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Abstract 

We study the properties of two specification tests that have been applied to a variety of estimators in the context of value-added 
measures (VAMs) of teacher and school quality: the Hausman test for choosing between random and fixed effects and a test for 
feedback (sometimes called a “falsification test”). We discuss theoretical properties of the tests to serve as background. An 
extensive simulation study provides important further insight to the VAM setting. Unfortunately, while both the Hausman and 
feedback tests have good power for detecting the kinds of nonrandom assignment that can invalidate VAM estimates, they also 
reject in situations where estimated VAMs perform very well. Consequently, the tests must be used with caution when student 
tracking is used to form classrooms. 
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Abstract:  We study the properties of two specification tests that have been applied to a variety 

of estimators in the context of value-added measures (VAMs) of teacher and school quality: the 

Hausman test for choosing between random and fixed effects and a test for feedback (sometimes 

called a “falsification test”). We discuss theoretical properties of the tests to serve as background. 

An extensive simulation study provides important further insight to the VAM setting. 

Unfortunately, while both the Hausman and feedback tests have good power for detecting the 

kinds of nonrandom assignment that can invalidate VAM estimates, they also reject in situations 

where estimated VAMs perform very well. Consequently, the tests must be used with caution 

when student tracking is used to form classrooms. 
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1. Introduction 

Measures of teacher and school quality based on value-added models (or VAMs) of student 

achievement are gaining increasing acceptance among policymakers as a tool for evaluating 

teaching and school effectiveness. Therefore, it is important for researchers and policy makers to 

understand the statistical properties of the estimates derived from VAMs, and to have some 

knowledge of when they can be expected to perform well – and when they do not perform well. 

One way to proceed is to apply statistical tests of the assumptions underlying VAMs to see if 

they appear justified. Rothstein (2010) and Harris, Sass, and Semykina (2010) are two examples 

of studies that develop and apply statistical tests of assumptions to VAMs designed to produce 

measures of teacher effectiveness.  

In applying statistical diagnostics in VAM settings, it is imperative to be clear about the 

goal of the analysis. Is it to determine whether all of the assumptions underlying consistent 

estimation of a structural production function hold? Or is the main goal to get good estimates of 

value added – say of teachers or schools? In the literature and popular press, the main focus 

appears to be on getting good estimates of the value-added measures. Structural models are often 

used to motivate the estimation procedure, but the performance of the value added estimates is of 

primary interest. If we assume that providing relatively accurate performance estimates is the 

primary purpose of the VAM literature, then it is critical to understand the difference between 

rejecting assumptions of an underlying structural model and concluding that a particular 

procedure likely produces poor estimates of value added. 

In earlier work (Guarino, Reckase, Wooldridge, forthcoming – hereafter, GRW), we 

provide a summary of the known theoretical properties of various approaches to estimating 

VAMs designed to yield teacher performance estimates. More importantly, we provide extensive 



 

4 
 

simulation evidence showing how six of the most commonly used estimators behave under 

different mechanisms used to match teachers and students. One of the key findings is that certain 

estimators that are not technically consistent can perform well in estimating teacher effects for 

the purpose of ranking.  One of the estimators, in particular – ordinary least squares (OLS) 

applied to a dynamic gain-score equation, which we dubbed “dynamic OLS,” or “DOLS” – 

performs best across many scenarios, although other estimators are slightly better under some 

specific assignment mechanisms. 

A plethora of models and estimation strategies have been applied to the task of estimating 

teacher and school effects, often producing quite different estimates.  Given the several choices 

among estimators in the VAM context it would be helpful to have tools for choosing among 

different estimators, especially when they produce very different estimated effects or, more 

fundamentally, whether any estimator does a good enough job of estimating effects to enable the 

use of these estimates for policy purposes, such as rewarding or sanctioning teachers based on 

estimated performance. It is logical to turn to the large array of statistical tests that currently exist 

to help diagnose whether or not underlying assumptions are met; many have been developed in 

the statistical and econometric literature in reference to other topics and issues, and some recent 

tests have been proposed by education researchers for the express purpose of evaluating VAMs 

(for example, those in Rothstein (2010) and Harris, Sass, and Semykina (2010)).   

The main purpose of this paper is to determine the usefulness of available tests in 

determining how well a VAM accomplishes its task; in this study the task is estimating teacher 

effects. To do so, we use simulations in which we originate student test score data based on 

known teacher effects but then act as if we do not know the true effects and estimate them.  We 

then assess both the degree to which a model and estimation approach yield accurate teacher 
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effect estimates and the behavior of statistical tests of assumptions. Our goal is to determine the 

usefulness of statistical tests in revealing the quality of specific models and estimators for 

estimating teacher effects. 

The two tests we focus on are those aimed at ferreting out conditions that might create bias 

in the estimated teacher effects. Both tests are designed to detect nonrandom teacher assignment 

– that is, teachers are assigned at least partly on the basis of observed or unobserved student 

characteristics. The first test – a robust version of the Hausman (1978) test comparing the 

random and fixed effects estimators – is primarily intended to uncover situations where teacher 

assignment is based on unobserved, time-constant student heterogeneity. The test has power for 

detecting other kinds of nonrandom assignment mechanisms but its main purpose is to determine 

whether teacher assignment is correlated with student heterogeneity. 

The second test is perhaps better described as a class of tests, whose purpose is to detect 

dynamic teacher assignment mechanisms. One test was popularized in the VAM context by 

Rothstein (2010), who called it a “falsification” test. A version of the falsification test is known 

in the panel data literature as a test of the “strict exogeneity” assumption in the context of fixed 

effects estimation. The test essentially looks for feedback from shocks to student performance 

today into future teacher assignment. Such feedback effects cause inconsistency in the FE 

estimator. 

Ideally, the diagnostic tests would reject various estimation methods when they produce 

poor value-added measures. Unfortunately, our findings are not very positive from a 

practitioner’s perspective. While in many cases the tests properly reject when the estimation 

methods produces poor value-added estimates, in other cases the tests strongly reject when the 

underlying estimation method is actually capable of producing very good estimates of the 
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VAMs. The particular situation that causes problems for both the Hausman and Rothstein-type 

falsification tests is when students are tracked based on some observable or unobservable factor, 

but the classrooms are randomly assigned to teachers. In such cases a variety of estimation 

methods produce reliable VAMs – depending on the nature of the tracking. Yet, as we show in 

Section 6, the specification tests strongly reject many of the best estimators. 

An important consequence of our findings is that criticisms of VAMs on the basis of 

evidence provided by Hausman or feedback tests are likely to be unjustified. The bottom line is 

that, applied in the VAM context, the tests have power for detecting nonrandom assignment 

schemes that have nothing to do with whether popular estimators are doing their main job: 

provided good VAM estimates. 

 The rest of the paper is organized as follows. We discuss the value-added modeling 

framework in Section 2. Section 3 describes the statistical tests that we study – both those that 

have been applied to VAMs by other researcher and some that have not—and discusses their 

theoretical properties. We discuss the kinds of nonrandom grouping and assignment mechanisms 

that seem particularly relevant in Section 4. In Section 5 we discuss our simulation design, and 

Section 6 discusses the simulation results. We provide some concluding remarks in Section 7. 
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2.  Conceptual Framework for Testing Value-Added Models 
 

It is helpful to begin with a fairly general value-added equation and a brief discussion of 

the assumptions embedded in it. Assume that the achievement score, 𝐴𝑖𝑡, is generated as 

𝐴𝑖𝑡 = 𝜏 + 𝜆𝐴𝑖,𝑡−1 + 𝐸𝑖𝑡𝛽0 +  𝑐𝑖 + 𝑢𝑖𝑡 − 𝜆𝑢𝑖,𝑡−1       (1) 

 𝑢𝑖𝑡 =  𝜌𝑢𝑖,𝑡−1 + 𝑟𝑖𝑡, 𝑡 = 1,2, … ,𝑇,        (2) 

where 𝐴𝑖𝑡 is a measure of achievement for student 𝑖 in grade (or year) 𝑡 and 𝐸𝑖𝑡 is the (row) 

vector of educational inputs whose coefficients, 𝛽0, are of greatest interest. Generally, 𝐸𝑖𝑡 can 

include inputs at the school, classroom, or even individual level. In the present paper, 𝐸𝑖𝑡 is a 

vector of teacher assignment indicators. We assume {𝑟𝑖𝑡} is a sequence of independent, 

identically distributed normal random variables with mean zero so that {𝑢𝑖𝑡} follows an AR(1) 

model. 

