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Preface

The 8th International Conference on Educational Data Mining (EDM 2015) is held under auspices of the
International Educational Data Mining Society at UNED, the National University for Distance Education in Spain.
The conference held in Madrid, Spain, July 26-29, 2015, follows the seven previous editions (London 2014,
Memphis 2013, Chania 2012, Eindhoven 2011, Pittsburgh 2010, Cordoba 2009 and Montreal 2008).

The EDM conference is a leading international forum for high-quality research that mines large data sets in order to
answer educational research questions that shed light on the learning processes. These data sets may come from the
traces that students leave when they interact with learning management systems, interactive learning environments,
intelligent tutoring systems, educational games or when they participate in a data-rich learning context. The types of
data therefore range from raw log files to eye-tracking devices and other sensor data.

This year’s conference features three invited talks by Luis von Ahn and Matt Streeter (Duolingo), George Siemens,
Ryan Baker and Dragan Gasevic (Athabasca University, Columbia University and University of Edinburgh
respectively) and Pekka Résanen (Niilo Maki Institute). To facilitate further discussion of the increasingly important
research issues, three interactive panels have been organized; on grand challenges in EDM, ethics and privacy
considerations in EDM, and practical applications of EDM at scale. This year, together with the Journal of
Educational Data Mining (JEDM), we started the JEDM Track with the intention to accommodate researchers who
want to contribute a more substantial contribution than space allows in the conference proceedings, and yet to
present their work to a live conference audience. The papers submitted to the track followed the regular JEDM peer
review process; 4 paper have been accepted to the track and will be presented at the conference. The abstracts of the
invited talks, panels and accepted JEDM Track papers can be found in these proceedings.

The main conference calls for papers invited contributions to the Research Track and Industry Track. We received
121 full and 59 short paper submissions, each of which was reviewed by three experts in the field, resulting in 43
full (41 research and 2 industry), and 50 short (46 research and 4 industry) papers accepted for presentation at the
conference (some of the full paper submissions have been accepted as short paper). From a separate call for posters
we also accepted 39 poster and 3 demo papers. All accepted submissions appear in these proceedings.

The EDM conference traditionally provides opportunities for young researchers, and particularly for PhD students,
to present their research ideas and receive feedback from the peers and more senior researchers. This year, the
organized Doctoral Consortium will feature 12 presentations.

Besides the main conference program, the participants are program conference also includes 3 workshops (Graph-
based Educational Data Mining, SMLIR: Workshop on Tools and Technologies in Statistics, Machine Learning and
Information Retrieval for Educational Data Mining, and International Workshop on Affect, Meta-Affect, Data and
Learning) and 2 tutorials (Using Natural Language Processing Tools in Educational Data Mining, and Student
Modeling Applications, Recent Developments & Toolkits).

We would like to thank UNED for the sponsorship and hosting of EDM’2015. We would like to thank the
commercial sponsors (MARI, Pearson and duoLingo), student support sponsors (NSF and Professor Ram Kumar
Memorial Foundation) and academic support (UNED). We also want to acknowledge the amazing work of the
program committee members and additional reviewers, who with their enthusiastic contributions gave us invaluable
support in putting this conference together. Our special thanks to ConferenceNavigator — a social system for
conference attendees that provided services for personal scheduling, social linking and personalized
recommendations of papers. Last but not least we would like to thank the local organizing team.

June 2015
Cristobal Romero and Mykola Pechenizkiy — Program Chairs
Jesus G. Boticario and Olga C. Santos — Conference Chairs
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Behind the Scenes of Duolingo

Luis Von Ahn Matt Streeter
Duolingo and Carnegie Mellon University Duolingo
biglou@duolingo.com matt@duolingo.com

ABSTRACT

With over 100 million users, Duolingo is the most popular
education app in the world in Android and iOS. In the first
part of this talk, we will describe the motivation for creating
Duolingo, its philosophy, and some of the basic techniques
used to successfully teach languages and keep users engaged.
The second part will focus on the machine learning and nat-
ural language processing algorithms we use to model student
learning.
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Personal Knowledge/Learning Graph

George Siemens Ryan Baker Dragan Gasevic
University of Texas Arlington Teachers College Schools of Education and
and Columbia University Informatics
Athabasca University baker2@exchange_ University of Edinburgh
gsiemens@gmail.com tc.columbia.edu dragan.gasevic@ed.ac.uk
ABSTRACT

Educational data mining and learning analytics have to date
largely focused on specific research questions that provide
insight into granular interactions. These insights have been
abstracted to include the development of predictive models,
intelligent tutors, and adaptive learning. While there are
several domains where holistic or systems models have pro-
vided additional explanatory power, work around learning
has not created holistic models with the level of concrete-
ness or richness required. The need for both granular and
integrated high-level view of learning is further influenced
by distributed, life long, multi-spaced learning that today
defines education. Drawing on social and knowledge graph
theory, we propose the development of a Personal Knowl-
edge/Learning Graph (PKLG) - an open and learner-owned
profile that addresses cognitive, affective, and related ele-
ments that reflect what a learner knows, is able to do, and
processes through which she learns best. This talk will in-
troduce PKLG, detail required technical infrastructure, and
articulate how it would interact with established learning
software.
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Educational Neuroscience as a Tool to Understand
Learning and Learning Disabilities in Mathematics

Pekka Rasanen

Niilo Maki Institute

Jyvéskyla, Finland
pekka.rasanen@nmi.fi

ABSTRACT

Becoming numerate is considered as one of the fundamental
skills needed in the modern technology-driven society. The
latest OECD (2013) report states that 4AAIJThe way we live
and work has changed profoundly éAS and so has the set
of skills we need to participate fully in and benefit from our
hyper-connected societies and increasingly knowledge-based
economies.aA1J The societies invest a lot on education with
varying results. For some reasons there still are persons do
not reach even a basic level of skills in numeracy or literacy
irrespective of the recent advances in education, educational
research and educational technologies.

Persons who fail in learning numeracy, even though they
have had an opportunity to learn and who, based on their
other skills, should have learnt, we call as having specific
learning disabilities (SLD), developmental dyscalculia (DD).
This discrepancy between learning opportunities, general
skills and poor performance in mathematics, has intrigued
researchers now more than a century. From the early begin-
ning of the research there has been ideas that it has some-
thing to do how the brain of these persons have organized,
failed to develop or damaged.

The recent developments in research methodologies, espe-
cially in brain imaging and statistical technologies, have
opened new windows to analyze these brain related hypothe-
ses. In my presentation I will open some of these windows
with examples from functional brain imaging to longitudinal
studies based on multivariate statistical analysis.

The new windows show different views from the DD. From
one perspective the DD looks like a unitary construct with
very specific symptoms in numerical processing. This view
has been more typical within the brain imaging research.
The other views show a complex where myriad of factors
from genetic to learning experiences each contribute with
a small share to the large variation of the individual skills.
This view has been more typical in behavioural and cog-
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nitive studies, especially in longitudinal research. Whether
a common ground can be reached, and what it needed for
that, is discussed.
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Industry Panel: The Future of Practical Applications of
EDM at Scale

Ryan Baker John Carney Piotr Mitros
Teachers College Carney Labs LLC o edX
Columbia University john.carney@carneylabs.com pmitros@edx.org
baker2@exchange.
tc.columbia.edu

Bror Saxberg John Stamper
(moderator) Carnegie Mellon University
Kaplan Inc. and PSLC DataShop
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ABSTRACT

This mixed panel of different professionals working in EDM
will be a conversation about increasing the connection be-
tween research and real-world applications. What’s going on
now to scale techniques for use "out there” in the field? What
should researchers, funders, regulators, publishers, trainers,
schools/universities and others be doing to get ready for
practical work? What’s in the way that we can usefully
start work to address? We’ll ask the audience to engage
in this conversation as well - what’s in your way to moving
work from research environments to practically help learners
at scale - and to generate more useable data at scale?
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Ethics and Privacy in EDM

Dragan Gasevic Taylor Martin (moderator) Zach Pardos
University of Edinburgh National Science Foundation UC Berkeley
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Mykola Pechenizkiy John Stamper Osmar Zaiane
TU Eindhoven CMU and PSLC DataShop University of Alberta
m.pechenizkiy@tue.nl john@stamper.org zaiane@ualberta.ca
ABSTRACT

Educational data mining is inherently falls into the category
of the so-called secondary data analysis. It is common that
data that have been collected for administrative or some
other purposes at some point is considered as valuable for
other (research) purpose. Collection of the student gener-
ated, student behavior and student performance related data
on a massive scale in MOOCs, I'TSs, LMS and other learning
platforms raises various ethical and privacy concerns among
researches, policy makers and the general public. This panel
is aimed to discuss major challenges in ethics and privacy
in EDM and how they are addressed now or should be ad-
dressed in the future to prevent any possible harm to the
learners. Several experts are invited to discuss the potential
and challenges of privacy-preserving EDM, ethics-aware pre-
dictive learning analytics, and availability of public bench-
mark datasets for EDM among others.
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ABSTRACT

Educational data mining (EDM) and Learning analytics are
still rather young research areas. The goal of this panel is
to share different views on what major challenges researches
need to address in EDM, learning analytics and related re-
search areas including but not limited to User modeling, Al
in Education, and Learning Sciences. The representatives of
the corresponding communities are invited to discuss what
grand challenges we should aim to address for the next five
years, and which of these challenges are old and which are
new, which of them peculiar to one distinct research area
and which of them are shared across two or more research
areas.
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Metrics for Evaluation of Student Models

Radek Pelanek
Masaryk University Brno
pelanek@fi.muni.cz

ABSTRACT

Researchers use many different metrics for evaluation of per-
formance of student models. The aim of this paper is to pro-
vide an overview of commonly used metrics, to discuss prop-
erties, advantages, and disadvantages of different metrics, to
summarize current practice in educational data mining, and
to provide guidance for evaluation of student models. In the
discussion we mention the relation of metrics to parameter
fitting, the impact of student models on student practice
(over-practice, under-practice), and point out connections
to related work on evaluation of probability forecasters in
other domains. We also provide an empirical comparison
of metrics. One of the conclusion of the paper is that some
commonly used metrics should not be used (MAE) or should
be used more critically (AUC).
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Multi-Armed Bandits for Intelligent Tutoring Systems
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Manuel Lopes
Inria, France
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ABSTRACT

We present an approach to Intelligent Tutoring Systems
which adaptively personalizes sequences of learning activ-
ities to maximize skills acquired by students, taking into
account the limited time and motivational resources. At a
given point in time, the system proposes to the students the
activity which makes them progress faster. We introduce
two algorithms that rely on the empirical estimation of the
learning progress, RIARiT that uses information about the
difficulty of each exercise and ZPDES that uses much less
knowledge about the problem.

The system is based on the combination of three approaches.
First, it leverages recent models of intrinsically motivated
learning by transposing them to active teaching, relying on
empirical estimation of learning progress provided by spe-
cific activities to particular students. Second, it uses state-
of-the-art Multi-Arm Bandit (MAB) techniques to efficiently
manage the exploration/exploitation challenge of this op-
timization process. Third, it leverages expert knowledge
to constrain and bootstrap initial exploration of the MAB,
while requiring only coarse guidance information of the ex-
pert and allowing the system to deal with didactic gaps in
its knowledge. The system is evaluated in a scenario where
7-8 year old schoolchildren learn how to decompose numbers
while manipulating money. Systematic experiments are pre-
sented with simulated students, followed by results of a user
study across a population of 400 school children.
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Learners’ Spatial Reasoning in an Open-Ended Simulation

Aditi Mallavarapu Leilah Lyons Tia Shelley
University of lllinois at University of lllinois at University of lllinois at
Chicago Chicago Chicago
amallab@uic.edu llyons@uic.edu tshell2@uic.edu
Brian Slattery ~Moira Zellner Emily Minor
University of lllinois at University of lllinois at University of lllinois at
Chicago Chicago Chicago
bslatt2@uic.edu mzellner@uic.edu eminor@uic.edu
ABSTRACT

Interactive learning environments can provide learners with
opportunities to explore rich, real-world problem spaces,
but the nature of these problem spaces can make assessing
learner progress difficult. Such assessment can be useful for
providing formative and summative feedback to the learn-
ers, to educators, and to the designers of the environments.
This work adds to a growing body of research that is apply-
ing EDM techniques to more open-ended problem spaces.

The open-ended problem space under study here is an en-
vironmental science simulation. Learners were confronted
with the real-world challenge of effectively placing green in-
frastructure in an urban neighborhood to reduce surface
flooding. Learners could try out different spatial arrange-
ments of green infrastructure and use the simulation to test
each solution’s impact on flooding. The learners’ solutions
and the solutions’ performances were logged during a con-
trolled experiment with different user interface designs for
the simulation. As with many open-problem spaces, analyz-
ing this data was difficult due to the large state space, many
good solutions, and many alternate paths to those good so-
lutions.

This work proposes a procedure for reducing the state space
of solutions defined by spatial patterns while maintaining
their critical spatial properties. Spatial reasoning problems
are a problem class not yet examined by EDM, so this work
sets the stage for further research in this area. This work also
details a procedure for discovering effective spatial strategies
and solution paths, and demonstrates how this information
can be used to give formative feedback to the designers of
the interactive learning environment.
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Move your lamp post: Recent data reflects learner
knowledge better than older data

April Galyardt llya Goldin
University of Georgia _ Pearson
galyardt@uga.edu ilya.goldin@pearson.com

ABSTRACT

In educational technology and learning sciences, there are
multiple uses for a predictive model of whether a student
will perform a task correctly or not. For example, an in-
telligent tutoring system may use such a model to estimate
whether or not a student has mastered a skill. We analyze
the significance of data recency in making such predictions,
i.e., asking whether relatively more recent observations of
a student’s performance matter more than relatively older
observations. We investigate several representations of re-
cency, such as the count of prior practice in the AFM model,
and the proportion of recent successes with exponential and
box kernels. We find that an exponential decay of a pro-
portion of successes provides the summary of recent practice
with the highest predictive accuracy over alternative models.
As a secondary contribution, we develop a new logistic re-
gression model, Recent-Performance Factors Analysis, that
leverages this representation of recent performance, and has
higher predictive accuracy than existing logistic regression
models.
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Combining techniques to refine item to skills Q-matrices
with a partition tree

Michel C. Desmarais
_ Polytechnique Montreal
michel.desmarais@polymtl.ca

ABSTRACT

The problem of mapping items to skills is gaining interest
with the emergence of recent techniques that can use data
for both defining this mapping, and for refining mappings
given by experts. We investigate the problem of refining
mapping from an expert by combining the output of dif-
ferent techniques. The combination is based on a partition
tree that combines the suggested refinements of three known
techniques from the literature. Each technique is given as
input a Q-matrix, that maps items to skills, and student test
outcome data, and outputs a modified Q-matrix that consti-
tutes suggested improvements. We test the accuracy of the
partition tree combination techniques over both synthetic
and real data. The results over synthetic data show a high
improvement over the best single technique with a 86% error
reduction on average for four different Q-matrices. For real
data, the error reduction is 55%. In addition to the substan-
tial error reduction, the partition tree refinements provide
a much more stable performance than any single technique.
These results suggest that the partition tree is a valuable
refinement combination approach that can effectively take
advantage of the complementarity of the Q-matrix refine-
ment techniques. It brings the goal of using a data driven
approach to refine the item to skill mapping closer to real
applications, although challenges remain and are discussed.

1. INTRODUCTION

Defining which skills are involved in a task is non trivial.
Whereas task outcome is observable, skills are not. This
layer of opacity leaves a world of possibilities to define which
skills are behind task performance, and no obvious evidence
to know if the proposed definition is correct or not. Means to
provide such feedback would be highly valuable to teachers
and designers of learning environments, and we find numer-
ous recent efforts towards this end in the last few years.
They are reviewed in section 2.

We developed an approach that takes the outpout of a com-
bination of techniques to detect likely errors of task to skills
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mappings given by experts. We investigate the combination
of three data-driven techniques [3, 2, 7] based on a partition
tree algorithm that creates binary partitions. See also [6]
for a more detailed comparison of the performance of these
thee techniques.

The performance of the partition tree approach is tested
over synthetic and real data. But even in the case of real
data, the approach to grow the partition tree trains on syn-
thetic performance data generated from a set of Q-matrices
that are similar to the Q-matrix to refine. This procedure is
chosen because only synthetic data provides a large enough
training set, and because it also provides ground truth la-
belling of latent variables.

In the rest of this text we use the term items to refer to ques-
tions or tasks that can be part of a formative or summative
assessment, or exercises within an e-learning environment.
Skills can be the mastery of concepts, factual knowledge, or
any ability involved in item outcome success. However, the
models reviewed here assume a static student skills state,
as opposed to the Knowledge Tracing model and its deriva-
tives [11], for example, which rely on dynamic data. We
return to this limitation in the Discussion.

The different techniques to validate a Q-matrix are first de-
scribed, followed by the description of the approach, the
experiments, and the results.

2. Q-MATRICES AND TECHNIQUES TO
VALIDATE THEM FROM DATA

A mapping of item to skills is
termed a Q-matrix. An exam- Q-matrix QM-1
ple of a 11 items and 3 skills

Q-matrix is given beside. It _ Skill
corresponds to the Q-matrix la- 2
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belled QM 1 in the results sec-
tion below. From this exam-
ple, item 4 requires skill 1 only,
whereas item 11 requires skills 1
and 2. If all specified skills are
required to succeed the item, the
Q-matrix is labeled conjunc-
tive. If a any of the required
skill is sufficient to the item’s
success, then it is labeled dis-
junctive. The compensatory
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where each required item increases the chances of success in
some way. Conjunctive Q-matrices the most common and
all matrices of the experiments here are of this type.

The conjunctive/disjunctive distinction is also referred to as
AND/OR gates. Skills models such as DINA (Deterministic
Input Noisy AND) and DINO (Deterministic Input Noisy
Or) make reference to this AND/OR gates terminology.

The DINA model [10] defines the probability of success to
an item as a function of whether the skills required are mas-
tered, and of two parameters, the slip and guess factors.
Mastery is a binary value based on the conjunctive frame-
work: if all required skills are mastered then the value is 1,
else it is 0. Slip and guess parameters are values that gen-
erally vary on a [0,0.2] scale. The probability of success to
an item j by a student ¢ is thereby defined as:

i 1=&ij
P(Xy=1|&;) = (1—s;)%g;, "

where ;; is 1 if student ¢ masters all required skills of item j,
0 otherwise. s; and g; are the slip and guess factors.

Two techniques for Q-matrix validation surveyed here rely
on the DINA model, whereas the third one relies on a ma-
trix factorization technique called ALS (Alternative Least
Squares), or more precisely ALSC for the conjunctive version
of the technique. We briefly review each technique below.

2.1 Technique 1: MinRSS

Chiu defines a method that minimizes the residual sum of
square (RSS) between the real responses and the ideal re-
sponses that follow from a given Q-matrix [2] under the
DINA model. The algorithm adjusts the Q-matrix by first
estimating the mastery of each student, then choosing the
item with the worst RSS over to the data, and replacing it
with a g-vector that has the lowest RSS, and iterates until
convergence. We refer to this technique as MinRSS .

2.2 Technique 2: MaxDiff

The method defined by de la Torre [3] searches for a Q-
matrix that maximizes the difference in the probabilities of
a correct response to an item between examinees who pos-
sess all the skills required for a correct response to that item
and examinees who do not. It also relies on the DINA model
to determine item outcome probability, and on an EM algo-
rithm to estimate the slip and guess parameters. Probabil-
ity differences represents an item discrimination index: the
greater the difference between the probability of a correct
response given the skills required and the probability given
missing skills, the greater the item is discriminant. As such,
we can consider that the method finds a Q-matrix that max-
imizes item discrimination over all items. We refer to this
technique as MaxDiff .

2.3 Technique 3: Conjunctive alternate
Least-Square Factorization (ALSC)

The Conjunctive alternate Least-Square Factorization (ALSC)

method is defined in [7]. Contrary to the other two meth-
ods, it does not rely on the DINA model as it has no slip
and guess parameters. ALSC decomposes the results matrix
R..xn of m items by n students as the inner product two
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smaller matrices:
-R=Q-S (1)

where —R is the negation of the results matrix (m items by
n students), Q is the m items by k skills Q-matrix, and =S is
negation of the the mastery matrix of k skills by n students
(normalized for rows columns to sum to 1). By negation, we
mean the 0-values are transformed to 1, and non-0-values
to 0. Negation is necessary for a conjunctive Q-matrix.

