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are less correlated with value-added measures with teacher fixed effects when there is evidence of nonrandom grouping of students 
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Abstract
School districts and state departments of education frequently must choose

between a variety of methods to estimating teacher quality. This paper ex-
amines under what circumstances the decision between estimators of teacher
quality is important. We examine estimates derived from student growth per-
centile measures and estimates derived from commonly used value-added
estimators. Using simulated data, we examine how well the estimators can
rank teachers and avoid misclassification errors under a variety of assign-
ment scenarios of teachers to students. We find that growth percentile mea-
sures perform worse than value-added measures that control for prior year
student test scores and include teacher fixed effects when assignment of stu-
dents to teachers is nonrandom. In addition, using actual data from a large
diverse anonymous state, we find evidence that growth percentile measures
are less correlated with value-added measures with teacher fixed effects
when there is evidence of nonrandom grouping of students in schools. This
evidence suggests that the choice between estimators is most consequential
under nonrandom assignment of teachers to students, and that value-added
measures controlling for teacher fixed effects may be better suited to esti-
mating teacher quality in this case.
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versity. The opinions expressed are those of the authors and do not represent views of the Institute
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1 Introduction

Currently researchers and policymakers can choose among a number of statistical

approaches to measuring teacher effectiveness based on student test scores. Given

a relative lack of easily accessible information on the pros and cons of different

methodological choices, the choice of a method is often based on replicating what

others in similar contexts or disciplines have done rather than carefully weigh-

ing the relative merits of each approach. Policymakers, for example, will often

opt for a procedure that has been used in other states. An example is the in-

creasingly popular student growth percentile (SGP) model, which has been used

extensively in Colorado and has now spread to other states such as Indiana and

Massachusetts.1 Researchers, on the other hand, have tended to rely on value-

added models (VAMs) based on OLS or GLS regression techniques. The distinc-

tion between growth modeling procedures and OLS-based value-added models in

the context of teacher performance evaluation, and the relative merits of each ap-

proach, have not been fully explored. This paper contributes to this investigation.

Teacher performance measures can be used for different purposes. Typically,

researchers or administrators use them to rank a set of teachers in terms of their

effectiveness–those in a particular grade or district, for example. Both SGPs and

VAMs can be used for this purpose. One distinction between VAMs and SGPs,

however, is that the former can produce an estimate of the magnitude of a teacher’s

effectiveness in terms of achievement and the latter yield information only on a

1Due to its long term use in Colorado, this method is sometimes referred to as the “Colorado
growth model.”
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teacher’s effect on his or her students’ relative position in the growth distribu-

tion.2 When test scores are vertically scaled from one year to the next or in a

standardized form, VAM estimates can be interpreted as the average amount of

achievement growth an individual teacher contributes to his or her students.3 This

distinction between VAMs and SGPs disappears, however, when percentile scores

are used in place of vertically scaled or standardized test scores in value-added

regressions.

Since both SGPs and VAMs are primarily used in practice to rank teachers

on the basis of their measured effectiveness, we investigate the relative merits of

SGPs versus VAMs with regard to the goal of ranking teachers by their effective-

ness, since both approaches can accomplish this task and are typically used in this

manner. Both types of approaches face a common set of challenges when applied

to the task of determining teacher effectiveness rankings. Perhaps the most im-

portant of these is the issue of bias under conditions of nonrandom assignment

of students to teachers. To compare how well the two approaches deal with this

challenge, we use them to rank teachers using simulated data in which the true

underlying effects are known. The simulated data sets are created to represent

2This distinction permits policymakers and others to claim that growth models are not value-
added models.

3Vertically scaled test scores allow for a comparison of student knowledge across years. In
theory, with a vertical scale, a student score of 500 in third grade and a score of 550 in fourth
grade would indicate that the student made a 50 point learning gain. However, it is sometimes
the case that so-called vertical scales produce very similar scores for individual students from
year to year, leading one to question whether they truly capture growth over time. The issue of
whether the vertical scales can successfully be produced by test developers is controversial. For
instance, Ballou (2009) and Barlevy & Neal (2011) critique the use of a vertical scale in teacher
performance evaluation, and Briggs & Weeks (2009) show that school-level value-added estimates
can be sensitive to different scaling methods.
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varying degrees of challenge to the estimation process: some of our data gener-

ating processes randomly assign students to teachers, others do so in nonrandom

ways. In addition to the simulation study, we compare growth percentile models

to VAMs using administrative data from a large diverse southern state.

Previous studies comparing SGPs with VAMs in measuring educational per-

formance have focused on empirical investigations of actual data. Wright, White,

Sanders, & Rivers (2010) compares the EVAAS methodology with student per-

centile growth models – both of which make the assumption that teacher effects

are uncorrelated with the regressors – and finds substantial agreement. Gold-

haber, Walch, & Gabele (2013) compare a subset of value-added models that treat

teacher effects as fixed, meaning the teacher effects can be arbitrarily correlated

with the regressors, with student growth percentile models and find varying de-

grees of divergence depending upon on the characteristics of the sample. Ehlert,

Koedel, Parsons, & Podgursky (2013) investigate school-level value added and

find substantial divergence between growth percentile models and certain types of

VAMs.

A primary contribution of our study is to use simulations to understand and

explain the fundamental differences among the estimators and to then target the

investigation of empirical data in ways that highlight the conditions under which

they diverge and how these may affect policy applications regarding teacher value-

added. We find that growth percentile models and VAMs rank teachers very sim-

ilarly when students are randomly assigned to teachers. However, when students

are nonrandomly assigned to teachers, VAMs that control for teacher assignment
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outperform both growth percentile models and other VAMs that assume the re-

gressors and teacher effects are uncorrlelated, such as those that average residuals

or employ empirical Bayes. Thus a key distinction to be made among different

models to estimate and rank teacher effectiveness is whether or not they control

for teacher assignment.

