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A COMPARISON OF METHODS FOR ADDRESSING CENSORED OR TRUNCATED 

DATA IN SCHOOL REFORM EVALUATIONS 

Jordan H. Rickles, Mark Hansen, and Jia Wang 

CRESST/ University of California, Los Angeles 

 

Abstract 

In this paper we examine ways to conceptualize and address potential bias that can arise 

when the mechanism for missing outcome data is at least partially associated with treatment 

assignment, an issue we refer to as treatment confounded missingness (TCM). In discussing 

TCM, we bring together concepts from the methodological literature on missing data, 

mediation, and principal stratification. We use a pair of simulation studies to demonstrate the 

main biasing properties of TCM and test different analytic approaches for estimating 

treatment effects given this missing data problem. We also demonstrate TCM and the 

different analytic approaches with empirical data from a study of a traditional high school 

that was converted to a charter school. The empirical illustration highlights the need to 

investigate possible TCM bias in high school intervention evaluations, where there is often an 

interest in studying the effects of an intervention or reform on both school persistence and 

academic achievement. 

Introduction 

Often, evaluations of educational interventions such as small learning communities, 

curriculum reform, and charter schools seek to estimate the causal effect of these interventions 

on student outcomes having to do with school engagement, progress, and academic achievement 

over multiple years. For example, a national evaluation of charter schools (Gleason, Clark, 

Tuttle, & Dwoyer, 2010) looked at student achievement over two years, and also examined 

outcomes pertaining to attendance, effort in school, behavior, and well-being. Even when such 

evaluations are based on the most rigorous experimental or quasi-experimental designs, the 

validity of effect estimates is threatened when missing data manifests for some outcomes. In this 

paper, we examine ways to conceptualize and address potential bias that can arise when the 

mechanism for missing outcome data is at least partially associated with treatment assignment, 

an issue we refer to as treatment confounded missingness (TCM). In discussing TCM, we bring 

together concepts from the methodological literature on missing data, mediation, and principal 

stratification.  

Typically, researchers faced with missing outcome data restrict their analysis to units with 

observed data or employ standard data imputation methods that require explicit assumptions 
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about the missing data mechanism (Schafer & Graham, 2002). Two conditions can complicate 

these traditional missing data approaches, however. First, if observation of a primary outcome 

(e.g., academic achievement) is determined by an intermediary outcome (e.g., school dropout), 

restricting an analysis to units with observed outcome data implies conditioning on a post-

treatment variable. This post-treatment conditioning can bias treatment effect estimates if 

unobserved factors influence both the intermediate outcome and the primary outcome (Pearl, 

2009). Second, if the primary outcome is only defined for units that meet a certain threshold 

based on the intermediate outcome, the analysis should be restricted to the population for which 

treatment effects are defined. In medical research, for example, a treatment effect on patient 

quality of life is only defined for patients who are still living at the time of the post-treatment 

assessment, so the quality of life analysis targets the “survivor average causal effect” (SACE) 

rather than the population-wide average causal effect (Zhang & Rubin, 2003). When both of 

these conditions are present, the researcher faces a conundrum: estimate treatment effects with 

the observed data at the risk of inducing bias, only focus on outcomes fully defined for all 

individuals in the target population, or redefine the analysis plan to identify and exclude 

individuals for whom the treatment effect is undefined. Within the past decade, principal 

stratification (Frangakis & Rubin, 2002) has been applied to studies with TCM (McConnell, 

Stuart, & Devaney, 2008; Zhang & Rubin, 2003). The approach, as well as general 

acknowledgement of the TCM problem, is rarely addressed in educational evaluations, however. 

To raise further awareness about possible TCM issues in educational evaluations, and 

school reform evaluations in particular, we present in this paper an empirical illustration and 

simulation study results with the following three objectives: 

1. Demonstrate the conditions under which TCM will bias treatment effect estimates; 

2. Demonstrate the principal stratification (PS) approach as it applies to a charter school 

evaluation; and 

3. Compare the PS approach to alternative methods for estimating treatment effects given 

TCM.  

The paper is organized as follows. In the next section, we discuss the concepts behind 

TCM and principal stratification. We then present simulation results to describe sensitivity of 

treatment effect estimation under different conditions and analytic approaches. To demonstrate a 

situation where TCM may be a concern and some analytic approaches researchers might 

consider for addressing those concerns, we then illustrate different analytic approaches with 

empirical data from a charter school conversion study. We conclude with a discussion of 

implications for educational researchers. 
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Mediation, Principal Stratification and Missing Data 

The concepts addressed in this paper are rooted in the potential outcomes framework for 

causal inference popularized by Rubin (1974) and the application of PS (Frangakis & Rubin, 

2002) to the “truncation by death” problem (Zhang & Rubin, 2003). They also relate to 

methodological issues and concepts having to do with missing data and mediation analysis. In 

this section, we briefly review the key concepts from each of these research areas to formalize 

our definition of TCM and potential issues that can arise in treatment effect estimation. 

Potential Outcomes Framework 

Under the potential outcomes framework, causal effects are defined at the individual unit 

level (e.g., a student) as the difference between the unit’s outcome under a treatment condition 

and the same unit’s outcome in the absence of the treatment (for simplicity, assume two 

treatment conditions): 

(1) (0)i i iY Y   , (1) 

where unit i has a potential outcome Y(1)i if assigned to a treatment condition and a potential 

outcome Y(0)i if assigned to an alternative condition (i.e., the control condition). However, one 

can only observe a single potential outcome for the same unit under the same exact conditions 

(e.g., at the same point in time), a reality often referred to as the “fundamental problem of causal 

inference” (Holland, 1986). For example, for a student assigned to a treatment group (Di=1), we 

will observe Y(1)i, and Y(0)i only exists under an unobserved counterfactual condition. 

Conversely, for a student assigned to a control group (Di=0), we will observe Y(0)i, and Y(1)i 

only exists under an unobserved counterfactual condition. 

While unobserved potential outcomes preclude us from estimating causal effects for an 

individual unit, we can estimate average treatment effects across units in a given sample based 

on the mean observed outcome for each treatment group: 

 ̂    ̅( )         ̅( )       (2) 

Under random assignment to treatment conditions, the above group-mean difference will be an 

unbiased estimate of the average treatment effect ( ̂). When the assignment to treatment 

conditions is not random, one can estimate an average treatment effect conditional on observed 

pretreatment covariates (X): 

 ̂    ̅( )            ̅( )          (3) 
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For the above conditional group-mean difference to be an unbiased estimate of the average 

treatment effect, the vector of conditioning covariates must include all the pretreatment factors 

that partially determine both treatment assignment and the potential outcomes. Since one cannot 

determine from the data alone whether all the important confounding factors are included in X, 

one must invoke an assumption of ignorable treatment assignment (Rosenbaum & Rubin, 1983), 

or selection on observables (Heckman & Hotz, 1989). Breakdowns in this assumption result in 

what is commonly referred to as selection bias (Shadish, Cook, & Campbell, 2002). 

Mediation 

Often, researchers are not just interested in a treatment’s overall average effect on an 

outcome, but in whether the treatment effect is mediated by certain intermediary conditions. 

Much research has focused on defining and disentangling a treatment’s direct and mediated, or 

indirect, effects (Bollen, 1987; Holland, 1988; Jo, 2008; Judd & Kenny, 1981). A textbook 

example of mediation is depicted in Figure 1a, where the effect of D on Y is mediated by R.  

Under a linearity assumption, the direct effect of D on Y is represented by c, and the indirect 

effect of D on Y via R is represented by a × b. 

Yet the estimation of direct and indirect effects is rarely as straightforward as the textbook 

example (Green, Ha, & Bullock, 2010). Even if treatment conditions, D, are randomly assigned, 

the identification of the direct and indirect effect can be confounded by factors that influence 

both R and Y, and failure to account for these factors will result in biased estimates of b. Such a 

case is depicted in Figure 1b, where an unobserved factor, U, is introduced. Pearl (2009) showed 

that conditioning on a factor like R that falls on the causal path from D to Y can result in “collider 

bias” if another factor jointly causes R and Y. In the case depicted in Figure 1b, conditioning on 

R induces an association between D and U, confounding an estimate of D’s effect on Y given R.  