The factorization consists of alternating between estimates
of S and Q until convergence. Starting with the initial ex-
pert defined Q-matrix, Qo, a least-squares estimate of S is
obtained:

-So = (Q) Qo) ' Qs R (2)

Then, a new estimate of the Q-matrix, Q1, is again obtained
by the least-squares estimate:

Qi = -R -85 (=S0-S;) ™" (3)
And so on until convergence. Alternating between equa-
tions (2) and (3) yields progressive refinements of the ma-

trices QZ and S; that more closely approximate R in equa-
tion (1). The final Q; is rounded to yield a binary matrix.

Note that (=QF =Qi) or (=8; =ST); may not be invert-
ible, for example in the case where the matrix Q; is not
column full-rank, or the matrix S; is not row full-rank. This
is resolved by adding a very small Gaussian noise before
attempting the matrix inverse.

2.4 Other techniques

We chose the three techniques described above as the can-
didates to combine refinements that can potentially provide
more accurate suggestions than any of the individual ones,
but any other equivalent technique could also be combined in
the same fashion instead of the three chosen ones here. Po-
tential candidates could be, for example, a technique based
on a Bayesian approach by DeCarlo et al. [5], and recent
techniques that rely on time information [13, 12]. Yet an-
other recent approach relies item text [8] to establish the
mapping of items to skills.

Although the results obtained through a combination of
techniques may vary as a function of the specific techniques
chosen, the general principle remains valid for all possible
combinations. And there is no reason to believe that the par-
ticular combination of the current study is better or worse
than other potential combinations.

2.5 General validation principle

The general idea behind the validation of Q-matrices is to
introduce a perturbation to a matrix and run a refinement
technique that takes the perturbed matrix and test data
as input, and outputs a set of refinements. In all, 8 cases
can occur and they are listed in table 1. The 8 cases are
a combination of the original cell value, perturbation, and
value proposed (2 x 2 x 2).

The outcome of a proposed value from the refinement tech-

nique is considered correct if it corresponds to the original
value before the perturbation, and incorrect otherwise. We
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Table 1: Refinement outcomes

Perturbation Refinement

Value Value Value Outcome

before after proposed

Perturbed cell
1) o 1 0 correct (TP)
(2 1 0 1 correct (TP)
3) 0 1 1 wrong (FN)
4 1 0 0 wrong (FN)
Non Perturbed cell

(5) 0 0 0 correct (TN)
(6) 1 1 1 correct (TN)
() © 0 1 wrong (FP)
(8) 1 1 0 wrong (FP)

also refer to the signal detection terminology with respect to
perturbations to introduce further classification of the error
types:

e True Positives (TP): perturbed cell that was cor-
rectly changed

e True Negatives (TN): non perturbed cell left un-
changed

e False Positives (FP): non perturbed cell incorrectly
changed

e False Negatives (FN): perturbed cell left unchanged

3. COMBINING TECHNIQUES WITH A
PARTITION TREE

Each of the technique described above uses a different al-
gorithm to provide a potentially improved Q-matrix. In
that respect, their respective outcome may be complemen-
tary, and their combined outcome can be more reliable than
any single one. This is the first hypothesis and objective
of our study. Furthermore, some algorithms are more effec-
tive in general, but may not be the best performer in all
context. Identifying in which context an algorithm provides
the most reliable outcome is another objective of combin-
ing these techniques. We will see that the first hypothesis
is confirmed in the results of the partition tree labeled (1)
and the second is also confirmed by the results of partition
tree (3).

3.1 Partitioning tree
To implement the partition tree combination of the three
techniques, we chose the rpart package for this purpose [19].

The rpart package builds classification models that can be
represented as binary trees. The tree is constructed in a
top-down recursive divide and conquer approach. At each
node in the tree, cases are split into two groups based on
their attribute value.
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3.1.1 Tree building

Attribute selection is done on the basis of Gini index in
rpart. The Gini index [16] can be calculated as :

Gini(D) =1-Y p}
j=1

where n is the number of classes and p; is the relative fre-
quency of class j in dataset D. If attribute A is chosen to
be a split on dataset D into two subset D; and Da, then the
Gini index for attribute A is defined as:
_ |D1‘ |D2\

|D| 1D
Once we get the Gini index to add attributes we can calcu-
late a Delta reduction for each attribute:

AGini(A) = Gini(D) — Ginia (D)

Ginia (D)

Gini(Dy) +

Gini(Dy)

The attribute that creates the largest reduction can be cho-
sen as a splitting point in the decision tree.

3.1.2  Classification with the tree

In our case, attributes are sometimes numeric, such as fac-
tors, and sometimes binary, such as cell values in the Q-
matrix. And the class is binary since it is also a Q-matrix
cell value. At each point of decision from the root node of
the tree to a leaf node, a choice is made to go left or right
based on the splitting point of each node. The nodes in the
partition trees of this experiment are the output of the tech-
niques (suggested values) and the factors considered (they
are described in the next section).

Once a leaf node is reached, classification is based on the
majority vote of the cases that fall under that leaf node: if
the training set contained more case labeled ’0’, this is the
proposed value, else it is a '1’.

3.2 Factors considered

The partition tree relies on each technique’s output, the Q-
matrix refinement proposition, and on a number of factors
that may provide information about the most reliable tech-
nique refinement in a given context. The factors considered
to be relevant are the following:

e Skills per row. Items can require one or more skills.
The skills per row indicates the number of skills re-
quired.

e Skills per column. The sum of the skills per columns
is an indicator of how often this skill is measured by
the different items of the Q-matrix.

e Stickiness. If a technique systematically proposes a
change to a cell of the Q-matrix, no matter what the
perturbation is, this is an indication that this particu-
lar change to the original Q-matrix is an artifact of the
structure of the Q-matrix and the algorithm. We call
this property the stickiness of a cell of the matrix and
it is measured by the proportion of times the value of
the cell is incorrectly changed over all perturbations.
Recall that we train the partition tree over synthetic
data for which the ground truth is known. We can
therefore reliably identify incorrect changes. This is
detailed below.
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3.3 Training of the partition tree
The partition tree is trained on data that contains the fol-
lowing set of attributes:

e original ;. : value of cell (j, k) in the original matrix.
This is the target class of the partition tree and it
corresponds to “Value before” in table 1.

e MaxDiff (;1),MinRSS (j ), ALSC(; y: the three values
proposed as refinements by the respective technique in
place of the original value. For every record, at least
one of these must be different from the original one, or
else it is a perturbated cell record. This corresponds
to “Value proposed” in table 1, one for each refinement
technique.

® RSQ,,j,CSq,,.x: the number of skills per row and column
attributes (see section 3.2). These factors are per Q-
matrix, ();, and per row j and column k.

® SFMaxDiff(Q;,5,k)s SFMinRSS(Q;,5,k) s
SFALSC(Qs,j,k): the stickiness factors of the cell, one for
each matrix and technique.

The training data is generated through a perturbation pro-
cess. Each cell of a Q-matrix is perturbated, in turn and
one at a time, to create a new training record containing
the above attributes. However, non perturbated cells that
are left unchanged by all refinements techniques, cases (5)
and (6) in table 1, are left out of the training data because
they were assumed to be uninformative.

The size of the data set to train the partition trees over
is very large. For the permutations of a single Q-matrix,
the number of perturbated and non perturbated cells ranges
from approximately 50,000 to 250,000.

Training of the partition tree for expert Q-matrices with
synthetic data. Whereas for synthetic data, we can gen-
erate a large array of Q-matrices and ample training and
testing data, real data poses a challenge in that respect.
Typically, for a single data set, we have only a few ex-
pert Q-matrices, and often a single one is available. For a
3 skills x 11 items matrix, only 33 single perturbations are
possible to train a partition tree. Furthermore, and unlike
synthetic data, we do not know what are the valid refine-
ments in the Q-matrix. A “sticky” cell might be a valid
refinement, and so can some of the perturbations that are
presumed incorrect.

To get around these issues, the training of the partition tree
is conducted over synthetic data where the ground truth is
know and where we can use a large span of matrices similar
to the expert one. Similarity to the Q-matrix to refine is
achieved by random permutations the cells of the original
Q-matrix. For each QQ-matrix, a total of 1000 Q-matrices
are generated through this permutation process. Item out-
come data for 400 simulated students is also generated. The
R package CDM and the sim.din function [15] is used for
generating synthetic student item outcome data, using 0.2
slip and guess factors.

4. REAL DATA AND Q-MATRICES

The primary source of real data for our study, from which the
synthetic data is also mimicked, is the well known data set
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Table 2: Four Q-matrices over 11 items of Tatsuoka’s
data set on student item outcome

Number of Description

skills items cases

QM 1 3 11 536 Expert driven.
Skill 1 shared by all
items. From [9]

QM 2 5 11 536 Expert driven.
From [3]

QM 3 3 11 536 Expert driven.
Single skill per
item. [15]

QM 4 3 11 536 Data driven,
SVD-based.

on fraction algebra problems from Tatsuoka [17] (see table 1
in [4] for a description of the problems and of the skills).
The data contains complete answers of 536 students to 20
questions items, but only a subset of 11 items are used by the
Q-matrices in the current study. It corresponds to the set of
common items to the different Q-matrices of the experiment.

The original Q-matrix of this data set contains 8 skills and,
as mentioned, 20 items. However, a number of variations of
this matrix have been proposed and studied with a smaller
number of skills and items [9, 3, 15]. We also chose to focus
on this smaller skills set since they offer three very differ-
ent expert-defined Q-matrices over the same set of items.
Moreover, a smaller set of skills allows us to better establish
the validity of the approach on a simpler problem, leaving
for later the demonstration of whether it scales correctly to
larger sets. The Q-matrices are described below.

Four Q-matrices are considered. Three of them have been
studied in the literature and one is defined by ourselves.
Their main attributes are reported in table 2 and the actual
Q-matrices are shown in figure 1 (except for QM 1 which is
introduced in section 2).

Skills of
QM 3 Q
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Figure 1: Q-matrices 2, 3, and 4.

As mentioned, all Q-matrices are derivatives of the Tat-
suoka [17] 20 item set. QM-1, QM-2 and QM-3 are available
from the CDM package. All data sets have 3 skills, except
for data set 2 which has 5 skills. Data set 3 is the only one
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with a single skill per item. Matrix QM 4 was created for the
purpose of this study, using the three largest singular values
and the items to skills V matrix of the SVD decomposition
of the Tatsuoka data mentioned above.

Therefore, while these four Q-matrices all share the same
11 items, they vary by the number of skills, item monoticity
or not, whether a skill is common to all items, and whether
they are driven from data or driven from expert analysis of
item skills involved.

5. GENERAL PROCEDURE SUMMARY
AND METHODOLOGICAL NOTES

To ease the understanding of the general process of the ex-
periments, and at the expense of introducing some redun-
dancy, figure 2 summarizes the main steps and dependencies.
The top greyed box illustrates the process to generate the
data for partition trees training, and the synthetic data for
performance evaluation. The bottom greyed box illustrates
the two test procedures for real and synthetic data. We
explain the figure below and fill in some details as well.

Data generation. For each of the four Q-matrices (QM,),
the data generation process (1) 1000 permutations (2). Du-
plicates are kept if any. For each permutation, synthetic test
outcome data of 400 simulated students is created with the
CDM utility sim.din (3). Finally, each QM is perturbated,
and that Q-matrix is fed to each of the three techniques
to generate training data for the partition tree described in
section 3.3 (4).

Test over real data. The experiment to assess the perfor-
mance over real data takes three sources of input: the Q-
matrices (1), the fraction algebra data set of Tatsuoka as
described in 4 (6), and finally a partition tree (5) trained
from data generated (4). It outputs a set of refinements
from the different partition trees and for each of the three
techniques as well (7). Finally, the refinements are compared
with the original Q-matrices in (1).

Test over synthetic data. For assessing the performance
over synthetic data (9), the process is similar, with the main
difference that refinements are based on the synthetic test
outcome data generated in (3) instead of real data. And the
comparison is not done over the Q-matrices in (1), but in-
stead over the permuted Q-matrices in (2), which constitute
the ground truth as they are used to generate the data.

5.1 Data set size, cross-validation, and the
assumption of correctness of expert

Q-matrices
As shown in figure 2, synthetic test outcome data (3) is used
for both the training of the partition trees and testing over
synthetic data. This large data set (see sect. 3.3) leaves little
space for over fitting of the partition trees, and therefore the
cross-validations bring very small differences in performance:
accuracy/RSS error reduction is the same between a cross-
validated and a non cross-validated performance assessment
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1. QM;

Permutations
(1000)

Data genergtion

Perturbations
(one per cell)

2. Permutated QMs
(ground truth)

3. Synthetic test outcome data

with DINA model
(400 records)

Perturbations
(one per cell)

provides
ground truth

labels for
learning trees

4. Refinements with
three techniques

5. Partition trees

(3 types)

9. Refinements with
partition trees and
the three techniques

6. Fraction data set

iy

7. Refinements with
partition trees and
the three techniques

!

8. Comparison
with original QM;

10. Comparison
with ground truth

Figure 2: General validation procedure for each Q-
matrix (QM,). See section 5 for details.

at the 0.01 level reported in the results below.

However, for real data, the size of the testing data set is
much smaller. It varies between 366 (QM-2) and 561 (QM-
3), because the test data is based solely on the permutations
of the four Q-matrices. But because the test procedure uses
partition trees trained from synthetic data, there are no bias
issues and cross validation is not required here.

Note also that, for real data, the expert-defined Q-matrix is
not necessarily consistent with the (unknown) ground truth.
Nevertheless, we consider this Q-matrix as valid and the
evaluation of the proposed refinements are made by compar-
ing refinements with expert-defined Q-matrices, as though
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Table 3: Results for synthetic data Table 4: Results for real data

QM Technique Partition tree QM Technique Partition tree
MinRSS MaxDiff ALSC 1) (2 (3) MinRSS MaxDiff ALSC 1) (2 (3
Accuracy of perturbated cells Accuracy of perturbated cells
1 0.81 0.47 0.82 0.81 0.88 0.95 1 0.39 0.17 0.52 0.39 0.36 0.67
2 0.07 0.26 0.36 0.52 0.53 0.83 2 0.35 0.09 0.56 0.60 0.62 0.64
3 0.96 0.49 0.95 0.99 1.00 1.00 3 0.27 0.09 0.36 0.61 1.00 0.88
4 0.90 0.49 0.85 0.90 0.92 0.96 4 0.42 0.11 0.58 0.42 048 0.61
X 0.69 0.43 0.75 0.81 0.83 0.93 X 0.36 0.12 0.51 0.51 0.62 0.70
Accuracy of non perturbated cells Accuracy of non perturbated cells
1 0.97 0.56 0.44 0.97 0.91 0.99 1 0.45 0.68 0.56 0.45 0.38 0.60
2 0.99 0.53 0.50 0.99 0.99 0.99 2 0.93 0.93 0.28 0.94 094 0.97
3 0.95 0.26 0.74 0.95 0.94 0.99 3 0.64 0.83 0.42 0.69 0.76 0.78
4 0.97 0.56 0.44 0.97 0.97 1.00 4 0.55 0.89 0.32 0.55 0.52 0.51
X 0.97 0.48 0.53 0.97 0.95 0.99 X 0.52 0.68 0.32 0.62 0.62 0.68
F-score F-score

1 0.88 0.51 0.58 0.88 0.90 0.97 1 0.42 0.27 0.54 0.42 0.37 0.63
2 0.13 0.35 0.42 0.68 0.69 0.90 2 0.50 0.17 0.37 0.73 0.74 0.77
3 0.96 0.34 0.83 0.97 0.97 1.00 3 0.38 0.16 0.39 0.64 0.86 0.83
4 0.93 0.52 0.58 0.93 0.94 0.98 4 0.48 0.20 0.42 0.48 0.50 0.56
X 0.72 0.43 0.60 0.87 0.87 0.96 X 0.45 0.20 0.43 0.57 0.62 0.70

outweigh in number the single perturbated cell, even after

they were the ground truth. We should keep in mind that )
filtering out non-perturbated cells that are left unchanged.

the performance score may be negatively biased if this as-
sumption was false, but for the purpose of comparing the

relative techniques performance among themselves, and if 7. RESULTS )

we assume that all techniques are equally affected by this The results are report.ed in tables 3 and 4. The format of
bias, then it makes no difference to our relative results. these tables first described below.

6. PERFORMANCE MEASURES 7-1 Description

The respective results of the four Q-matrices (column QM)
in table 2 are reported. They correspond to a single run
(real data can vary a few percentage points by run, but it is
practically stable for synthetic data due to the large number
of cases). The accuracy of refinement for perturbated and
non perturbated cells are reported separately, followed by
the F-score which combines both types of accuracy. The
averages of the four matrices for each of these these three
performance measures is also reported as X.

To measure the performance of the proposed refinements,
we use the difference between the original Q-matrix and the
proposed refinement of a technique. We use the classification
of correct and incorrect refinements introduced in table 1.
Cells that are neither perturbated nor incorrectly suggested
as refinements by any of the technique are ignored in the
analysis (the true negatives of table 1, TN). This is the case
of the large majority and it also is consistent with the train-
ing of the partition tree for which they are also filtered out.

The accuracy and F-score of each individual technique is

Recovery of a perturbated cell to its original value can be reported under columns MinRSS , MaxDiff , and ALSC.

considered as a recall measure, whereas the non perturbated
cells that are left unchanged can be considered as a precision
measure. In that respect, we define a performance measure
that combines precision and recall of the refinement tech-
nique into a single F-score measure:

The three columns under Partition tree correspond to the
performance as a function of different factors used for build-
ing the tree:

Foscore — 9 x Precision xrecall (1) MinRSS + MaxDiff + ALSC. Only the output of
precision + recall the three refinement techniques is considered.

= 2x W (2) MinRSS + MaxDiff + ALSC + SR + SC. The

ce-p + Accp number of skills per row (SR) and skills per column

where Accp and Acc-p are respectively the accuracy mea- (SC) of the target cell are taken into account in ad-

sure of the proposed refinements for the perturbated and dition to the output of each technique. If some tech-

non perturbated cells. This measure gives equal weight to nique performs better under some combination of SR

both types of accuracies and avoids a bias in favour of the and SC, this tree will be able to take these factor into
accuracy of the non perturbated cells which can considerably account.
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(3) MinRSS + MaxDiff + ALSC 4+ SR + SC +

Stickiness.MinRSS + Stickiness.MaxDiff + Stick-

iness. ALSC. The tendency of a cell to be a false pos-
itive for the MinRSS and ALSC methods are added.
The Stickiness factor with MaxDiff is omitted here be-
cause it did not yield improvements.

7.2 Synthetic data

The results for synthetic data in 3 show large differences be-
tween the different matrices and across the individual tech-
niques.

The MinRSS method is clearly superior in terms of gen-
eral accuracy, except for the 5-skills Q-matrix where it can
only identify the perturbated cell 7% of the time, and which
brings its average below the ALSC technique. However,
because it introduces fewer false positives (incorrect refine-
ments) than other techniques, it outperform the other two
methods on the F-Score.

On average, the ALSC technique is good at identifying the
perturbated cell with a 75% average, but it also tends to
introduce more false positives and consequently obtains a
lower global F-score than MinRSS .

Another noticeable result is that the results for QM 3 are
very good, in particular for the partition trees which have
perfect performance (rounding at the second decimal). This
is likely attributed to the fact that it defines a single-skill

mapping.

Turning to the main questions addressed in this study, the
results of partition tree (1), which uses only the three tech-
niques’ output, is equal or better on all scores than any
individual one. This confirms the initial hypothesis for syn-
thetic data. Furthermore, the inclusion of factors (partition
trees (2) and (3)) also substantially improves all scores, con-
firming the other hypothesis that some techniques perform
better under a combination of factors and that the partition
tree is effectively able to take advantage of this information.
The stickyness factor is by far the most effective.

7.3 Real data

The results over the real data reported in table 4 show the
same trends as the synthetic data, but bring less pronounced
improvements. They also support both hypothesis.

We do find an exception with the non perturbated cells
where the MaxDiff accuracy is above the partition trees (1)
and (2) and close to (3). This is mainly due to the fact
that more “false positives” are generated by the MinRSS
and ALSC techniques for real data than for synthetic data,
whereas the MaxDiff technique outputs very few changes
in both contexts. That observation is consistent with the
results in [6].

The balance between true positives and true negatives il-
lustrates why the F-score should be the reference: a perfect
score could be obtained over the accuracy of non perturbated
cells if no changes are always suggested, but that would make
such refinement technique useless.

Therefore, turning to the F-scores, the tendencies are highly
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consistent with the synthetic data. The F-score of the best
performer, 0.41 of MinRSS , is improved to 0.55 with the
combination of the three techniques, and to 0.66 when all
factors are included in the partition tree.

8. DISCUSSION

The results of the above experiments show that the combi-
nation of Q-matrix refinement techniques using a partition
tree can bring substantial improvements over the best per-
formance of the individual techniques. For synthetic data
the average best F-score of the MinRSS technique, 0.72, is
improved to 0.96, and for real data it is raised from 0.41
to 0.66. These results represent a 86% and 55% error re-
duction for the F-score of the synthetic and the real data
respectively (error reduction =1 — (1 — F')/(1 — F), where
F is the initial F-score and F’ is the improved F-score).