We begin with a description of the different types of models, beginning with

two SGP approaches and following with three types of VAMs. We then apply the

various estimators to the task of ranking teachers using simulated data and com-

pare their ability to rank teachers accurately. Following this, we compare teacher

rank correlations across the different estimators in real data to investigate the con-

sequences of using one method versus another. This is followed by a discussion

and conclusions.

2 Description of the Models

Both growth percentile and value-added approaches can take various forms. In

this paper, we consider two SGPs commonly used in practice, both based on the

work of Betebenner (2012).4 In one case, teachers are rated on the median stu-
4There are other percentile (or rank) based methods that are similar to the SGP methods, such

as the approach proposed in Barlevy & Neal (2011) as a basis for distributing merit pay to teachers
and applied by Fryer, Levitt, List, & Sadoff (2012) in an experimental context, although its use in
accountability policies is rare. The method consists of matching students based on their test score
histories. Each student is matched to nine other students in, say, the district, with similar prior
year test scores, and then teachers are evaluated on how their students compare to the nine other
students they are matched with. We have examined the matching estimator proposed by Fryer,
Levitt, List, & Sadoff (2012) using our simulations and found that it performed similarly to the
SGP methods evaluated.
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dent growth percentile of their students, and, in the other, teachers are rated on

the mean student growth percentile. We also consider more than one type of

commonly-used value-added model. One is based on a dynamic specification

that treats teacher effects as fixed by partialling them out from other covariates.

Another computes teacher effects by averaging residuals, thus not partialling out

teacher assignment from the covariates. The third is an Empirical Bayes’ (EB)

approach, which uses generalized least squares (GLS) to estimate the parameters

on the covariates and then uses a shrinkage estimator on the GLS residuals to ob-

tain the teacher effects. It, too, does not partial out teacher assignment from the

other covariates. The EB approach is a special case of a hierarchical linear model

(HLM).

2.1 SGP Estimation Procedure

The SGP creates a metric of teacher effectiveness by calculating the median or

mean conditional percentile rank of student achievement in a given year for stu-

dents in a teacher’s class. For a particular student with current year score Aig and

score history {Ai,g−1,Ai,g−2, ...,Ai,1}, one locates the percentile corresponding to

the student’s actual score, Aig, in the distribution of scores conditional on having a

test score history {Ai,g−1,Ai,g−2, ...,Ai,1}. In short, the analyst evaluates how high

in the distribution the student achieved, given their past scores. Then teachers are

evaluated by the median or mean conditional percentile rank of their students.

Here, we briefly describe the estimation procedure used in the SGP model.

Details of this approach can be found in Betebenner (2011) . Quantile regressions
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are used to estimate features of the conditional distribution of student achieve-

ment. In particular, one estimates the conditional quantiles for all possible test

score histories, which are then used for assigning percentile ranks to students. Us-

ing the notation in Betebenner (2011), the τ-th conditional quantile is the value

Qy(τ|x) such that

Pr(y≤ Qy(τ|x)|x) = τ. (1)

The conditional quantiles are then modeled for achievement scores as:

QAig(τ|Ai,g−1,Ai,g−2, ...,Ai,1) =
g−1

∑
j=1

6

∑
k=1

φik(Ai, j)βik(τ), (2)

where φik denote B-spline basis functions of prior test scores. Six knots are used at

the lowest score, 20th percentile, 40th percentile, 60th percentile, 80th percentile,

and the highest score5. As discussed in Betebenner (2011) , the B-spline functions

are chosen to improve model fit by adding flexibility in the treatment of prior test

scores as covariates, primarily in that they allow for nonlinearities in the relation-

ship between current and prior scores. Several available prior year test scores can

be used as regressors, if available, and estimation is done using quantile regres-

sion. In practice, student and family background variables are not included in the

regressions.6

5These knots were chosen based on a phone conversation with Dr. Betebenner. We would like
to thank him for his valuable time and generous help with the details of the model.

6There is no conceptual reason why these other student background variables cannot be in-
cluded. Future work examining how the omission of these variables affects estimates may be
useful, although it is beyond the scope of this study.
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To be specific, 100 quantile regressions are estimated, one for each percentile.7

Regressions are run separately for each grade and year. Conditional test scores are

estimated for each percentile by generating fitted values from the regressions as

follows:

Q̂Aig(τ|Ai,g−1,Ai,g−2, ...,Ai,1) =
g−1

∑
j=1

6

∑
k=1

φik(Ai, j)β̂ik(τ). (3)

A student’s conditional percentile rank is then computed by counting the number

of conditional percentiles that result in fitted test scores that are smaller than the

student’s current grade test score, Aig. For example, a student has a conditional

percentile rank of 20 if there are 20 percentiles estimated lower than or equal to

their score,8 in which case:

Q̂Aig(.20|Ai,g−1,Ai,g−2, ...,Ai,1)≤ Aig < Q̂Aig(.21|Ai,g−1,Ai,g−2, ...,Ai,1). (4)

Once conditional percentile ranks are computed for all students, teachers are as-

signed a score equal to the median or mean conditional percentile rank of the

students within their class. These scores cannot reveal how much better students
7In practice, sometimes more than 100 quantile regressions are estimated. It is more correct

to say that 100 quantile regressions are run for each unique combination of prior year scores. As
described in Betebenner (2011), if students are missing prior year scores, then all available scores
up to, say, three are used. This means that multiple sets of 100 quantile regressions are computed
for the different combinations of available prior year scores.

8In this illustration and throughout the paper, we allow for the estimation of 100 conditional
quantiles for simplicity. In the R SGP software, it is possible to estimate several more intermediate
percentiles, such as .005, .015, etc.
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performed in one teacher’s class compared with another, but can be used to form

rankings of teachers by their estimated effectiveness.9

An attractive feature of growth percentile models is that, once computed, the

student growth percentiles can be used to provide a variety of descriptive portraits.

