

∑
i

Zjs,i log(Ljs,i(β
j))

}

subject to

β1
z = β2

z = . . . = βjz for all shared z.

Again, for g = logit, this is a weighted logistic regression
problem that can be solved using a variety of standard al-
gorithms.

5. EXPERIMENTS WITH GENERALIZED
MODEL

In this section, we demonstrate the potential of the gen-
eralized mixture model by using it to learn a mixture of
Additive Factor Models which models student performance
on Duolingo listen challenges.

For these experiments, we use the same Duolingo dataset de-
scribed in §3.1, but with all knowledge components included
(i.e., every time student s completes a listen challenge, there
is an example for each word w in the challenge, and the la-
bel for the example indicates whether the student included
word w in their response). Each KC (i.e., each word) is
considered a separate task. Note that although each listen
challenge involves multiple KCs, we are using error attribu-
tion to create a dataset in which each example involves only
a single KC. There is nothing about our methodology that
requires this, but it mirrors the problem we wish to solve
at Duolingo, and also allows for a cleaner comparison with
Knowledge Tracing.

When splitting the data into training and test sets, we put
each (student, KC) pair into one of the two groups uniformly
at random. When fitting a mixture of Additive Factor Mod-
els, we use parameter sharing (see §4.2) for the student and
KC indicator features, while allowing the times-seen feature
to vary across components.

Figure 4 shows how performance on training and test data
varies as a function of the number of components in the
mixture model. The leftmost point (K = 1) corresponds to
a regular Additive Factor Model, which can be fit by run-
ning a single logistic regression. Other points correspond to
mixture models fit using the EM algorithm, in which each
iteration entails solving a weighted logistic regression prob-
lem. As can be seen, using more than one component in
the mixture model improves accuracy on both training and
held-out test data.

Table 1 compares the performance of the Additive Factor
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Model, the 3-component mixture of Additive Factor Models,
Knowledge Tracing, and Performance Factors Analysis [16]
on the same dataset. In this table, we present accuracy in
terms of losses (log loss is -1 times log-likelihood, while AUC
loss is one minus AUC), so lower values are better. As can be
seen, the 3-component mixture gives the best performance
of all the methods we considered in terms of both metrics,
both on training and test data.

6. CONCLUSIONS

In this work we explored the use of mixture models to predict
how students’ error rates change as they learn. This led to
order-of-magnitude improvements over Knowledge Tracing
in terms of prediction accuracy on single-task datasets from
Duolingo, as measured by the optimality gaps for both log-
likelihood and AUC. Furthermore, examining the curves in
the mixture model led us to uncover surprising facts about
different groups of students.

We then generalized this mixture model to the multi-task
setting, by learning a mixture of generalized linear mod-
els. This generalized mixture model offered state of the
art performance on a large Duolingo dataset, outperform-
ing Performance Factors Analysis, Additive Factor Models,
and Knowledge Tracing on the same data.

There are several ways in which this work could be extended:

1. Finding a good prior over learning curves. In the single-
task setting, we simply placed a Beta prior over each
point on each learning curve. Though this worked well
on the Duolingo dataset we considered (which con-
tained around 15,000 data points), it may not give
the best bias/variance tradeoff for smaller datasets.
A natural way to constrain the algorithm would be
to require error probability to be non-increasing as a
function of trial number. Restricting to a particular
family of curves such as exponentials or APEX func-
tions [10], which generalize power laws and exponen-
tials, may also be reasonable.

2. Accounting for forgetting. We have assumed that per-
formance depends only on the trial number, and not on
the amount of time elapsed since a particular knowl-
edge component was last seen. For this reason, our
model has no way to capture the benefit of spaced rep-
etition [9] over massed practice, which is important for
practice scheduling in the context of language learning
[15].

3. Feature exploration in the multi-task setting. The gen-
eralized mixture model from §4 can be used with any
set of features φ, but our experiments in §4 considered
only a few possible choices. It would be interesting
to explore other feature sets, and to see whether the
features that work best in the usual regression setting
(K = 1) are also best for larger K.
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