Sometimes it is useful to subtract 𝐴𝑖,𝑡−1 from both sides of (1) to obtain an equation for 

the gain score, ∆𝐴𝑖𝑡: 

∆𝐴𝑖𝑡 = 𝜏𝑡 + 𝛼𝐴𝑖,𝑡−1 + 𝐸𝑖𝑡𝛽0 +  𝑐𝑖 + 𝑢𝑖𝑡 − 𝜆𝑢𝑖,𝑡−1 ,      (3) 

where 𝛼 =  𝜆 − 1. 

Equation (1) can be derived from a general cumulative effects model (CEM) under 

various assumptions, and (2) adds the assumption that the errors {𝑢𝑖𝑡} have a particular pattern of 

serial correlation. The parameter 𝜆 is the decay parameter in the CEM. Even this restricted 

version of the CEM is never estimated, as accounting for the combined issues of heterogeneity, 𝜌 

different from 𝜆, and the lagged dependent variable is a challenging econometric problem. 

There are several types of misspecifications that can cause difficulty for standard 

estimators of 𝛽0. One is failure of the so-called “common factor restriction” (CFR), 𝜆 = 𝜌. 

Under the CFR the errors 𝑢𝑖𝑡 − 𝜆𝑢𝑖,𝑡−1 in (1) have no serial correlation, but if  𝜆 ≠ 𝜌 then (1) 
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contains serial correlation. In general, serial correlation in the presence of a lagged dependent 

variable causes inconsistent estimation for many estimation procedures, including OLS applied 

to (1) (where we ignore both the presence of 𝑐𝑖 and serial correlation in 𝑢𝑖𝑡 − 𝜆𝑢𝑖,𝑡−1 ). The 

Arellano and Bond (1991) instrumental variables procedure, which removes 𝑐𝑖, relies on no 

serial correlation in the errors in (1). 

McClain and Wooldridge (1995) propose a simple test of the null hypothesis that the CFR 

holds in the context of time series regression models. The test is easily adapted to the panel data 

case when there is no heterogeneity, that is, when 𝑐𝑖 is not in (1). Unfortunately, it is not clear 

how to extend the test to allow for heterogeneity. Any neglected serial correlation, due to 

violation of the CFR, higher order autoregressive properties, or the presence of 𝑐𝑖 will cause a 

rejection of the CFR restriction.  In GRW we found that violation of the CFR did not appreciably 

affect the dynamic OLS estimator in the sense that DOLS still provided estimates of the teacher 

effects that produced reliable rankings among teachers. For these reasons we do not study the 

CFR test further in this paper. 

A second kind of misspecification arises in setting 𝜆 in equation (1) equal to unity [which is 

the same as dropping 𝐴𝑖,𝑡−1 in equation (3)]. Including the lagged achievement in equation (3) is 

a simple, effective way to detect dynamic misspecification. Harris, Sass, and Semykina (2010) 

apply tests for dynamic misspecification by including lagged teacher assignment using data from 

Florida. We do not study the properties of dynamic misspecification tests in the current paper as 

they are standard tests of omitted variables. Here we are mainly interested in the behavior of 

exogeneity tests when 𝜆 is incorrectly set to unity. Incidentally, in the current testing setting, 

omitting 𝐴𝑖,𝑡−1 from (1) and failure of the CFR restriction can be expected to have similar 

consequences because, in effect, a variable that can predict the gain score is omitted from the 
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equation – and teacher assignment might be correlated with that variable. From here on we focus 

on misspecified dynamics due to setting 𝜆 to an incorrect value (unity in our case). 

Finally – and most importantly for this paper – we are interested in what happens when 

teachers were assigned to students in such a way to make 𝐸𝑖𝑡 endogenous in an estimating 

equation. In this third kind of “misspecification” it is not necessarily true that (1) is an incorrect 

equation; it is that inputs have been chosen in a way to violate certain exogeneity requirements, 

resulting in inconsistent estimators. 

3. A Discussion of the Tests in the VAM Setting 

The general purpose of the specification tests we study is to detect nonrandom 

assignment of students to teachers. We consider tests of both static and dynamic assignment.  

Static assignment occurs when teachers are (partly) assigned on the basis of unobserved student 

heterogeneity – that is, students with fixed but unobserved characteristics are matched with 

particular teacher effectiveness levels.  Dynamic assignment occurs when the prior test scores of 

students are matched to particular teacher effectiveness levels.   

In what follows it is important to distinguish between two mechanisms that can be used 

for generating classrooms of students taught by particular teachers. Students may be first 

grouped on the basis of unobserved or observed characteristics – a process often referred to as 

“tracking.” This kind of grouping might be done even if teachers are randomly assigned to 

classrooms. Nonrandom teacher assignment occurs when classrooms with different average 

levels of ability or achievement are systematically assigned to teachers with different levels of 

competence. 

Although little research exists on evaluating specification tests within the VAM setting, 

the literature on the most commonly applied tests is vast in the sense that the tests are fairly 



 

10 
 

standard in the panel data literature. For example, Wooldridge (2010, Section 10.7.3) discusses 

different versions of the Hausman test used to compare the RE and FE estimators. In the VAM 

context, the Hausman test is primarily a test of static assignment mechanisms because it is 

intended mainly to pick up correlation between student heterogeneity and the observed inputs – 

teacher assignment in this case. (Nevertheless, the test generally has power against other 

misspecifications that cause systematic deviation between the RE and FE estimators.) As 

discussed in Wooldridge (2010), it is generally important to use a version of the Hausman test 

that is robust to violations of assumptions that are not required for consistently estimating the 

parameters – in this case, the teacher value-added measures. In particular, we prefer tests that are 

robust to serial correlation and heteroskedasticity in the students’ idiosyncratic shocks.  A 

regression-based test, which we review in Section 3.2, provides a straightforward method for 

obtaining a fully robust Hausman test. 

In the VAM context, Rothstein (2010) proposes a different test, which he calls a 

“falsification test,” to detect nonrandom assignment, and he provided a small simulation study in 

addition to applying the test to data from North Carolina. In the panel data nomenclature, 

Rothstein’s test can be viewed as detecting violation of strict exogeneity of the explanatory 

variables. In the VAM context, violations of strict exogeneity can occur under dynamic 

assignment – that is, when students are assigned to teachers at least partly based on realization of 

past test scores (or shocks to those scores). Another way to think of violation of strict exogeneity 

is that shocks to the test score today feed into future teacher assignment. To test this assumption, 

Rothstein includes future teacher assignments in a current gain-score equation. Importantly, he 

does not allow for student fixed effects. Without fixed effects, standard estimators, such as OLS, 

do not require strict exogeneity for consistent estimation. Thus, it is not clear why one wants to 
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test for the presence of dynamic assignment in such cases. By contrast, because failure of strict 

exogeneity does result in inconsistency when student-level fixed effects are included, 

Wooldridge (2010, Section 10.7.1) shows how feedback effects are easily tested in the context of 

fixed effects estimation. The most straightforward way to test for feedback effects is to include 

future values of the explanatory variables – usually one-period ahead – and test their significance 

using a robust Wald test after FE estimation. We discuss variants of the falsification test in 

Section 3.3. 

In addition to Rothstein (2010), some other recent empirical papers have applied 

falsification tests in the VAM context. Koedel and Betts (2009) applied falsification tests in the 

context of VAM estimation using data from the San Diego School District. Harris, Sass, and 

Semykina (2010) (HSS) apply a battery of tests (several of which we do not study here) in an 

empirical context. In their application to data from Florida, HSS generally find evidence against 

random assignment of students to teachers and find estimated VAMs that vary widely across 

procedures. 

Other papers have independently studied Rothstein’s falsification test using both 

theoretical calculations and simulation arguments. Goldhaber and Chaplin (2012) provide an 

evaluation of Rothstein’s test, first by studying whether Rothstein’s statistic properly detects 

omitted variable bias. They conclude that it is possible to have data generating mechanisms that 

do not produce biased VAMs but where the Rothstein test will reject the specification. We come 

to a similar conclusion but using a different route. In particular, we generate test score data using 

different tracking and teacher assignment mechanism in order to mimic how principals might 

actually match students and teachers. Also, we consider the Hausman test for comparing the 

random effects and fixed effects estimators and focus on a more common panel data test for 
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“feedback” in the context of fixed effects estimation (and also study how it works for dynamic 

regression). 

Kinsler (2012) studies a particular version of Rothstein’s falsification test in the presence 

of student heterogeneity based on Chamberlain’s (1984) correlated random effects approach. His 

conclusions are broadly similar to those found by Goldhaber and Chaplin and what we find here. 

We instead use the regression based version of the Hausman test that is computationally simple 

and can be applied to unbalanced panels. We discuss these tests further in the next section. 