Such models were originally developed to provide a description of student growth

and were not intended to form the basis for determining the impact of individual

teachers (Betebenner (2009)). However, it is important to note that these measures

have played a role in school accountability policies for several years, particularly

in states such as Colorado.

2.2 VAMs

Value added models attempt to model the achievement process over time and are

based on the broad notion that achievement at any grade can be modeled as a

function of both past and current child, family, and schooling inputs.10 In its most

general formulation, the model can be expressed as:

Aig = fg(Eig, . . . ,Ei0,Xig, . . . ,Xi0,ci,uig), (5)

9VAM models attempt to show how much a student’s achievement increases after being ex-
posed to a teacher. SGPs position students on a percentile distribution corresponding to their
growth. Therefore, an underlying achievement distribution with a large spread can produce the
same teacher ratings for the SGP model as an underlying distribution with a tight spread, so we do
not know how much growth is associated with a particular teacher. VAMs using percentile scores
instead of actual or standardized achievement scores would also be subject to this limitation, how-
ever.

10See Hanushek (1979) or Todd & Wolpin (2003)
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where Aig is achievement of student i in grade g, Eig is a vector of educational in-

puts including teacher, school, and classroom characteristics, and, in some cases, a

set of teacher indicators, Xig consists of a set of relevant time-varying student and

family inputs, ci is an unobservable student fixed effect (representing, for exam-

ple, motivation, some notion of sustained ability, or some persistent behavioral or

physical issue that affects achievement), and the uig is an idiosyncratic, time vary-

ing error term. In this very general formulation, the functional form is unspecified

and can vary over time.

To estimate this function, several assumptions are generally made. The func-

tional form is considered to be more or less linear and unchanging over time,

learning “decay” (that is, the amount of forgetting that takes place over time) is

generally assumed to be constant for all inputs over time, and the time-constant

student effect is assumed to either be ignorable or, at least, constant in its impact

over time11. The resultant value-added model is typically expressed as follows:

Aig = λAi,g−1 +Eigβ +Xigγ + ci + eig, (6)

where Ai,g−1 is the prior year achievement score of student i and only current

schooling and family inputs are required for estimation.12 When value-added

models are used to estimate teacher effects, the Eig vector generally consists of

11For a full explication of the assumptions applied in value-added models and the statistical
properties of different value-added estimators, see Todd & Wolpin (2003), Harris, Sass, & Semyk-
ina (2011), and Guarino, Reckase, & Wooldridge (2015)

12It is also common to include multiple prior years of achievement, other subject scores, and
sometimes polynomials of both as regressors.
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indicator variables for specific teachers.13

There are several ways of estimating equation (6) to compute teacher effects.

We focus on three value-added estimators that form the basis for most of the com-

mon procedures currently in use. A potentially useful feature of value-added es-

timators is that, with a vertical scale, an analyst can not only rank teachers but

also judge, subject to sampling variation, how much more one teacher contributes

to student achievement than another. Of course, the estimates can also be used

simply to order teachers according to their effectiveness.

2.2.1 Dynamic OLS (DOLS)

A simple estimator for equation (6) involves OLS regression to estimate λ , β , and

γ . We refer to this estimator as “dynamic” OLS, because it contains the lagged test

score (or in many applications, more than one lagged score) on the right hand side

of the equation. The DOLS estimator, using our terminology, also contains a full

set of teacher indicator variables.14 Teacher effect estimates are then constructed

from the coefficients on the teacher indicator variables. This estimator ignores

the presence of ci, but the inclusion of teacher indicators in addition to prior year

test scores specifically adjusts the teacher effect estimates for nonrandom assign-

ment to students based on prior year scores, as explained in Guarino, Reckase, &

Wooldridge (2015). An additional feature of DOLS is that it allows for the di-

13The vector may also consists of exposure variables (i.e. the fraction of the year that a student
spends with a particular teacher).

14Instead of binary indicator variables, one can also include a student’s level of exposure to a
teacher.
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rect estimation of standard errors pertaining to each teacher effect estimate, thus

enabling researchers to determine whether a teacher is statistically significantly

different from, say, an average teacher.15

2.2.2 Average Residual (AR) and Empirical Bayes’ (EB-Lag)

Another approach to estimating equation (6) is to use OLS regression to estimate

λ and coefficients on the other covariates without including teacher indicators in

the regressions. The student-level residuals from this regression are then averaged

for each teacher to provide a measure of teacher effectiveness: hence we refer to

this method as the average residual estimator (AR). Since AR does not partial out

teacher assignment from the covariates, an assumption is made that teacher as-

signment is not correlated with the regressors – meaning essentially that students

are randomly assigned to teachers – if the goal is to isolate the contribution of

teachers from other important factors.16

Often researchers and policy analysts choose to shrink the average residual

measures towards the mean teacher effect, with the shrinkage term being related

to the variance of the unshrunken estimator. This is often referred to as an Em-
15The proper computation of these standard errors is still an under researched topic and is be-

yond the scope of this paper. See Bibler, Guarino, Reckase, Vosters, & Wooldridge (2014) for an
investigation of this issue. Moreover, it may be possible to compute a type of standard error using
bootstrapping techniques for SGP and other models as well, but little work has been done in this
area, and it beyond the scope of this paper.