In practical terms, if the best technique finds an error in
a Q-matrix 5 out of 10 times, an error reduction of 40%
represents an increase from 5, to 7 out of 10 times, and
the same ratio applies to false errors reduction. And these
figures rest on the assumption that we would know which
technique is the best, whereas according to table 4’s results
the best technique varies across Q-matrices.

Another positive note on the results is that the partition tree
F-scores are more stable across Q-matrices and are system-
atically better than any individual technique when all factors
are taken into account (partition tree 3). This regularity in-
curs that, at least in the space of Q-matrices surveyed, one
can safely choose partition tree refinements without con-
cerns that, maybe, another technique could deliver better
refinements for a specific Q-matrix.

In spite of these encouraging results, limitations and issues
remain.

One limit is that the results are from a single 11 items set,
and from a single domain. We can reasonably believe that
the results vary across contexts and more investigation is
required to assess this variability.

Another limitation is the models investigated in the current
study use static student data: they assume that skill mas-
tery does not change for a single student. This assumption
is false for most data gathered in learning environments,
where students take on exercises as they learn and are being
assessed throughout the learning process. This type of data
can be labeled as dynamic item outcome data because a stu-
dent will be in different states of skills mastery as learning
occurs.

In order to effectively use the existing techniques of Q-matrix
refinement, we would need to be able to detect the moment
when the state of skill mastery changed. Failure do do so
would create noise in the data and impair the effectiveness
of these techniques. Fortunately, substantial progress has
been done in the recent decade or two towards detecting
the moment of learning, such as the large body of work
on Bayesian Knowledge Tracing and Tensor factorization
(for eg. [1, 18]). We can also cite the work of [14] who
refer to a time-varying skills matrix for students and test
their approach on synthetic data. But apart from this recent
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contribution, little work has been done on using this type of
data for refining a Q-matrix, and we can only expect existing
techniques to under perform with dynamic student data.
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ABSTRACT

Modeling student knowledge is a fundamental task of an in-
telligent tutoring system. A popular approach for modeling
the acquisition of knowledge is Bayesian Knowledge Trac-
ing (BKT). Various extensions to the original BKT model
have been proposed, among them two novel models that
unify BKT and Item Response Theory (IRT). Latent Fac-
tor Knowledge Tracing (LFKT) and Feature Aware Student
knowledge Tracing (FAST) exhibit state of the art predic-
tion accuracy. However, only few studies have analyzed the
characteristics of these different models. In this paper, we
therefore evaluate and compare properties of the models us-
ing synthetic data sets. We sample from a combined stu-
dent model that encompasses all four models. Based on the
true parameters of the data generating process, we assess
model performance characteristics for over 66’000 parame-
ter configurations and identify best and worst case perfor-
mance. Using regression we analyze the influence of different
sampling parameters on the performance of the models and
study their robustness under different model assumption vi-
olations.

Keywords
Knowledge Tracing, Item Response Theory, synthetic data,
predictive performance, robustness

1. INTRODUCTION

A fundamental part of an intelligent tutoring system (ITS)
is the student model. Task selection and evaluation of the
student’s learning progress are based on this model, and
therefore it influences the learning experience and the learn-
ing outcome of a student. Thus, accurately modeling and
predicting student knowledge is essential.

Proceedings of the 8th International Conference on Educational Data Mining

Approaches for student modeling are usually based on two
popular techniques: Item Response Theory (IRT) [36] and
Bayesian Knowledge Tracing (BKT) [9]. The concept of
IRT assumes that that the probability of a correct response
to an item is a mathematical function of student and item
parameters. The Additive Factors Model (AFM) (7, 8] fits
a learning curve to the data by applying a logistic regres-
sion. Another technique called Performance Factors Analy-
sis (PFA) [27] is based on the Rasch item response model [12].
BKT models student knowledge as a binary variable that can
be inferred by binary observations. Performance of the orig-
inal BKT model has been improved by using individualiza-
tion techniques such as modeling the parameters by student
and skill [23, 35, 39] or per school class [34]. Clustering ap-
proaches [25] have also proven successful in improving the
prediction accuracy of BKT. Furthermore, hybrid models
combining the approaches of IRT and BKT have been pro-
posed. In [17] a dynamic mixture model has been presented
to trace performance and affect simultaneously. The KT-
IDEM model extends BKT by introducing item difficulty
parameters [22]. Other work focused on individualizing the
initial mastery probability of BKT by using IRT [38]. Logis-
tic regression has also been used to integrate subskills into
BKT [37]. Recently, two models have been introduced which
synthesize IRT and BKT. Latent Factor Knowledge Tracing
(LFKT) [18] individualizes the guess and slip probabilities
of BKT based on student ability and item difficulty. Feature
Aware Student Knowledge Tracing (FAST) [14] generalizes
the individualized guess and slip probabilities to arbitrary
features.

Lately, the analysis of properties of BK'T has gained increas-
ing attention. It has been shown [5] that learning BKT
models exhibits fundamental identifiability problems, i.e.,
different model parameter estimates may lead to identical
predictions about student performance. This problem was
addressed by using an approach that biases the model search
by Dirichlet priors to get statistically reliable improvements
in predictive performance. [33] extended this work by per-
forming a fixed point analysis of the solutions of the BKT
learning task and by deriving constraints on the range of
parameters that lead to unique solutions. Furthermore, it
has been shown that the parameter space of BKT models
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can be reduced using clustering [30]. Other research focused
on analyzing convergence properties [24] of the expectation
maximization algorithm (EM) for learning BKT models and
exploring parameter estimates produced by EM [15]. It has
been shown that convergence in the log likelihood space does
not necessarily mean convergence in the parameter space.
[11] have studied how good BKT is at predicting the moment
of mastery. Different thresholds to assess mastery and their
corresponding lag, i.e., the number of tasks that BKT needs
to assess mastery (after mastery has already been achieved),
have been investigated. Using multiple model fitting pro-
cedures, BKT has been compared to PFA [13]. While no
differences in predictive accuracy between the models have
been reported, it has been shown that for knowledge tracing
EM achieves significantly higher predictive accuracy than
Brute Force. Findings from other studies, however, suggest
the opposite [1, 2]. In [4], upper bounds on the predictive
performance have been investigated by employing various
cheating models. It has been concluded that BKT and PFA
perform close to these limits, suggesting that other factors
such as robust learning or optimal waiting intervals should
be considered to improve tutorial decision making. The pre-
dictive performance of LFKT and FAST has been compared
to KT and IRT models in [19]. The evaluation is based on
data from different intelligent tutoring systems.

In this work, we are interested in the properties of hybrid
approaches combining latent factor and knowledge tracing
models. In extension to previous work and especially to [19],
we empirically evaluate the performance characteristics of
the two recent hybrid models LFKT and FAST on synthetic
data and compare them to the underlying approaches of
BKT and IRT. We sample from a combined student model
that encompasses all four models. By using synthetic data
generated from the combined model, we show the robust-
ness of the models under breaking model assumptions. By
evaluating the models on 66’000 different parameter configu-
rations we are able to rigorously explore the parameter space
to demonstrate the relative performance gain between mod-
els for various regions of the parameter space. Our findings
show that for the generated data sets FAST significantly out-
performs all other methods for predicting the task outcome
and that BKT is significantly better than FAST and LFKT
at predicting the latent knowledge state. Furthermore we
are able to identify the influence of different properties of a
data set on model performance using regression and show
best and worst case performances of the models.

2. INVESTIGATED MODELS

In an intelligent tutoring system a student is typically pre-
sented with a set of tasks to learn a specific skill. For each
student n the system chooses at time ¢ an item i from a set
of items corresponding to a particular skill. The system then
observes the answer y,, ; of the student, which is assumed to
be binary in this work. In the following, we briefly present
four common techniques to model various latent states of
the student and the tutoring environment.

BKT. Bayesian Knowledge Tracing (BKT) [9] models the
knowledge acquisition of a single skill and is a special case
of a Hidden Markov Model (HMM) [29]. BKT uses two
latent states (known and unknown) to model if a student
n has mastered a particular skill k,; at time ¢, and two
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observable states (correct and incorrect) to represent the
outcome of a particular task. Therefore, the probabilistic
model can be fully described by a set of five probabilities.
The initial probability of knowing a skill a-priori p(kn,0) is
denoted by pr. The transition from one knowledge state
kn,+—1 to the next state k. : is described by the probability
pr, of transitioning from the unknown latent state to the
known state and the probability pr of transitioning from
the known to the unknown state:

p(kn,t) = kn,t—l(l - pF) +(1—- kn,t—l)plw (1)

In the case of BKT, pr is fixed at 0. Finally, the task out-
comes Yn,; are modeled as

P(Yn,t) = kn,t(1 = ps) + (1 — kn,t)pc, (2)

where ps denotes the slip probability, which is the probability
of solving a task incorrectly despite knowing the skill, and
pa is the guess probability, which is the probability of cor-
rectly answering a task without having mastered the skill.
Learning the parameters for a BKT model is done using
maximum likelihood estimation (MLE).

IRT. Item Response Theory (IRT) [36] models the response
of a student to an item as a function of latent student abil-
ities 6,, and latent item difficulties d;. The simplest form of
an IRT model is the Rasch model, where each student n and
each item ¢ are treated independently. The outcome yy,; at
time t is modeled using the logistic function

1

Par) = (14e @) (3)

A student with an ability of 6, = d; has a 50% chance of
getting item ¢ correct. In contrast to BKT, IRT does not
model knowledge acquisition. The model parameters for the
Rasch model are learned using EM.

LFKT. The Latent Factor Knowledge Tracing (LFKT) [18]
model combines BKT and IRT using a hierarchical Bayesian
model. On the basis of the BKT model, slip and guess prob-
abilities are individualized based on student ability and item
difficulty as

—1
PG, = (1 _i_e—(di—enﬂc)) (4)

-1
PS,. = (1+e—(9n,—di+’YS)) , (5)

where v¢ and s are offsets for the guess and slip proba-
bilities. The model is fit by calculating Bayesian parameter
posteriors using Markov Chain Monte Carlo.

FAST. Feature Aware Student Knowledge Tracing (FAST)
[14] allows for unification of BKT and IRT as well, but gen-
eralizes the individualized slip and guess probabilities to ar-
bitrary features. Given a vector of features f,, + for a student
n at time ¢ the adapted emission probability reads as

plyn) = (14" 00) 7 (©)

where w is a vector of learned feature weights. If a set of
binary indicator functions for the items and the students are
used, FAST is able to represent the item difficulties d; and
student abilities 6,, from the IRT model. The parameters
are fit using a variant of EM [6].
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3. SYNTHETIC DATA GENERATION

Synthetic data is needed to have ground truth about the
underlying data generating model, which enables the exper-
imental evaluation of various properties of a model.

The sampling procedure starts by generating N student abil-
ities 0, from a normal distribution N(0, o). Then, it gener-

ates I item difficulties d; from a uniform distribution U(—4, 9).

Based on the initial probability p; and the learn probabil-
ity pr a sequence of knowledge states kn.,0, kn,1,...,kn,1 is
sampled based on (1) and we therefore simulate data from
only one skill. The time t* at which k, ¢ = 1 for the first
time is considered as the moment of mastery. The number
of sampled knowledge states is then given as T = t* + L,
where L denotes the lag of the simulated mastery learning
system. For each student we generate a random sequence of
items, i.e., item indices . Arbitrary features from the train-
ing environment, such as answer times, help calls, problem
solving strategy, engagement state of the student and gam-
ing attempts, can have an influence on the performance of a
student. To simulate those influences in a principled way, a
single feature f is added to the data generating model with
a varying feature weight w (and thus varying correlation to
the task outcomes ¥y, ¢).

Based on these quantities, we sample the observations yp +
from a Bernoulli distribution with probability

-1
p(yn,t) — (1 + e_(en_di_IOE"/n,t"’an,t)) , (7)
where
'Yn,t = (kn,t(l *pS) + (1 - k"ﬂ»t)pa)71 -1

Figure 1 gives a graphical overview of the described sam-
pling procedure. Our sampling model has the following
nine parameters: pr,prL,ps,pa,0,0,w,I, N. The described
sampling procedure allows sampling of data that exactly
matches the model assumptions of all four models. To sam-
ple BKT data we set 6 = 0 = w = 0 and (7) simplifies to
the standard BKT formulation. By setting ps = pg = 0.5
and w = 0 we can sample from an IRT model. To sample
from an LFKT model we set w = 0 and for FAST none of
the parameters are restricted.

4. EXPERIMENTAL SETUP

Parameter space. We generated a vast number of pa-
rameter configurations in order to analyze the four models.
The set of parameter configurations has been carefully de-
signed to match real world conditions. The BKT parameters
(pr,pc,ps,pr) are based on the parameter clusters found
on real world data [30]. Using a normal distribution with
a standard deviation of 0.02, we sampled up to 30 points
(depending on the cluster size) around each cluster mean.
According to common practice [16] we scaled the student
abilities 6, to have a mean of 0 and a variance of 1 and
therefore o = 1. We sampled the parameter ¢ (determining
the range of the item difficulties) uniformly from [0, 3] (ac-
cording to [16]). Despite simulating only one skill, we varied
the item difficulties to account for the fact that skill models
tend to be imperfect in practice [7, 32, 20]. In accordance
to the item difficulties, the feature weight w was varied uni-
formly across [0, 1.5]. Feature values fy ¢ were sampled from
the uniform distribution U(—1,1).
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Figure 1: Combined student model used for syn-
thetic data generation. The model corresponds to
LFKT with the addition of a single feature. The
relative dependencies of the observable nodes (blue)
and the latent nodes (white) are shown. k, s denotes
the latent knowledge state, d; the item difficulty, 6,
the student ability, y, : the observation, and f, ; the
feature value.

For every parameter configuration we generated five folds
with NV = 300 simulated students. Each fold was randomly
split up into two parts of equal number of students. The
first part was used as training data and the second part
for testing. Therefore, the training data did contain unseen
students only. As we simulated data from a mastery learning
environment the number of tasks simulated for each student
was determined by the moment of mastery. Based on the
results presented by [11], we set the lag of the simulated
system to L = 4 tasks from the moment of mastery. We
simulated I = 15 different items with random item order.

In total, we generated 66’000 parameter configurations for
pI,PG,Ds,PL, 0, w, this amounts total evaluation time (train-
ing and test) of 1’280 hours and 1’351 hours for LFKT and
FAST respectively. The evaluation time for the BK'T was 99
minutes and all configurations were evaluated in 58 minutes
for the IRT model.

Implementation. To train BKT models we used our cus-
tom code that trains BKT using the Nelder-Mead simplex al-
gorithm minimizing the log-likelihood. We thoroughly tested
our implementation against the BK'T implementation of [39].
The IRT models were fit by joint maximum likelihood es-
timation [21] implemented in the psychometrics library!.
FAST using IRT features was shown to be equivalent to
LFKT except for the parameter estimation procedure [19].
As this work did not investigate different parameter esti-
mation techniques, both models were trained and evaluated
using the publicly available FAST student modeling toolkit?.

S. RESULTS AND DISCUSSION

Using the generated data, we investigated the performance
characteristics of the four models and evaluated their pre-
dictive power and robustness under varying parameter con-
figurations. For our results we generated 66’000 parameter

! An open source Java library for measurement, available at
https://github.com/meyerjp3/psychometrics.
Zhttp://ml-smores.github.io/fast/
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configurations, and for each of them we generated synthetic
data for 1’500 students. Note that there are many ways to
characterize performance differences among student models
and we only cover a subset of these possibilities.

5.1 Error Metrics

The right choice of error metrics when evaluating student
models has recently gained increased interest in the EDM
community. In [28] some of the common error metric choices
are discussed, highlighting possible issues with the accuracy
and area under the ROC curve (AUC) measure. Correla-
tions between various performance metrics and the accuracy
of predicting the moment of mastering a skill has been inves-
tigated in [26], showing that the F-measure (equaling to the
harmonic mean of precision and recall) and the recall are two
metrics with a high correlation to the accuracy of knowledge
estimation. The root mean squared error (RMSE) and log-
likelihood, on the other hand, are well suited if one wants
to recover the true learning parameters. Similarly, [10] con-
cluded from results of 26 synthetic data sets that RMSE is
better at fitting parameters than the log-likelihood.

In line with this previous work we investigated correlations
between accuracy, RMSE and F-measure across all four mod-
els. For this, all models were trained and evaluated on data
using 66’000 different parameter configurations. All metrics
are strongly correlated |p| > 0.75,p < 0.001. Our inspec-
tions of the metric correlations revealed no significant differ-
ences in the metric correlations among the different models.
Thus, to a large extent the measures capture equal char-
acteristics for the models we considered in this work. In
the following, we therefore focus our analysis on the RMSE
measure.

5.2 Model Comparison

Overall Performance. In a first step we investigated the
overall performance of the models. For every parameter con-
figuration, we calculated the average RMSE over the five
generated folds. Table 1 summarizes the parameters for the
best and worst data set for every model when model assump-
tions are met (see Section 3). Results show that all models
that model a knowledge state (all except IRT) perform best
if the slip probability is low and the guess probability is
high. This leads to a data set that exhibits a high ratio of
correct observations. IRT performs best on data that has
very distinguished item difficulties (0 is high). Notably the
best performance of FAST is achieved on a data set with-
out features (w = 0). We assume that this is due to the
decreased complexity of the data set, compared to one that
exhibits high w. Consistently, worst case data sets exhibit
high symmetric values for guess and slip probabilities. In
the case of LFTK and FAST worst case data sets addition-
ally do not distinguish between items (difficulty range 6 = 0)
and for FAST the feature weights are low.

We then performed the non-parametric Friedman test over
all parameter configurations to assess performance differ-
ences between the models. We found that there is a statisti-
cally significant difference in the performance of the models
(x*(3) = 13'065,p < 0.0001). Performing a post-hoc anal-
ysis using Scheffe’s S procedure [31] shows all model differ-
ences to be significant at p < 0.0001 with mean ranks of
1.7156, 2.3017, 2.6898 and 3.2929 for FAST, LFKT, BKT,
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Table 1: Parameters of best and worst case data sets
for each model. We only considered data sets that
meet the model assumptions. Parameters denoted
with * are fixed according to the model assumptions
(see Section 3).

Model § pl pL  pS pG w

RMSE

BKT

Best 0.00* 0.71 0.41 0.01 0.47  0.00* 0.25
Worst 0.00* 0.10 0.12 0.50 0.49  0.00* 0.48
IRT

Best 3.00 0.10 0.08 0.50* 0.50* 0.00* 0.42
Worst 0.00 0.10 0.10 0.50* 0.50* 0.00* 0.50
LFKT

Best 0.75 0.69 0.40 0.01 0.46  0.00* 0.25
Worst 0.00 0.53 0.16 0.28 0.29  0.00* 0.51
FAST

Best 0.75 0.67 040 0.01 0.46 0.00 0.25
Worst 0.00 0.56 0.16 0.28 0.28 0.00 0.51

and IRT, respectively. FAST therefore significantly outper-
forms the other methods on our synthetic data sets. In [19]
IRT performed not significantly worse than LFKT and FAST
on four different data sets. The good performance of IRT
was attributed to the deterministic item ordering that al-
lows IRT to infer knowledge acquisition confounded with
item difficulty. Our results support this hypothesis as in our
synthetic data set the items are in random order and IRT
exhibits the worst overall performance.

Parameter Space Investigation. To gain a better under-
standing of the performance characteristics of the different
models, we analyzed their performances across the parame-
ter space. For every pair of parameters p; and p;, we divided
the parameter configurations into bins with similar values
for p; and p;. We used five bins for each parameter (p;
and p;) resulting in a total of 25 bins. Performance of each
model was assessed by calculating the mean RMSE for each
bin. Significance of the observed performance differences
was computed using the Friedman test and p < 0.05.

Figure 2a shows the relative performance of the best model
for each parameter pair. The models are color-coded: BKT
is shown in red, IRT in green, LFKT in yellow, and FAST in
blue. The color gradient indicates the relative improvement
of the winning model over the second best model, where
darker colors indicate higher values. White-colored areas
indicate that there is no significant difference between the
models. The plot shows that FAST is robust to parameter
variations and outperforms the other models in large parts of
the parameter space. In parts with low feature weights, i.e.,
where the feature f shows only a low correlation with task
outcomes, LFKT outperforms FAST. When the variance ¢
of item difficulties d; is low, BKT is the best model. A
low variance in d; implies a good skill model, with all tasks
having approximately the same difficulty.