 

3.1. A Basic Gain-Score Equation and Exogeneity Assumptions 

In describing tests for endogeneity of teacher assignment we start with a gain-score 

equation because both the Hausman test and the falsification test (test of strict exogeneity) can be 

reasonably applied. It is rare to see such tests applied when the dependent variable is a level-

score rather than a gain-score, but the following discussion applies when the level is used. 

A standard gain-score equation is 

∆𝐴𝑖𝑡 = τ𝑡  + 𝐸𝑖𝑡𝛽0 + 𝑋𝑖𝑡𝛾0 +  𝑐𝑖 + 𝑒𝑖𝑡, 𝑡 = 1, … ,𝑇.    (4) 

The vector 𝑋𝑖𝑡 includes controls, many of which may be constant, that are often included in 

empirical VAM studies, such as gender, race/ethnicity, disability status, free-and-reduced lunch 

eligibility. In this paper we do not include extra controls in our simulation study, but for a 

general discussion of how to apply tests, it is useful to explicitly include 𝑋𝑖𝑡. 

The constants τ𝑡 allow for different intercepts for different grades (or, with many cohorts, 

allows for cohort effects). Because we have few grades (time periods), these can be estimated 

precisely with a large number of students. The 𝑐𝑖 are the time-constant student unobserved 

effects, sometimes called “student heterogeneity.” The presence of 𝑐𝑖 causes the composite error, 
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𝑣𝑖𝑡 = 𝑐𝑖 + 𝑒𝑖𝑡, to be serially correlated. More importantly, if 𝑐𝑖 is correlated with the inputs 𝐸𝑖𝑡, 

leaving 𝑐𝑖 in the error term can cause inconsistency in estimating 𝛽0. 

The idiosyncratic errors, {𝑒𝑖𝑡}, are time-varying unobserved factors that affect gain 

scores. Generally, these can be serially correlated or heteroskedastic, or both. In the context of an 

underlying cumulative effects model, 𝑒𝑖𝑡 is a linear combination of the errors appearing in the 

structural production function; see, for example, GRW for a more extensive discussion of the 

structural model. 

An important assumption required of the most common panel data estimators that 

recognize the presence of 𝑐𝑖 – RE and FE – is strict exogeneity of the inputs conditional on the 

student heterogeneity, namely, 

𝐸�𝑒𝑖𝑡�𝐸𝑖𝑇 ,𝐸𝑖,𝑇−1 , … ,𝐸𝑖1 ,𝑋𝑖𝑇,𝑋𝑖,𝑇−1, … ,𝑋𝑖1, 𝑐𝑖 � = 0, 𝑡 = 1, … ,𝑇.    (5) 

Note that in (5) the expectation of the error term, conditional on heterogeneity and all current, 

past, and future inputs is zero. 

To interpret the strict exogeneity assumption, drop the {𝑋𝑖𝑠: 𝑠 = 1, … ,𝑇} for simplicity. 

Then, when we combine (5) with equation (1), we have 

𝐸(∆𝐴𝑖𝑡 |𝐸𝑖𝑇 , … ,𝐸𝑖1 , 𝑐𝑖) = τ𝑡  + 𝐸𝑖𝑡𝛽0 +  𝑐𝑖.    (6) 

Equation (6) means that, once we control for student heterogeneity, only inputs at time 𝑡, 𝐸𝑖𝑡 , 

appear in the gain-score equation at time 𝑡. This restriction implies that past inputs – in this case, 

previous teachers – have no effect on the current gain score, once current teacher and student 

heterogeneity have been accounted for. As discussed in HSS, it is simple to test such an 

assumption: simply include, say, 𝐸𝑖,𝑡−1  and test for joint significance (using whatever estimation 

method one settles on). Of course, including lagged inputs costs us a year of data, but such tests 

typically can be carried out for the kinds of data sets available. 
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For our purposes assumption (5) has another important implication:  future values, such 

as 𝐸𝑖,𝑡+1 , do not appear on the right-hand side of (6). Generally, if teacher assignment at time 

𝑡 + 1 depends on ∆𝐴𝑖𝑡  or 𝐴𝑖𝑡 ,  𝐸𝑖,𝑡+1  will be (partially) correlated with 𝑒𝑖𝑡. Shortly, we use this 

observation to obtain a test of (5). 

In addition to strict exogeneity of the inputs conditional on 𝑐𝑖 , another important 

assumption in the panel data literature is 

𝐸�𝑐𝑖�𝐸𝑖𝑇 ,𝐸𝑖,𝑇−1 , … ,𝐸𝑖1 � = 𝐸(𝑐𝑖) = 0,    (7) 

where we have again dropped the {𝑋𝑖𝑠: 𝑠 = 1, … ,𝑇}. The assumption that 𝐸(𝑐𝑖) = 0 is without 

loss of generality when the gain-score equation has an intercept (or a full set of time intercepts). 

When we combine assumptions (6) and (7), the inputs {𝐸𝑖𝑡 } are strictly exogenous with respect 

to the composite error: 

𝐸�𝑣𝑖𝑡�𝐸𝑖𝑇 ,𝐸𝑖,𝑇−1 , … ,𝐸𝑖1 � = 0, 𝑡 = 1, … ,𝑇.    (8) 

Assumption (8) is important, as it justifies generalized least squares estimation (GLS) – 

including the popular RE estimator – applied to 

∆𝐴𝑖𝑡 = τ𝑡  + 𝐸𝑖𝑡𝛽0 +  𝑣𝑖𝑡 , 𝑡 = 1, … ,𝑇.    (9) 

A special case of GLS is pooled OLS (POLS), where any serial correlation in 𝑣𝑖𝑡 due to the 

presence of 𝑐𝑖 – in fact, any serial correlation – is ignored. Inference is handled by using a robust 

variance matrix estimator (which is also robust to heteroskedasticity of arbitrary form). From (9) 

it is easily seen that consistency of POLS only requires that 𝑣𝑖𝑡 and 𝐸𝑖𝑡 are uncorrelated; the 

strict exogeneity assumption in (8) is not needed. However, because 𝑣𝑖𝑡 includes 𝑐𝑖, POLS 

requires that the inputs are uncorrelated with the student-specific heterogeneity. 

 



 

15 
 

3.2. The Hausman Test Comparing RE (or POLS) to FE 

In many empirical panel data applications, including VAM estimation, one often 

estimates the gain-score equation (4) by both RE and FE. Both estimators require the strict 

exogeneity assumption stated in (5) for consistency. In addition, RE uses the heterogeneity 

exogeneity condition in (7). Therefore, it is common to compare the RE and FE estimates  as a 

test of (7). However, it is important to remember that RE and FE – and, for that matter, POLS – 

will typically have different probability limits if the strict exogeneity assumption (1) is violated. 

Therefore, any test that explicitly or implicitly compares the RE and FE estimators (or the POLS 

and FE estimators) generally has power against violation of (4) or (5), and one cannot use the 

outcome of the Hausman test to conclude which assumption fails, or whether both fail. 

The traditional form of the Hausman (1978) statistic uses a quadratic form based on the 

differences between the RE and FE estimators. A critical point in applying the traditional form is 

that it assumes that the RE estimator is (asymptotically) efficient: the variance-covariance matrix 

appearing in the quadratic form is valid only when RE is asymptotically efficient. As discussed 

by Wooldridge (2010, Section 10.7.3), the relative efficiency of the RE estimator holds only 

when the idiosyncratic errors {𝑒𝑖𝑡 } are serially uncorrelated and homoskedastic – both 

conditional on the covariates and 𝑐𝑖. (See Wooldridge, 2010, 10.7.3 for a formal statement of the 

assumptions.) Yet the Hausman test has no power for detecting serial correlation or 

heteroskedasticity in {𝑒𝑖𝑡 } because these problems do not cause inconsistency in either the RE or 

FE estimator. In the language of Wooldridge (1990), the traditional form of the Hausman test 

adds “auxiliary assumptions,” which are used to get a standard null distribution even though the 

test has no power for detecting failure of the assumptions. 
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It is possible but computationally cumbersome to modify the usual Hausman statistic to 

be robust to arbitrary serial correlation and heteroskedasticity in {𝑒𝑖𝑡 }. One problem is that the 

variance-covariance matrix is singular when the estimated equation includes time effects, which 

is very common. A much more straightforward approach is to use a robust, regression-based test. 