16Ehlert, Koedel, Parsons, & Podgursky (2013) argue that methods such as AR, which control
for student covariates but do not adjust for teacher assignment, may induce teachers to exert opti-
mal effort and be preferable to methods that more accurately identify individual teachers’ causal
impact on learning. However, we maintain that identifying causal effects is an important policy
goal and treat it as the object of interest in this paper.
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pirical Bayes’ approach, although the true Empirical Bayes’ relies on GLS rather

than OLS.17 The variance of the estimator for an individual teacher effect can dif-

fer from teacher to teacher because of differences in class size as well as other

sources of heteroskedasticity. Estimates for teachers with smaller class sizes will

be shrunk more than those with larger class sizes. In our simulation, we only es-

timate the unshrunken average residual measure, since we do not vary class size

and there are no sources of heteroskedasticity. In this special case, the unshrunken

average residuals are perfectly correlated with the shrunken estimates, since the

shrinkage term is identical for every teacher. In our application of value-added

models to actual administrative data, we examine the Empirical Bayes’ estimator

based on GLS, which we abbreviate as EB-Lag.18

2.3 Adjusting for Teacher Assignment

As discussed in Guarino, Reckase, & Wooldridge (2015) the decision not to in-

clude teacher indicators in the VAM regression can be costly when the assignment

of teachers to students is nonrandom because the correlation between the assign-

ment mechanism (say, prior test scores) and teacher effects is not partialled out of

17See Guarino, Maxfield, Reckase, Thompson, & Wooldridge (Accepted for Publication) for a
complete derivation and explanation of the Empirical Bayes’ estimator in its application to teacher
evaluation. As desribed there, for mechanical reasons the EB estimator is often much closer to
DOLS than is the AR estimator under nonrandom assignment.

18The results with the AR estimator are available upon request. The results for the shrunken
AR estimator are very similar to the Empirical Bayes’ estimator based on GLS. In our actual data,
the correlation between the two estimators is .998, and the differences seen in the correlations and
misclassification rates for teachers in schools with evidence of nonrandom grouping and teachers
in schools with little evidence of nonrandom grouping discussed below for the Empirical Bayes’
estimator are very similar for the shrunken AR estimator.
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the effect estimates, such as in the case of the estimators that average the resid-

uals. A type of omitted variable bias can affect the teacher effect estimates if

we are unable to control for the assignment mechanism. Under random assign-

ment of students to teachers, many omitted variable issues would be considerably

mitigated.

Also, under nonrandom assignment of teachers to students, it may no longer

be possible to attribute high performance in rankings produced by the SGP esti-

mator to good teaching. To illustrate the reason, consider a case in which the best

students are assigned to the best teachers and the worst students are assigned to

the worst teachers in a model school district with 4 teachers and 4 classrooms:

The four teachers have differing teacher abilities. Let teacher i have teaching

ability βi and

β1 < β2 < β3 < β4.

Suppose that all students within a classroom are identical. Also, suppose that

classroom 1 and classroom 2 have identical initial achievement, A1,g−1 = A2,g−1

and classroom 3 and classroom 4 have identical initial achievement, A3,g−1 =

A4,g−1.

A1,g−1 = A2,g−1 < A3,g−1 = A4,g−1

Also, assume for simplicity that teachers are the only input into achievement.

In the SGP approach, students are compared with other students with the same

initial achievement levels. Since students in classrooms 1 and 2 are identical at the
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start of the year, students in classroom 1 and 2 will be compared with one another.

Students in classrooms 3 and 4 will be compared with one another as well, since

their initial achievement levels are the same. Also, since β1 < β2 then all students

in class 1 score below students in class 2 at the end of the year. In this case, the

median or mean conditional percentile of teacher 1’s students will be below the

median for teacher 2’s students. Likewise the median conditional percentile of

teacher 3’s students will be below teacher 4’s.

Using the SGP approach, teachers 1 and 3 actually will have the same median

conditional percentile and so teachers 1 and 3 will have the same ranking, even

though β1 < β3. Teacher 3 will also be rated below teacher 2, even though β2 < β3.

Finally, teachers 2 and 4 will have the same rankings, even though β2 < β4.

In this simple illustration, nonrandom assignment of teachers to students can

lead to the wrong conclusions in some cases. While this problem could be po-

tentially addressed by including teacher indicators in the quantile regressions, in

practice, including these variables can make the estimation procedure very com-

putationally intensive, and quick techniques such as demeaning data do not have

theoretical justification in quantile regression. This makes the problem of nonran-

dom assignment of teachers to students difficult to address in SGP approaches.
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3 Simulation

3.1 Data Generating Process

Our data are constructed to represent one elementary grade that normally under-

goes standardized testing in a hypothetical district. To mirror the basic structural

conditions of an elementary school system for, say, grade 3, we create data sets

that contain students nested within teachers nested within schools. Our simple

baseline data generating process is as follows:

Ai3 = λAi2 +βi3 + ci +ui3, (7)

where Ai2 is a baseline score reflecting the subject-specific knowledge of child

i entering third grade, Ai3 is the achievement score of child i at the end of third

grade, λ is a time constant persistence parameter, βi3 is the teacher-specific con-

tribution to growth (the true teacher value-added effect), ci is a time-invariant

child-specific effect, and ui3 is a random deviation for each student. We assume

independence of ui3. We assume that the time-invariant child-specific heterogene-

ity ci is correlated at about 0.5 with the baseline test score Ai2. In the simulations

reported in this paper, the random variables Ai2, βi3, ci, and ui3 are drawn from

normal distributions. The standard deviation of the teacher effect is .25, while

that of the student fixed effect is .5, and that of the random noise component is

1, each representing approximately 5, 19, and 76 percent of the total variance in
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achievement gains over the course of the year, respectively.19

Our data structure has the following characteristics that do not vary across

simulation scenarios:

• 10 schools

• 1 grade (3rd grade), with a base score in 2nd grade

• 4 teachers per grade and school (thus 40 teachers overall)

• 20 students per classroom

• 4 cohorts of students

• No crossover of students to other schools

To create different scenarios, we vary certain key features: the grouping of stu-

dents into classes, the assignment of classes of students to teachers within schools,

and the amount of decay in prior learning from one period to the next. Students

are grouped either randomly or dynamically. In the case of dynamic grouping,

students are ordered, with some noise included, by their prior year achievement

scores and grouped into classrooms. In this scenario, the students with the low-

est prior year scores tend to be grouped in classes together, and students with the

19These relative effect sizes are based on prior research (e.g. Nye, Konstantopoulos, & Hedges
(2004), McCaffrey, Lockwood, Koretz, Louis, & Hamilton (2004), and Lockwood, McCaffrey,
Hamilton, Stecher, Le, & Martinez (2007)). We changed the relative effect sizes as sensitivity
checks and found no substantive differences.
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highest scores tend to be grouped together.20

Also, there is random assignment and nonrandom assignment of teachers to

the classrooms. There are two nonrandom assignment scenarios. The first is pos-

itive assignment, where the best teachers are assigned to the highest performing

classrooms. The second is negative assignment, where the worst teachers are as-

signed to the highest performing classes. We vary the amount of persistence in

past test scores, λ , in the data generating process. We consider a case with full

persistence, λ = 1, and partial persistence, λ = .5.