In contrast to Figure 2a, where we assessed the prediction
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Figure 2: Best performing models (RMSE) regarding prediction of task outcomes (a) and knowledge state
prediction (b). The color for each bin indicates the best performing model, averaged over all other parameters.
We investigated BKT (red), IRT (green), LFKT(yellow), and FAST(blue). White-colored bins exhibit no
significant difference in model performance. The color brightness indicates the relative improvement of the
best performing model over competing models, with dark colors referring to higher values. FAST is robust to
parameter variations and outperforms the other models in large parts of the parameter space when predicting
task outcomes (a). BKT is the best model if the variance of the item difficulty is low (a). BKT is superior
to the other models in large parts of the parameter space when predicting knowledge states (b).
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of task outcomes, we analyzed the quality of the prediction
of knowledge states kn,+ using the RMSE in Figure 2b. Ulti-
mately, we want to predict whether a student has mastered a
skill or not [26, 3]. The plot uses the same parameter pairs
and color codings as Figure 2a. Interestingly, LFKT and
FAST are not superior to BKT when it comes to prediction
of the latent state. The additional parameters that LFKT
and FAST use have a direct influence on the predicted task
outcomes and therefore improve performance when predict-
ing task outcomes. They have, however, no direct influence
on the latent state k, + of the model.

Robustness. Next, we tested the robustness of the dif-
ferent models against each other. We generated ideal data
(meeting the model assumptions) for all the models and then
interpolated the parameter values between these ideal cases.
The classes of data sets that meet the model assumptions
for the four models are described in Section 3. From every
class of data sets, we selected the extreme case with the least
amount of noise. In the following, we describe these cases.

For BKT, data is generated using § = w = 0, assuming
a perfect skill model (all tasks with same difficulty) and
setting the influence of additional (not captured) features
to 0. Furthermore, we removed the randomness by setting
pa = ps = 0. For IRT, the extreme case data was generated
using pa, ps = 0.5, w = 0 and by additionally setting § = 3.
As LFKT is a combination of IRT and BKT, we set the pa-
rameters to pg,ps = 0.25 and 6 = 1.5. Furthermore, we
set w = 0, again assuming no influence of not captured fea-
tures. For FAST we used the same parameters as for LFKT,
but additionally introduced a feature influence by setting
w = 1.5. We linearly interpolated the parameter space in-
between these extreme cases to asses model robustness when
model assumptions are violated. Figure 3 displays the model
with best RMSE in this subspace that contains the extreme
(ideal) cases, where pr, and pr are averaged over the BKT
parameter clusters presented in [30]. From these results, we
can see that BKT tends to be robust to increased feature
influence as long as pa,ps < 0.15. If the feature weight
w > 0.75, FAST outperforms all the other classifiers. For
large differences in item difficulties and large guess and slip
probabilities, LFKT has a slight advantage over IRT.

5.3 Parameter Influence

To analyze the influence of the model parameters on the per-
formance of the student models, we used linear regression to
predict the RMSE based on the parameters of the sampling
model. This allowed us to identify statistically significant
correlations between the sampling parameters and the per-
formance of the models despite the high dimensionality of
the parameter space.

The sampling parameters have a direct influence on the ra-
tio of correct observations in the data, e.g., a high learning
probability with low guess and slip parameters leads to a
high ratio of correct observations. Further, if the parame-
ters model fast learners then the average number of tasks
tends to be low since we are simulating a mastery learn-
ing environment. The three models IRT, LFKT and FAST
which explicitly model items are sensitive to this kind of
lacking data, as by having fewer observed items per student
the estimation of item difficulty becomes more difficult. To
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Figure 3: Relative model performance on ideal data
sets generated by linearly interpolating between pa-
rameters. The colors refer to the models BKT (red),
IRT (green), LFKT (yellow) and FAST (blue). The
color gradient indicates the relative performance as
in Figure 2a. BKT and FAST are more robust to
the invalid assumptions of our experiment than IRT
and LFKT.

investigate the effect of both factors, we added the two vari-
ables correct ratio and average number of tasks as predic-
tors to the regression model. In order to make correlation
coefficients comparable, all sampling parameters have been
normalized to have mean 0 and standard deviation 1.

Figure 4 shows the regression coefficients for all four models,
with red and green denoting statistically significant and not
significant coefficients, respectively. The variables correct
ratio and average number of tasks have the largest influence
on the RMSE. Both effects are significant and positive (re-
ducing the RMSE). A larger range of item difficulties § has a
positive influence on the performance of all models except for
the BKT model. This is expected as BKT does not account
for variations in item difficulty and thus larger variations in
item difficulties are treated as noise by BKT, which makes
prediction harder. IRT, LFKT and FAST, on the other
hand, benefit from larger variations. We assume that this is
due to the better identifiability of the effects of the different
items. Interestingly, increasing the feature range w has no
significant negative effect for the models that do not take
features into account (BKT, IRT, LFKT), but has a posi-
tive effect for FAST. The initial probability and the learning
probability have a small negative and small positive effect
on performance, respectively. While these coefficients are
partially significant they have very small magnitude. The
positive effect of the slip probability ps for all models ex-
cept BKT (the effect is not significant) is rather surprising.
However, the effect of a high slip probability in our sampling
model is that it weakens the influence of the latent knowl-
edge state on the task outcomes. This could explain the
positive influence for models that estimate item difficulty,
since the difficulty estimates are less convoluted with effects
from the knowledge state. Further work is needed to prove
this effect.
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Figure 4: Regression coefficients to predict RMSE based on the sampling parameter values for the models
BKT, IRT, LFKT and FAST. Parameters with positive coefficients have a negative effect on the performance
and vice versa. Red denotes significant coefficients with p < 0.001, green coefficients are not significant.

6. CONCLUSIONS

In this work, we investigated the performance characteristics
of latent factor and knowledge tracing models by exploring
their parameter space. To do so, we generated a vast amount
of 66’000 synthetic data sets for different parameter config-
urations containing data for 1’500 students each. Synthetic
data allowed us to study the model performances under dif-
ferent parameter settings, and to test the robustness of the
models against violations of specific model assumptions.

We showed best and worst case performances for all the
models and investigated the relative performance gain in
various regions of the parameter space. Our results showed
that the two recently developed models LFKT and FAST,
which synthesize item response theory and knowledge trac-
ing, perform better than BKT and IRT. FAST even signif-
icantly outperformed LFKT if reasonable features can be
extracted from the learning environment. Interestingly, IRT
exhibited the worst performance, which supports the hy-
pothesis by [19] that random item ordering has a negative
influence on the performance of IRT models. However, more
analyses are needed to investigate this effect thoroughly.
Further, we investigated the models’ abilities to predict the
latent knowledge state and demonstrated that LFKT and
FAST are outperformed by BKT. This raises the question
of how to adjust the two recent methods LFKT and FAST if
the aim is to predict knowledge states; we leave this explo-
ration for future work. The analysis of the model robustness
revealed that BKT is robust to increased feature influence
for small guess and slip probabilities. For larger guess and
slip, FAST outperformed the other methods.
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While all sampling parameters have been carefully chosen
to match real world conditions, we expect real world data
to exhibit more noise and additional effects not covered by
our synthetic data. Thus, the achieved performance can be
considered an upper bound on the performance achievable
in real world settings. The performance of BKT depends
on the quality of the underlying skill model. We have simu-
lated imperfect skill models by introducing item effects, but
we did not take other sources for imperfect skill models into
account. Furthermore, the simulated data consisted of a
fixed set of items. For tutoring systems offering many varia-
tions of tasks, reliable estimation of item effects is challeng-
ing, which in turn influences the performance of IRT, LFKT
and FAST. Moreover, the performance of FAST is driven by
feature quality, which may vary between different tutoring
systems.

Finally, it remains questionable whether and how the perfor-
mance of the investigated techniques influences the learning
outcome of students in a tutoring system. We show rela-
tive improvements in RMSE between models of up to 6%.
However, the effect of small-scale improvements in the ac-
curacy of student models on the learning outcome has been
discussed controversially [4, 39].
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ABSTRACT

We show that student learning can be accurately modeled
using a mixture of learning curves, each of which specifies
error probability as a function of time. This approach gener-
alizes Knowledge Tracing [7], which can be viewed as a mix-
ture model in which the learning curves are step functions.
We show that this generality yields order-of-magnitude im-
provements in prediction accuracy on real data. Further-
more, examination of the learning curves provides actionable
insights into how different segments of the student popula-
tion are learning.

To make our mixture model more expressive, we allow the
learning curves to be defined by generalized linear models
with arbitrary features. This approach generalizes Additive
Factor Models [4] and Performance Factors Analysis [16],
and outperforms them on a large, real world dataset.

1. INTRODUCTION

In the mid-1980s, a now-famous study demonstrated the po-
tential impact of adaptive, personalized education: students
tutored one-on-one outperformed those taught in a conven-
tional classroom by two standard deviations [3]. Remark-
ably, subsequent research has achieved similar gains using
interactive, computerized tutors that maintain an accurate
model of the student’s knowledge and skills [6]. In the past
few years, widespread access to smartphones and the web
has allowed such systems to be deployed on an unprece-
dented scale. Duolingo’s personalized language courses have
enrolled over 90 million students, more than the total num-
ber of students in all U.S. elementary and secondary schools
combined.

A central component of an intelligent tutoring system is
the student model, which infers a student’s latent skills and
knowledge from observed data. To make accurate inferences
from the limited data available for a particular student, one
must make assumptions about how students learn. How do
students differ in their learning of a particular skill or con-
cept? Is the primary difference in the initial error rate, the
rate at which error decreases with time, the shape of the
learning curve, or something else? The answers to these
questions have implications for the choice of model class
(e.g., Hidden Markov Model, logistic regression), as well as
the choice of model parameters.
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Previous approaches to student modeling typically make
strong assumptions about the shape of each student’s learn-
ing curve (i.e., the error rate as a function of the num-
ber of trials). Additive Factor Models [4] use the student
and the number of trials as features in a logistic regression
model, which implies a sigmoidal learning curve with the
same steepness for each student, but different horizontal off-
set. Knowledge Tracing [7] is a two-state Hidden Markov
Model where, conditioned on the trial ¢ at which the student
first transitions from not knowing the skill to mastering it,
the learning curve is a step function.

In empirical studies, it has been observed that aggregate
learning curves often follow a power law, a phenomenon
so ubiquitous it has been called the power law of practice
[13]. Later work suggested that, although error rates fol-
low a power law when averaged over an entire population,
individual learning curves are more accurately modeled by
exponentials [10]. That is, the power law curve observed in
aggregate data is actually a mixture of exponentials, with
each student’s data coming from one component of the mix-
ture.

These observations led us to seek out a more general ap-
proach to student modeling, in which individual learning
curves could be teased apart from aggregate data, without
making strong assumptions about the shape of the curves.
Such an approach has the potential not only to make the
student model more accurate, but also to explain and sum-
marize the data in a way that can produce actionable in-
sights into the behavior of different subsets of the student
population.

This work makes several contributions to student modeling.
First, we present models of student learning that generalize
several prominent existing models and that outperform them
on real-world datasets from Duolingo. Second, we show how
our models can be used to visualize student performance in
a way that gives insights into how well an intelligent tu-
toring system “works”, improving upon the population-level
learning curve analysis that is typically used for this pur-
pose [11]. Finally, by demonstrating that relatively simple
mixture models can deliver these benefits, we hope to in-
spire further work on more sophisticated approaches that
use mixture models as a building block.
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1.1 Related Work

The problem of modeling student learning is multifaceted.
In full generality it entails modeling a student’s latent abil-
ities, modeling how latent abilities relate to observed per-
formance, and modeling how abilities change over time as a
result of learning and forgetting. For an overview of various
approaches to student modeling, see [5, 8].

This work focuses on the important subproblem of modeling
error probability as a function of trial number for a particu-
lar task. Following the influential work of Corbett and An-
derson [7], Knowledge Tracing has been used to solve this
problem in many intelligent tutoring systems. Recent work
has sought to overcome two limitations of the basic Knowl-
edge Tracing model: its assumption that each observed data
point requires the use of a single skill, and its assumption
that model parameters are the same for all students. To
address the first limitation, Additive Factor Models [4] and
Performance Factors Analysis [16] use logistic regressions
that include parameters for each skill involved in some trial.
The second limitation has been addressed by adapting the
basic Knowledge Tracing model to individual students, for
example by fitting per-student odds multipliers [7], or by
learning per-student initial mastery probabilities [14].

Our work seeks to address a third limitation of Knowledge
Tracing: its strong assumptions about the shape of the
learning curve. Following Knowledge Tracing, we first at-
tempt to model performance on a task that requires only a
single skill. In §4, we generalize this approach to obtain a
mixture model that includes both Additive Factor Models
and Performance Factors Analysis as special cases, and that
outperforms both on a large, real-world dataset.

2. SINGLE-TASK MIXTURE MODEL

In this section we present a simple mixture model that is ap-
propriate for use on datasets with a single task. This model
is a viable alternative to the basic (non-individualized) ver-
sion of Knowledge Tracing, and is useful for exploratory data
analysis. In §4, we generalize this model to handle datasets
with multiple tasks.

2.1 The Probabilistic Model

A student’s performance on a task after T trials can be rep-
resented as an error vector v € {0,1}7, where v, = 1 if
the student made an error on trial ¢ and is 0 otherwise.
Thus a task, together with a distribution over students, de-
fines a distribution over binary error vectors. In this work,
we model this distribution as a mixture of K distributions,
where each component of the mixture is a learning curve,
or equivalently a product of Bernoulli distributions (one for
each trial).

To formally define this model, define the probability of ob-
serving outcome o € {0,1} when sampling from a Bernoulli
distribution with parameter p as

B(p, 0) = {p

1-p

o=1
0=0.

A learning curve ¢ € [0,1]* specifies, for each trial ¢, the
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probability ¢; that the student makes an error on trial ¢.
The probability of the error vector v according to learning
curve ¢ is [, B(gt,v¢). A K-component mixture over learn-
ing curves is a set ¢*, ¢%, ..., ¢¥ of learning curves, together
with prior probabilities p', p?, ..., p. The probability of an
error vector v € {0,1}” according to the mixture model is

K . T .
> [ B ve) -
=1 =1

Inference in a mixture model consists of applying Bayes’ rule
to compute a posterior distribution over the K components
of the mixture, given an observed error vector. The model
parameters can be fit from data using the EM algorithm,
pseudo code for which is given in Algorithm 1.

Algorithm 1 EM Algorithm for single-task mixture model

Parameters: number of components K, error vector v°
for each student s, prior parameters oo > 1, § > 1.
Initialize p’ < + Vj, and ¢/ + Rand(0,1) Vj, ¢.
while not converged do

Ls,j — pJ Hf:l B(Q€>Uf) VS,j

Zs,j <Eei vy j

’ Zj/ Ls.j’ ’

(1—1+ZS Zs,j”;
at+B—2+>_ 25

j s %s,j .
P s

end while

qal « Vi,

To make Algorithm 1 perform well when data is sparse, it
is useful to place a Bayesian prior over the set of possible
learning curves. In this work we use a product of Beta distri-
butions for the prior: P[g] = [, Beta(c, 3)(q:). This choice
of prior gives a simple closed form for the maximization step
of the EM algorithm, which can be thought of computing
the maximum-likelihood estimate of ¢} after “hallucinating”
a — 1 correct responses and 3 — 1 errors (see pseudo code).

2.2 Knowledge Tracing as a Mixture Model

Knowledge Tracing is typically presented as a two-state Hid-

den Markov Model, where the student’s state indicates whether

or not they have mastered a particular skill. In this section,
we show that if the maximum number of trials is 7', Knowl-
edge Tracing can also be thought of as a mixture model with
T + 1 components, each of which is a step function. Thus,
Knowledge Tracing can be viewed as a constrained mixture
model, in contrast to the unconstrained model discussed in
the previous section.

To see this relationship, recall that in a Knowledge Tracing
model, the student makes an error with slip probability ps
if they have mastered the skill, and with probability 1 — py
otherwise, where p, is the probability of a correct guess. The
probability of mastery is po initially, and after each trial, a
student who has not yet mastered the skill transitions to the
mastered state with probability pr.

Let V be an error vector, so V; = 1 if the student makes an
error on trial ¢ and is 0 otherwise, and let M be the state
vector: M; = 1 if the student has mastered the skill at the
beginning of trial ¢ and is 0 otherwise. The distribution over
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Figure 1: Mixture model representation of a Knowl-
edge Tracing model with guess probability p, = 0.2,
slip probability p; = 0.1, transition probability pr =
0.5, and initial mastery probability po = 0.

error vectors defined by Knowledge Tracing is given by

V=u= Z]P’[M m|P[V =v|M =m)] .

Because the student never leaves the mastered state after
reaching it, there are only T + 1 possibilities for the state
vector M. Lettmg m? be the jth possibility (m] = 0ift < j,
1 otherwise), and letting p? = P[M = m7], we have

T+1

=v=> p PV

Because the components of V' are conditionally independent
given M,

=M =m’] .

T
PV =M =m’] = [[ Bal, v)
t=1

. 1-p
qf—{ !
DPs

Putting these facts together, we see that the probability of a
particular error vector under Knowledge Tracing is the same
as under a mixture model with 741 components, where each
learning curve ¢’ is a step function with the same initial and
final height but a different horizontal offset (see Figure 1).

where

t<j
t>7.

Because the HMM and the mixture model are both gen-
erative models that specify the same distribution over bi-
nary vectors, the conditional distributions over binary vec-
tors given a sequence of observations are also the same, and
Bayesian inference yields exactly the same predictions when
performed on either model.

Viewing Knowledge Tracing in this way, it is natural to con-
sider generalizations that remove some of the constraints, for
example allowing the step functions to have different initial
or final heights (perhaps students who master the skill ear-
lier are less likely to slip later on). In the model presented
in §2.1 we simply remove all the constraints, allowing us to
fit a mixture model over learning curves of arbitrary shape.

We note that later work on Knowledge Tracing allowed for
the possibility of forgetting (transitioning from the mastered
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to unmastered state). This version can still be modeled as a
mixture model, but with 27 rather than T + 1 components.

2.3 Statistical Consistency

A model is statistically consistent if, given enough data, it
converges to the ground truth. In this section we show that
the “hard” version of EM algorithm 1 is consistent, provided
the number of components in the mixture model grows with
the amount of available data (the hard EM algorithm is the
same as algorithm 1, except that it sets z;; = 1 for the j
that maximizes Ls ;, and zs,; = 0 otherwise). For simplicity
we assume the number of trials 7" is the same for all students,
but this is not essential. Also, though the data requirements
suggested by this analysis are exponential T', in practice we
find that near-optimal predictions are obtained using a much
smaller number of components.

THEOREM 1. Consider the “hard” wversion of EM algo-
rithm 1, and suppose that the number of trials is T for all
students. This algorithm is statistically consistent, provided
the number of curves K in the mizture model grows as a
function of the number of data points n.

ProOOF. Recall that an event occurs with high probability
(whp) if, as n — oo, the probability of the event approaches
1. The idea of the proof is to show that, whp, each of the
2T possible error vectors will be placed into its own cluster
on the first iteration of the EM algorithm. This will imply
that the EM algorithm converges on the first iteration to a
mixture model that is close to the true distribution.

Consider a particular error vector v* € {0,1}7, and let j be
the index of the likelihood-maximizing curve on the first iter-
ation of the algorithm (i.e., z5; = 1). If @ € [0,1]7 is a ran-
dom curve, the probability that H?zl B(Q:,vi) > % is pos-
itive. Thus, as K — oo, whp at least one of the K random
curves will satisfy this 1nequahty, and in partlcular for the
likelihood-maximizing curve ¢’ we have Ht 1 Bl vi) > é,

which implies B(qt,vt) ; for all t. For any error vector

v # v°, there must be some ¢ such that vy # vf/, which
implies B(q],vi ) < é This means that whp, ¢ cannot be
the likelihood-maximizing curve for vs/, and so each binary
vector will have a unique likelihood-maximizing curve.

If each binary vector v has a unique likelihood-maximizing
curve ¢°, then the M step of the algorithm will simply set
¢’ < v, and will set p’ to the empirical frequency of v within
the dataset. Asn — oo, this empirical frequency approaches
the true probability, which shows that the algorithm is con-
sistent. [

In the worst case, statistical consistency requires a constant
amount of data for every possible error vector, hence the
data requirements grow exponentially with 7. However,
this is not as bad as it may seem. In intelligent tutoring
systems, it is often the case that T is small enough that
even in the worst case we can guarantee near-optimal per-
formance. Furthermore, as we show experimentally in §3.2,
near-optimal performance can often be achieved with a much
smaller number of components in practice.
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2.4 Use in an Intelligent Tutoring System

How should the predictions of a mixture model be used
to schedule practice within an intelligent tutoring system?
When using Knowledge Tracing, a typical approach is to
schedule practice for a skill until the inferred probability
of having mastered it exceeds some threshold such as 0.95.
With a mixture model, we can no longer take this approach
since we don’t make explicit predictions about whether the
student has mastered a skill. Nevertheless, we can define
a reasonable practice scheduling rule in terms of predicted
future performance.