The regression-based Hausman test is based on the correlated random effects 

specification 

∆𝐴𝑖𝑡 = 𝜏𝑡 + 𝐸𝑖𝑡𝛽0 +  𝐸�𝑖𝜉 + 𝑎𝑖 + 𝑒𝑖𝑡    (10) 

where 𝐸�𝑖 = 𝑇−1 ∑ 𝐸𝑖𝑟𝑇
𝑟=1  is the time average and 𝑐𝑖 = 𝐸�𝑖𝜉 + 𝑎𝑖. In this formulation, we 

explicitly model the heterogeneity 𝑐𝑖 as a linear function of the time average of the inputs (which 

is where the name “correlated random effects” comes from). Equation (7) still contains 

unobserved heterogeneity, 𝑎𝑖, but it is uncorrelated with the entire history of inputs, {𝐸𝑖𝑡 }. If we 

maintain strict exogeneity conditional on 𝑐𝑖 then strict exogeneity holds conditional on 𝑎𝑖 in (10). 

Therefore, equation (10) can be estimated by POLS or random effects. 

A well-known algebraic result (for example, Wooldridge, 2010, Section 10.7.3) is that 

when POLS or RE is applied to (10), the resulting estimate of 𝛽0 is the fixed effects estimator 

that uses deviations from time averages to remove 𝑐𝑖 from the equation 

∆𝐴𝑖𝑡 = 𝜏𝑡 + 𝐸𝑖𝑡𝛽0 +  𝑐𝑖 + 𝑒𝑖𝑡    (11) 

Therefore, equation (10) is very useful for presenting a unified setting for RE and FE estimation. 

In particular, if (10) is estimated by random effects (that is, feasible GLS using the RE structure), 

it is straightforward to construct a robust Wald test of 𝐻0: 𝜉 = 0, which has as many degrees of 

freedom as there are inputs 𝐸𝑖𝑡 0F

1. Obtaining a Wald test that is robust to arbitrary serial 

                                                 
1 The POLS and RE estimates of 𝛽0 are equal to the FE estimator. Further, with a balanced panel the POLS and RE 
estimates of 𝜉 are the same. (They generally differ with an unbalanced panel, in which case RE will be more 
efficient under the standard RE assumptions.) Whether POLS or RE is used, the test should be made fully robust to 
serial correlation and heteroskedasticity in {𝑒𝑖𝑡}. 
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correlation or heteroskedasticity in {𝑒𝑖𝑡 }, while remaining asymptotically efficient under the 

traditional RE assumptions, is straightforward using popular packages that support RE and FE 

estimation2. The regression-based test is asymptotically equivalent (against local alternatives) to 

the traditional Hausman test when the {𝑒𝑖𝑡 } are serially uncorrelated and homoskedastic. 

A rejection of 𝐻0: 𝜉 = 0 is typically taken to mean that 𝑐𝑖 is correlated with 𝐸�𝑖 but, as 

mentioned earlier, this interpretation is based on maintaining assumption (5). If we reject 

𝐻0: 𝜉 = 0 then we have found that 𝐸�𝑖 is correlated with the composite error, 𝑐𝑖 + 𝑒𝑖𝑡, which 

warrants a statistical rejection of the RE estimator. However, as we will see in our simulations in 

Section 6, in the context of estimating VAMs one must be cautious in using the Hausman test in 

this way. It could be that RE is statistically rejected but provides better estimates of the VAM 

coefficients than its natural alternative, FE. Even though the RE estimates of VAMs might be 

systematically biased, they typically have less sampling variation – sometimes much less – and 

the bias may be such that the estimated VAMs do a good job of ranking teachers. We will have 

more to say on this in Section 6. 

A practical problem with using equation (10) as the basis for the Hausman test is that, 

with many teachers, (10) contains many regressors: the original teacher dummies and then the 

proportion of times the student sees that teacher over a student’s entire observed history (that is, 

the time average). Computationally, many regressors are not too difficult to handle with modern 

computers and statistical packages. A more pressing concern is potential finite-sample distortions 

in using large-sample critical values (which is what the Hausman approach necessarily uses). 

The proper asymptotics relies on the number of students per teacher getting “large.” In practice, 

we may not have many student outcomes associated with some teachers. In such cases, a one 

                                                 
2 In Stata, a fully robust Wald test is easily obtained using the “cluster,” option, which is how we carry out the test in 
our simulations. 
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degree-of-freedom test may have better size properties. Rather than including the entire vector 𝐸�𝑖 

and testing joint significance, which necessitates a separate variable for each teacher in the 

dataset, we propose a new test.  This consists of substituting, for each student, the estimated 

average teacher effect across all years for the vector 𝐸�𝑖. This is identical to estimating the 

equation 

∆𝐴𝑖𝑡 = 𝜏𝑡 + 𝐸𝑖𝑡𝛽0 + 𝛼(𝐸�𝑖�̂�0) + 𝑒𝑟𝑟𝑜𝑟𝑖𝑡     (12) 

and performing a t test of 𝛼 = 0. The estimate �̂�0 is the RE estimate from the equation (11) 

obtained in a first stage. Like equation (10), equation (12) can be estimated by RE, preferably 

with a fully robust t statistic.  

A test using (12) rather than (10) conserves on degrees of freedom, but it may not detect 

certain kinds of teacher assignment mechanisms. In our simulation we study the properties of 

both tests and find that the one-degree-of-freedom test has substantial power against nonrandom 

assignment alternatives. 

In many applications of RE estimation in the VAM context, other explanatory variables 

are included as controls. Often such controls are student characteristics, such as family 

background, socioeconomic status, or baseline test scores that do not vary over time. (Test scores 

lagged one or more period are not allowed in RE estimation because lagged dependent variables 

always violate the strict exogeneity assumption.) When available, it is important to include such 

controls in equation (10), leading to an equation such as 

∆𝐴𝑖𝑡 = 𝜏𝑡 + 𝐸𝑖𝑡𝛽0 +  𝐸�𝑖𝜉 + 𝑍𝑖𝛾 + 𝑎𝑖 + 𝑒𝑖𝑡,    (13) 

where 𝑍𝑖 is the vector of time-constant controls. With good controls, it is more plausible that the 

(remaining) unobserved heterogeneity is uncorrelated with {𝐸𝑖𝑡 }. One can also include time-

varying, strictly exogenous controls, say {𝑋𝑖𝑡}, and then (10) becomes 
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∆𝐴𝑖𝑡 = 𝜏𝑡 + 𝐸𝑖𝑡𝛽0 +  𝐸�𝑖𝜉 + 𝑍𝑖𝛾 + 𝑋𝑖𝑡𝜂 + 𝑋�𝑖𝜆 + 𝑎𝑖 + 𝑒𝑖𝑡,    (14) 

where we also include the time averages of {𝑋𝑖𝑡}. To test whether the inputs are partially 

correlated with heterogeneity we would still test 𝐻0: 𝜉 = 0; failing to reject means we can drop 

𝐸�𝑖 from (11) and estimate the equation by RE, typically obtaining a more precise estimator of 

𝛽0. 3 The test described in equation (12) can also applied when additional covariates are included 

in the model. In our simulations, we only consider an equation with teacher dummies and no 

other inputs. 

Wooldridge (2009) shows that equation (13) can be used as the basis for a Hausman test 

even in the case of unbalanced panels – provided the reason the panel is unbalanced is 

appropriately exogenous. One subtle point is that a time period should be used in constructing 

the time averages only when observations on all variables are available. In the simulations later 

we only consider balanced panels but most panel data sets are, at least initially, unbalanced. 

 

3.3. A Test of Strict Exogeneity Using Fixed Effects 

If the RE estimator is rejected using the regression-based Hausman statistic from Section 

3.3, a natural step is to use the FE estimator so that arbitrary correlation is allowed between 𝑐𝑖 

and {𝐸𝑖𝑡 }. Because consistency of the FE estimator relies on strict exogeneity, it is (potentially) 

important to test that assumption. Here we are interested in testing for feedback, assuming under 

the null that only current inputs appear in the gain-score equation at time 𝑡. 

An auxiliary equation that leads to a simple test is 

∆𝐴𝑖𝑡 = 𝜏𝑡 + 𝐸𝑖𝑡𝛽0 +  𝐸𝑖,𝑡+1𝛿 + 𝑐𝑖 + 𝑟𝑖𝑡, 𝑡 = 1, … ,𝑇 − 1,    (15)  

                                                 
3 Guggenberger (2010) warns of the problems of using the Hausman test as a pre-test for choosing between RE and 
FE. The regression-based version of the Hausman test makes it clear that the Hausman pre-testing problem is 
essentially the same as the problem of pre-testing whether a set of regressors belongs in an equation and then using 
an F or Wald test to determine whether those regressors appear in the final model. 
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where we lose the last time period (grade) by putting the future inputs into the equation at time 𝑡. 

Equation (15) should be estimated by fixed effects in order to allow the heterogeneity and inputs 

𝐸𝑖𝑡 to be correlated under the null, making a test of 𝐻0: 𝛿 = 0 a pure test of strict exogeneity 

(feedback in this case). Naturally, the test should be made robust to arbitrary serial correlation 

and heteroskedasticity in {𝑟𝑖𝑡} (through what are commonly called “cluster robust” test statistics). 