Simulations are performed using Stata. One hundred simulation replications

are performed for each grouping-assignment-persistence rate combination.

3.2 Simulation Results from Main Analysis

Table 1 displays Spearman rank correlations of the estimated teacher effects with

the true teacher effects for each estimator under each grouping and assignment

scenario. In addition, we present a measure of misclassification. The measure we

choose is the percentage of teachers who have a true teacher effect above the 25th

20The amount of noise built into the assignment process yields patterns of variance that are
consistent with what is found in Aaronson, Barrow, & Sander (2007) in their investigation using
real data from Chicago public schools. The authors compare the average standard deviation of
prior year achievement within classrooms in their data with a simulated average standard deviation
in the case in which students are randomly assigned to classrooms. The authors find that the
average standard deviation under random assignment is roughly 1.2, while the average standard
deviation in their data is roughly 1. In our simulations, the average standard deviation of prior
year achievement within classrooms under random assignment is 1, while the average standard
deviation under nonrandom assignment is .75. Of course, the degree of sorting can greatly vary
from school to school, as found in Dieterle, Guarino, Reckase, & Wooldridge (2015, published
online July 2014). The degree of sorting introduced into this simulation may actually understate
the amount of sorting in a nontrivial number of schools.
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percentile but who are rated in the bottom 25% using the estimated teacher quality

measure.

In the random grouping and random assignment scenario (RG-RA) all of the

estimators perform fairly well. The results for λ set to 1 and for λ set to .5 are sim-

ilar. Both VAMs outperform the SGP models, but these latter models still perform

reasonably well, with rank correlations of around .82 and .87. Misclassification

rates are around 8% for all estimators, with the exception of DOLS at 6% in one

scenario and the SGP-Median estimator, with a slightly larger misclassification

rate of 10% in the case of the true vertically scaled scores and 9% in the case of

the standardized scores.

In the case of dynamic grouping coupled with random assignment of groups

to teachers (DG-RA) the results are quite similar to those for the RG-RA scenario.

The rank correlations for DOLS and AR drop only slightly to .87, stay the same

for the SGP-Mean, and increase one percentage point for the SGP-Median. The

misclassificaiton rates are fairly stable as well.

Once assignment of teachers to students is nonrandom the patterns change

considerably. In the DG-PA scenario, in which students with the highest prior year

achievement level tend to be assigned to teachers with the highest value added, the

growth percentile estimators perform far worse than DOLS. The DOLS estimator

maintains a rank correlation of .88, whereas the rank correlations of the SGP-

Median and SGP-Mean estimators fall to .71 and .76 respectively in the λ = 1 and

λ = .5 cases. The rank correlation also decreases markedly for AR, which, like

the SGPs, fails to properly partial out the relationship between teacher and student
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quality. The misclassification rates show a similar pattern. DOLS does the best in

terms of misclassification, while the SGP-Median and SGP-Mean estimators have

misclassification rates that increase roughly 2-3 percentage points compared with

the random assignment scenarios.

The results for the dynamic grouping with negative assignment (DG-NA) case

look similar to those for the DG-PA scenario. DOLS outperforms the AR, SGP-

Median, and SGP-Mean estimators because it partials out the relationship between

teacher and student quality.

3.3 Simulation Results for Sensitivity Analyses

Our simulations are intentionally simplified to highlight the behavior of the esti-

mators we consider under conditions of random and nonrandom assignment. For

example, for simplicity, we have thus far utilized a data-generating process in

which the relationship between current and prior scores is linear. To relax this

restriction and test the sensitivity of our results to this assumption, we also gener-

ated test score data in which a squared prior year test score term is included in the

data-generating process. In this case, the SGP estimators can outperform DOLS

when the generated coefficient on the squared term is set to an implausibly large

number such as 1 (results are not reported but are available upon request). How-

ever, the difference is driven simply by the functional form in which prior test

scores enter the model. Once the DOLS specification is rendered more flexible

by including a polynomial or B-spline function of prior test scores, it regains its

status as the best estimator across random and nonrandom assignment scenarios
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in the simulation.

Moreover, it is unlikely that nonlinear relationships between current and prior

scores are a significant feature of real data. In our actual data, we find that the

coefficient on the squared term in a regression of math achievement on math prior

achievement, prior achievement squared, other student demographics, and teacher

indicators is estimated to be around .05 rather than a large number like 1. More-

over, when we compare estimated teacher effects from the basic DOLS estimator

with those from a DOLS estimator that includes the square and cube of prior year

test scores in the real data, we find that the estimates are very highly correlated

(around .99), signaling that nonlinearities do not exist in actuality in a way that

impacts teacher quality measures.

Also in an effort to keep the simulation simple, we did not include other de-

mographic characteristics of students, such as, say, ELL status, in the test-score

data-generating process, nor did we sort students on the basis of these character-

istics in our simulation. However, it would logically follow that a DOLS type

estimator that also controls for such observables will outperform the other estima-

tors under nonrandom assignment based on these characteristics, since neither the

SGP nor the AR models control for teacher assignment and the SGP estimators,

in particular, typically omit student demographics as well.