Thus, getting unbiased estimates of mediated effects requires an assumption of sequential 

ignorability (Imai, Keele, & Yamamoto, 2010), where treatment assignment and the mediator are 

independent of the potential outcomes given measured pre-treatment covariates. 

  
(a) Standard mediation analysis (b) Mediation analysis with confounding 

Figure 1. Path diagrams illustrating mediation and confounding due to collider bias from an unobserved factor (U). 
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Principal Stratification 

Within the potential outcomes framework, mediation analysis has been handled through 

principal stratification (PS). The PS approach has been used to address estimation problems 

arising from treatment noncompliance (Angrist, Imbens, & Rubin, 1996; Barnard, Frangakis, 

Hill, & Rubin, 2003) and, more recently, mediation (Jo, Stuart, MacKinnon, & Vinokur, 2011). 

The PS approach proposes that each unit belongs to one of four classes prior to treatment 

assignment (assuming, for simplicity, binary treatment assignment and binary mediator 

condition). These classes identify which intermediate event and potential outcome we observe, 

given the treatment assignment condition. For example, if students are assigned to a charter 

school (D=1) or traditional school (D=0), where treatment assignment can affect learning (Y) 

directly and indirectly based on whether the student remains in school (R=1) or leaves school 

(R=0), then students fall into one of four latent principal strata as defined in Table 1: 

 Always Stayer (AS) – will remain in school regardless of assignment to a charter or 

traditional school; 

 Encourager (EN) – will only remain in school if assigned to a charter school; 

 Discourager (DS) – will only remain in school if assigned to a traditional school; 

 Always Leaver (AL) – will leave school regardless of assignment to a charter or 

traditional school.  

Table 1 

Definition of Principal Strata, Associated Intermediate Event and Potential Outcomes 

 Intermediate event  (R)  Potential outcomes (Y) 

Principal strata If D=1 If D=0  If D=1 If D=0 

Always Stayer (AS) R=1 R=1  Y(D=1,R=1) Y(D=0,R=1) 

Encourager (EN) R=1 R=0  Y(D=1,R=1) Y(D=0,R=0) 

Discourager (DS) R=0 R=1  Y(D=1,R=0) Y(D=0,R=1) 

Always Leaver (AL) R=0 R=0  Y(D=1,R=0) Y(D=0,R=0) 

Notes: D=1 if assigned to treatment group and D=0 if assigned to control group. 

Given the above principal strata and potential outcomes outlined in Table 1, the average 

direct causal effect of treatment can be defined as: 

(   (       )⁄ )  (   (       )     (       ) )  

 (   (       )⁄ )  (   (       )     (       ) ), 

(4) 
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where π
AS

 is the proportion of Always Stayers in the population and π
AL

 is the proportion of 

Always Leavers in the population. Similarly, the average indirect causal effect of treatment can 

be defined as: 

(   (       )⁄ )  (   (       )     (       ) )  

 (   (       )⁄ )  (   (       )     (       ) ), 

(5) 

where π
EN

 is the proportion of Encouragers in the population and π
DS

 is the proportion of 

Discouragers in the population. Equations 4 and 5 can be expanded to estimate average treatment 

effects conditional on observed pretreatment factors (X) when treatment assignment is not 

random.  

Since principal strata membership and the counterfactual potential outcome are 

unobserved, these average causal effects cannot be directly estimated from the data. If, for 

example, one was interested in estimating the average direct treatment effect for students who 

stay in school (R=1), the true average causal effect is defined by the potential outcomes for the 

Always Stayer stratum. However, the observed mean outcome for treatment units (D=1) who 

stay in school is a mixture of Always Stayers and Encouragers, 

 ̅(       )  (    
  (    

       
  )⁄ )   ̅   

   

  (    
  (    

       
  )⁄ )   ̅   

  , 

(6) 

while the observed mean outcome for control units (D=0) who stay in school is a mixture of 

Always Stayers and Discouragers, 

 ̅(       )  (    
  (    

       
  )⁄ )   ̅   

   

  (    
  (    

       
  )⁄ )   ̅   

  , 

(7) 

where     
   represents the proportion of treatment units in a given principal stratum and     

   

represents the proportion of control units in a given principal stratum. 

 Principal stratification has primarily been used to address issues of noncompliance in 

randomized studies. In this application, two assumptions are typically invoked to facilitate 

estimation of the “complier average causal effect” (Angrist, Imbens, & Rubin, 1996): 

monotonicity and the exclusion restriction. Monotonicity assumes the effect of treatment 

assignment on the mediator is positive for all units. In other words, there is no Discourager 

stratum, or what is referred to as the Defier stratum in the noncompliance application. The 

exclusion restriction assumes treatment only affects the outcome through the mediator. In other 
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words, there is no direct effect of D on Y. While both of these assumptions are plausible in the 

noncompliance application, they are questionable in more general mediation applications. Recent 

work, however, has extended the principal stratification framework to more general mediation 

analysis applications (Gallop et al., 2009; Jo, 2008; Page, 2012). 

Treatment Confounded Missingness 

Researchers frequently encounter missing data. An overview of methods for handling 

missing data can be found in, for example, Allison (2001), Little and Rubin (2002) and Schafer 

and Graham (2002). In general, valid inferences with missing data hinge on the missingness, or 

response, mechanism that indicates whether a given variable is observed or not observed for a 

given unit (Rubin, 1976; Schafer & Graham, 2002). Based on the response mechanism, missing 

data can take one of three forms: missing completely at random (MCAR), missing at random 

(MAR), or not missing at random (NMAR). Data are MCAR when the response mechanism does 

not depend on the missing or observed data. Under such conditions, methods such as imputing 

missing data with unconditional means can result in unbiased estimates of population means. 

Data are MAR when the response mechanism depends on the observed data but not the missing 

data. Under MAR, methods such as imputing missing data with means conditional on the 

observed data can result in unbiased estimates of population means. Data are NMAR when the 

response mechanism depends on the missing data or unobserved factors. Under NMAR, 

imputing missing data will not result in unbiased estimates of population means. 

We face an interesting challenge for treatment effect estimation when outcomes are not 

observed because of an intermediate, or mediating, event. For example, if we are interested in 

estimating the effect of a school reform on student test scores but scores are only observed for 

students who remain in school over a two-year period (R=1), then remaining in school acts as 

both a mediator and the missing data mechanism. Estimating the effect of school reform (D) on 

staying in school (R) is relatively straightforward, but ignoring the missing data when estimating 

the effect on achievement (Y) may result in biased inferences. First, because one must condition 

on R to observe Y, collider bias may confound estimates of D’s effect on Y. To see this, consider 

the path diagrams in Figure 2. In Figure 2a, one can recover the direct effect of D on Y given R=1 

because no other factors confound the relationship. Note that the indirect effect and the total 

effect cannot be estimated from the observed data because Y is never observed when R=0. In 

Figure 2b, however, conditioning on R induces an association between the unobserved factor (U) 

and D (represented by the dashed double-headed arrow), thus confounding the direct D to Y 

relationship. The distinction and introduction of bias is similar to missing data conditions under 

MAR versus NMAR assumptions, where missing Y values are MAR in Figure 2a but NMAR in 

Figure 2b.  
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(a) Analysis when observation of Y depends on 

R, but Y missing at random 

(b) Analysis when observation of Y depends 

on R, but Y not missing at random 

 

Figure 2. Path diagrams illustrating mediation and confounding when observation of the outcome depends on the 

mediating response. 

From the perspective of principal stratification, this type of missing data process can bias 

treatment effect estimation because potential outcomes for certain strata are now missing. To 

address this missing data problem, researchers must determine whether the missing outcome data 

are best viewed as censored or truncated (McConnell et al., 2008). The distinction lies in whether 

the missing values could be observed but were censored due to attrition, or whether the outcome 

is undefined for specific units because the intermediate event rendered the outcome meaningless. 

In the first case, the estimand of interest is likely to be the average causal effect (ACE), and the 

censoring problem may be addressed with traditional missing data methods (Little & Rubin, 

2002). The second case, where the outcome is not defined for some units, poses more 

complications and has been labeled a “truncation by death” problem (Zhang & Rubin, 2003). 