 We can add additional time-varying covariates to equation (15) and we may or may not 

include their lead values. As in any testing context, including a lot of irrelevant variables (lead 

values in this case) tends to reduce the power of the test. In our simulation study we do not have 

extra covariates. 

Rothstein (2010) uses a version of the test from equation (15) but he applies the test one 

grade at a time. By using deviations from school means, Rothstein allows school fixed effects, 

but he does not allow unobserved student effects that are correlated with teacher assignment. In 

effect, Rothstein imposes the restriction 𝑐𝑖 = 0, something that is important to recognize in 

interpreting the outcome of the test.  Rothstein effectively applies the test to a cross-sectional 

regression with school fixed effects. Importantly, strict exogeneity of teacher assignment is not 

required for OLS with school dummies to consistently estimate teacher effects – provided there 

are many children per school (which is true in Rothstein’s setting and reasonable in general). In 

other words, if Rothstein thinks it is sufficient to control for school but not student effects, then 

he is testing an assumption that is not needed for consistent estimation of teacher effects4. It is 

only when student fixed effects are allowed in panel data that feedback necessarily causes 

inconsistent estimation of the teacher effects. 

                                                 
4 Rothstein (2010) proposes two versions of the test, one that excludes current teacher assignment and one that 
includes it. In practice, one should include current teacher assignment because it may be correlated with the next 
grade’s teacher assignment. 
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Rothstein also applies a version of the feedback test that is equivalent to testing the 

coefficients on 𝐸𝑖,𝑡+1 in the following equation (which does not include student heterogeneity):5  

𝐴𝑖,𝑡−1 = 𝜏𝑡 + 𝛼𝐴𝑖𝑡 + 𝐸𝑖,𝑡+1𝛿 + 𝑟𝑖𝑡, 𝑡 = 1, … ,𝑇 − 1;     (16) 

see also Goldhaber and Chaplin (2012), who focus on this particular test among those proposed 

by Rothstein. This test can be interpreted as checking whether future teacher assignment is 

related to the test score two years prior after controlling for previous year’s score. For example, it 

checks for whether fifth grade teacher assignment depends on the third grade score once the 

fourth grade score has been partialled out. Consequently, this test should have power for 

detecting dynamic assignment mechanisms that depend on multiple lagged test scores, but it has 

little to do with whether standard VAM estimators are consistent. Essentially, the Rothstein test 

is irrelevant for evaluating VAM estimators provided we are willing to use dynamic regression 

with multiple lags of student achievement to control for nonrandom assignment. Goldhaber and 

Chaplin (2012) make a similar argument and obtain bias formulas for the estimated teacher 

effects under some simple scenarios. But it is easier, and more general, to simply understand that 

the regression in (16) is just one way of testing whether 𝐸𝑖,𝑡+1 and 𝐴𝑖,𝑡−1 are correlated after 

partialling out 𝐴𝑖𝑡. The absence of partial correlation is neither necessary nor sufficient for 

dynamic VAM estimators to consistently estimate teacher VAMS, let alone provide good 

rankings of teachers6. 

 In the context of dynamic regression where, for simplicity, we include only a single 

lagged test score, a more natural test comes from the equation 

                                                 
5 The test based on (16) is the same if 𝐴𝑖,𝑡−1 is replaced with the gain score, ∆𝐴𝑖𝑡 because 𝐴𝑖𝑡 is included as a 
regressor. Therefore, the coefficients on 𝐸𝑖,𝑡+1 are the same whether 𝐴𝑖,𝑡−1 or the gain score is used. 
6 Rothstein (2010) rejects almost all specifications that use either no lags or a single lagged test score, which is 
consistent with teacher assignment that may depend on more than just the most recent test score. This testing 
outcome likely explains why Rothstein finds that the VAM estimates differ when more flexible dynamic models are 
used. But this simply means one should use the dynamic models that include several lags 
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𝐴𝑖𝑡 = 𝜏 + 𝜆𝐴𝑖,𝑡−1 + 𝐸𝑖𝑡𝛽0 +  𝐸𝑖,𝑡+1𝛿 + 𝑟𝑖𝑡.      (17) 

The test of strict exogeneity of teacher assignment is that all elements of 𝛿 are zero. Unlike the 

Rothstein approach, (17) properly controls for current teacher assignment, and answers the 

question: Is future assignment correlated with current test scores after we partial out lagged test 

scores and current teacher assignment? This is the relevant test of strict exogeneity. 

Nevertheless, even though we prefer (17) to Rothstein’s approach, we must emphasize again that 

dynamic OLS does not require strict exogeneity of teacher assignment to consistently estimate 

the teacher VAMs. Consequently, it is not clear what we can learn, in general, from such a test. 

Nevertheless, because Rothstein-type tests are popular, we will evaluate the tests in a simulation 

study in the chance that the tests provide useful information. 

As in the case of the Hausman test, a one-degree-of-freedom test can be used as an 

alternative to conserve on degrees of freedom. Rather than include the full set of teacher 

indicators, one includes the estimated teacher effect for next year’s teacher. If �̂�0 denotes the 

estimated teacher effect – using whichever method under study – then the regressor is simply 

𝐸𝑖,𝑡+1�̂�0, a single linear combination of the lead teacher dummies. As always, it is prudent to 

make the t statistic robust to arbitrary within-student serial correlation and heteroskedasticity. 

As a more complicated test that uses the panel structure and allows for student effects to 

be correlated with teacher assignment, Rothstein (2010) uses Chamberlain’s (1984) minimum 

distance approach to unobserved effects models. While this approach can deliver somewhat more 

power when idiosyncratic shocks are serially correlated, it has several drawbacks. First, it 

requires testing nonlinear restrictions and therefore requires special programming. Second, 

Chamberlain’s approach is very difficult to adapt to unbalanced panels, something that is 

important in practice. Rothstein avoids this problem by dropping observations until he has a 
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balanced panel, possibly leading to a more severe sample selection problem than would be 

otherwise present. Third, under the traditional fixed effects assumptions – essentially, that the 

idiosyncratic errors have no serial correlation or heteroskedasticity – the simpler test based on 

equation (15) is asymptotically efficient. As we will see in the simulations, the simpler test from 

(15) has plenty of power against nonrandom assignment mechanisms. In previous applications of 

the falsification test, failure to reject has not been an issue. In settings with complicated forms of 

serial correlation, Chamberlain’s approach can yield more power, but that would be traded off 

against the complicated nature of the test and the drawbacks to artificially balancing the sample. 

Kinsler (2012) studies only the Chamberlain form of the test,  focusing on small-sample 

properties. Kinsler find that the test rejects the null too often, which is what we find here even 

without small sample bias. 

 

4. Student Grouping, Teacher Assignment, and Behavior of the Tests 

In our previous study of the properties of various estimators (GRW, forthcoming), we 

used several mechanisms for grouping students into classrooms and assigning teachers to those 

classrooms. In this paper, we study the behavior of the tests described in Section 3 under the 

same scenarios.  

As in GRW, we consider grouping students – to simulation the practice of “tracking” – in 

four different ways. The first method of grouping students is random grouping (RG), which 

means there is no tracking. We then consider grouping students on the basis of their most recent 

test score (dynamic grouping, or DG), on the basis of their by their base (second-grade) test score 

(base grouping, or BG), and on the basis of their unobserved student heterogeneity 

(heterogeneity grouping, or HG). In the latter three cases noise is added to the grouping of 



 

24 
 

students to reflect the reality that, even with tracking, not all of the top students will be assigned 

to the same class. 

We consider three ways of assigning teachers to classes: random assignment (RA), 

assignment where good teachers – based on their teacher effects – are assigned to better classes 

(positive assignment, or PA), and assignment where good teachers are assigned to worse classes 

(negative assignment, or NA). With random grouping of students there is only random 

assignment of teachers, but all three kinds of teacher assignments can be applied to the three 

different ways of tracking students. Therefore, in total there are 10 different grouping/assignment 

scenarios. 

It is important to keep separate the issues of tracking and teacher assignment. As 

discussed in GRW, tracking by itself does not cause problems for VAM estimates. Even when 

the dynamics are misspecified in the regression analysis, most of the common estimators perform 

well in terms of ranking teachers. By contrast, several of the estimators perform poorly when 

teachers are nonrandomly assigned to groups of students. 

To study the tests under dynamic misspecification we consider 𝜆 = .5 along with the 

baseline 𝜆 = 1. We also considered a scenario where the student heterogeneity is uncorrelated 

with the base score, and this has implications for some of the tests in certain scenarios. But we 

present in our tables the more realistic case where 𝑐𝑖 and 𝐴𝑖2 are positively correlated. 