One claim that could be made about the SGP approaches is that the teacher

rankings may be more robust to outliers, since the quantile regression estimators

used in the ranking method are themselves less affected by outliers. If the distribu-

tion is thicker tailed, the SGP model may perform better than the estimators based
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on OLS. As a further robustness check, therefore, we examine the performance of

the estimators when the idiosyncratic error term ui3 is drawn from a t distribution

with three degrees of freedom. The t distribution with three d.f. has much thicker

tails than the normal distribution. Figure 1 in the appendix shows the pdf of the

Normal(0,1) pdf and the t(3) pdf.

Results are reported in Table 2. Only results using the vertically scaled test

scores are reported. Under random grouping and random assignment (RG-RA)

the SGP-Median and particularly the SGP-Mean estimators outperform the value-

added estimators. The SGP-Median estimator has a rank correlation of .72, and

the SGP-Mean estimator has a rank correlation of .79 in the λ = 1 case. The

value-added estimators have a slightly lower rank correlation of .71.

Under the dynamic grouping and nonrandom assignment (DG-PA and DG-

NA) scenarios, however, DOLS again outperforms the SGP estimators, which do

not properly partial out the relationship between the covariates and the teacher’s

value-added. The rank correlation for DOLS remains relatively stable at .70 and

.71 for the DG-PA and DG-NA scenarios in the λ = 1 case. The rank correlation

for the SGP-Median estimator drops to .57 and .59 for the DG-PA and DG-NA

scenarios, and the rank correlation drops to .66 and .66 for the SGP-Mean estima-

tor.

An important takeaway from this analysis is that there may be cases in which

using the SGP estimators is preferable. One case may be when the distribution is

thick tailed and there is random grouping and assignment. However, as the sim-

ulations show, even in the thick tailed case, nonrandom grouping and assignment
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still poses a threat to the SGP estimators.

4 Empirical Analysis

We now examine the correlations between the estimators using real data. A main

finding from the simulations was that the DOLS estimator and the SGP estima-

tor provide similar rankings under random assignment, but somewhat different

rankings under nonrandom assignment. Using the real data, we find patterns sug-

gesting a similar relationship between DOLS and the SGP estimators when we

compare correlations and classification rates for teachers in schools with little ev-

idence of nonrandom grouping with those using teachers in schools with evidence

of nonrandom grouping.

4.1 Data

We use administrative data from a large and diverse anonymous school district. It

consists of 215,411 usable student year observations from years 2002-2007 and

grades 5 and 6. Student-teacher links are provided. Also, basic student infor-

mation, such as demographic, socio-economic, and special education status, are

available. The data include vertically scaled achievement scores in reading and

math on a state criterion referenced test. The analysis focuses on effectiveness

estimates for mathematics teachers.

We imposed some restrictions on the data in order to accurately identify the

parameters of interest. Students who cannot be linked to a teacher are dropped, as
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are students linked to more than one teacher in a school year in the same subject.

Students in schools with fewer than 20 students are dropped, and students in class-

rooms with fewer than 12 students are dropped. Students in charter schools are

not included in this analysis, since charter schools may employ a set of teachers

who are somewhat different from those typically found in public schools. Char-

acteristics of the final data set are reported in Tables 3 and 4.

4.2 Analysis of Administrative Data

The simulation results indicated that in situations where students were dynam-

ically grouped based on prior year test scores and were nonrandomly assigned

to teachers the DOLS estimator maintained a strong correlation with the true

teacher effect, while the SGP estimator performed less well. In order to exam-

ine whether the SGP model may perform less well in actual data, we performed

the test of nonrandom grouping that was developed in Dieterle, Guarino, Reck-

ase, & Wooldridge (2015, published online July 2014). The test involves running

a student-level multinomial logit regression of classroom assignment on prior year

test scores and other observables for each school-grade-year combination in the

data. Finding that students’ prior year test scores significantly predict their class-

room assignment is taken as evidence that nonrandom grouping based on prior

test scores occurs in that particular school-grade-year. Since nonrandom grouping

is a precondition for nonrandom grouping and assignment, we focus on teachers

in schools that reject the test of random grouping and compare them with teachers
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in schools that fail to reject.21

We report Spearman rank correlations across estimators as well as two mis-

classifcation measures, which are the fraction of teachers rated in the bottom (or

top) 25% in one estimator not rated in the bottom (or top) 25% in the other estima-

tors in tables 5 through 13. Although our main focus is the comparison between

the DOLS and SGP estimators, we also include statistics for the Empirical Bayes’

estimator in our comparison.22

All value-added models include the student’s free-and-reduced price lunch sta-

tus, English learner status, gender, and indicators for whether the student is black

or Hispanic. Value-added estimates and the estimates for the SGP estimators are

computed using one year of data23. DOLS and the EB-Lag estimator include two

prior years mathematics scores as controls. In the EB-Lag estimator, the student’s

class average prior year test score is included as a control for peer effects. The

SGP model estimates only include two prior year mathematics scores as controls

in the quantile regressions, since this is how the estimator is described in Beteben-

ner (2011)24.
21The data contain 314 unique schools with 1,683 unique school-year-grade observations. Out

of the 1683 school-year-grade observations, there is evidence of nonrandom grouping in 1,032
(61.32%).

22In this analysis, we use an Empirical Bayes’ estimator of value-added instead of a more simple
average residual estimator, since class size does vary substantially in the real data set.

23We have also examined the correlations when we pool across years. All correlations across
estimators are higher than when only one year of data is used. We speculate that this is driven by
greater precision using pooled data.

24As a sensitivity check we also estimate the SGP rankings by also including the other student
demographics. In another sensitivity check, we also estimate the value-added models using only
previous test scores as controls. This somewhat alters the correlations, but the main patterns still
hold
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The correlation between DOLS and the SGP-Median using one year of data25

is .808 in the real data. The correlation between DOLS and the SGP-Mean es-

timator is .833. These correlations are appreciably smaller than the correlation

between DOLS and the EB-Lag (.953) estimator.