In particular, note that another way of formulating the schedul-

ing rule typically used in Knowledge Tracing is to say that
we stop practice once we are 95% confident that performance
has reached an asymptote. With a mixture model, it is un-
likely that the marginal value of practice will be exactly 0,
so this precise rule is unlikely to work well (it would simply
schedule indefinite practice). However, we can compute the
expected marginal benefit of practice (in terms of reduction
in error rate), and stop scheduling practice once this drops
below some threshold.

Note that when practice scheduling is defined in terms of
expected marginal benefit, the practice schedule is a function
of the predicted distribution over error vectors, so mixture
models that make the same predictions will result in the
same practice schedule even if the model parameters are
different. This is in contrast to Knowledge Tracing, where
multiple globally optimal models (in terms of likelihood) can
lead to very different practice schedules, because the inferred
probability of mastery can be different even for two models
that make identical predictions [2].

2.5 Identifiability

A statistical model is identifiable if there is a unique set of
parameters that maximize likelihood. Our mixture model is
not identifiable, since in general there are many ways to ex-
press a given distribution over binary vectors as a mixture of
learning curves. However, as we argued in the previous sec-
tion, non-identifiability does not pose a problem for practice
scheduling if the schedule is defined in terms of the model’s
predictions rather than its parameters.

3. EXPERIMENTS WITH SINGLE-TASK
MODEL

In this section we evaluate the single-task mixture model
of §2 on data from Duolingo. These experiments serve two
purposes. First, they show that the mixture model can give
much more accurate predictions than Knowledge Tracing
on real data. Second, inspection of the learning curves pro-
duced by the mixture model reveals interesting facts about
the student population that are not apparent from conven-
tional learning curve analysis. In §4 we present a more gen-
eral mixture model that is appropriate for datasets with mul-
tiple skills.

3.1 The Duolingo Dataset

We collected log data from Duolingo, a free language learn-
ing application with over 90 million students. Students who
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use Duolingo progress through a sequence of lessons, each
of which takes a few minutes to complete and teaches cer-
tain words and grammatical concepts. Within each lesson,
the student is asked to solve a sequence of self-contained
challenges, which can be of various types. For example, a
student learning Spanish may be asked to translate a Span-
ish sentence into English, or to determine which of several
possible translations of an English sentence into Spanish is
correct.

For these experiments, we focus on listen challenges, in which
the student listens to a recording of a sentence spoken in
the language they are learning, then types what they hear.
Listen challenges are attractive because, unlike challenges
which involve translating a sentence, there is only one cor-
rect answer, which simplifies error attribution. For these
experiments we use a simple bag-of-words knowledge com-
ponent (KC) model. There is one KC for each word in the
correct answer, and a KC is marked correct if it appears
among the words the student typed. For example, if a stu-
dent learning English hears the spoken sentence “I have a
business card” and types “I have a business car”, we would
mark the KC card as incorrect, while marking the KCs for
the other four words correct. This approach is not perfect
because it ignores word order as well as the effects of context
(students may be able to infer which word is being said from
context clues, even if they cannot in general recognize the
word when spoken). However, the learning curves generated
by this KC model are smooth and monotonically decreasing,
suggesting that it performs reasonably well.

Our experiments use data from the Spanish course for En-
glish speakers, one of the most popular courses on Duolingo.
In this section, we focus on modeling acquisition of a single
skill, using data for the KC una (the feminine version of the
indefinite article “a”). In §4 we consider more general mix-
ture models, and in §5 we evaluate them on datasets with
multiple KCs. The full dataset has roughly 700,000 data
points (there is one data point for each combination of stu-
dent, trial, and KC), while the una dataset contains around
15,000.

3.2 Prediction Accuracy

To evaluate the mixture model’s prediction accuracy, we di-
vided the Duolingo dataset into equal-sized training and test
sets by assigning each student to one of the two groups at
random. We then ran the EM algorithm on the training data
to fit mixture models with various numbers of components,
as well as a Knowledge Tracing model, and computed the
predictions of these models on the test data. We evaluate
prediction accuracy using two commonly-used metrics.

1. Average log-likelihood. Log-likelihood measures how
probable the test data is according to the model. Specif-
ically, if the dataset D consists of n independent data
points D1, D, ..., D, (each data point is the binary
performance of a particular student on a particular
trial), and p; = P[D;|M] is the conditional probabil-
ity of the ith data point D; given the model M, then
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Figure 2: Optimality gaps for log likelihood (left) and AUC (right) as a function of number of components
in the mixture model, compared to Knowledge Tracing (horizontal lines). The optimality gap is the absolute
difference between the model’s accuracy and the maximum possible accuracy on the dataset.
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Figure 3: Learning curves for recognizing the Spanish word una in a Duolingo listen challenge. The population
curve (left) suggests a reasonable rate of learning in aggregate, but the mixture model (right) reveals large

differences among different clusters of students.
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Because both the mixture model and Knowledge Trac-
ing are fit using maximum likelihood, it is natural to
compare them in terms of this objective function.

2. AUC. AUC evaluates the accuracy of the model’s pre-
dictions when they are converted from probabilities
to binary values by applying a threshold. It can be
defined as the probability that p > g, where p is the
model’s prediction for a randomly-selected positive ex-
ample and ¢ is the model’s prediction for a randomly-
selected negative example. This is equivalent to the
area under the ROC curve, which plots true positive
rate against false positive rate (both of which vary as
a function of the chosen threshold).

Figure 2 presents accuracy on the una dataset as a function
of the number of components in the mixture model, both on
training and held-out test data. To make relative improve-
ments clearer, we plot the optimality gap rather than the
raw value of the prediction accuracy metric. For example,
the optimality gap for test set log likelihood is the difference
between the optimal log likelihood on the test data (which
can be computed in closed form) and the model’s log likeli-
hood on the test data.

For both AUC and log-likelihood, the improvement in ac-
curacy is largest when going from one component to two,
and there are diminishing returns to additional components,
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particularly in terms of performance on held-out test data.
With more than 5 components, log-likelihood on test data
gets slightly worse due to overfitting, while performance on
training data improves slightly. In practice, the number of
components can be selected using cross-validation.

For both metrics, Knowledge Tracing is similar to the one-
component model but significantly worse than the two com-
ponent model in terms of accuracy, both on training and test
data. Furthermore, all mixture models with two or more
components outperform Knowledge Tracing by an order of
magnitude in terms of the optimality gap for log-likelihood
and AUC, both on training and on held-out test data. We
observed very similar results for datasets based on other
Spanish words, such as come (eat), mujer (woman), and
hombre (man).

3.3 Learning Curve Mixture Analysis

In this section we examine the learning curves that make up
the components of the mixture model fit to Duolingo data.
This analysis can be viewed as a more general version of
learning curve analysis [11], which examines the population
learning curve (this is equivalent to the curve for a one-
component mixture model).

Figure 3 presents learning curves for the una dataset. The
left pane of the figure shows the aggregate learning curve,
while the right pane shows the curves for a 3-component
mixture model fit using the EM algorithm. Examining the
right pane, we see that the mixture model clusters students
into three quite different groups.
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e Around two-thirds of the students belong to a cluster
that in aggregate has an error probability around 5%
on the first trial, and this error rate does not change
with increased trials.

e A second, smaller cluster contains 30% of the students.
These students, in aggregate, have an initial error rate
of 33% which decreases to around 11% after 7 trials.

e The third cluster contains only 3% of students. These
students have a very high initial error rate of 96%,
which declines to about 656% after 7 trials.

The existence of this third, high-error-rate cluster surprised
us, so we went back to the log data to examine the behavior
of students in this cluster in more detail. It turned out that
almost all of these students were simply giving up when
presented with a listen challenge (although they correctly
answered other types of challenges). Further examination of
the log data revealed that some of these students skipped
all listen challenges, while others would skip all listen chal-
lenges for long stretches of time, then at other times would
correctly answer listen challenges. We conjecture that the
former set of students are either hearing-impaired or do not
have working speakers, while the latter do not want to turn
their speakers on at certain times, for example because they
are in a public place. Duolingo attempts to accommodate
such students by offering a setting that disables listen chal-
lenges, but not all students realize this is available. As a
result of these insights, Duolingo is now exploring user in-
terface changes that will actively detect students that fall
into this cluster and make it easier for them to temporarily
disable listen challenges.

This analysis shows how mixture modeling can produce valu-
able insights that are not apparent from examination of the
population learning curve alone. We hope this will inspire
the use of mixture modeling more broadly as a general-
purpose diagnostic tool for intelligent tutoring systems.

4. GENERAL MIXTURE MODEL

The single-task model is appropriate for datasets where there
is a single knowledge component (KC) and many students.
In an actual intelligent tutoring system, a student will learn
many KCs, and prediction accuracy can improved by using
student performance on one KC to help predict performance
on other, not yet seen KCs. In this section we present a more
general mixture model that accomplishes this.

In this more general model, student performance is again
modeled as a mixture of K learning curves. However, in-
stead of treating each point on the learning curve as a sepa-
rate parameter, we let it be the output of a generalized linear
model with features that depend on the student, task, and
trial number. In particular, for a student s and task i, the
probability of a performance vector vi,va,...,vr is

k T
S [ B(@ (s, t:87),00)
j=1 t=1

where

qj(87i7t; ﬁj) = gil(()bsyi,t : /8])’

Proceedings of the 8th International Conference on Educational Data Mining

where ¢s,;,; is the feature vector for student s, task i, trial
t, and g is the link function for the generalized linear model
[12]. Our experiments use logistic regression, for which the
link function is g(p) = logit(p).

Note that this model generalizes the single-task mixture
model presented in §2. In particular, the single-task model
with curve ¢’ (t) is recovered by setting ¢s,:,¢ = ¢, an indi-
cator vector for trial ¢, and setting 8] = g(g;(t)).

As with the single-task model, we can estimate the param-
eters of this model using the EM algorithm. The main dif-
ference is that the maximization step no longer has a closed
form solution. However, it is a convex optimization and can
still be solved exactly using a number of algorithms, for ex-
ample stochastic gradient descent.

To define the EM algorithm, first define the likelihood func-
tion
LL:(8) = [ B(d (s,i.t:8),00) -

t=1

For the E step, we define hidden variables Ziw which give

the probability that the data for student s and task ¢ follows
curve j.

JTJ
i Pl
' Zj’ leLi,z(/B)

For the M step, we optimize the coefficient vector for each
component j so as to maximize expected log-likelihood.

B = argmax g {Zzzil 10g(L£,i(ﬂ))} .

¥4

When performing inference for a new student, we solve a
similar optimization problem, but we only update the coef-
ficients for that particular student.

4.1 Relationship to Other Models

This mixture model is quite general, and with appropri-
ate choices for the feature function ¢ can recover many
previously-studied models. In particular, any modeling ap-
proach that is based on a logistic regression using features
that depend only on the student, task, and trial number can
be recovered by using a single component (K = 1), choosing
g = logit, and defining ¢ to include the appropriate fea-
tures. This includes both Additive Factor Models [4] and
Performance Factors Analysis [16]. By choosing a larger
K, we immediately obtain generalizations of each of these
methods that have the potential to more accurately model
the behavior of individual clusters of students. Because the
trial number (together with the student and task) identifies
a unique learning event, we can also include features that de-
pend on the trial type, elapsed time, and previous learning
history, as in learning decomposition [1].

Note that for the mixture model to add value over a sim-
ple regression, we must define “task” in such a way that we
observe multiple trials for a given (student, task) pair. For
datasets where each item requires the use of multiple KCs,
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Figure 4: Performance of a mixture of Additive Factor Models on training data (left) and test data (right),

as a function of the number of components in the mixture model.

Table 1: Performance on Duolingo dataset

Method Training log loss | Test log loss | Training AUC loss | Test AUC loss
Knowledge Tracing 0.3429 0.3441 0.3406 0.3460
Performance Factors Analysis 0.3248 0.3285 0.2774 0.2865
Additive Factor Model 0.2869 0.3250 0.1629 0.2789

A.F.M. Mixture (3 components) | 0.2818 0.3220 0.1598 0.2760

this entails either (a) defining a task for each combination
of KCs, or (b) using error attribution to create a dataset in
which each example involves only a single KC, and having
one task per KC. We use the latter approach in our exper-
iments in §5. This approach is different from the one taken
by algorithms such as LR-DBN [17], which make predictions
on multiple-KC items directly.

4.2 Parameter Sharing

To make more efficient use of available data when fitting this
generalized mixture model, it can be useful for certain coef-
ficient values to be shared across components of the mixture
model. To illustrate this issue, consider fitting a mixture
of Additive Factor Models. In this case, ¢ includes an in-
dicator feature for each student. If we fit a K component
mixture, we must estimate K separate coefficient values for
each student, which increases the variance of the estimates
compared to the basic Additive Factor Model. For students
for whom we do not yet have much data, this can result in
larger values of K giving worse performance.

To overcome this difficulty, we allow certain coefficients to
be shared across all components of the mixture model, while
others have a separate value for each component. This re-
quires only minor changes to the M step of the EM algo-
rithm. Instead of solving K separate optimization problems,
we solve a single larger optimization problem of the form:

g {zzzz;‘,ilog@;iwf»}
J s @

subject to
8L =p2=...=p for all shared z.

Again, for g = logit, this is a weighted logistic regression
problem that can be solved using a variety of standard al-
gorithms.
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S. EXPERIMENTS WITH GENERALIZED
MODEL

In this section, we demonstrate the potential of the gen-
eralized mixture model by using it to learn a mixture of
Additive Factor Models which models student performance
on Duolingo listen challenges.

For these experiments, we use the same Duolingo dataset de-
scribed in §3.1, but with all knowledge components included
(i.e., every time student s completes a listen challenge, there
is an example for each word w in the challenge, and the la-
bel for the example indicates whether the student included
word w in their response). Each KC (i.e., each word) is
considered a separate task. Note that although each listen
challenge involves multiple KCs, we are using error attribu-
tion to create a dataset in which each example involves only
a single KC. There is nothing about our methodology that
requires this, but it mirrors the problem we wish to solve
at Duolingo, and also allows for a cleaner comparison with
Knowledge Tracing.

When splitting the data into training and test sets, we put
each (student, KC) pair into one of the two groups uniformly
at random. When fitting a mixture of Additive Factor Mod-
els, we use parameter sharing (see §4.2) for the student and
KC indicator features, while allowing the times-seen feature
to vary across components.

Figure 4 shows how performance on training and test data
varies as a function of the number of components in the
mixture model. The leftmost point (K = 1) corresponds to
a regular Additive Factor Model, which can be fit by run-
ning a single logistic regression. Other points correspond to
mixture models fit using the EM algorithm, in which each
iteration entails solving a weighted logistic regression prob-
lem. As can be seen, using more than one component in
the mixture model improves accuracy on both training and
held-out test data.

Table 1 compares the performance of the Additive Factor
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Model, the 3-component mixture of Additive Factor Models,
Knowledge Tracing, and Performance Factors Analysis [16]
on the same dataset. In this table, we present accuracy in
terms of losses (log loss is -1 times log-likelihood, while AUC
loss is one minus AUC), so lower values are better. As can be
seen, the 3-component mixture gives the best performance
of all the methods we considered in terms of both metrics,
both on training and test data.

6. CONCLUSIONS

In this work we explored the use of mixture models to predict
how students’ error rates change as they learn. This led to
order-of-magnitude improvements over Knowledge Tracing
in terms of prediction accuracy on single-task datasets from
Duolingo, as measured by the optimality gaps for both log-
likelihood and AUC. Furthermore, examining the curves in
the mixture model led us to uncover surprising facts about
different groups of students.

We then generalized this mixture model to the multi-task
setting, by learning a mixture of generalized linear mod-
els. This generalized mixture model offered state of the
art performance on a large Duolingo dataset, outperform-
ing Performance Factors Analysis, Additive Factor Models,
and Knowledge Tracing on the same data.

There are several ways in which this work could be extended:

1. Finding a good prior over learning curves. In the single-
task setting, we simply placed a Beta prior over each
point on each learning curve. Though this worked well
on the Duolingo dataset we considered (which con-
tained around 15,000 data points), it may not give
the best bias/variance tradeoff for smaller datasets.
A natural way to constrain the algorithm would be
to require error probability to be non-increasing as a
function of trial number. Restricting to a particular
family of curves such as exponentials or APEX func-
tions [10], which generalize power laws and exponen-
tials, may also be reasonable.

2. Accounting for forgetting. We have assumed that per-
formance depends only on the trial number, and not on
the amount of time elapsed since a particular knowl-
edge component was last seen. For this reason, our
model has no way to capture the benefit of spaced rep-
etition [9] over massed practice, which is important for
practice scheduling in the context of language learning
[15].

3. Feature exploration in the multi-task setting. The gen-
eralized mixture model from §4 can be used with any
set of features ¢, but our experiments in §4 considered
only a few possible choices. It would be interesting
to explore other feature sets, and to see whether the
features that work best in the usual regression setting
(K =1) are also best for larger K.
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ABSTRACT

Additive Factors Model (AFM) and Performance Factors
Analysis (PFA) are two popular models of student learning
that employ logistic regression to estimate parameters and
predict performance. This is in contrast to Bayesian Knowl-
edge Tracing (BKT) which uses a Hidden Markov Model
formalism. While all three models tend to make similar
predictions, they differ in their parameterization of student
learning. One key difference is that BKT has parameters
for the slipping rates of learned skills, whereas the logis-
tic models do not. Thus, the logistic models assume that
as students get more practice their probability of correctly
answering monotonically converges to 100%, whereas BKT
allows monotonic convergence to lower probabilities. In this
paper, we present a novel modification of logistic regression
that allows it to account for situations resulting in false neg-
ative student actions (e.g., slipping on known skills). We
apply this new regression approach to create two new meth-
ods AFM+Slip and PFA+Slip and compare the performance
of these new models to traditional AFM, PFA, and BKT.
We find that across five datasets the new slipping models
have the highest accuracy on 10-fold cross validation. We
also find evidence that the slip parameters better enable the
logistic models to fit steep learning rates, rather than better
fitting the tail of learning curves as we expected. Lastly, we
explore the use of high slip values as an indicator of skills
that might benefit from skill label refinement. We find that
after refining the skill model for one dataset using this ap-
proach the traditional model fit improved to be on par with
the slip model.

Keywords
Cognitive Modeling, Statistical Models of Learning, Addi-
tive Factors Model, Performance Factors Analysis, Knowl-
edge Tracing

1. INTRODUCTION

Statistical models of student learning make it possible for In-
telligent Tutoring Systems [18] to be adaptive. These models
estimate students’ latent skill knowledge, so that tutors can
use these estimates to intelligently select problems that give
students more practice on skills that need it. Prior work has
shown that even minor improvements in the predictive fit of
latent knowledge models can result in less “wasted” student
time, with more time on effective practice [22].
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Two popular models of student learning are the Additive
Factors Model (AFM) [4] and Performance Factors Analy-
sis (PFA) [16]. Both are extensions of traditional Item Re-
sponse Theory models [8]. While the two models differ in
their parameterization of student learning, they both utilize
logistic regression to estimate parameters and predict stu-
dent performance. These models stand in contrast to other
popular approaches like Bayesian Knowledge Tracing (BKT)
[7], which uses Hidden Markov Modeling.

The BKT model is used both for “online” knowledge estima-
tion within Intelligent Tutoring Systems (e.g., in Carnegie
Learning’s Cognitive tutor) to adaptively selecting practice
items and for “offline” educational data modeling. The logis-
tic models, on the other hand, have mainly been used in the
context of offline data modeling. For example, DataShop,
the largest open repository of educational data [12], uses
AFM to fit student performance within existing datasets and
to generate predicted learning curves. Data-driven cognitive
task analyses, i.e., discovering and testing new mappings of
tutor items to skills (or knowledge components), have used
AFM as the core statistical model [17]. Novel knowledge
component models can be discovered, evaluated in conjunc-
tion with AFM as a statistical model, validated on novel
datasets [14], and used to guide tutor redesign efforts [13].