Given the discussion of the various specification tests in Section 3, we can predict the 

outcomes of the tests across different scenarios.  It is important to remember that specification 

tests are intended to detect inconsistent parameter estimation and not to determine when various 

procedures may or may not do well ranking teachers. For example, as discussed in GRW, in 

some scenarios the VAM estimates are amplified, and this actually makes it easier to rank 
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teachers even though comparing the magnitudes of the estimated teacher effects could be 

misleading. Unfortunately, we cannot expect specification tests to distinguish between biases 

that help with ranking and those that hurt. Currently available tests are devised to detect 

inconsistent estimation of parameters. 

Table 1 shows the predicted outcomes for the Hausman test based on the RE estimator. 

We assume that the common factor restriction holds. In constructing the tables it is useful to 

show how the tests would behave if we had an infinite amount of data. In other words, we do not 

worry about sampling error and the fact that with any particular sample size we can always make 

Type I or Type II errors. Thus, the entries in the tables are “Reject” or “Accept.” 

Consider first the case 𝜆 = 1 and random assignment. This is a clear-cut case where the 

Hausman test should not reject RE estimation in favor of FE estimation: assignment of teachers 

is exogenous with respect to the student heterogeneity 𝑐𝑖 and strictly exogenous with respect to 

the idiosyncratic shocks 𝑒𝑖𝑡 in the equation 

∆𝐴𝑖𝑡 = 𝜏 +  𝐸𝑖𝑡𝛽0 +  𝑐𝑖 + 𝑒𝑖𝑡.         (18) 

Therefore, no function of the history of teacher indicators should help to predict the gain score 

from grade 𝑡 − 1 to 𝑡. 
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Table 1.  Predicted Outcomes for Hausman Test 

Grouping/Assignment 

Mechanism 
Lambda = 1 Lambda < 1 

RG/RA ACCEPT REJECT 

DG/RA REJECT REJECT 

DG/NRA REJECT REJECT 

BG/RA REJECT REJECT 

BG/NRA REJECT REJECT 

HG/RA REJECT REJECT 

HG/NRA REJECT REJECT 

  

Unfortunately, the conclusion for RG/RA does not carry over to other scenarios with 

random assignment of teachers to classrooms. Consider the DG/RA case (still with 𝜆 = 1), 

where students are grouped together based on past test scores but the resulting classrooms are 

randomly assigned to teachers. As shown via simulation in GRW, the RE estimator works quite 

well in this case, producing rank correlations between the estimated and true teacher effects on 

the order of .90 across different parameter settings. Yet the Hausman test will reject because past 

teacher assignment contains information on the ability level of the student. For example, if 

students with above average previous test scores tend to be grouped together, having had a third-

grade teacher with a high estimated VAM tells us that, on average, the student has higher ability. 

Therefore, in a fourth-grade gain score equation the third grade teacher assignment has some 

predictive power for the gain score because third-grade assignment is correlated with ability, 𝑐𝑖. 
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A similar mechanism comes into play in the other random assignment, nonrandom grouping 

mechanisms. 

 The situation is even worse when 𝜆 < 1. In this case, the Hausman test will reject even in 

the random grouping, random assignment case. Rejection occurs because when 𝜆 < 1 equation 

(18) effectively omits the lagged dependent variable. While it is true that under RA the 

assignment of a teacher in grade t does not depend on 𝐴𝑖,𝑡−1, teacher assignment at time 𝑡 − 1 is 

correlated with 𝐴𝑖,𝑡−1 whenever teachers have an effect on achievement (which we assume here). 

Thus, 𝐸𝑖,𝑡−1 is correlated with the error term at time t because the error term effectively includes 

a fraction of 𝐴𝑖,𝑡−1. In other words, lagged teacher assignment helps to predict the gain score, 

conditional on current teacher assignment, because the lagged teacher assignment is correlated 

with 𝐴𝑖,𝑡−1. It is important to understand that, unlike in the usual settings where the Hausman test 

is applied, in the current scenario neither the random or fixed effects estimator produces 

consistent estimates of the teacher VAMs.  Rather, the RE and FE estimators have different 

(incorrect) probability limits. 

 Rejection in the RG/RA scenario with 𝜆 < 1 is unfortunate because, as shown in GRW, 

the RE estimator again fares well – in fact, it is scarcely worse than in the 𝜆 = 1 case. 

 Table 1 shows that dynamic misspecification (𝜆 < 1) in any grouping/assignment 

combination results in rejection of the RE estimator. Again, such an outcome is unfortunate 

because the RE estimator does well in several (but not all) of these scenarios. It is not surprising 

that the Hausman test detects dynamic misspecification in the RE model, but when we couple 

this analysis with the findings in GRW we are left to conclude that the Hausman test for 

choosing between RE and FE is not very information for VAM applications. 
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Because the remaining 𝜆 < 1 scenarios combine various grouping/assignment 

mechanisms along with dynamic misspecification, we use simulations to obtain an idea of how 

often the Hausman test rejects.  

We can create a similar table for the feedback (or falsification) test for three commonly 

used estimators: random effects, fixed effects, and dynamic OLS. (The entries for pooled OLS 

on the gain-score equation (18) are identical to RE.) It includes only the 𝜆 = 1 case. We should 

emphasize that Wooldridge (2010) applies the leads test only to the fixed effects estimator; not to 

POLS, RE, or DOLS. The test can provide useful information for RE in the sense that it can 

detect correlation between 𝐸𝑖𝑡 and the two sources of error in (18). But the Hausman test for 

choosing between RE and FE can too, and it is usually applied to the RE estimator to see 

whether one should use FE. If the RE estimator is rejected based on the Hausman test, the leads 

test is applied to the FE estimator because FE relies on the strict exogeneity assumption. 

As discussed in Section 3, the case for applying the feedback test to DOLS is a priori 

weak. It can only tell us whether the random-grouping/random-assignment scenario holds – not 

whether DOLS does a good job estimating the teacher VAMs. Because DOLS works well in 

many scenarios, the feedback test is likely to be very misleading. 

To isolate the key problem with the feedback test, suppose that equations (1) and (2) hold 

with the common factor restriction and no student heterogeneity, so we can write 

𝐴𝑖𝑡 = 𝜏 + 𝜆𝐴𝑖,𝑡−1 + 𝐸𝑖𝑡𝛽0 + 𝑟𝑖𝑡,        (19) 

where {𝑟𝑖𝑡} is unpredictable give past test scores and current and past inputs. This is the ideal 

setup for DOLS estimation of 𝛽0 (and 𝜆): the estimated teacher effects will be consistent and, 

under a homoskedasticity assumption on {𝑟𝑖𝑡}, asymptotically efficient. This is true regardless of 

whether 𝐸𝑖𝑡 is correlated with 𝐴𝑖,𝑡−1; in fact, the main reason for including the lagged test scores 
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is to allow this kind of nonrandom assignment. It is exactly because 𝐸𝑖𝑡 and 𝐴𝑖,𝑡−1 are correlated 

that the lead teacher assignments likely will be significant when added to (19). Other versions of 

the test, such as Rothstein’s (2010), potentially reject when assignment is based on the past two 

years of test scores. Generally, though, such nonrandom assignment mechanisms are easily 

handled by including, if needed, additional lagged test scores in equation (19). We include the 

DOLS estimator in this study because a version of the leads test has been applied by Rothstein 

(2010) and Harris, Sass, and Semykina (2010). 

Table 2 contains the predicted outcomes if the leads test is applied to the three estimators. 

With random grouping of students and random assignment of teachers, none of the tests should 

reject – this is the first row of Table 2. Any deviation from random group or random assignment 

causes the feedback test to reject for RE and DOLS. Again, rejection is not surprising when the 

teacher assignment is nonrandom. For example, if teacher assignment is based on past test score, 

then next grade’s teacher will predict the current gain score regardless of the estimation method 

As with the Hausman test, the reason for rejection with random assignment but nonrandom 

grouping is more subtle. If, say, the students are grouped based on their unobserved 

heterogeneity, and the better teachers get the better students, then the estimated lead teacher 

effect is, on average, higher for the better students – and so is the student’s gain score. It is the 

opposite for the worse teachers and lower performing students. Therefore, the estimated lead 

teacher effects are positively correlated with the students’ gain scores. 