Based on the simulations, we expect that the correlations will increase and the

misclassification rates will be lower in schools where there is little or no evidence

of nonrandom grouping, and this is what we find. When the sample of teachers

is broken into those teachers in school-grade-years in which we find evidence of

nonrandom grouping and those in school-grade-years in which we do not, we see

a pattern that accords with the pattern seen in the simulation. In the simulation,

the correlation between the DOLS estimator and the SGP-Median estimator went

from around .87 under nonrandom assignment to .93 under random assignment

as is visible in the final column of Tables 1. The correlation between DOLS and

the SGP-Median estimator, found in table 7, is .802 in school-grade-years with

nonrandom grouping and .818 in school-grade-years where we can’t reject the

hypothesis of random grouping, found in table 8. The correlations between DOLS

and the EB-Lag estimator changes from .945 to .967 for EB-Lag. This again is

similar to what took place in the simulations.

As another check we examine a measure of disagreement between the estima-

tors in terms of who is classified in the bottom 25% and top 25% of teachers. We

calculate the fraction of teachers rated in the bottom 25% (or top 25%) using one

25Two prior years of test scores are included. We mean that each teacher quality measure is
estimated cohort by cohort.

26



estimator that are not rated in the bottom 25% (or top 25%) using the other estima-

tors. Results are reported in tables 9 to 14. Similar to the pattern indicated by the

rank correlations, there is less disagreement between the estimators in the cases

of schools with little evidence of nonrandom grouping. The fraction of teachers

rated in the bottom 25% using the DOLS estimator not rated in the bottom 25%

using the SGP-Median estimator is .3 in nonrandom grouping schools and .277 in

random grouping schools.

5 Conclusions

In this paper, we compare commonly used value-added estimators to two SGP

models: one based on the median student growth percentile for students assigned

to the teacher and the other based on the mean.

Simulation evidence indicates that the relative performance of these estimators

depends on how students are grouped and assigned to teachers. In cases where

students are nonrandomly grouped based on prior year test scores and nonran-

domly assigned to teachers, the SGP estimators perform poorly compared with

the DOLS estimator, which partials out the relationship between student’s prior

year achievement and the teacher assignment. The DOLS estimator is also robust

to the case where vertically scaled test scores are not used.

A key finding is that DOLS, because it controls for teacher assignment in

estimating the parameters on the other covariates, including lagged test scores,

outperforms not only SGP estimators but also value-added models that do not that
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do not control for teacher assignment when assignment is nonrandom.

The performance of the estimators also depends to some extent on the distri-

bution of the error term in the achievement model. When a fatter tailed t distri-

bution with 3 d.f. is used for the error term in our simulations, DOLS and the

other value-added estimators perform worse than the SGP estimators in the ran-

dom assignment scenario, but only slightly so. DOLS still outperforms the SGP

estimators in the nonrandom grouping and assignment scenarios.

Additionally, we compare the estimators using actual data. In accordance with

the predictions of the simulation analysis, we detect stronger patterns of diver-

gence between the DOLS and SGP estimates in for teachers in school contexts

that exhibit evidence of nonrandom grouping than for teachers in school contexts

in which grouping is fairly random.

This paper provides evidence that nonrandom grouping and assignment can

negatively affect the popular SGP modeling approaches. Care should be taken by

practitioners and researchers in evaluating teachers using these approaches when

nonrandom grouping and assignment occurs in the school system. More gener-

ally, estimators that partial out teacher effects are better equipped to disentangle

teacher contributions to student achievement from other factors affecting achieve-

ment than estimators that do not adjust for teacher assignment, whether they be

SGPs or VAMs.
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Tables and Figures

Table 1: Rank Correlations and Misclassification Measures Across Estimators
with Simulated Data Generated with Normal(0,1) Errors. Results from 100 repli-
cations. Row 1: Average rank correlation Row 2: Percentage of teachers above
bottom 25% in true effect misclassified in bottom 25%

Estimator DOLS AR SGP-Median SGP-Mean Corr DOLS/
SGP-Median

Assign Mech λ = 1

RG-RA 0.88 0.88 0.82 .87 .93
6% 8% 10% 8%

DG-RA 0.87 0.87 0.83 .87 .93
7% 8% 9% 8%

DG-PA 0.88 0.78 0.71 .76 .87
7% 11% 12% 11%

DG-NA 0.87 0.77 0.71 .76 .87
8% 10% 12% 10%

λ = .5

RG-RA 0.88 0.88 0.82 .87 .93
8% 8% 10% 8%

DG-RA 0.87 0.87 0.83 .87 .93
7% 8% 9% 8%

DG-PA 0.88 0.78 0.71 .76 .87
8% 11% 12% 11%

DG-NA 0.87 0.77 0.71 .76 .87
7% 10% 12% 10%
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Table 2: Rank Correlations and Misclassification Measures Across Estimators
with Simulated Data Generated with t(3) Errors. Results from 100 replications.
Row 1: Average rank correlation Row 2: Percentage of teachers above bottom
25% in true effect misclassified in bottom 25%

Estimator DOLS AR SGP-Median SGP-Mean Corr DOLS/
SGP-Median

Assign Mech λ = 1

RG-RA 0.71 0.71 0.72 0.79 .85
10% 10% 12% 10%

DG-RA 0.72 0.72 0.71 0.78 .84
11% 11% 12% 11%

DG-PA 0.70 0.58 0.57 0.66 .80
11% 13% 14% 13%

DG-NA 0.71 0.59 0.59 0.66 .80
11% 14% 15% 14%

λ = .5

RG-RA 0.71 0.71 0.71 0.79 .85
9% 9% 12% 10%

DG-RA 0.72 0.72 0.71 0.78 .84
11% 11% 12% 11%

DG-PA 0.70 0.58 0.57 0.66 .80
11% 13% 14% 13%

DG-NA 0.71 0.59 0.59 0.66 .80
11% 14% 15% 14%
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Table 3: Summary Statistics for Administrative Data in Grade 5