Despite the success of approaches like AFM, its lack of slip
parameters has been emphasized as a key reason for favoring
knowledge tracing over logistic models [10]. But knowledge
tracing models tend to suffer from identifiability problems [1,
2]; e.g., the same performance data can be fit equally well
by different parameters values, with different implications
for system behavior. Furthermore, the actual effect of slip
parameters on model predictions is complicated. The guess
and slip parameters in BKT serve the dual purpose of mod-
eling both noise, and the upper and lower bounds, in student
performance. Without slip parameters, if a student gets an
answer wrong, then BKT must assume that the student has
not yet learned the skill. In contrast, the logistic models just
model noise in the observations, so as long as the average
student success rate converges to 100% then both models
should perform similarly (assuming all other parameters are
comparable across models). These approaches should only
differ in situations where student performance converges to
lower probabilities at higher opportunities; i.e., where false
negatives such as slipping are actually occurring.
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To investigate false negative phenomena, we augmented the
logistic regression formalism to support slipping parameters.
Using this new approach, which we call Bounded Logistic
Regression, we produce two new student learning models:
Additive Factors Model + Slip (AFM+Slip) and Perfor-
mance Factors Analysis + Slip (PFA+Slip). These models
are identical to their traditional counterparts but have addi-
tional parameters to model the false negative rates for each
skill. We compare these models to their traditional coun-
terparts and to BKT on five datasets across the domains
of Geometry, Equation Solving, Writing, and Number Line
Estimation. In all cases, the slip models have higher predic-
tive accuracy (based on 10-fold cross validation) than their
traditional counterparts.

We then move beyond comparing the predictive accuracies
of the models to investigate how these parameters affect the
predictions of the models and why these models are more
accurate. Our analyses suggest that slipping parameters are
not used to capture actual student 7slipping” behavior (i.e.,
non-zero base rates for true student errors) but, rather, make
the logistic models more flexible and allow better modeling
of steeper learning rates while still predicting performance
accurately at high opportunity counts (in the learning curve
tail).

Lastly, we use AFM+Slip to perform data-driven refinement
of the knowledge component (KC) model for a Geometry
dataset. We identified a KC with a high false negative, or
slip, rate and searched for ways to refine it. Using domain
expertise, we refined the underlying KC model and showed
that the traditional model (AFM) with the new KC model
performed as well as the comparable slip model (AFM+Slip)
did with the original KC model. This suggests that slip
parameters allow the model to compensate for, and identify,
an underspecified KC model.

2. STATISTICAL MODELS OF LEARNING
2.1 Logistic Models

The models in this class use logistic regression to estimate
student and item parameters and to predict student perfor-
mance. Thus, they model the probability that a student will
get an step ¢ correct using the following logistic function:

1

PET Tqes

where z; is some linear function of student and item param-
eters for step 7. The likelihood function for these models has
been shown to be convex (i.e., no local maximums), so opti-
mal parameter values can be efficiently computed and issues
of identifiability only occur when there are limited amounts
of data for each parameter. There are many possible logistic
student learning models; in fact, most Item Response The-
ory models are in this class. For this paper, we will focus on
two popular models in the educational data mining commu-
nity: Additive Factors Model [4] and Performance Factors
Analysis [16].

2.1.1 Additive Factors Model

This model utilizes individual parameters for each student’s
baseline ability level, each knowledge component’s baseline
difficulty, and the learning rate for each knowledge com-
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ponent (i.e., how much improvement occurs with each addi-
tional practice opportunity). The standard equation for this
model is shown here:

Zi =  Ostudent(i) + Z
kEKCs(i)

(Br + vk x opp(k, 1))

where Qg¢udent(i) represents the prior knowledge of the stu-
dent performing step i, the 8s and s represents the diffi-
culty and learning rate of the KCs needed to solve step 1,
and opp(k, i) represents the number of prior opportunities a
student has had to practice skill k before step i. In the tra-
ditional formulation, the learning rates (ys) are bounded to
be positive, so practicing KCs never decreases performance.
To prevent the model from overfitting, the student param-
eters (as) are typically Lo regularized; i.e., they are given
a normal prior with mean 0. Regularization decreases the
model fit to the training data (i.e., the log-likelihood, AIC,
and BIC) but improves the predictive accuracy on unseen
data. Thus, when comparing regularized models to other
approaches it should primarily be compared on measures
that use held out data, such as cross validation.

2.1.2  Performance Factors Analysis

There are two key differences between this model and AFM.
First, PFA does not have individual student parameters [16]
(later variants have explored the addition of student param-
eters [6], but we base our current analysis on the original
formulation). This usually substantially reduces the number
of parameters of the model relative to AFM, particularly in
datasets with a large number of unique students. Second,
the model takes into account students’ actual performance
(not just opportunities completed) by splitting the learning
rate for each skill into two learning rates: a rate for suc-
cessful practice and a rate for unsuccessful practice. The
standard equation based on these changes is the following:

v = ¥

keKCs(i)

(Br + yrsuccess(i, k) + pi failure(i, k))

where the s represent the difficulty of the KCs, s and ps
represent the learning rates for successful and unsuccessful
practice on the KCs, success(i, k) represents the number of
successful applications of a skill k for the given student prior
to step ¢, and failure(i, k) represents the number of unsuc-
cessful applications of a skill k for the given student prior to
step 4. Similar to AFM it is typical to restrict the learning
rates (i.e., ys and ps) to be positive [9]. One complication
when comparing this model to other approaches using held
out data (i.e., cross validation) is that the success and failure
counts potentially contain additional information about the
test data (i.e., performance on held out practice opportuni-
ties). Thus, we argue that comparing AFM to PFA using
cross validation is usually not a fair comparison. Bearing
this in mind, in the current analysis we were more interested
in comparing AFM+Slip and PFA+Slip to their respective
baseline models than to each other. To this end, we uti-
lized cross validation as the primary measure of predictive
accuracy for reasons previously discussed.

2.2 Bayesian Knowledge Tracing

There are many different models in the knowledge tracing
family [10], but for this paper we focus on traditional 4-
parameter BKT [7]. In contrast to the logistic approaches,
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BKT utilizes a Hidden Markov Model to estimate latent
parameters and predict student performance. This model
has four parameters for each skill: the initial probability
that the skill is known p(Lo), the probability that the skill
will transition from an unlearned to a learned state p(T),
the probability of an error given that the skill is learned
p(Slip), and the probability of a success when the skill is
not learned p(Guess). Unlike the logistic models, the esti-
mation of these parameters can sometimes be difficult due
to issues of identifiability [2] (e.g., there are many parameter
values that yield the same likelihood) so these parameters
are typically bounded to be within reasonable ranges; e.g.,
guess is typically bounded to be between 0 and 0.3 and slip
is bounded to be between 0 and 0.1 [1]. Prior research has
produced toolkits that can efficiently estimate these param-
eters using different approaches. For the comparisons in this
paper we use the toolkit created by Yudelson et al. [23] and
we use the gradient descent method.

One of the core differences between the logistic models and
BKT is how they parameterize false negative student actions
(i.e., slipping behavior). The logistic models do not have
slip parameters and so they model student success as con-
verging monotonically to 100% success (i.e., learning rates
are bounded to be positive). In contrast, the BKT model
explicitly models false negatives and allows monotonic con-
vergence (under the typical assumption that the probability
of forgetting is zero) to lower success rates. The slip param-
eters in BKT also serve the purpose of accounting for noise
in student performance, and it is unclear whether these pa-
rameters account for true slipping behavior (i.e., non-zero
base rate error) or just general noise in the student actions.
Since the logistic models can already handle noise in the
data, it remains to be seen what would happen if slip pa-
rameters were added to these models. That is the focus of
this papers’ investigation.

3. BOUNDED LOGISTIC REGRESSION

There is no trivial approach to incorporating explicit slip pa-
rameters into the logistic models; e.g., the prediction prob-
ability cannot be bounded by an additional linear term to
the logistic function. In order to add these parameters we
modified the underlying logistic model to have the following
form:

1 1
X
Ite s " 1+4e =

pi =

where z; is the same as that used in standard logistic re-
gression and s; is a linear function of the parameters that
impose an upper bound on the success probability for the
step i. For modeling a slip rate for each skill we use the
following equation:

T+ Z 5k

keKCs(i)

S; =

where 7 is the parameter corresponding to the average slip
rate across all items and students and dj, is the change in the
average slip rate for each skill k. We also apply an Ly regu-
larization to the 0 parameters to prevent overfitting. To fit
the parameters we used the sequential quadratic program-
ming package in Octave, which uses an approach similar to
Newton-Raphson but properly accounts for parameter con-
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straints (e.g., positive learning rates). For details on param-
eter estimation see Appendix A.

This formulation is a generalization of Item Response The-
ory approaches that model item slip (e.g., [21]). In particu-
lar, it supports slipping with multiple KC labels per an item
by using a logistic function to map the sum of slip param-
eters to a value between 0 and 1. For items with a single
KC label, the He%% term reduces to the slip probability
for that KC. For multi-KC items, this term models slipping
as the linear combination of the individual KC slipping pa-
rameters in logit space. This approach mirrors that taken
by AFM and PFA for modeling KC difficulty and learning
rates in situations with multiple KC labels. In these situ-
ations, prior work has shown that the logit approach gives
a good approximations of both conjunctive and disjunctive
KC behavior [4].

During early model exploration we used Markov Chain Monte
Carlo methods to compare this formulation with a more
complex formulation that had parameters for both guess-
ing and slipping. Our preliminary results showed that AFM
with slip parameters outperformed the guess-and-slip vari-
ation for the ’Geometry Area (1996-97) [11] and the ’Self
Explanation sch_a3329ee9 Winter 2008 (CL)’ [3] datasets
(accessed via DataShop [12]) in terms of deviance informa-
tion criterion (a generalization of AIC for sampled data).
Further analysis showed that there was little data to esti-
mate the guessing portion of the logistic curve. This is be-
cause the average student error rate in these datasets starts
off at less than 50% and only gets lower with practice. This
is typical of many of the available tutor datasets, so for our
Bounded Logistic Regression approach we decided it would
be sufficient to model the slipping parameters.

4. EVALUATION
4.1 Method

We used bounded logistic regression to add slip parameters
to AFM and PFA, thus creating two new student learning
models: AFM + Slip and PFA + Slip. We were interested in
how these approaches compared with their traditional coun-
terparts and to Bayesian Knowledge Tracing, which param-
eterizes guess and slip. Furthermore, we were interested
in how these different approaches compared across different
datasets spanning distinct domains. To perform this evalu-
ation we fit each of the five models to five datasets we down-
loaded from DataShop [12]: Geometry Area (1996-97) [11],
Self Explanation sch_a3329ee9 Winter 2008 (CL)[3], IWT
Self-Explanation Study 1 (Spring 2009) (tutors only) [19],
IWT Self-Explanation Study 2 (Fall 2009) (tutors only) [20],
and Digital Games for Improving Number Sense - Study 1
[15]. These datasets cover the domains of geometry, equa-
tion solving, writing, and number line estimation. We se-
lected these datasets because they have undergone exten-
sive KC model refinement, including both manually created
models by domain experts and automatically-refined mod-
els using Learning Factors Analysis [5]. For all datasets we
used the best fitting KC model, based on unstratified cross
validation.

In addition to comparing the different statistical models’
predictive accuracies, we were interested in understanding
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Table 1: In all five datasets the slip models outperform their non-slip counterparts in terms of log-likelihood
and cross validation. In four out of the five datasets, the PFA+Slip model outperforms the AFM+-Slip model
in terms of log-likelihood and cross validation performance. In this table “Par.” represents the number of
parameters in the model and the CV RMSE values are the averages of 10 runs of 10-fold un-stratified cross

validation.
Dataset Model Par. LL AIC BIC CV RMSE
Geometry
AFM 95 -2399.7  4989.4  5610.5 0.396
AFM-+Slip 114 -2377.0  4982.0 5727.3 0.395
PFA 54 -2374.9  4857.8 5210.8 0.389
PFA+Slip 73 -2298.3 4742.6 5219.8 0.383
BKT 72 -2460.8  5065.7  5536.5 0.396
Equation Solving
AFM 106 3011.6 6235.2  6953.9 0.390
AFM+Slip 125 -2992.5 6235.0 7082.54 0.388
PFA 48 -3205.2  6506.4  6831.8 0.400
PFA+Slip 67 -3088.9 6311.8 6766.0 0.392
BKT 72 -3202.7 6549.5  T037.7 0.426
Writing 1
AFM 169 -3214.6  6767.2  7916.1 0.406
AFM-+Slip 196 -3214.6  6821.2  8153.6 0.406
PFA 72 -3212.0 6568.0 T7T057.4 0.401
PFA+Slip 99 -3158.0 6514.0 7187.0 0.398
BKT 104 -3480.2  7168.5  7875.6 0.419
Writing 2
AFM 129 -2976.4  6210.8  7096.6 0.375
AFM+Slip 145 -2962.8  6215.6  7211.3 0.373
PFA 45 -2994.7  6079.4 6388.4 0.373
PFA+Slip 61 2965.7 6053.4 6472.2 0.371
BKT 60 -3177.1  6474.2  6886.2 0.384
Number Line
AFM 93 -2352.7  4891.4  5484.0 0.433
AFM+Slip 115 -2356.3  4942.6  5675.4 0.432
PFA 62 -2337.5 4799.0 5194.1 0.430
PFA+Slip 84 -2318.9 4805.8 5341.1 0.428
BKT 84 -2548.7  5265.4  5800.7 0.451

and interpreting the situations in which slip parameters im-
prove model fit. Prior to analysis we hypothesized that slip-
ping parameters might have three potential effects on the
model fit: (1) enabling the model to capture true student
slipping behavior; i.e., KCs that have a non-zero base-rate
error, (2) enabling the model to fit steeper initial learning
rates while still making correct predictions at higher oppor-
tunity counts, and (3) enabling the model to compensate
for an underspecified knowledge component model. We fo-
cused in on one dataset, Geometry Area (1996-97), to ex-
plore these possibilities. Within this dataset we conducted
a residual analysis to explore possibilities (1) and (2). We
then refined the geometry KC model for a specific KC that
the slip model identified as having a high false negative rate
(i.e., slip value) to explore possibility (3). For brevity we
only show the results of AFM and AFM+Slip in these anal-
yses, but similar trends hold for PFA and PFA+Slip.

4.2 Results

4.2.1 Model Fits for Five Datasets

We fit each of the five models to the five datasets. Table 1
shows the resulting model fit statistics and the number of
parameters used in each model. AFM has 1 parameter per
student and 2 parameters per skill, PFA has 3 parameters
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for each skill, and BKT has 4 parameters for each skill. The
slip variations have an additional parameter for each skill,
plus a parameter for the average slip rate. When using the
PFA models in practice many of the KCs never had any un-
successful practice (i.e., their failure count was always 0).
In these situations we removed the parameters for the fail-
ure learning rates because they have no effect on the model
behavior. Thus, in some situations, the number of param-
eters in each model might differ from the general trends.
All of the cross validation results are the average of 10 runs
of 10-fold unstratified cross validation, where the cross vali-
dated RMSE was computed using the predicted probability
of a correct response (rather than discrete correct/incorrect
predictions).

All of the slip models have better log-likelihood and cross
validation performance than their respective baseline mod-
els (AFM and PFM). Furthermore, in four out of the five
datasets, PFA+Slip has better cross validation performance
than AFM+Slip, even though it does not have individual
student parameters. Finally, all of the logistic models out-
performed traditional four-parameter BKT. Based on prior
work [16] we expected this last result, but we included BKT
as a comparison model that supports slipping. In particular,
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Learning Curve (Geometry Dataset)

Average Error

Oppnnu;lilies

s Actual === AFM === AFM+Slip

Figure 1: The AFM+Slip model better fits the
steeper learning rate of the Geometry dataset than
the AFM model, but both models fit the tail of the
learning curve reasonably well and the actual stu-
dent error appears to be converging to 0%. The
shaded regions denote the 95% confidence intervals
for the respective values.

Figure 3 shows an example of how the AFM+Slip model fits
the data more like the BKT model than the AFM model for
a KC with a high slip rate.

4.2.2  Residual Analysis

To investigate how the predictions of the slip models differ
from that of the traditional models we analyzed the resid-
uals for the AFM and AFM+Slip models on the Geometry
dataset. Figure 1 shows the actual and predicted error rates
for the two models on this dataset and Figure 2 shows the
model residuals plotted by opportunity count. Investigat-
ing patterns in residual error across opportunity counts is a
useful way of assessing systematic discrepancies between a
given model’s predicted learning curves and students’ actual
learning curves.

Although both models fit the data reasonably well, the slip
model better models the steepness at the beginning of the
learning curve. At low opportunity counts, AFM without
slip typically predicts a substantially flatter learning curve
compared to the actual data. The residual plot mirrors this
finding; the 95% confidence interval for the AFM residu-
als does not include zero for earlier opportunities and the
model flips from over-predicting success to under-predicting
it. The AFM+Slip model, in contrast, better models the
initial steepness of the learning curve. The 95% confidence
interval for the AFM+-Slip model residuals always includes
zero. Finally, we see no evidence of actual slipping behavior
in the tail of the learning curve: the 95% confidence in-
tervals for residuals in both models include zero for higher
opportunity counts. If true student slipping were occurring,
we would expect the traditional AFM model to overpredict
success in the tail, but we do not observe this.
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Residual (Geometry Dataset)

Average Residual

W

20
Opportunities

=== AFM Residual === AFM+Slip Residual

Figure 2: The 95% confidence intervals (shaded re-
gions) for the residuals of the AFM model do not in-
clude zero for lower opportunity counts, the model
first overpredicts and then underpredicts success. In
contrast the 95% confidence intervals for residuals of
the AFM+-Slip model always include zero indicating
a better model fit.

4.2.3 KC Refinement Based on False Negatives

In order to explore the hypothesis that a high false neg-
ative, or slip, rate on a skill is indicative of a underspec-
ified knowledge component model, we analyzed a KC on
which the slip parameter was high and on which AFM and
AFM+Slip differed substantially in their predictions. One
KC, “geometry*compose-by-multiplication,” fit this criteria.
Figure 3 shows the learning curve with model predictions
for this KC. AFM+Slip makes predictions that are nearly
identical to BKT and seems to better fit the actual stu-
dent learning curve. Upon further investigation, we found
that many of the items labeled with this skill were on the
same problems. Within these problems, we noticed that
the later problem steps (items) might actually have been
solved by applying the “arithmetic” skill to the result of an
earlier application of the “compose-by-multiplication” skill.
We generated a new knowledge component model to reflect
these findings and re-fit the model using AFM. The pre-
dictions of this new model (AFM-New-KC) are also shown
in Figure 3. For the AFM-New-KC plot, we plotted the
observations with the opportunity counts from the original
KC model (x-axis) but with predicted errors from the new
KC model (y-axis). This was necessary for the purposes
of comparison to the original KC model predictions. Once
the knowledge component model was refined based on the
insights provided by fitting AFM+Slip, standard AFM im-
proved. Furthermore, based on this change the overall AFM
model fit improved to be on par with AFM+Slip in terms
of log-likelihood, AIC, and cross validation (LL = -2378.8,
AIC = 4947.6, BIC = 5568.6, and CV RMSE = 0.395).

S. DISCUSSION

Our model fit results show that the slip models have better
predictive accuracy (i.e., cross validation performance) and
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Learning Curve ( Geometry*compose-by-multiplication )

Average Error

10 'I’J :"l
Opportunities

== Actual === AFM === AFM+Slip === AFM-New-KC === BKT

Figure 3: AFM+Slip looks much more like BKT for
this KC and seems to model the data better (the
overlapping purple and green lines). We took the
high false negative rate (i.e., the sharp floor in the
predicted error at approx. 11%) as an indicator that
the KC model might benefit from refinement. Re-
fitting the regular AFM model with a refined KC
model (AFM-new-KC) shows a better fit to the ac-
tual data. Shaded regions denote the 95% confi-
dence intervals for the respective values.

log-likelihood fits than their traditional counterparts across
all five datasets. Furthermore, the AIC scores generally mir-
ror this finding. These results suggest that the addition of
the slip parameters to the logistic model formalism results
in an improved model fit and an increased ability to predict
behavior on unseen data.

In four of the five datasets, PFA + Slip best fit the data
in terms of both log-likelihood and cross validation. In one
sense, its superior cross-validation performance is surpris-
ing because the PFA models (as implemented here) have no
student intercept parameters. However, they have an ad-
vantage for the cross validation statistic because they get
success and failure counts that include information about
performance on held out data, essentially giving these mod-
els an advantage over the other models. The better log-
likelihood (and often AIC) scores are indicative of a better
ability to fit the data that doesn’t suffer from this discrep-
ancy. However, PFA models have an advantage over AFM
for this statistic because AFM uses regularization, which in-
tentionally worsens the fit of the model to the data in an
effort to improve predictive accuracy. To test if regularizing
student parameters was causing PFA and PFA + Slip to out-
perform AFM and AFM + Slip we refit the AFM models to
the Geometry dataset with student parameter regularization
disabled and found that, at least for the Geometry dataset,
the PFA models still outperforms the AFM models in terms
of log-likelihood, AIC, BIC, and CV RMSE. These findings
suggest that the PFA models better fits the data than the
AFM models, but more work is needed to explore how best
to compare these two approaches and to determine when
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one approach is preferable to another.