As with the Hausman test, it is unfortunate that the leads test rejects both RE and DOLS 

in cases where they produce very reliable teacher VAMs. In Section 6 we include RE and DOLS 

in the simulations to see how often the tests actually reject in reasonable scenarios.  
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The rejection scenarios for the FE estimator are more subtle. Because FE removes a time-

constant student effect, grouping on the basis of time-constant variables does not cause a 

rejection using the leads test – provided the assignment of teachers to classrooms does not 

depend on time-varying factors, such as a lagged test score. Therefore, when grouping of 

students is done using the base score or student heterogeneity, the FE test will not reject. It is 

precisely assignment based on time-constant factors that FE is intended to be robust against. So 

the leads test is informative for FE: it tests whether grouping or assignment (or both) are based 

on an omitted factor that varies over time. 

Table 2.  Predicted Outcomes for Feedback Test: Lambda = 1 

Grouping/Assignment 

Mechanism 

Random Effects Fixed Effects DOLS 

RG/RA ACCEPT ACCEPT ACCEPT 

DG/RA REJECT REJECT REJECT 

DG/NRA REJECT REJECT REJECT 

BG/RA REJECT ACCEPT REJECT 

BG/NRA REJECT ACCEPT REJECT 

HG/RA REJECT ACCEPT REJECT 

HG/NRA REJECT ACCEPT REJECT 
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5. The Simulation Design 

In the tables and surrounding discussion in Section 4 we effectively assumed that we 

have an infinite amount of data. In practice, we will not always reject with certainty for entries 

labeled “REJECT.” Some estimation methods will control for more of the factors causing 

nonrandom assignment, in which case rejection rates will be lower. Also, when a test should not 

reject in theory it might due to poor finite-sample performance. To learn about the size and 

power of the tests it is very helpful to simulate the statistics in plausible scenarios to see how 

they perform. 

Our simulation design closely follows that in GRW, although we restrict our attention to 

the case where students and teachers are randomly assigned to schools. (In GRW, where we 

evaluated the ability of VAM estimates to track the true teacher effects, we considered 

mechanisms where students and teachers sorted into schools. Such sorting had little effect on the 

rankings of the different estimators.) An important reason for following the GRW design is the 

GRW findings show which estimators work well across a variety of situations. We can compare 

those findings with the properties of the test statistics to determine when the tests provide useful 

information – and when they do not. Along with the rejection frequencies for the tests reported in 

Section 6, we also computed the statistics in GRW measuring how well the estimated VAMs 

mimic the true teacher effects. For space reasons, we do not report these in tables. We will draw 

mainly on the rank correlations between estimated and true teacher effects; the findings are very 

similar to those in GRW, and the reader is referred to that paper for a complete set of simulation 

results. 
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In generating the data, we assume that test scores are perfect reflections of the sum total 

of a child’s learning (that is, no measurement error) and that they are on an interval scale that 

remains constant across grades. We assume that teacher effects are constant over time and that 

unobserved child-specific heterogeneity has a constant effect in each time period. We allow for 

unobserved time-varying shocks to the test scores, but we do not allow other time-varying 

factors (such as family effects correlated with teacher assignment). Also, we omit school effects 

and peer effects, and we assume that teachers have the same effect on each student in a class (so 

no interactions between students and teachers). We also assume a constant decay parameter, and 

we assume the shocks in the gain score equation are serially uncorrelated. 

Our data represent three elementary grades per student in a hypothetical district. We can 

think of these as grades 3 through 5 over the course of three years, where we observe an initial 

second-grade test score. We create data sets that contain students nested within teachers nested 

within schools, with students followed over time. Our simple baseline data generating process 

(DGP) as follows: 

𝐴𝑖3 = 𝜆𝐴𝑖2 + 𝛽𝑖3 + 𝑐𝑖 + 𝑒𝑖3 

𝐴𝑖4 = 𝜆𝐴𝑖3 + 𝛽𝑖4 + 𝑐𝑖 + 𝑒𝑖4         (20) 

𝐴𝑖5 = 𝜆𝐴𝑖4 + 𝛽𝑖5 + 𝑐𝑖 + 𝑒𝑖5 

where 𝐴𝑖2 is a baseline score reflecting the subject-specific knowledge of child i entering third 

grade, 𝜆 is a time constant decay parameter, 𝛽𝑖𝑡 is the teacher-specific contribution (the true 

teacher value-added effect), 𝑐𝑖 is a time-invariant child-specific effect, and 𝑒𝑖𝑡  is a random 

deviation for each student. Because we assume independence of 𝑒𝑖𝑡 over time, we are 

maintaining the common factor restriction in the underlying cumulative effects model. 
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The random variables 𝐴𝑖2, 𝛽𝑖𝑡, 𝑐𝑖, and 𝑒𝑖𝑡  are drawn from normal distributions with mean zero, 

where we adjust the standard deviations to allow different relative contributions to the scores. 

We choose the same second moments as in GRW; we refer the reader to that paper for a survey 

of the literature underlying our choices. Specifically, the standard deviation of the teacher effect 

is .25, while that of the student fixed effect is .5, and that of the random noise component is 1, 

each representing approximately 5, 19, and 76 percent of the total variance in gain scores, 

respectively. Also, the correlation between the time-invariant child-specific heterogeneity 𝑐𝑖 and 

the baseline score 𝐴𝑖2 is about .5. 

Our data structure has the following characteristics that do not vary across simulation 

scenarios: 

• 10 schools 

• 3 grades (3rd, 4th, and 5th) of scores and teacher assignments, with a base score in 2nd 

grade 

• 4 teachers per grade (thus 120 teachers overall) 

• 20 students per classroom 

• 4 cohorts of students 

• No crossover of students to other schools 

To create different scenarios, we vary certain key features: the grouping of students into classes, 

the assignment of classes of students to teachers, and the amount of decay in prior learning from 

one period to the next. 

 Given the different ways of grouping students, assigning teachers, and specifying the 

amount of decay, we have 20 different scenarios. (In Section 6 we briefly consider the possibility 

that the base test score is uncorrelated with the student effect.) Because we have many different 
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scenarios and estimators that require nontrivial computational effort in some cases, we limit 

ourselves to 100 replications per simulation.7 

6. Simulation Results 

We begin with the Hausman test for comparing the RE estimator to the FE estimator. For 

completeness, we also include the POLS estimator. As discussed in Section 3, in practice one 

should allow for general serial correlation and heteroskedasticity in the composite error term, and 

so we report findings for the test robust to cluster correlation at the student level. (The findings 

are similar when we use the nonrobust tests provided the nonrobust tests are asymptotically 

valid.) 

Because the grouping mechanisms generate within-classroom correlation, we also, when 

it is mechanically possible, cluster at the school level. We cannot cluster at the classroom level 

because the students change classrooms over time. Besides, grouping different students into 

different classrooms in different grades generally creates correlation across all students at a 

school within a grade. Thus, if one is to cluster at a level higher than the individual student then 

the school level is natural. We use school-level clustering even though we only have 10 schools, 

which makes applying the asymptotic theory where the number of schools is large suspect. 

Nevertheless, some simulation studies have shown clustering with as few as 10 clusters can work 

reasonably well, and much better than doing nothing. We do not have enough schools to cluster 

when using the test that includes the average of all teacher indicators. 

Table 3 contains the results for the Hausman test with 𝜆 = 1. The first panel considers 

clustering at the student level. Each scenario and estimator has two entries. The first row 

contains the rejection frequencies of the one degree-of-freedom test that includes the estimated 

                                                 
7 However, we have tested the sensitivity of our results to much higher numbers of replications and found no 
substantive difference in the results. 
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teacher effect across all three grades. The second row has the rejection rates for the test that 

includes the full set of teacher dummies. 

We focus on the RE results because POLS seems to have more small sample bias. Under 

the RG/RA scenario, the one-df test rejects about 6% of the time. The full test somewhat over 

rejects (13% rejection rate). Somewhat surprisingly, clustering at the school level leads to a test 

with pretty good size (8%). 

The remaining predictions from Section 4 are born out as well. The test that includes the 

estimated teacher effect almost always rejects in every other kind of grouping/assignment 

scenario. To see the practical problems this causes, consider the HG-RA scenario in Table 3. The 

test clustered at the student level rejects 100% of the time, and the lowest rejection rate is 60% 

(RE with clustering at the school level). This means that we would traditionally reject the RE 

estimator in favor of FE. Yet in this simulation the rank correlation of the estimated VAMs for 

the RE estimator is .85 compared with .63 for FE. In fact, of the four estimators – POLS, DOLS, 

RE, and FE – RE works the best. 

As mentioned in Section 4, the rejection of RE using the Hausman test in the HG-RA 

scenario is essentially mechanical due to the fact that good students are grouped with other good 

students. But this grouping has no effect on the quality of RE as an estimator of teacher VAMs. 

We are forced to conclude that the Hausman test is very misleading in this case. 