Student Level Characteristics

Variable Mean Std. Dev. Min. Max.
Math Scale Score 1630.033 239.368 569 2456
Reading Scale Score 1552.276 321.701 474 2713
Math Scale Standardized Score -0.081 1.009 -5.149 3.705
Reading Scale Standardized Score -0.149 0.986 -4.020 3.605
Black 0.281 0.45 0 1
Hispanic 0.597 0.491 0 1
Free and Reduced Price Lunch 0.703 0.457 0 1
Limited English Proficiency 0.507 0.5 0 1

N 110970

Teach Level Characteristics

Avg. Lag Math Score 1456.094 152.644 806.769 1986.808
Prop. FRL 0.718 0.249 0 1
Prop. LEP 0.508 0.259 0 1
Prop. Hispanic 0.584 0.322 0 1
Prop. Black 0.3 0.341 0 1
Class Size 24.019 7.929 12 145
Teacher Experience 9.374 10.101 0 47

N 4620

35



Table 4: Summary Statistics for Administrative Data in Grade 6

Student Level Characteristics

Variable Mean Std. Dev. Min. Max.
Math Scale Score 1641.693 247.982 770 2492
Reading Scale Score 1618.179 311.402 539 2758
Math Scale Standardized Score -0.14 0.971 -3.707 3.354
Reading Scale Standardized Score -0.192 0.969 -4.049 3.526
Black 0.288 0.453 0 1
Hispanic 0.6 0.49 0 1
Free and Reduced Price Lunch 0.705 0.456 0 1
Limited English Proficiency 0.511 0.5 0 1

N 104441

Teach Level Characteristics

Variable Mean Std. Dev. Min. Max.
Avg. Lag Math Score 1608.182 143.225 903.733 2053.576
Prop. FRL 0.727 0.218 0 1
Prop. LEP 0.515 0.238 0 1
Prop. Hispanic 0.589 0.31 0 1
Prop. Black 0.307 0.33 0 1
Class Size 65.113 42.807 12 216
Teacher Experience 7.668 8.978 0 40

N 1604
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Table 5: Spearman Rank Correlations across Estimators using Administrative
Data

Variables DOLS EB-Lag SGP-Median SGP-Mean
DOLS 1.000
EB-Lag 0.953 1.000
SGP-Median 0.808 0.769 1.000
SGP-Mean 0.833 0.790 0.975 1.000

Teacher/Year Obs 5661 5661 5661 5661

Table 6: Spearman Rank Correlations across Estimators using Administrative
Data - Nonrandom Grouping Schools

Variables DOLS EB-Lag SGP-Median SGP-Mean

DOLS 1.000
EB-Lag 0.945 1.000
SGP-Median 0.802 0.759 1.000
SGP-Mean 0.828 0.781 0.974 1.000

Teacher/Year Obs 3674 3674 3674 3674

Table 7: Spearman Rank Correlations across Estimators using Administrative
Data - Random Grouping Schools

Variables DOLS EB-Lag SGP-Median SGP-Mean

DOLS 1.000
EB-Lag 0.967 1.000
SGP-Median 0.818 0.785 1.000
SGP-Mean 0.841 0.806 0.977 1.000

Teacher/Year Obs 1991 1991 1991 1991
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Table 8: Fraction of Teachers Rated in Bottom 25% in the Initial Estimator Who
are Not Rated in Bottom 25% in Another Estimator

Not Rated Bottom 25%
Initial Estimator DOLS EB-Lag SGP-Median SGP-Mean

DOLS 0
Rated EB-Lag .146 0
Bottom SGP-Median .291 .328 0
25% SGP-Mean .273 .311 .102 0

Teacher/Year Obs 5661 5661 5661 5661

Table 9: Fraction of Teachers Rated in Bottom 25% in the Initial Estimator
Who are Not Rated in Bottom 25% in Another Estimator - Nonrandom Group-
ing Schools

Not Rated Bottom 25%
Initial Estimator DOLS EB-Lag SGP-Median SGP-Mean

DOLS 0
Rated EB-Lag .156 0
Bottom SGP-Median .3 .337 0
25% SGP-Mean .276 .316 .1 0

Teacher/Year Obs 3674 3674 3674 3674

Table 10: Fraction of Teachers Rated in Bottom 25% in the Initial Estimator Who
are Not Rated in Bottom 25% in Another Estimator - Random Grouping Schools

Not Rated Bottom 25%
Initial Estimator DOLS EB-Lag SGP-Median SGP-Mean

DOLS 0
Rated EB-Lag .127 0
Bottom SGP-Median .277 .309 0
25% SGP-Mean .265 .297 .108 0

Teacher/Year Obs 1991 1991 1991 1991
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Table 11: Fraction of Teachers Rated in Top 25% in the Initial Estimator Who are
Not Rated in Top 25% in Another Estimator

Not Rated Top 25%
Initial Estimator DOLS EB-Lag SGP-Median SGP-Mean

DOLS 0
Rated EB-Lag .148
Top SGP-Median .288 .349 0
25% SGP-Mean .271 .344 .086 0

Teacher/Year Obs 5661 5661 5661 5661

Table 12: Fraction of Teachers Rated in Top 25% in the Initial Estimator Who are
Not Rated in Top 25% in Another Estimator - Nonrandom Grouping Schools

Not Rated Top 25%
Initial Estimator DOLS EB-Lag SGP-Median SGP-Mean

DOLS 0
Rated EB-Lag .167 0
Top SGP-Median .292 .362 0
25% SGP-Mean .275 .356 .093 0

Teacher/Year Obs 3674 3674 3674 3674

Table 13: Fraction of Teachers Rated in Top 25% in the Initial Estimator Who are
Not Rated in Top 25% in Another Estimator - Random Grouping Schools

Not Rated Top 25%
Initial Estimator DOLS EB-Lag SGP-Median SGP-Mean

DOLS 0
Rated EB-Lag .109
Top SGP-Median .286 .336 0
25% SGP-Mean .27 .32 .095 0

Teacher/Year Obs 1991 1991 1991 1991
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