Here, the treatment effect of interest is restricted to those units in the principal stratum for which 

the outcome is defined under both treatment and control conditions (i.e., the Always Stayers). 

McConnell et al. (2008) refer to the estimand based on this stratum as the survivor average 

casual effect (SACE). To better see the distinction, in Table 2 we recast the potential outcomes 

for each principal strata, based on Table 1, given missing outcome data when R=0. From Table 2, 

one can see that only units belonging to the Always Stayer stratum have non-missing potential 

outcomes under treatment and under control conditions, whereas treatment effect estimation for 

the other strata are hindered by the missing data process. Furthermore, the observed outcome 

mean for units assigned to treatment will be a weighted average of the Always Stayers and 

Encouragers (see Equation 6) and the observed outcome mean for units assigned to control will 

be a weighted average of the Always Stayers and Discouragers. Therefore, if outcomes are 

truncated by R, the SACE should be the target estimand but may be biased by difficulties 

distinguishing between Always Stayers and Encouragers in the observed treatment group and 

Always Stayers and Discouragers in the observed control group. If outcomes are simply censored 

by R, however, one can target the ACE by imputing values for the missing outcomes inherent in 
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the other principal strata. As depicted in Figure 2, that approach will be sensitive to the MAR 

assumption. 

Table 2 

Definition of Principal Strata, Associated Intermediate Event and Potential Outcomes When Outcomes Are Missing 

for R=0. 

 Intermediate Event  (R)  Potential Outcomes (Y)  

Strata-specific 

Average Effect Principal strata If D=1 If D=0  If D=1 If D=0  

Always Stayer (AS) R=1 R=1  Y(D=1,R=1) Y(D=0,R=1)  Y(D=1,R=1) - Y(D=0,R=1) 

Encourager (EN) R=1 R=0  Y(D=1,R=1) *  * 

Discourager (DS) R=0 R=1  * Y(D=0,R=1)  * 

Always Leaver (AL) R=0 R=0  * *  * 

Notes: D=1 if assigned to treatment group and D=0 if assigned to control group. 

 * missing or undefined outcome/effect due to censoring or truncation. 

We define the issue of truncated versus censored outcome data within a mediation analysis 

more generally as treatment confounded missingness (TCM). We have two main reasons for this 

more general label. First, it emphasizes the fact that the primary complication for treatment effect 

estimation given this type of missingness, censored or truncated, arises because treatment 

assignment (D) influences both the missing data mechanism (R) and the outcome of interest (Y). 

Second, it captures the notion that defining missing outcomes as censored or truncated can be a 

subjective decision. This may have implications for treatment effect estimation, particularly 

regarding whether the ACE or SACE is the estimand of interest. For example, in our motivating 

example, the evaluation of charter school effects was originally designed as a non-experimental 

study with propensity score matching to equate charter and traditional school students along pre-

treatment covariates. After observing a significant charter school enrollment effect on staying in 

school, we had to determine how to estimate the effect of school type on other outcomes that 

may be sensitive to TCM (e.g., standardized test scores). 

Prior work on the use of PS for estimating SACE focused on defining large sample bounds 

for treatment effects in randomized studies (Zhang & Rubin, 2003). In this paper, we are 

interested in the relevance of PS for non-experimental evaluations where one wants to obtain 

point estimates based on a finite sample. Key aspects of different analytic options for treatment 

effect point estimates are outlined in Table 3, with a more detailed description of each approach 

in Appendix A. In all these approaches, strong ignorability is assumed for the propensity score 

matching process, so potential outcomes for the matched treatment and control groups are 

independent of the pretreatment confounders if Y was fully observed. Given missing values in Y 
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when R=0, five general approaches to estimation of a treatment’s direct effect on Y are outlined 

in Table 3. The first two approaches (1A and 1B) treat Y as censored and are designed to 

estimate the ACE. These two approaches either focus the analysis on cases with complete data 

(i.e., listwise deletion) or seek to impute the missing outcome values. The three other approaches 

treat Y as truncated and are designed to estimate the SACE, or the treatment effect for students in 

the Always Stayer stratum. The first approach that targets SACE (2A) re-runs the propensity 

score matching, restricting the matches to units with Y observed (and by definition R=1). This 

approach assumes all treatment units with R=1 are in the Always Stayer stratum (i.e., no 

Encouragers) and all control units with similar pre-treatment covariates as these treatment units 

are also in the Always Stayer stratum. The second approach (2B) uses the original matched 

sample, but restricts the analysis to matched treatment-control pairs that both have Y observed. 

This approach assumes the original matching process successfully paired units within the same 

principal strata, whereby the R outcome under the counterfactual condition can be inferred from 

the matched pair. The third approach (2C) also uses the original matched groups, but uses 

observed covariates to impute the R value under the counterfactual, rather than relying on 

matched pairs. Then, given the observed and imputed counterfactual R value, units in the Always 

Stayer strata are identified. Note that this approach is similar to the application of Bayesian 

techniques to classify units into principal strata (Page, 2012). 
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Table 3 

Types of Methods For Estimating Treatment Effects Under Treatment Confounded Missingness For a Non-

Experimental Study Using Propensity Score Matching 

Nature of the 

unobserved 

outcome 

Desired 

estimand Analytical approach Key assumptions 

Y is censored average causal 

effect (ACE) 

1A. analysis of complete cases Y is missing completely at 

random (MCAR) 

1B. multiple imputation of Y  Y is missing at random 

(MAR) 

Y is truncated survivor 

average causal 

effect (SACE) 

2A. rematching of cases with observed Y all subjects with Y observed 

belong to “always stayer” 

stratum (RT=1,RC=1) 

2B. analysis of “intact pairs” matched subjects belong to 

same stratum  

2C. multiple imputation of retention (R) 

under alternative treatment assignment 

R is missing at random 

(MAR) 

 

In the following section we test the extent to which TCM is a concern under different data 

generating processes and whether certain analytic approaches are better suited for estimating 

treatment effects under TCM. 

Simulation Study 

 To test the degree to which TCM can bias treatment effect estimation, we ran two Monte 

Carlo simulation studies. The first study examined the degree to which bias arises given a 

homogeneous null average treatment effect (i.e., treatment does not affect the outcome) and 

variation in both the proportion of units in the Encourager vs. Always Stayer strata and the 

relationship between an unobserved factor (U) and the mediating variable (R). The objective of 

this study was to better understand how strong the relationships between treatment (D) and R 

(which manifests through the size of the Encourager and Discourager strata) and between U and 

R have to be for TCM to become a concern. In addition, we sought to examine whether certain 

analytic approaches are more robust to changes in these relationships. In this study, the 

assumption of sequential ignorability breaks down when a relationship between U and R is 

present. The second study examined the degree to which bias arises given a heterogeneous 

average treatment effect and different conditions for the proportion of units in the Encourager vs. 

Always Stayer strata. The objective of this study is to better understand how TCM can be a 
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concern under heterogeneous treatment effects, and whether certain analytic approaches are 

better suited for isolating the SACE given heterogeneous treatment effects. In this study, the 

assumption of sequential ignorability holds, but the constant effect condition does not. 

 Both simulation studies are based on 1,000 Monte Carlo replications that produce a 

sample data set with a fixed sample size of 2,000 units. We used data from the empirical 

illustration (discussed in the following section) to guide the simulation data generating 

parameters. To simulate a non-experimental setting where the assumption of strong ignorability 

holds, treatment assignment for a given unit was based on a draw from a binomial distribution, 

where the probability of being assigned to the treatment condition (pi) was a function of two 

“observed” covariates (X1 & X2): 

   ln 1.00 0.50 1 0.25 2 .
1

i
i i

i

p
X X

p

 
    

 

 

 

 

Potential outcomes were a function of those two observed covariates as well as an “unobserved” 

covariate (U). In the first simulation study, the potential outcomes are generated based on a 

homogeneous null treatment effect: 

     (1) (0) 0.50 1 0.25 2 0.25i i i i i iY Y X X U e     .

 

 

In the second simulation study, the relationship between X1 and the potential outcome under 

treatment is stronger, thus creating a heterogeneous treatment effect that depends on X1: 

     

 

(0) 0.50 1 0.25 2 0.25

(1) (0) 1 ,

i i i i i

i i i

Y X X U e

Y Y X

   

 

 

 

where δ takes on one of three values depending on the simulation condition: 

 Small effect heterogeneity (δ = 0.25); 

 Medium effect heterogeneity (δ = 0.50); 

 Large effect heterogeneity (δ = 1.00). 