Lastly, the logistic models consistently outperform tradi-
tional four-parameter BKT. This is somewhat unsurprising
because BKT does not have individual student parameters
or separate learning rates for success and failure. However,
we still included traditional BKT as a baseline model that is
widely used and has explicit parameters for guess and slip.
In particular, Figure 3 shows that for a KCs with high slip
rate the AFM+Slip model performs more like BKT than
AFM, suggesting that the new model is able to fit slipping
and other false negative student behavior.

Given the finding that the slip models have better predictive
accuracy and log-likelihood fits than their traditional coun-
terparts, we investigated how the addition of slip parameters
changed the model predictions. Residual analyses on the Ge-
ometry dataset showed that both AFM and AFM+Slip had
similar fits to the data, but AFM+Slip better fit the initial
steepness of the learning curve while maintaining a good
fit in the tail. This intuition is confirmed in the residual
by opportunity plot, which shows that the 95% confidence
intervals for the residuals from AFM exclude zero at low op-
portunity counts, first overpredicting success and then un-
derpredicting it. In contrast, the 95% confidence interval
for the residuals from AFM+Slip include zero at these same
low opportunity counts. This evidence supports the hypoth-
esis that adding slip parameters enables the model to better
accommodate steeper learning rates. In contrast, we find
no evidence to support the hypothesis that adding slipping
parameters enables the model to better fit non-zero base
rate error; i.e., true student slipping. If this were the case,
then we would expect AFM to overpredict success in the tail
(i.e., for the residuals to be non-zero at higher opportunity
counts), but we found no evidence that this occurred.

Finally, we demonstrated that high false negative, or slip,
rates can serve as detectors of KCs that might benefit from
further refinement. We identified a KC in the Geometry
dataset that had a high slip rate and that differed from the
traditional model: the “geometry*compose-by-multiplication”
KC. We found that this KC could be further refined and
showed that AFM with the refined KC model performed
on par with AFM+Slip in terms of log-likelihood and cross
validation. This suggests that adding slip parameters to a
model can enable it to compensate for an underspecified KC
model but, more importantly, can help identify these poorly
specified KCs. The newly discovered KC model better fit the
student data than the previous best model, which was the
result of years of hand and automated KC model refinement.

6. CONCLUSIONS

Logistic models of learning, such as AFM and PFA, are pop-
ular approaches for modeling educational data. However,
unlike models in the knowledge tracing family, they do not
have the ability to explicitly model guessing and slipping
rates on KCs. In this work we augmented traditional logis-
tic regression to support slipping rates using an approach
that we call Bounded Logistic Regression. We then used
this approach to create two new student models: AFM +
Slip and PFA + Slip. We then compared the performance
of these new models in relation to their traditional coun-
terparts. Furthermore, for AFM we explored how the addi-
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tion of slip parameters changed the predictions made by the
model. We explored three possibilities: (1) they might en-
able the model to capture true student slipping behavior (i.e,
non-zero base-rate error), (2) they might enable the model
to accommodate steeper learning rates while still effectively
predicting performance at higher opportunity counts, and
(3) they might enable the model to compensate for an un-
derspecified knowledge component model.

To explore the first two possibilities, we conducted a residual
analysis and found that the slip parameters appear to help
the model fit steeper learning rates, rather than improving
model fit in the tail. To explore the third possibility, we used
a high false negative, or slip, rate as an indicator of where the
given KC model might benefit from refinement. We found
that after refining a KC model using this approach AFM
performance (e.g., CV, LL, AIC) improved to be on par with
AFM-Slip. This suggests that the slip parameters enable
the model to compensate for underspecified KC models and
that high slip values can be used to identify KCs that might
benefit from further KC label refinement.

7. LIMITATIONS AND FUTURE WORK

One key limitation of the current work is that we did not
explore issues of identifiability in the Bounded Logistic Re-
gression model. In particular, we have not yet demonstrated
that the log-likelihood for models using this formalism are
convex. In the current formulation we only model slip pa-
rameters (not guess parameters), so we expect identifiability
to be less of an issues. In line with this intuition we found
that the current approach returned reasonable parameter
values and consistently improved model fit across the five
data sets we explored. However, we recognize that the model
would benefit from a more rigorous analysis of the quality of
estimated parameters and acknowledge that this would be
an important direction for future work.

Finally, the current work focuses on comparing the slip mod-
els to their traditional counterparts, but future work might
explore how different models (e.g., AFM+Slip, PFA+Slip,
and BKT) compare to one another. In the current work we
purposefully avoided making conclusions about how these
models compare because there is some ambiguity in how
different approaches are evaluated. For example, Yudelson’s
Bayesian Knowledge Tracing toolkit [23] performs incremen-
tal prediction during cross validation (i.e., predicting stu-
dent performance on a step and then “showing” the model
the actual performance before moving on to the next step).
While this approach aligns well with the actual use of the
BKT model it gives an unfair advantage when comparing it
to cross validated AFM, which gets no information about
test data when making predictions. A similar complication
exists for PFA, which gets information about the perfor-
mance of unseen steps from the success and failure counts.
A more equivalent comparison would be to perform an incre-
mental prediction using AFM and PFA, but this was beyond
the scope of the current paper and represents an open area
for future work.
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APPENDIX
A. PARAMETER ESTIMATION

Similar to standard logistic regression we assume the data
follows a binomial distribution. Thus, the likelihood and
log-likelihood are as follows:

Likelihood(data) = Hpii(l — py) v
i=1
ll(data) = ) wilog(p:) + (1 —y:)log(1 — pi)
i=1

where y; is 0 or 1 depending on if the given step i was correct.
As mentioned earlier, p; is defined as:
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where s; is the linear combination of the slip parameters
and z; is the linear combination of the student and item
parameters.

To estimate the parameters values for bounded logistic re-
gression, we maximize the conditional maximum likelihood
of the data using sequential quadratic programming (specif-
ically the sqp package in Octave). This approach reduces
to applying the Newton-Raphson method, but properly ac-
counts for situations when the parameter values are con-
strained, such as the positive bound for the learning rates in
AFM and PFA. To apply this method, we needed to com-
pute the gradient and hessian for the likelihood of the data
given the model.

To compute the gradient we took the derivative with re-
spect to the student and item parameters (w’s) and slip
parameters (sp’s). For the student and item parameters the
gradient is the following:
dll ~ Tia (yz — pz)

= 2 T

dw, 1+es (1—ps)

i=1

where x;, is the value of the student or item feature that is
being weighted by parameter w, for step 4.

Similarly, for the slip parameters the gradient is the follow-
ing:

dll _ i Gia (yi_pi)

dspa —1+es (1—ps)

where g;q, is the value of the slip feature (in AFM and PFA
these are the 0 or 1 entries from the Q-matrix) that is being
weighted by parameter sp, for step i.

Given these gradients we have a hessian matrix with val-
ues for the interactions of the ws with each other, the ws
with the sps, and the sps with each other. These values are
defined as the following:

a2l - Tiaib
- = i(ys — 1
dwaduw, ; AT e —pp P =1

+e* (pi — yi)(1 — pi))

Ll - Giaqib
dspadsps i(ys — 1
dspadspy ; (1+e)2(1 — pi)2 [pi(y )

+e% (pi — yi) (1 — pi)]

2u zn: Tia  [(pi —1) + (yi —pi)
dwadspy 1+ e=i (1—pi)?

i=1

Finally, in our formulation we applied an Lo regularization
to all of the parameter values (i.e., a normal prior with mean
0), where the A parameter of the regularization could be set
individually for each model parameter. For the AFM models
we set A to 1 for the student parameters. For all of the slip
models we A to 1 for the KC slip parameters (i.e., ds). For
all other parameters we turned regularization off (A = 0).
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ABSTRACT

Studies comparing virtual and physical manipulative environ-
ments (VME and PME) in inquiry-based science learning have
mostly focused on students’ learning outcomes but not on the
actual processes they engage in during the learning activities. In
this paper, we examined experimentation strategies in an inquiry
activity and their relation to conceptual learning outcomes. We
assigned college students to either use VME or PME for a goal-
directed physics inquiry task on mass-spring systems. Our
analysis showed that the best predictors of learning outcomes
were experimental manipulations that followed a control of
variable (CV) strategy, with a delay between manipulations
(“systematic inquiry”). Cluster analysis of the prevalence of these
manipulations per participant revealed two distinct clusters of
participants, systematic inquiry or not. The systematic inquiry
cluster had significantly higher learning outcomes than the less
systematic one. Furthermore, the majority of the participants using
the PME belonged to the more systematic cluster, while most of
the participants using the VME fell into the non-systematic
cluster, likely because of the specific affordances of the real and
virtual equipment they were using. However, beyond this impact
on inquiry process, condition had little effect. In light of these
results, we argue that investigating processes displayed during
learning activities, in addition to outcomes, enables us to properly
evaluate the strengths and weaknesses of different learning
environments for inquiry-based learning.

Keywords

Science Discovery Learning, Computer Simulations, Real
Laboratories, Inquiry Learning, Cluster Analysis, Virtual and
Physical Science Laboratories

1. Introduction

Over the past decades, the science teaching community has
adopted the view that “students cannot fully understand scientific
and engineering ideas without engaging in the practices of inquiry
and the discourses by which such ideas are developed and
refined” (NRC, 2012, p.218). Inquiry-based instruction requires
students to model the practices of scientific inquiry to actively
develop their conceptual understanding [1,2]. While physical
laboratories were the traditional environments for such inquiry-
based learning, there is accumulating evidence that virtual
laboratories are similarly well suited to meet the goals of science
investigation [3,4]. In particular, they are considered to be at least
equally conducive to active manipulations for experimentation
[2,3], which is seen as the crucial aspect of inquiry learning
[5,6,7].

A major limitation of the research comparing physical and virtual
manipulative environments (PME and VME) for science learning
was the predominant focus on the learning outcomes rather than
the learning processes when students engage in inquiry activities.
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This has not changed with recent work that shifted from treating
the environments as two competing entities to examining how to
best combine them for increased learning benefits [4]. We argue
that research on how learners engage with these manipulative
environments could provide a more comprehensive understanding
of how the interaction of a learner with an environment impacts
the learners’ construction of knowledge, and in turn what design
features of these environments foster desired manipulative
behaviors in the context of science inquiry learning.

The present study lies at the intersection of research on learning
environments and research on inquiry behaviors in order to study
the characteristics of productive experimentation strategies in
open-ended science investigation tasks, and how such strategy use
might be influenced by the different affordances of the learning
environments. For this purpose we encoded the actual
experiments students ran, which allows us to basically replay their
processes. This allows us to explore customized
operationalizations of inquiry behaviors of interest. This approach
integrates data-driven methods with relevant theoretical concepts.
As a result, we found a robust characterization of experimentation
strategies that meaningfully predicts learning outcomes, and show
how participants’ strategy use differs between the learning
environments. This study is part of a larger research project with
the goal of developing automated detectors of systematic inquiry
in open-ended science investigation activities for formative

assessment and for the design of productive learning
environments.

2. Inquiry Behaviors

2.1. Control of Variable Strategy

Scientific learning through self-directed inquiry activities depends
on the actual inquiry behaviors employed [8,9]. In particular,
adequate experimentation strategies are required that result in
interpretable observations, i.e. evidence that facilitates drawing
valid inferences. Research has particularly focused on the abilities
to systematically combine variables and to design unconfounded
experiments, i.e. experiments that modify variables such that
competing hypothesis can be ruled out. The design of
unconfounded experiments requires the ability to employ the
control of variables strategy (CVS), that is, to create experiments
with a single contrast between experimental conditions [10]. This
is in contrast to inadequate strategies such as changing multiple
variables at the same time, which hampers valid inferences and
subsequent knowledge [11].

Previous research has examined a host of individual and
contextual factors of strategy use [8]. However, only a very small
number of studies have explicitly examined the impact of
affordances of learning environments on strategy use in
experimentation activities [2,12]. While Triona & Klahr [2]
focused on the impact of physicality of manipulatives alone on
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learning outcomes, Renken & Nunez [12] had students engage in
an inquiry activity on pendulum motion using either a PME or a
VME that differed in both ease of manipulation and freedom of
choice: while the PME provided participants with only three
different levels for either pendulum length or mass, the VME
allowed participants to modify the variables smoothly by means
of continuous valued sliders. Even if there was no difference in
conceptual understanding between the VME and PME conditions,
participants using the computer simulation ran more trials and
were less likely to control variables. Renken and Nunez [12]
argued that the additional flexibility and breadth of choice in
experimentation in VME was detrimental to participants’ use of
adequate experimentation strategy.

While this study suggests that indeed strategy use in inquiry-based
learning activities is influenced by affordances of the learning
environments, it is difficult to generalize these results to less
structured and scaffolded inquiry activities.

2.2.  Operationalization of Inquiry

Strategies

As most studies cited mainly focused on CV strategy, they used
highly structured tasks where either variables were dichotomous,
or there was only one outcome variable, or the activity was
restricted. In order to develop a more nuanced characterization of
inquiry strategies, we need more complex inquiry tasks. Data
mining techniques employed in such contexts have been
successful at discovering groups of similar users [13,14,15]. Most
of these data-mined systems are based on the user interaction logs
[16]. While they achieve good predictive power, such machine-
learned detectors of interaction behaviors often come at the cost of
interpretability [17]. However, it is crucial to develop data-mined
models of inquiry strategies that are interpretable in order to
advance our understanding of learning processes through inquiry
activities. We apply a different approach, where we do not use
labelled action logs but code the actual experiment configurations
of each participant. Based on video data, we extract each
configuration a participant tried and feed it into a database of
experiments of all participants. This allows us to quickly extract
and explore relevant variables of inquiry, such as the number of
spring-only or mass-only changes, the number of unique
configurations, repetitions, etc. That way, we can integrate
relevant theoretical concepts into the operationalization of inquiry
behaviors.

In the context of this study, we focused on experimentation
strategies only. We collected data on the number of experiment
trials, the experiment configurations, and the time between
manipulations, and coded the type of manipulation per
experiment. Particular focus is given to “control of variable”
manipulations, “deliberate” manipulations, and “deliberate
control” of variable manipulations. Deliberate manipulations
(DM) are manipulations into which a participant has put some
thought, as measured by dwell time between two consecutive
manipulations. We assume that participants who are cognitively
engaged — reflecting on evidence from a preceding manipulation,
trying to make sense of it in the context of previous observations,
or taking notes or planning the next manipulation(s) — will spend
more time before executing the next change than those who are
cognitively less engaged.

For this reason, we include the third category of manipulations
that lies at the intersection of the prior two categories, deliberate
control of variable manipulations (DCVM). As prior research on
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experimentation  strategies  in  inquiry-based  activities
characterized them as solely CVS or not, activities were designed
such that controlling variables in an experiment had to be a
deliberate choice of participants [19,20,21]. However, in less
structured, open-ended inquiry like those used in this study, it is
possible in some cases to manipulate variables according to a CV
strategy without the deliberate intention to do so. For example in
the computer simulation for our mass & spring activity, one could
change the value of the spring constant continuously by means of
a slider, without having to interrupt an ongoing experiment.
Inherently, this corresponds to a control of variable manipulation
(CVM) but not necessarily to a deliberate control of variable
manipulation (DCVM).

3. Present Study

The study reported here was part of a larger study examining
participants’ inquiry behaviors in different scientific domains
using either PME or VME as learning environments. Participants
engaged in two activities; the first one was on mass and spring
oscillation (see Figure 1), and the second one on basic electric
circuits. The current paper presents analysis of the first inquiry
activity. During the first activity, participants were either asked to
simply think-aloud while engaging in the inquiry or were trained
to implement the Predict-Observe-Explain framework (POE) [18].
The training session of the POE framework was highly structured
and guided: During the entire activity, before each intended
manipulation, participants were asked to predict its result, then
observe the actual results of the manipulation, and finally explain
their observation in light of the initial prediction. On the other
hand, the think-aloud group did not receive any scaffolds or
guidance by the experimenter. Therefore, for the purposes of this
paper, we report only data for the participants in the think-aloud
condition, as the difference in guidance might have altered the
nature of the activity, and masked the effect of medium on inquiry
processes of the participants.

The main research questions that guided the present study were:

*How can we operationalize inquiry strategies in less well-
structured and more complex activities?

» What inquiry strategies are related to better learning outcomes?

*How does strategy use differ between participants using either
the physical or the simulation environment?

3.1. Sample
For Mass and spring activity in think-aloud condition, we had 36
community college students (24 female, 12 male, average
age=20.5, SD=3.6).

3.2. Design

The study reported here is a between subject design with two
levels. We randomly assigned participants to use either physical
(PHY) or computer simulation (SIM) to engage in an inquiry-
based activity on mass and spring oscillation (npyy=18, ngp=18).
The task was to discover how the mass and the spring constant
affect both the amplitude and the frequency of oscillation of a
mass-spring system. We administrated a conceptual test before
and after the activity. The post-test scores were the dependent
measures of the experiment, while the pre-test scores were used as
covariates in the corresponding statistical analyses. The relevant
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Figure 1. Experimental Setup: Left: Physical toolkit in action: The first hook is just next to the

measure tape. Right: Computer Simulation: Participants were only allowed to change the

“softness spring 3”.

behavioral measures were treated as independent within-subject
variables since they were expected to predict learning outcomes.

3.3. Materials

3.3.1. Learning Environment

Physical Learning Environment. The physical toolkit consisted
of the PASCO' Demonstration Spring Set and Mass and Hanger
Set. There are four pairs of springs, each with a spring constant
between 4 N/m and 14 N/m. The masses consist of hangers to
which slices of weights can be attached, ranging from 5 to 20 g.
The environment consisted of two hooks, each being able to hold
one spring, see Figure 1. For measuring extensions and duration,
we provided a measuring tape and a stopwatch.

Simulation Learning Environment. The computer simulation
we used was created by PhET [22], see Figure 1. It consists of
three springs, two of which have a fixed and equal spring
constant. The spring constant of the third spring can be changed
continuously by means of a slider. It further entails seven weights,
four of which are 50g, 100g, 100g and 250g respectively. The
other three have no indication of their actual weight. The weights
can be attached to and removed from the springs by simple drag-
and-drop. The simulation comes with a displaceable measuring
tape as well as a stopwatch.

Differences in Learning Environment. Instead of designing the
learning environments ourselves, we selected the ones that we
considered as state of the art of their respective domains. This
prevented us from setting up the necessary control of the
differences in affordances of the environments for making causal
claims about the relation of learning environment and
experimentation strategies. However, we can reason about the
potentially relevant differences based on the specific user
interfaces and interaction designs. The main differences are the
following ones: 1. The VME allows participants to use up to three

! PASCO scientific, 10101 Foothills Boulevard, P O Box 619011,
Roseville, Ca 95678-9011, USA.Web: http://www.pasco.com. E-
mail: sales@pasco.com. National representatives of PASCO can
be reached through the USA office.
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3.3.2.  Subject Knowledge

Assessment Questionnaire

The pre-test and the post-test consisted
of four qualitative questions, each with two sub-questions. The
first two questions addressed the impact of changing either the
spring constant or the mass on the amplitude and frequency of
oscillation. The third question targeted the understanding of force
and speed in an oscillating spring-mass system. The fourth
question was a near-transfer question inspired by the
generalization questions of Renken & Nunez [12].

3.3.3.  Procedure.

Students participated individually in the study. They were
assigned randomly to either the PHY or the SIM condition. Prior
to taking the pre-test, each participant was introduced to the
nature and goal of the activity, and to definitions of relevant
variables. Possible experiments were restricted only by the given
set of weights and springs. The definition sheet contained basic
definitions, both verbal and visual, of relevant concepts of
harmonic oscillation of mass-spring systems. After the pre-test,
the experimenter explained how to manipulate the variables and
how to perform measurements, depending on condition using
either the physical toolkit or the computer simulation. Participants
were instructed to adjust only the settings related to the two
variables of interest. They were further asked to think-aloud
during the activity. The maximal duration of the inquiry task was
10 minutes. Participants then completed the post-test. Both pre-
test and post-test took 5 minutes each.

3.4. Coding
3.4.1. Conceptual Tests

Pre-test and post-test items received a score of 1 if they were
correctly answered, and 0 otherwise. Questions that required
participants to explain their reasoning were given 0.5 for partially
correct answers. The maximum score was 8. Besides the overall
aggregate score, we calculated also sub-scores for the two
conceptual categories, spring constant (two items) and mass
dependence (two items).