In both simulation studies,    is drawn from a normal distribution with mean zero and standard 

deviation of 0.50. 

Values for the three covariates are drawn from independent normal distributions with 

standard deviation of 1.00 and the mean for each distribution dependent on a unit’s principal 
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stratum. In both simulation studies, the covariate population means for each stratum were based 

on the following matrix: 

[

  0. 0   0. 0  1

  0.2   0.2  2

  0.2   0.2  3

  0. 0   0. 0   

] 

where the rows correspond to the Always Stayer, Encourager, Discourager, and Never Stayer 

strata, respectively, and the columns correspond to X1, X2, and U, respectively. For U, in the first 

simulation study, principal strata mean differences vary across three conditions: 

 No     effect ( = 0 0 0 0 )  

 Moderate     effect ( =[-0.2 -0. 0 0. 0 0.2 ])  

 Large     effect ( =[-0. 0 -1.00 1.00 0. 0])  

In the second simulation study, only the No     effect condition is examined. The population 

means for X1 and X2 produce an overall sample where about one third of the units are assigned 

to treatment, but treatment selection is more prevalent among units in the Always Stayer and 

Encourager strata. Units in these strata also have higher average potential outcomes. Introducing 

between-strata variation in mean U values produces a     effect because the value of R 

depends on a unit’s stratum membership and treatment assignment. Furthermore, 

censoring/truncation of the observed Y value depends on R (see Table 2). 

 Since data generation was designed to allow differences across principal strata, the 

proportion of units within each stratum is important. In both simulation studies, the proportion of 

units in the Discourager and Never Stayer strata were fixed at 0.10 and 0.15, respectively. These 

proportions provide a baseline for the overall mean of R and the     effect. We used three 

simulation conditions to look at performance under different proportions of units in the Always 

Stayer and Encourager strata: 

 Small proportion of Encouragers (π
AS

 = 0.65, π
EN 

= 0.10) 

 Medium proportion of Encouragers (π
AS

 = 0.50, π
EN 

= 0.25) 

 Large proportion of Encouragers (π
AS

 = 0.25, π
EN 

= 0.50) 

As the proportion of Encouragers increases, the     effect increases. Given between-strata 

heterogeneity in covariates and potential outcomes, if equations 4-7 hold, we hypothesize that 

bias from TCM will increase as the proportion of Encouragers relative to Always Stayers 

increases. 
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 Under each condition and Monte Carlo replication we estimate average treatment effects 

based on six different analytic approaches: the five approaches discussed above (see Table 3) 

that start with a propensity score matched sample based on X1 and X2, and one ANCOVA 

approach that conditions on X1 and X2 based on the full sample (details of each approach are in 

Appendix A). For simplicity, the matching-based approaches use 1-to-1 nearest neighbor 

matching and therefore target either the average treatment effect on the treated (ATT) or the 

survivor average treatment effect on the treated (SATT), rather than the overall average 

treatment effect or SACE. This distinction can be important in the second simulation study 

where treatment effect heterogeneity exists. For all analytic approaches, we assess performance 

based on three measures: 

 Mean bias from the true population SATT; 

 Root mean squared error (RMSE); and 

 Type I error rate (study 1) or coverage rate (study 2). 

In the first simulation study, the true population SATT is zero and we examine the Type I error 

rate to see whether TCM inflates the rate at which the null hypothesis is rejected when it should 

not be. In the second simulation study, the true population SATT depends on the X1 mean for 

treatment units in the Always Stayer stratum (0.80 in the population under all conditions) and the 

size of δ, which differs across conditions. We examine the coverage rate to see whether the true 

SATT falls within ±2 standard errors of the estimated average effect at a more or less frequent 

rate under TCM. Results for both simulation studies are presented in Appendix B. Highlights of 

the results are discussed below. 

Results from Simulation Study 1: Testing Collider Bias 

Results from this simulation study show how treatment effect estimates can be biased 

under TCM because conditioning on a collider variable like R introduces confounding with U. 

As a result, bias increases as the effect of D on R increases (as determined by the relative size of 

the Encourager strata) and as the effect of U on R increases (see Figure 3). When U and R are 

independent, then all estimation methods can recover the true SATT, regardless of the size of the 

Encourager stratum (see Figure 3a). Similarly, for a given effect of U on R, the degree of bias 

depends on the size of the Encourager stratum. For example, for a moderate      effect, bias 

will only be about 0.02 with a relatively small Encourager population, but will be about four 

times larger with a relatively large Encourager population (see Figure 3b). None of the tested 

analytic approaches are able to account for this type of bias stemming from an unobserved 

covariate related to R and Y. 
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* Mean bias is displayed as positive deviations from the true average effect, even though mean bias was negative. 

Figure 3. Mean treatment effect bias across simulation replications, by     effect, size of Encourager stratum, 

and analytic approach. 

 

 

Figure 4. Type I error rates across simulation replications, by     effect, size of Encourager stratum, and analytic 

approach. 

Type I error rates are sensitive to the analytic approach of choice, however, when bias is 

induced from a moderate to large     effect and a medium to large proportion of Encouragers 

(see Figure 4). Analytic approaches that explicitly target the SATT by treating missing Y values 

as truncated and focusing on the effect for treatment units in the Encourager stratum—by either 

imputing R or restricting the analysis to intact matched pairs—have lower Type I error rates than 



 

16 

the other methods. For example, the error rate under a moderate     effect and medium 

proportion of Encouragers (see Figure 4b) is less than 0.10 for the impute R method and just over 

0.10 for the intact pairs method, but is almost 0.20 for the main match approach and well over 

0.20 for the ANCOVA approach. This difference in performance is driven by the fact that the 

impute R and intact pairs methods restrict the analytic sample to units expected to be in the 

Encourager stratum. This smaller, and arguably more appropriate, sample size results in larger 

standard errors and therefore more frequent failure to reject the null hypothesis. It is important to 

note, however, that regardless of the analytic approach, the error rates are above the 0.05 level 

one would expect if TCM bias was not an issue. 

Results from Simulation study 2: testing effect heterogeneity 

Results from this simulation study show that even if one is not concerned with collider 

bias, treatment effect estimates can be biased under TCM if effect heterogeneity exists and the 

analytic approach does not target the appropriate estimand. As discussed above, in this 

simulation study, U and R are independent but the effect of D on Y depends on X1. Since Always 

Stayers have higher X1 values, on average, than Encouragers, failure to isolate effect estimation 

to the Always Stayer stratum should downwardly bias estimates of the SATT. Mean bias is 

larger for analytic approaches that do not explicitly target the SATT and the Always Stayer 

stratum, particularly as the proportion of Encouragers increases (see Figure 5). When only a 

relatively small degree of effect heterogeneity exists (Figure 5a), the impute R and intact pairs 

approaches have little to no bias while bias with the other approaches is around 0.05 to 0.10. If a 

relatively large degree of effect heterogeneity exists (Figure 5b), bias is still minimal with the 

impute R and intact pairs approaches, while bias with the other approaches is anywhere between 

0.10 and 0.40. Similar trends exist when looking at coverage rates (see Figure 6), with the impute 

R and intact pairs approaches providing coverage rates around 0.90 or higher, even under the 

large effect heterogeneity condition. 
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* Mean bias is displayed as positive deviations from the true average effect, even though mean bias was negative.  

Figure 5. Mean treatment effect bias across simulation replications, by degree of effect heterogeneity, size of 

Encourager stratum, and analytic approach. 

 

 

Figure 6. Coverage rates across simulation replications, by degree of effect heterogeneity, size of Encourager 

stratum, and analytic approach. 

Empirical Illustration 

The simulation study identified conditions under which TCM can result in biased treatment 

effect estimates and how some analytic approaches perform under those conditions. In this 

section we use an empirical example to illustrate TCM and the analytic approaches used for 

effect estimation. Our example was motivated by an evaluation of a charter school organization’s 
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transformation of a traditional public high school (Herman, et al., 2012; Rickles, Wang & 

Herman, 2013). The primary analysis for the evaluation compared outcomes for two cohorts of 

students enrolled in the new charter school to a matched group of students who attended the 

same middle schools but neighboring traditional public high schools. A variety of high school 

outcomes were examined as students progressed from 9
th

 grade through 12
th

 grade, including: 

whether students remained in school from one year to the next; school attendance; how students 

performed on state standardized tests; and whether students took and passed the necessary 

courses for college eligibility. Overall, the evaluation found that students who attended the 

charter school, compared to observationally similar students attending demographically similar 

schools, were statistically more likely to stay at the same school for four years, take and pass key 

college preparatory courses, perform better on mathematics California Standards Tests (CST), 

pass the California High School Exit Exam (CAHSEE), and graduate within four years. The 

evaluation did not find a statistically significant effect on English language arts (ELA) CAHSEE 

scale scores; an issue we reexamine for this illustration. TCM may bias some of the findings 

because some outcomes like test performance and course completion are only observed for 

students who remain in school over a given period of time, and the evaluation found that the 

charter school students were more likely to stay in school.  

For this illustration, we reanalyzed data on the student cohort entering 9th grade in 2008-

09, and examined performance on the ELA portion of the CAHSEE taken in 10
th

 grade.
1
 

Performance data were not available for students who did not take the test in their second year of 

high school (e.g., left the public school sample before test administration). The original matched 

sample included 1,162 students evenly distributed between treatment and control groups, while 

the sample of students with non-missing CAHSEE data included 502 treatment students and 446 

control students. This indicates that 86% of the matched treatment students were tested but only 

77% of the matched control students were tested. Descriptive pre-treatment characteristics of the 

treatment and control groups are presented in Table 4. Of those with observed outcome data, the 

raw mean difference between treatment and control groups is 0.03 standard deviations (95% C.I.: 

-0.10 to 0.16) and the addition of ANCOVA adjustment with the matched data produces a 

treatment effect estimate of 0.06 standard deviations (95% C.I.: -0.03 to 0.14). This represents an 

effect estimate that does not necessarily target the SATT and ignores TCM. 

                                                 
1
 Our analytic sample and methods for this illustrative example differed slightly from the methods used in the 

original analysis. For example, the original analysis used a combination of exact matching and nearest neighbor 

propensity score matching, but for the illustration we used optimal matching based solely on the propensity score. 

Therefore, the numbers and results do not necessarily align with what was published in the evaluation reports. 

Variables included in the optimal matching algorithm and in the covariate adjustment regression models are listed in 

Table 4, excluding the outcome missing data indicators and the outcome variables. 
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Zhang & Rubin (2003) provide a way to place bounds on the SATT given TCM. We 

applied this approach to our data and obtained a rather wide range of possible values for the true 

treatment effect (see Table 5). Without additional assumptions about the principal strata, the 

bounds range from -0.74 to 0.76. The bounds can be narrowed by invoking additional 

assumptions: monotonicity (i.e., no students in the Discourager stratum) and ranked averaged 

scores (i.e., the Always Stayers have higher average outcomes than the other principal strata). 

When both assumptions are invoked the bounds narrow to 0.03 to 0.23. For these data, however, 

the monotonicity assumption is not likely to hold. The assumption implies the charter school 

experience does not cause some students to leave school when they would have stayed in a 

traditional school. Since the charter school environment is not likely to benefit all students, this 

assumption is questionable. The rank averaged scores assumption, however, is more plausible. 

Unfortunately, just using this assumption still leaves us with rather wide bounds: -0.29 to 0.50. 

Table 4 

Description of Sample Used For the Empirical Illustration 

 

Full sample   Matched sample   Outcome observed 

Sample description Treatment Control   Treatment Control   Treatment Control 

Number of students 581 1,467 

 

581 581 

 

502 446 

% Female 48% 50% 

 

48% 50% 

 

49% 51% 

Race/Ethnicity (%): 

        Afr. Am./Black 25% 21% 

 

25% 24% 

 

25% 21% 

Latino / Hispanic 74% 79% 

 

74% 75% 

 

75% 79% 

Language classification (%): 

        English only 34% 27% 

 

34% 32% 

 

33% 28% 

English learner 36% 40% 

 

36% 37% 

 

36% 39% 

Reclassified Eng. proficient 30% 34% 

 

30% 31% 

 

31% 33% 

Parent education (%): 

        HS graduate 24% 26% 

 

24% 24% 

 

25% 24% 

Not HS graduate 28% 39% 

 

28% 29% 

 

28% 29% 

Not available / missing 48% 34% 

 

48% 48% 

 

47% 47% 

% free lunch 87% 84% 

 

87% 88% 

 

88% 88% 

% student w/ disabilities 9% 7% 

 

9% 9% 

 

9% 8% 

8th Grade attendance rate 0.94 0.94 

 

0.94 0.94 

 

0.94 0.95 

8th Grade math test (%): 

        Algebra 1 46% 73% 

 

46% 48% 

 

48% 50% 

General Math 54% 27% 

 

54% 52% 

 

52% 50% 

8th Grade test score: 

        Math 0.05 -0.02 

 

0.05 0.01 

 

0.09 0.12 
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Full sample   Matched sample   Outcome observed 

Sample description Treatment Control   Treatment Control   Treatment Control 

ELA 0.13 -0.05 

 

0.13 0.11 

 

0.17 0.18 

Missing outcome data (%): 

        9th Grade ELA CST 5% 10% 

 

5% 11% 

 

2% 5% 

10th Grade ELA CST 17% 19% 

 

17% 22% 

 

6% 4% 

11th Grade ELA CST 30% 31% 

 

30% 34% 

 

21% 17% 

ELA CAHSEE 14% 21% 

 

14% 23% 

 

0% 0% 

Math CAHSEE 14% 20% 

 

14% 23% 

 

2% 1% 

Outcome score (Z-score): 

        9th Grade ELA -0.01 0.01 

 

-0.01 -0.06 

 

0.03 0.02 

10th Grade ELA -0.04 0.02 

 

-0.04 -0.06 

 

-0.03 -0.04 

11th Grade ELA 0.05 -0.02 

 

0.05 -0.02 

 

0.04 -0.01 

Math CAHSEE 0.08 -0.03 

 

0.08 -0.07 

 

0.09 -0.06 

ELA CAHSEE -0.01 0.00 

 

-0.01 -0.04 

 

-0.01 -0.04 

 

Table 5 

Large sample bounds for survivor average treatment effect for the treated (SATT) 

based on Zhang & Rubin (2003) principal stratification method. 

 Assumptions Lower bound Upper bound 

None -0.74 0.79 

Monotonicity -0.19 0.23 

Ranked average score -0.29 0.50 

Monotonicity & ranked average score 0.03 0.23 

 

Since the bounds approach provides little direction for substantive conclusions—and may 

be inappropriate for finite samples—we can get alternative treatment effect point estimates based 

on the different analytic approaches discussed above. For this analysis, the average treatment 

effect estimates are fairly stable across the different analytic approaches (see Table 6). All the 

treatment effect estimates presented in Table 6 are based on units in the original matched sample, 

except the rematch approach (2A), and reflect regression-adjusted effect estimates to account for 

residual pretreatment covariate imbalance between the matched treatment and control groups. 

Treating the missing outcome values as censored and multiply imputing the missing values 

(approach 1B) resulted in only a slightly lower average effect estimate than the complete-case 

analysis based on the original matched sample (0.05 vs. 0.06). Both of these approaches target 
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the ATT rather than the SATT. However, results from the three approaches that target the SATT 

were also fairly similar, with the possible exception of the rematch approach (2A) that produced 

an average effect of -0.01. The intact pairs approach (2B) and isolating the Always Stayer 

stratum based on imputing the missing data mechanism (2C) resulted in average effect estimates 

of 0.03 and 0.06, respectively. Perhaps more importantly, there is a great deal of overlap in the 

confidence intervals for all these approaches, and with any of the approaches one would not 

reject the null hypothesis of no average treatment effect. Furthermore, it is worth noting that all 

the point estimates fall within the large sample bounds except for the rematch estimate when 

bounds are based on both the monotonicity and ranked average scores assumptions. 