3.4.2.  Inquiry Behaviors

In a first pass, we extracted every experiment a participant ran
from the corresponding video records of the experiment. This was
done manually. Once the database was established, we could code
every experiment computationally based on customized rules for
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extracting relevant variables such as number of manipulated
objects, etc. Even if the initial step was done by hand, the
extraction procedure was operationalized such that we can
automatize this process for future iterations: An experiment was
characterized by the state of each relevant variable. A new
experiment started when either one or more variables of the
system were manipulated, or when a current experimental setup
was re-initiated, either by touching a mass-spring system with the
hand or with the mouse. The type of performed manipulation was
then extracted from the contrast between two experiments. All
variables representing inquiry behaviors are coded proportionally,
relative to the total number of experiments run per activity.

An experiment consisted of the number of springs used, their
spring constants, and the weights attached to the springs. The
possible manipulations were (1) change of the spring constant, (2)
change of the weight, (3) change both, (4) repeat an experiment,
and (5) start a new experiment by changing the number of springs
used. Changing either the mass only or the spring only
corresponded to a control of variables manipulation (CVM),
while a confounded manipulation referred to changing both
variables at the same time. In cases participants used only one
mass-spring  configuration, we defined an experimental
comparison through the contrast set up by the configurations in
two consecutive runs. When two configurations were used
simultaneously, the experimental comparison was defined by the
contrast of those two sets of masses and springs. When
participants in the SIM condition used all three springs, we
defined the experimental comparison by the most optimal contrast
out of the three possible pairwise combinations (optimal being the
mass-spring configurations that differ only in one independent
variable).

Table 1. Regression Models of Post-Test Scores

Variables / Models 1 2 3 4 5

(Intercept) 3.79%**% 3. 12** 1.09 2.07* 2.01*
(0.68)  (0.24) (1.38) (0.16) (0.96)
Pre-test Scores 032" 0327 029" 0327 0.34*
(0.17)  (0.17) (0.16) (0.16) (0.16)
Condition 0.33 0.49 -0.05 038 0.36
(0.33)  (0.44) (0.35) (0.37) (0.37)
% Control of Variable 0.89
(1.60)
% Confounded 1.28
(2.17)
% Delib. Manip. 3.33%
(1.50)
% Delib. CV 3.17*
(1.44)
% Delib. Confounded 321 3.29
(2.09) (2.06)
% Delib. Spring-Only 3.95%*
(1.52)
% Delib. Mass-Only 1.46
(1.86)
R’ 0.113 0.127 0.238 0.254 0.304
adj.R2 0.056  0.007 0.162 0.151 0.179
N 34 34 34 34 34

Note: Standard error are in parentheses; T (p < 0.1), * (p < 0.05),
** (p<0.01)), *** (p <0.001); each model regresses post-test
scores on the given independent variables.
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As explained before, just looking at whether an experiment was
unconfounded or not misses out on other relevant aspects. In
particular, such a perspective does not provide any insights into
how deliberately or considered participants executed and reflected
on an experiment. Therefore, we additionally captured the
duration of each experiment as the dwell time between two
succeeding experimental manipulations. Based on the dwell time,
we developed a measure of deliberateness; any manipulation that
had a dwell time bigger than first quartile of all dwell times of all
participants was coded as a deliberate manipulation.

3.5. Data Analysis.

3.5.1.  Analysis of Learning Outcomes

In order to analyze the relation between inquiry behaviors and
learning outcomes, we ran multiple linear regressions on post-test
scores, with condition as independent factor, pre-test scores as
covariate, and the corresponding measures of inquiry behavior as
independent variables. For pairwise comparisons between
variables within the same category that violated the normality
assumptions, we report results from the nonparametric Mann-
Whitney-Wilcoxon test.

3.5.2.  Analysis of Inquiry Behaviors

We applied a cluster method on all experimental manipulation
variables to group participants by their inquiry behaviors. We
used portioning around medoids (PAM) as the clustering
algorithm, which is a more robust version of the standard k-means
clustering algorithm, as it minimizes a sum of dissimilarities
instead of a sum of squared Euclidian distances [23]. The quality
of the clustering result was evaluated based on the silhouette score
[24], a measure of similarity between points and the clusters they
are assigned to. The larger the silhouette value, the better the
clustering. However, instead of selecting the clusters that
maximize the silhouette score, we have to make a trade-off
between silhouette score and number of clusters in order to have
theoretically relevant results. Ideally, we could set the number of
clusters to 2, as we were interested in analysis of behaviors with
respect to condition.

4. Results
4.1. Baseline Knowledge

Participants in the two conditions did not differ significantly in
pre-test scores, #(32) = 1.49, p = 0.15 (PHY: M =3.53, SD = 1.59;
SIM: M = 4.23, SD = 1.15). However, the high overall pre-test
score average of about 52.5% of the maximal possible score
indicates that participants had relevant prior knowledge with
regards to the subject. We excluded two participants who scored
perfectly on the pre-test. In terms of prior knowledge related to
impact of the spring constant versus the mass on harmonic
oscillations, there were no significant differences in pre-test
scores on the corresponding subcategories (Spring constant: M =
41.2%, SD = 31.3%; Mass: M = 52.9%, SD = 30.0%), paired
#(33) = -1.54, d = 0.38, p = 0.13. However, as the trend in data
nevertheless points in the expected direction, we classify
experiments that involve spring manipulations as less familiar
than those involving mass manipulations.

4.2.  Effect of Condition on Learning Gain
The two conditions were not significantly different in terms of
average learning outcomes as condition was not a significant
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factor for post-test scores, controlling for pre-test scores, f = 0.33,
#32)= 1.01, p=0.32, n,” = 0.03 (see Figure 2.B.).

4.3. Learning Outcome by Inquiry

Behaviors

We examined how various measures of inquiry behaviors related
to learning outcomes by multiple linear regression analysis. The
baseline variables of each regression model were condition as
independent factor, and pre-test score as covariate. All the
corresponding regression models are shown in Table 1.

4.3.1. Time on Task and Number of Experiments
While time on task was the same across conditions, #32) = 0.28, p
> 0.5, the total number of experiments per participant was higher
for the SIM condition (M = 18.7, SD = 8.3) than for the PHY
condition (M = 13.7, SD = 7.3), d = 0.64, #(32) = 1.87, p = 0.07.
Additionally, pre-test scores were not correlated with number of
experiments, 7(32) = -0.05, p >0.5. An ANCOVA suggests that
the number of experiments was not a significant factor for post-
test scores, controlling for pre-test scores, F(1, 30) =0.02, p > 0.5,
np* < 0.01. Overall, participants performed 533 different experi-
ments, based on which we built the database.

4.3.2.  Control of Variables Manipulations

We did not find a significant effect for overall CVM on post-test
scores, f# = 0.89, #31) = 0.33, p > 0.5 (see model 2 in Table 1).
Even when looking at mass-only or spring-only manipulations,
the respective regression coefficients are not significantly
different from zero. These results indicate that performing control
of variable manipulations of either the spring or the mass does not
necessarily lead to better learning outcomes per se, which is in
contrast to the prior literature [8]. We find that control of variable
manipulations alone cannot explain the variability in learning
outcomes both within and across conditions.

confounded manipulations had a comparably high coefficient
value, even if it was not significant. With an adjusted R? = 0.18,
F(5,28) = 2.44, p = 0.06, model 5 did not explain a higher
proportion of variance than model 3, F(1,2) = 1.32, p = 0.28.

None of the manipulation types correlated with pre-test scores (all
correlation coefficients were lower than 0.1 in absolute value).
The lack of correlation supports the claim that the manipulations
were context-dependent variables of inquiry behavior.

4.4. Inquiry Behavior by Condition

4.4.1. Control of Variables Manipulations and

Deliberate Manipulations

The physical and the simulation condition did not differ in terms
of control of variables manipulations, d = 0.14, #(32) = -0.08, p =
0.94 (SIM: M =0.51, SD = 0.13; PHY: M = 0.53, SD = 0.16). In
contrast to that, the two conditions differed significantly in the
amount of deliberate control variable manipulations (DCV), d =
0.77, #(32) =2.23, p = 0.033 (SIM: M =0.35, SD =0.15; PHY: M
= 0.47, SD = 0.18). There is a significant drop in CV when
considering the deliberate manipulations for the SIM condition
only. In line with the hypothesis that the simulation environment
was easier to manipulate, there were significantly more rapid
manipula-tions in the SIM condition (Mdn = 17.6%,
Clgs = + 24.5%) than in the PHY condition (Mdn = 0% ,
Clgs =+ 12.9%), U=219.5, r = 0.46, p = 0.007.

4.4.2.  Cluster Analysis of Inquiry Behaviors

Overall, DCV manipulations were a significant predictor for
learning outcomes, in particular the deliberate spring-only
manipulations. However, even if there was a significant difference
in the amount of these manipulations between the PHY and SIM
conditions, learning outcomes did not differ significantly by

4.3.3. Deliberate A

Manipulations
We coded the deliberateness of an
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This was at 11 seconds.

40%-

Overall deliberate manipulations 20%-
was a relevant positive predictor of
post-test scores, f = 3.33, #(31) =
221, p = 0.03, np* = 0.14 (model 3
in Table 1). While CVM was not
relevant for learning outcomes,
deliberate  control of variable
manipulations (DCVM) was a
significant factor in the regression
model 4 in Table 1, f =3.17, #31)
=2.19, p = 0.04, np* =0.15. This
effect was mainly driven by
deliberate spring-only manipula-
tions (see model 5 in Table 1). On
the other hand, deliberate
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DSO DMO DCo NonD Rep Start
Type of Actions
Figure 2. A. Boxplot of proportions of deliberate spring-only (DSO), deliberate mass-only
(DMO), deliberate confounded (DCo), and non-deliberate (NonD) manipulations, repetitions

(REP) and start of new experiments (Start). B. Comparison of pre-test and post-test scores by
cluster as well as condition. Bars indicate standard errors.
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condition. It appears that individual differences in inquiry
strategies of participants within each condition washed out the
actual impact of the learning environment on average post-test
scores. There might be people in the physical and the simulation
condition that deviated from the average inquiry behaviors for the
condition towards the other condition’s characteristics. We
address this question by grouping all participants by considering
all inquiry variables simultaneously instead of grouping them by
condition, and then see how the groups distribute across the
conditions. This can be done by means of cluster analysis.

Clustering was performed on the 6 possible manipulation types
(see Figure 2.A) of the entire sample, which resulted in 2 clusters
with 17 participants in each cluster. The average silhouette score
was 0.30. While this score is not high enough to exclude the
possibility of artificial data structures, an examination of the
clusters in terms of variables confirms the clusters reasonably
distinguish people by the level of systematicity of their inquiry
behaviors: Generally, the participants of Cluster 1 (“non-
systematic”’) were less strategic and less deliberate in their
manipulations than Cluster 2 (“systematic”) (see Figure 2.A).
Cluster 2 had a higher proportion of deliberate spring-only
manipulations than Cluster 1, U= 58, r = 0.51, p = 0.002, a lower
proportion of non-deliberate manipulations than Cluster 1, U =
262.5, r=0.72, p < 0.001, and a lower proportion of confounded
manipulations, U = 240.0, » = 0.57, p < 0.001. There was no
significant difference in the other variables. Additionally, even if
the clustering was not performed on overall DCV, there is a large
difference between the clusters; participants in the systematic
cluster proportionally performed significantly more DCV (Mdn =
49.8%, Clgs = £16.3%) than in the non-systematic cluster (Mdn =
30.7%, Clos =+12.1%), d = 1.33, #(32) = 3.89, p < 0.001.

The two clusters meaningfully differ in learning outcomes, as
indicated by a regression of post-test scores on the cluster
variable, with pre-test scores as covariates, which revealed a
significant main effect of cluster, f = 1.03, #31) = 2.39, p =
0.015, mp* =0.16. As expected, participants in the systematic
scored higher than those in the non-systematic cluster (see Figure
2.B). The regression model explained a significant proportion of
variance, adjusted R? = 0.18, F(2,31) =4.55, p = 0.02.

Table 2. Conditions distributed across clusters

Non-Systematic Systematic
Condition
(n=17) n=17)
Physical (n=17) 3(17.6%) 14 (82.4%)
Simulation (n = 17) 14 (82.4%) 3(17.6%)

Finally, Table 2 shows that the majority of participants in the
systematic cluster used the physical toolkit, while the majority of
participants that belonged to the non-systematic cluster were in
the simulation condition, as confirmed by a Fisher’s exact test, p <
0.0001.

S. DISCUSSION

Considerable attention has been given separately to research on
the impact of virtual and physical learning environment [4] and of
inquiry behaviors on the learning outcomes in science discovery
activities [8,9]. The aim of the present study was to link these two
realms by (1) studying the relation of strategy use and learning
outcomes, and (2) comparing strategy use between learning
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environments in order to shed light on how different affordances
of the learning environments might influence strategy use.

5.1. Nuanced View of Experimentation
Strategies in Open-Ended Inquiry Tasks

One main finding from this study was that one of the strongest
predictors for learning outcomes when controlling for prior
knowledge was the manipulation type that (a) created a single
contrast in experiment conditions, (b) targeted the problem type
that participants generally were less familiar with, and (c) was
deliberate. In the context of the mass and spring activity, these
were deliberate manipulations that changed only the spring
constant from one mass-spring system to the other.

Importantly, this further implies that the control of variables (CV)
in experiment design was a necessary but not sufficient condition
for developing conceptual understanding through
experimentation. This is in contrast to prior research that has
predominantly focused on the ability to design unconfounded
experiments as the main factor of knowledge acquisition in
inquiry learning [2,10,12]. Using control of variable strategy as an
important factor for characterizing experimentation strategies
works when the student has to make a conscious decision to
actually apply this strategy. It fails if the affordances of the user
interface do not require that. In the computer simulation, one
could change the spring constant continuously using a slider, even
during an ongoing experiment. In the physical condition however,
an experiment had to be interrupted in order to change either the
mass or the spring, which required the participant to deliberately
decide what to manipulate, but both changes are coded as CV
manipulations. As a consequence, we not only found that there
was no difference in CV manipulations between conditions, but
also that these manipulations did not have predictive value for
learning outcomes.

This picture changed when accounting for the deliberateness of
experimental manipulations. It turned out to that in contrast to CV
manipulations, the percentage of deliberate CV manipulations
significantly predicted learning outcomes, as well as differed
between conditions. The drop from CV to deliberate CV
manipulations was significant only for the SIM condition. This is
in line with our reasoning that the user interface for the computer
simulation did not make the control of variables a deliberate
choice. Even by itself, deliberate manipulations were among the
strongest predictor for post-test scores. We suggest that time
between manipulations as a measure of deliberateness is not just
reflective of the ease of manipulation in a learning environment,
but also of the level of cognitive engagement of a participant with
an experiment.

Finally, only manipulations targeting the less familiar concept
(spring) contributed to conceptual learning, while those targeting
the more familiar one (mass) did not seem to impact the learning
outcomes, which seems reasonable given that the participants
tended to know less about the springs’ role in the harmonic
oscillation. However, contrary to previous studies [12] that
consider confounded manipulations as detrimental to developing
conceptual understanding, we found a relatively large though
insignificant positive regression coefficient for confounded
manipulations on post-test scores. At this point, we can only
speculate as to why this is the case; for example, it could be that
people with low prior knowledge ran preliminary experiments to
get a sense of the physical phenomenon. Further investigation is
needed to understand this process.
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5.2. Differences in Inquiry Behaviors by

Learning Environment

We found that conditions did not differ in terms of learning
outcomes. In line with previous research that showed equal
knowledge gains for virtual and physical manipulative
environments [2, 3, 5, 7], we could have argued that there is no
difference in benefits of learning environments for developing
conceptual understanding in inquiry tasks on mass-spring systems.
However, as indicated by the results of the cluster analysis of
inquiry behaviors, this would have been the wrong conclusion.
The cluster analysis revealed that participants across both
conditions could be grouped into two clusters according to how
systematic their inquiry behavior was, and that the more
systematic cluster had significantly higher learning outcomes than
the less systematic cluster. Importantly, almost all of the
participants in the physical condition belonged to the more
systematic cluster, while most of the participants in the simulation
condition fell into the less systematic cluster. This suggests that
the learning environments did differ in terms of benefits for
developing conceptual understanding. It is important to note that
this is not in contradiction to the multiple regression models that
show no significant effect for condition. Both analyses show that
inquiry strategies had a strong influence on learning outcomes.
However, enough participants deviated from their peers in the
same condition in terms of inquiry behaviors such that the overall
differences in learning outcomes between conditions were
canceled. By using more than one variable of inquiry behavior for
grouping participants, cluster analysis better accounts for between
subject differences in overall inquiry behaviour in each condition.
Thus, at least for activities that span a short period of time, we
think that measures of experimentation strategies have to be
incorporated in studies of the impact of learning environments on
learning outcomes in open-ended science inquiry learning.

A possible explanation for these differences in experimental
manipulations between conditions is that the ability to employ
systematic experimentation strategies is not necessarily a stable
domain-general skill but a context-dependent behavior. It is likely
that specific affordances of the two learning environments are
related to these differences in experimentation strategies, such as
the need to pause the experiment to change the spring constant in
the real but not virtual environment. While there is consensus on
the impact of different affordances of virtual and physical
environments on learning outcomes [4], we argue in light of these
results that we also need to study the impact of these affordances
on the experimentation processes during science inquiry activities.
However, as we did not manipulate the specific affordances in the
learning environments, we can currently only make educated
guesses.

For example, the fact that participants in the SIM condition ran
more experiments than in PHY, while spending the same amount
of time at the task, supports the claim that it was easier to
manipulate variables in the computer simulation than in the
physical setup. As argued by Renken and Nunez [12], it might be
that systems that enable quick changes with various options
prompt participants to get into “play” mode, in which they revert
to simple heuristic methods such as trial-and-error and spend less
effort on setting up valid experiments. This could explain why
proportion of deliberate manipulations was higher for participants
using the physical systems.

Another difference in affordances is that in the computer
simulation, participants could change the spring constant even as
experiments were running, which led to short perturbations in the
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oscillations that were due to the change, and not necessarily due to
the actual spring-mass configurations. Especially in cases “non-
deliberate” manipulations that were too short for the perturbations
to vanish, participants might have wrongly interpreted these
fluctuations.

5.3. Limitations and Future Directions

While the study provided evidence that an investigation of inquiry
strategies is more informative than merely looking at outcomes, it
only offered hints as to what determines the use of those
strategies. These appear to be influenced by the different
affordances of a learning environment, but studies with longer
interaction times, and a greater range and control of environments
is needed to understand the characteristics of these relationships in
more detail. Future studies should better control and match the
virtual and physical environments in order to focus on one or two
specific affordances. Studies that manipulate design features
within a learning environment to assess its impact on inquiry
processes are also needed.

Further studies should incorporate the assessment of hypothesis
generation and inference processes to examine the impact of
affordances of learning environments not just on experimentation
strategies, but on these other critical inquiry behaviors as well.

We found that time between manipulations was an important
correlate of learning outcomes; however, wit the current study, we
can make only educated guesses as to what cognitive processes
longer dwell times correspond to. Dwell time could signify the
time spent on comparing the current with the prior experiment
configuration, on reflecting on existing confusions, on planning
the next steps to be taken, or it could just represent the time it
takes to perform a manipulation in the learning environment.

Additionally, the lack of difference on learning outcomes between
media seems to contradict prior research on virtual versus
physical learning environments in comparable inquiry tasks [12].
However, as the tendency of the data goes into the expected
direction, we believe that a larger sample size would provide the
required power to detect the learning outcome differences.

We currently did not employ automated tracking of participants’
behaviors to extract their experiment configurations. However,
novel computer vision algorithms, as well as logging systems
would address this limitation. Our data organization scheme can
be easily integrated with automatized tracking systems.

6. CONCLUSION

Drawing on work on scientific reasoning and inquiry, we
developed a novel operationalization of systematic experi-
mentation strategies that predict learning outcomes in open-ended
inquiry-based learning activities. We further showed that strategy
use is context-dependent, in that participants using the physical
system went about the inquiry activity differently than participants
using the computer simulation.

These findings suggest that we have to broaden the notion of what
counts as “systematic experimentation” from mainly consisting of
the design of unconfounded experiments and the performance of
optimal heuristic search to a more comprehensive views that
integrates contextual and cognitive factors (e.g. deliberateness).
Data mining algorithms are particularly well suited for exploring
such behaviors. However, it is crucial to develop data-mined
models of inquiry strategies that are interpretable in order to
advance our understanding of learning processes in more complex
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inquiry activities. We suggest that any machine-learned model of
inquiry behaviors should incorporate semantic representations of
what participants’ actually explore in inquiry activities, in order to
meaningfully extend the data from interaction logs of users
engaging in the learning environment.

A further implication of our results is that research on learning
environments for science inquiry learning should focus on
developing a broader framework that focuses on the affordances
as relevant dimensions, irrespective of medium and examines how
under what circumstances they benefit learning.
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