Table 6 

Treatment Effect Estimates Based on Alternative Methods For Addressing Treatment Confounded Missingness 

Nature of the 

Unobserved 

Outcome 

Desired 

Estimand Analytical Approach N Est (SE) 

95% C.I. 

(LB, UB) 

Y is censored average 

causal effect 

(ATT) 

1A.  analysis of complete cases 948 0.06 (0.04) -0.03 0.14 

1B.  multiple imputation of Y  1,162 0.05 (0.04) -0.03 0.14 

Y is truncated survivor 

average 

causal effect 

(SATT) 

2A.  rematching of cases with 

observed Y 

1,004 -0.01 (0.05) -0.12 0.10 

2B.  analysis of “intact pairs” 770 0.03 (0.05) -0.06 0.13 

2C.  multiple imputation of 

retention (R) under alternative 

treatment assignment 

78 † 0.06 (0.05) -0.04 0.16 

Notes: all methods based on units in the original matched sample, except 2A, and include regression adjustment to 

account for residual pretreatment covariate imbalance between treatment and control groups. 

 †Average number of units in the “always taker” stratum across 1000 imputations. 

One way to explore the degree to which effect estimates from the original matched sample 

might differ from the SATT is to look within principal strata as defined by the matched pairs. 

The simulation study results suggest that if effect heterogeneity exists, an analysis based on 

matched pairs will provide a less biased estimate of the SATT. Units were classified into one of 

the four principal strata based on whether the treatment and/or control units within each matched 

pair remained in school and took the CAHSEE. The treatment and control group outcome means 

for matched pairs within each of the assigned strata are presented in Table 7. Of the matched 

pairs, 66% had treatment and control units with non-missing outcome data. These pairs were 
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defined as the Always Stayers and comprise the target sample for the SATT. Restricting effect 

estimation to this stratum results in an unadjusted effect estimate of -0.03 (95% C.I.: -0.17 to 

0.11), while including covariate adjustment with the intact pairs results in an average effect 

estimate of 0.03 (95% C.I.: -0.06 to 0.13). One can see how the raw mean difference for the 

Always Stayer stratum differs from the overall raw mean difference because of Encouragers 

(20% of the pairs) included in the overall treatment group mean and Discouragers (10% of the 

pairs) included in the overall control group mean. The mean outcome for the Encourager 

treatment units was higher than for Always Stayer treatment units, which produces an overall 

positive mean difference of 0.03 rather than the Always Stayer negative mean difference of -

0.03. The Always Stayer matched pairs are not perfectly equated across all the pretreatment 

covariates, however. So adjusting for residual pretreatment differences among the Always 

Stayers pushes the estimated SATT to, coincidentally, 0.03 instead of -0.03.   

Table 7 

Observed Outcome Scores For Matched Pairs, By Principal Strata 

  

# of 

pairs 

% of 

pairs 

Treatment Group   Control Group   

Mean 

Difference Principal Strata Mean SD   Mean SD   

(1) Always Takers: R=1, R=1 385 66% -0.07 0.98 
 

-0.04 1.00 
 

-0.03 

(2) Encouragers: R=1, R=0 117 20% 0.19 0.99 
 

* * 
 

* 

(3) Discouragers: R=0, R=1 61 10% * * 
 

-0.03 1.12 
 

* 

(4) Never Takers: R=0, R=0 18 3% * * 
 

* * 
 

* 

Total 581 100% -0.01 0.99 
 

-0.04 1.02 
 

0.03 

* Missing/undefined 

Discussion of Findings 

Treatment confounded missingness can be seen as a special case of mediation analysis, 

where the mediator is also the missing data mechanism, or as a special case of missing data, 

where the missingness is partially determined by treatment assignment. The simulation study 

findings suggest that treatment effect bias from TCM is an increasing concern when three 

conditions arise. First, bias can increase as the proportion of treatment units in the Encourager 

stratum relative to the Always Stayer stratum increases. Second, bias can increase as the 

magnitude of an unobserved factor’s effect on the mediating missing data mechanism increases 

(assuming the unobserved factor is also related to the primary outcome of interest). Third, bias 

can increase as between-strata heterogeneity in the treatment effect increases. While the 

proportion of Encouragers can be extrapolated from the size of the treatment effect on the 
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mediating missing data mechanism and assumptions about the size of the Discourager stratum, it 

is not possible to determine the extent of the other two biasing factors from the available data. 

Researchers are therefore left to make assumptions regarding sequential ignorability (i.e., no 

unobserved factors confounding the R and Y relationship) and effect homogeneity. 

It is possible to explore the existence of effect heterogeneity by comparing effect estimates 

across analytic approaches that target different estimands (i.e., ATT vs. SATT). The simulation 

results indicate that under the sequential ignorability assumption, the intact pairs and impute R 

approaches can accurately recover the SATT, while the other approaches are more sensitive to 

effect heterogeneity and confounding. In the empirical illustration, for example, the average 

treatment effect estimates were relatively stable across the analytic approaches. This suggests 

that effect heterogeneity is probably not a large concern regarding possible bias in treatment 

effect estimates that ignore TCM and between-strata effect heterogeneity. It does not say 

anything, however, about whether the average effect estimates are biased because of breakdowns 

in the sequential ignorability assumption. Here, researchers should probably use sensitivity 

analysis to explore the extent to which bias might arise from unobserved confounding factors 

(Imai, Keele, & Yamamoto, 2010).  

In demonstrating TCM, we only explored a subset of possible analytic approaches one 

could use for treatment effect estimation and mediation analysis. Future research should examine 

whether other approaches are particularly robust to complications brought about by TCM. For 

example, more explicit Bayesian techniques for classifying units into principal strata (Page, 

2012) may be more appropriate than the ad hoc impute R approach used in this paper. More 

importantly, we focused on the application of the principal stratification framework to TCM, but 

the appropriateness of this framework for TCM and mediation analysis more generally is not 

uniformly accepted (VanderWeele, 2012). In fact, weighting approaches have been applied to 

mediation analysis (Hong & Nomi, 2012) and to settings where, like TCM, selective attrition is a 

concern (Weuve et al., 2012). It would be valuable to see how these approaches perform under 

the different TCM conditions tested in this paper. 
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Appendix A 

Detailed Description of Analytic Approaches Used for the Simulation Study 

Average treatment effects for both the simulation studies and the empirical illustration were 

estimated using the five approaches outlined in Table 3 based on a matched sample of treatment 

and control units and one ANCOVA approach based on the full (pre-match) sample. Details of 

each approach, as applied to the simulation study data, are presented below. The same general 

logic and steps were used for the empirical illustration, with minor details tailored to the 

specifics of the data and analysis. The notation used throughout follows from the theoretical 

discussion and simulation study. In addition to describing each approach, we include R code for 

executing each approach, as well as R code for constructing the Zhang & Rubin (2003) large 

sample bounds. 

ANCOVA approach on full pre-matched sample. This approach uses a standard OLS 

regression model to adjust for confounding due to observed pretreatment factors (X1 and X2): 

0 1 21 2i i i i iY D X X e       

 

(A.1) 

The analytic sample for this approach includes all units with non-missing outcome data.  

lmx <- lm(Y~D+X1+X2, data=df) 

summary(lmx) 

 

Complete case analysis of original matched sample (1A). Besides the above ANCOVA 

approach, the other approaches are based on treatment and control units matched on their 

pretreatment covariates. For the simulation study, we used 1-to-1 nearest neighbor propensity 

score matching, where the estimated propensity score was based on the following logistic 

regression model: 
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(A.2) 

We used the matchit package in R (Ho, Imai, King, & Stuart, 2011) to execute the matching. 

After matching treatment and control units on the estimated propensity score, the average 

treatment effect was estimated using the same regression model in Equation A.1. 

## Conduct 1-to-1 Nearest Neighbor Match ## 

df.m <- matchit(D ~ X1 + X2, data = df, method = 

"nearest") 

 

# Save Matched Data as data frame 
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df.md <- match.data(df.m, weights="PSCOREW", 

distance="PSCORE") 

 

# Merge matched data with main file 

dfm<-merge(df,df.md[,c("ID","PSCOREW","PSCORE")], 

by="ID",all.x=TRUE) 

dfm$PSCOREW <- ifelse(is.na(dfm$PSCOREW),0,1) 

 

## Estimate Average Treatment Effect ## 

## with Matched Data 

dfx <- dfm[dfm$PSCOREW>1,] 

lmx <- lm(Y~D+X1+X2, data=dfx) 

summary(lmx) 

 

Multiple imputation of Y (1B). While the 1A approach is restricted to units with a non-

missing outcome value, this approach uses the same matched sample but multiply imputes 

missing outcome values so the analysis is based on all the matched units. We used the mice 

package in R (van Buuren & Groothuis-Oudshoorn, 2011) to execute the multiple imputation and 

combine the effect estimates across the five multiply imputed data sets. 

## Create 5 Imputed Data Sets ## 

dfx<-dfm[dfm$PSCOREW>0,c("D","Y","X1","X2")] 

imp<-mice(dfx,print=FALSE) 

 

## Estimate Average Treatment Effect ## 

## Pooling across the 5 data sets 

lmx<-pool(lm.mids(Y~D+X1+X2,data=imp)) 

summary(lmx) 

 

Rematching cases with observed Y (2A). This approach is the same as in 1A, but matching 

is only allowed among units with non-missing outcome data (R=1). 

## REMATCH RESTRICTED TO RETAINED STUDENTS ## 

df2 <- df[df$R==1,c("ID","X1","X2","D")] 

 

## Conduct 1-to-1 Nearest Neighbor Match ## 

df.m <- matchit(D ~ X1 + X2, data = df2, method = 

"nearest") 

 

# Save Matched Data as data frame 

df.md <- match.data(df.m, weights="PSCOREW", 

distance="PSCORE") 

 

# Merge matched data with main file 
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dfm<-merge(df,df.md[,c("ID","PSCOREW","PSCORE")], 

by="ID",all.x=TRUE) 

dfm$PSCOREW <- ifelse(is.na(dfm$PSCOREW),0,1) 

 

## Estimate Average Treatment Effect ## 

## with Matched Data 

dfx <- dfm[dfm$PSCOREW>1,] 

lmx <- lm(Y~D+X1+X2, data=dfx) 

summary(lmx) 

 

Analysis of intact pairs (2B). With the original match for 1A, each treatment unit is 

matched to a control unit. These pairs can be used to approximate principal strata membership by 

comparing the observed mediator response for each unit in the pair. Given an interest in the 

SATT, we restrict the analysis to matched pairs with R=1 for both the treatment and control unit.  

## GET MATCHED PAIRS FROM ORIGINAL MATCH ## 

df.mp<-cbind(df[row.names(df.m$match.matrix), 

c("ID","X1","X2")], df[df.m$match.matrix, 

c("ID","X1","X2")]) 

names(df.mp)<- c("TID","TX1","TX2","CID","CX1","CX2") 

 

ee.t<-dfm[,c("ID","Yc","R")] 

names(ee.t)<-c("TID","TYc","TR") 

ee.c<-ee.t 

names(ee.c)<-c("CID","CYc","CR") 

 

df.mp<-merge(df.mp,ee.t,by="TID",all.x=TRUE) 

df.mp<-merge(df.mp,ee.c,by="CID",all.x=TRUE) 

 

# Identify treatment student principal strata based 

on matched control student outcome 

df.mp$PSTRATA<-ifelse(df.mp$TR==1 & df.mp$CR==1,   

"Y-Y","") 

df.mp$PSTRATA<-ifelse(df.mp$TR==1 & df.mp$CR==0,   

"Y-N",df.mp$PSTRATA) 

df.mp$PSTRATA<-ifelse(df.mp$TR==0 & df.mp$CR==1,   

"N-Y",df.mp$PSTRATA) 

df.mp$PSTRATA<-ifelse(df.mp$TR==0 & df.mp$CR==0,   

"N-N",df.mp$PSTRATA) 

 

## Restrict Analysis to "Intact Pairs" ## 

ipt<-as.data.frame(df.mp[df.mp$PSTRATA=="Y-Y", 

"TID"]); names(ipt)<-c("ID") 

ipc<-as.data.frame(df.mp[df.mp$PSTRATA=="Y-Y", 

"CID"]); names(ipc)<-c("ID") 
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ip<-as.data.frame(rbind(ipt,ipc)) 

ip$intact<-1 

 

dfx<-merge(dfm,ip,by="ID") 

 

# Estimate Average Treatment Effect 

dfx<-dfx[dfx$intact==1,] 

lmx <- lm(Y~D+X1+X2, data=dfx) 

summary(lmx) 

 

Imputation of mediator counterfactual (2C). With the original match for 1A, this approach 

uses the available covariates to multiply impute the counterfactual mediator value for each unit 

to approximate principal strata membership. In our example, this means imputing whether the 

treatment units would have remained in school if assigned to control, and whether control units 

would have remained in school if assigned to treatment. For the imputation of R, we first use a 

logistic regression model to get parameter estimates of the relationship between the observed 

pretreatment covariates, including treatment indicator, and the probability of remaining in school 

(pi): 
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(A.3) 

For each imputation, we then sample parameter values from a multivariate normal distribution 

with means centered on the model estimated parameter values and variances/covariances based 

on the model estimated standard errors. With the sampled parameters, ˆ
ip  is calculated based on 

the observed pretreatment covariates and the alternative treatment value (i.e., 1-Di in place of 

Di). Each unit’s counterfactual R value is then imputed based on whether a random uniform draw 

from 0 to 1 falls below ˆ ip  ( ˆ 1R  ) or above ˆ ip  ( ˆ 0R  ). Given an interest in the SATT, we then 

estimate the average treatment effect with the same ANCOVA model as in 1A, but only based on 

units in the matched sample with R=1 for both the observed condition and the counterfactual 

condition. We conducted 1,000 imputations of R and used standard multiple imputation 

combination rules to get the mean SATT and standard error across the 1,000 imputations. 

## IMPUTATION OF COUNTERFACTUAL RETENTION VALUE ## 

dfx <- dfm[dfm$PSCOREW==1,] 

 

# Get model parameter estimates 

XX <- as.matrix(dfx[,c("X1","X2")]) # covariates 

R <- dfx$R # retention under actual treatment 

D <- dfx$D # treatment indicator 
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Yobs <- dfx$Y # observed outcome 

 

fm <- glm(R ~ XX + D,family=binomial("logit")) 

 

# Impute R & estimate SATT 1,000 times 

M<-1000 # number of imputations 

ES <- NULL # storage for effect size estimates 

EV <- NULL # storage for within imp error variances 

 

for (m in 1:M) { # loop over imputations 

  B.hat <- mvrnorm(1,coefficients(fm),vcov(fm)) 

  lo <- cbind(rep(1,length(D)),XX,(1-D))%*%B.hat 

  p <- exp(lo)/(1+exp(lo)) 

  Rcf <- rep(0,length(D)) 

  Rcf[(runif(length(D),0,1) < p)] <- 1 

  Y_RR <- Yobs[R==1 & Rcf==1] 

  X_RR <- XX[(R==1 & Rcf==1),] 

  D_RR <- D[R==1 & Rcf==1] 

  fm2 <- lm(Y_RR ~ X_RR + D_RR) 

  By <- coefficients(fm2) 

  ES <- c(ES,By[length(By)]) 

  EV <- c(EV,vcov(fm2)[length(By),length(By)]) 

} 

 

est <- cbind(mean(ES),sqrt(mean(EV)+(1+1/M)*var(ES))) 

 

Large sample bounds. For the empirical illustration, we also calculated the large sample 

bounds following Zhang & Rubin (2003). The bounds are calculated under different assumptions 

about the principal strata. 

## Large-sample bounds (Zhang and Rubin, 2003) ## 

dfx <- dfm[dfm$PSCOREW==1,] 

R <- dfx$R # retention under actual treatment 

D <- dfx$D # treatment indicator 

Yobs <- dfx$Y # observed outcome 

 

# observed groups 

CG <- Yobs[(D==0 & R==1)] 

TG <- Yobs[(D==1 & R==1)] 

P_CG <- length(CG)/length(Yobs[D==0]) 

P_TG <- length(TG)/length(Yobs[D==1]) 

minpi_DG <- max(0,P_CG-P_TG) 

maxpi_DG <- min(P_CG,(1-P_TG)) 

minESnoA <- NULL # ES lower bound no assumptions 

maxESnoA <- NULL # ES upper bound no assumptions 

minESA2 <- NULL # ES lower bound ranked ave score 
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maxESA2 <- NULL # ES upper bound /ranked ave score 

 

for (pi_DG in seq(minpi_DG,maxpi_DG,0.001)) { 

 minESnoA <- c(minESnoA, 

  mean(sort(TG,decreasing=FALSE)[1:min(((P_CG/P_TG-    

   pi_DG/P_TG)*length(TG)),length(TG))]) - 

  mean(sort(CG,decreasing=TRUE)[1:min(((1-  

   (pi_DG/P_CG))*length(CG)),length(CG))])) 

  

 maxESnoA <- c(maxESnoA, 

  mean(sort(TG,decreasing=TRUE)[1:min(((P_CG/P_TG- 

   pi_DG/P_TG)*length(TG)),length(TG))]) - 

  mean(sort(CG,decreasing=FALSE)[1:min(((1-  

   (pi_DG/P_CG))*length(CG)),length(CG))]))    

 

 minESA2 <- c(minESA2, 

  mean(sort(CG,decreasing=TRUE)[1:min(((1- 

   pi_DG/P_CG)*length(CG)),length(CG))])) 

 

 maxESA2 <- c(maxESA2, 

  mean(sort(TG,decreasing=TRUE)[1:min((max(1, 

  (P_CG/P_TG-pi_DG/P_CG)*length(TG))),length(TG))])- 

  mean(CG)) 

 

 #no assmputions ("noA") 

  minESnoA <- min(minESnoA) 

  maxESnoA <- max(maxESnoA) 

   

 #monotonicity assumption ("A1") - pi_DG=0 

  minESA1 <- mean(sort(TG,   

   decreasing=FALSE)[1:min(((P_CG/P_TG)*length(TG)),   

   length(TG))]) - mean(CG) 

   

  maxESA1 <- mean(sort(TG,  

   decreasing=TRUE)[1:min(((P_CG/P_TG)*length(TG)),  

   length(TG))]) - mean(CG)  

   

 #ranked average score assumption ("A2") 

  minESA2 <- mean(TG)-max(minESA2) 

  maxESA2 <- max(maxESA2) 

   

 # monotonicity & ranked average score ("A1A2") 

  minESA1A2 <- mean(TG)-mean(CG) 

  maxESA1A2 <- mean(sort(TG,  

   decreasing=TRUE)[1:min(((P_CG/P_TG)*length(TG)),  

   length(TG))])-mean(CG) 
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  B <- matrix(c(minESnoA,maxESnoA,minESA1,maxESA1,  

   minESA2,maxESA2,minESA1A2,maxESA1A2),  

   4,2,byrow=TRUE) 

  rownames(B) <- c("none","A1","A2","A1+A2") 

  colnames(B) <- c("lower","upper") 

} 

 



 

 

Appendix B 

Summary of Simulation Study Results 

Table B1 

Simulation study 1 results, by condition and estimation method 

    Proportion of Encouragers to Always Stayers 

  

Small 

 

Medium 

 

Large 

U-R Effect Method Bias RMSE Type I   Bias RMSE Type I   Bias RMSE Type I 

             None ANCOVA -0.001 0.031 0.041 

 

0.002 0.033 0.051 

 

-0.001 0.037 0.043 

 

Main Match -0.001 0.034 0.042 

 

0.002 0.038 0.057 

 

-0.002 0.045 0.050 

 

Re-Match -0.001 0.034 0.044 

 

0.002 0.036 0.060 

 

-0.001 0.038 0.047 

 

Intact Pairs -0.001 0.037 0.039 

 

0.001 0.044 0.050 

 

0.000 0.060 0.045 

 

Impute Y 0.000 0.035 0.048 

 

0.002 0.039 0.059 

 

-0.002 0.047 0.064 

 

Impute R -0.001 0.034 0.016 

 

0.002 0.039 0.012 

 

-0.002 0.046 0.004 

             Moderate ANCOVA -0.026 0.041 0.131 

 

-0.046 0.056 0.262 

 

-0.090 0.098 0.669 

 

Main Match -0.024 0.042 0.105 

 

-0.041 0.055 0.187 

 

-0.081 0.093 0.425 

 

Re-Match -0.024 0.043 0.111 

 

-0.041 0.053 0.211 

 

-0.086 0.095 0.583 

 

Intact Pairs -0.021 0.044 0.081 

 

-0.037 0.056 0.134 

 

-0.076 0.096 0.256 

 

Impute Y -0.023 0.042 0.100 

 

-0.041 0.055 0.183 

 

-0.079 0.093 0.426 

 

Impute R -0.021 0.041 0.051 

 

-0.037 0.052 0.045 

 

-0.073 0.087 0.086 

             Large ANCOVA -0.056 0.064 0.392 

 

-0.093 0.099 0.784 

 

-0.179 0.183 0.998 

 

Main Match -0.051 0.062 0.294 

 

-0.085 0.093 0.600 

 

-0.162 0.168 0.941 

 

Re-Match -0.049 0.060 0.270 

 

-0.085 0.092 0.651 

 

-0.171 0.175 0.990 

 

Intact Pairs -0.045 0.059 0.211 

 

-0.078 0.089 0.424 

 

-0.150 0.161 0.703 

 

Impute Y -0.049 0.061 0.278 

 

-0.084 0.092 0.567 

 

-0.160 0.166 0.898 

 

Impute R -0.046 0.058 0.152 

 

-0.077 0.086 0.298 

 

-0.147 0.154 0.563 

                          

 



 

 

Table B2 

Simulation study 2 results, by condition and estimation method 

    Proportion of Encouragers to Always Stayers 

Effect 

 

Small 

 

Medium 

 

Large 

Heterogeneity Method Bias RMSE Coverage   Bias RMSE Coverage   Bias RMSE Coverage 

             Small ANCOVA -0.053 0.062 0.634 

 

-0.065 0.073 0.520 

 

-0.103 0.110 0.241 

 

Main Match -0.021 0.041 0.926 

 

-0.026 0.047 0.898 

 

-0.049 0.068 0.828 

 

Re-Match -0.018 0.040 0.937 

 

-0.034 0.050 0.836 

 

-0.079 0.089 0.506 

 

Intact Pairs 0.005 0.038 0.960 

 

0.003 0.046 0.938 

 

-0.014 0.063 0.944 

 

Impute Y -0.021 0.041 0.930 

 

-0.026 0.047 0.893 

 

-0.049 0.069 0.803 

 

Impute R 0.001 0.035 0.981 

 

0.001 0.040 0.987 

 

-0.013 0.050 0.992 

             Medium ANCOVA -0.102 0.108 0.178 

 

-0.133 0.138 0.050 

 

-0.204 0.208 0.002 

 

Main Match -0.038 0.055 0.818 

 

-0.055 0.068 0.745 

 

-0.094 0.108 0.512 

 

Re-Match -0.034 0.053 0.846 

 

-0.071 0.081 0.541 

 

-0.156 0.165 0.109 

 

Intact Pairs 0.015 0.047 0.924 

 

0.006 0.048 0.949 

 

-0.028 0.073 0.907 

 

Impute Y -0.042 0.058 0.805 

 

-0.059 0.072 0.729 

 

-0.096 0.110 0.498 

 

Impute R 0.005 0.041 0.973 

 

-0.002 0.042 0.991 

 

-0.023 0.060 0.985 

             Large ANCOVA -0.208 0.213 0.003 

 

-0.269 0.273 0.000 

 

-0.404 0.407 0.000 

 

Main Match -0.082 0.096 0.573 

 

-0.115 0.127 0.363 

 

-0.183 0.195 0.132 

 

Re-Match -0.072 0.087 0.632 

 

-0.146 0.154 0.127 

 

-0.308 0.318 0.009 

 

Intact Pairs 0.026 0.061 0.901 

 

0.007 0.061 0.927 

 

-0.048 0.096 0.882 

 

Impute Y -0.101 0.112 0.435 

 

-0.132 0.142 0.244 

 

-0.194 0.205 0.126 

 

Impute R 0.005 0.051 0.965 

 

-0.008 0.057 0.978 

 

-0.039 0.082 0.972 

                          

 