In other scenarios the situation is even worse. For example, in the HG-PA setting – where 

we fully expect RE to be rejected, and it is – the RE estimator actually does even better in 

ranking teachers. The rank correlation jumps to .91; because FE removes the heterogeneity when 

estimating the teacher effects, we expect the FE rank correlation to remain about the same, and it 

does to two decimal places. 
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As if things were not bad enough, against the one alternative where some versions of the 

Hausman test do not detect nonrandom assignment, HG-NA, the FE estimator outperforms the 

RE estimator (with rank correlations of .62 and .55, respectively). In other words, when we want 

to reject RE in favor of FE the Hausman test has the lowest power. To be fair, the version of the 

test that uses the estimated teacher effects has unit power when we do not cluster, but this is not 

the standard form of the Hausman test. 

Table 4 contains the simulation rejection rates when 𝜆 = 1/2. With a handful of 

exceptions, the test rejects the RE estimator 100% of the time.  

The situation is somewhat improved for the leads test in the sense that it has roughly size 

5% for the fixed effects estimator under static assignment mechanisms and it detects dynamic 

forms of teacher assignment. Table 5 contains the rejection frequencies. 

In the RG-RA case, the test has size roughly 5% for all estimators with the exception of 

pooled OLS, where the rejection rates are somewhat high. For FE under base score and 

heterogeneity grouping, the feedback test using the estimated lead teacher effect rejects between 

4% and 9% of the time – reasonably close to a 5% significance level. Clustering by school 

causes some distortions, but the rates are acceptable with only 10 schools. 

The FE estimator is strongly rejected when dynamic grouping is coupled with nonrandom 

teacher assignment – either positive or negative: the rejection rates are all 100%. This shows that 

the test works as it is supposed to in detecting a failure of strict exogeneity when using FE 

estimation. Under dynamic grouping but random teacher assignment, the test rejects about 16% 

of the time. What appears to be happening is that removing a student fixed effect largely, but not 

entirely, accounts for the grouping by past test scores. 
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Table 5 also shows that POLS and RE are strongly rejected in most scenarios – even 

though in some of these RE is the best estimator for ranking the teacher effects. We already 

discussed a similar situation for the Hausman test. DOLS is rejected much less often with base 

score grouping than are POLS and RE. One way to understand why this happens is that DOLS is 

“almost” controlling for the right variable that determines teacher assignment: the most recent 

test score rather than the base score. The feedback test applied to DOLS is strongly rejected in 

the HG case: grouping is based directly on a factor affecting test scores (the student effect) and 

controlling for the lagged test score is not sufficient when assignment is based on 𝑐𝑖 . To see why 

applying the leads test to DOLS is problematical, we again turn to the rank correlations between 

the DOLS VAM estimates and the true teacher effects. In the HG-PA scenario the leads test 

rejects 100% of the time, yet the rank correlation is about .87. Therefore, DOLS is doing a good 

job of ranking teachers even though the falsification test virtually always rejects. 

The feedback test also rejects DOLS 100% of the time in the DG-PA and DG-NA cases 

even though these are cases where DOLS does well in ranking the teachers (rank correlation 

.76). Interestingly, both POLS and RE do notably better, with both having rank correlations of 

about .90. Of course, the leads test strong rejects when they are used, too. If we relied on the 

rejection by this “falsification test” to determine whether the estimates are doing a good job 

estimating the teacher effects, we would be led badly astray: we would conclude none of the 

estimates can be trusted. In effect, Rothstein’s (2010) conclusion was that the VAM estimates 

could not be trusted because his version of the falsification test always rejected. Our simulations 

show that this test actually has very little to say about when POLS, RE, and DOLS are working 

well or not. 
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7. Concluding Remarks 

In this paper we have discussed two specification tests that are applied in the literature. 

The first test is a robust, regression-based version of the Hausman test that compares the random 

effects and fixed effects estimators. The second test is a feedback or leads test that was originally 

designed to test for violation of the strict exogeneity assumption in the context of fixed effects 

estimation. Versions of this test were used in an influential paper by Rothstein (2010) to detect 

nonrandom teacher assignment in the context of several regression equations, including dynamic 

equations. 

The most important point of this paper is that neither the Hausman test nor the feedback 

test is very helpful for choosing among estimators or in determining whether a particular 

estimation method is providing good estimates of teacher VAMs. The Hausman test rejects RE 

in favor of FE in many cases where the RE estimator is clearly superior for ranking teachers 

based on estimated VAMs. The source of the problem with the Hausman test is that nonrandom 

grouping of students – often called tracking – leads to rejection even though teacher assignment 

to classrooms is random. Under random teacher assignment, RE does well for estimating teacher 

value added. 

The feedback test is a little more successful, but only when it is applied to the fixed 

effects estimator – the original application of the test described in Wooldridge (2010). The test 

has good size properties under static assignment mechanisms and detects dynamic assignment – 

which has deleterious effects on the FE VAM estimates – with high probability. Nevertheless, 

we must emphasize that the falsification test applied to pooled OLS, random effects, and 

dynamic regression produces misleading results. Often the test rejects even though the estimation 
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method is working well. Conversely, sometimes the test fails to reject when the estimated VAMs 

are poor. 

The findings in this paper can be combined with those in GRW to provide some practical 

advice to those wanting to estimate teacher VAMs. GRW found that, generally, dynamic 

regression methods provide the best and most robust estimates – although there are notable 

exceptions, such as RE estimation with random teacher assignment and correctly specified 

dynamics. The current paper shows that applying a falsification test to dynamic regression – 

whether it is the simple form studied here, with just a single lagged score, or more sophisticated 

methods with multiple lags – is a poor idea. A rejection has very little to do with whether 

dynamic regression produces good VAM estimates. A similar comment holds for RE, whether 

one applies the Hausman test or the falsification test: the outcome of the test is practically useless 

for the main aim of estimating VAMs. 

The inappropriateness of applying the falsification test to dynamic regression methods for 

estimating VAMs can be further understood by viewing dynamic regression through the lens of 

estimating average treatment effects – where being assigned a particular teacher is the 

“treatment” – rather than thinking of dynamic regression as estimating a structural cumulative 

effects model. From the modern treatment effects perspective, controlling for lagged test scores, 

and perhaps other observables, is intended to make teacher assignment random conditional on 

the observables. This “unconfoundedness of treatment assignment” assumption is at the heart of 

regression, propensity score, and matching methods for estimating treatment effects; see, for 

example, Imbens and Wooldridge (2009). As is well known, the unconfoundedness assumption 

is not testable: it exactly identifies the teacher effects. Moreover, the treatment is assumed, or at 

least allowed, to be correlated with the conditioning variables – usually the past test scores. 
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Generally, testing whether teacher assignment is correlated with past test scores is not a test of 

the unconfoundedness assumption unless some strong assumptions are imposed about the nature 

of any nonrandom assignment. Imbens and Wooldridge (2009) discuss a set of sufficient 

conditions, but the spirit of them can be easily described. In effect, in order to construct a 

falsification test one must assume that unconfoundedness holds conditional on a short history of 

test scores, with more lags excluded from the conditioning set. We see no reason to think such 

assumptions are plausible when trying to estimate teacher effectiveness. 

Given the frailty of the cumulative effects model as a description of educational 

production, viewing dynamic regression methods as flexible ways to estimate VAMs – without 

worrying about “structural” parameters – appears to be the most promising way forward. 
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Table 3:  Hausman Test Rejection Rates.  Results from 100 replications.  Vertically scaled test scores.  λ=1.  
Correlation of student fixed effect with scorebase is .5.  Row 1:  Rejection rate of test with estimated mean teacher 
effect.  Row 2:  Rejection rate of test with mean teacher indicators.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  

Hausman Test 
λ=1 

Cluster at Student Level Cluster at School Level 

Estimator 
 
 
 

Assignment 
Mechanism 

POLS RE POLS 

 

RE 

 

 0.19 0.06 0.18 0.08 
RG-RA 0.12 0.13   

 1 0.95 0.99 0.67 
DG-RA 1 1   

 1 1 1 1 
DG-PA 1 1   

 1 1 0.75 0.83 
DG-NA 0.91 0.6   

 0.99 0.99 0.71 0.45 
BG-RA 1 1   

 1 1 1 1 
BG-PA 0.25 0.89   

 1 1 0.07 0.78 
BG-NA  0.99 0.83   

 1 1 0.86 0.6 
HG-RA 1 1   

 1 1 1 1 
HG-PA 0.76 0.67   

 1 1 0.24 0.27 
HG-NA 0.19 0.06   
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Table 4:  Hausman Test Rejection Rates.  Results from 100 replications.  Vertically scaled test scores.  λ=.5.  
Correlation of student fixed effect with scorebase is .5.  Row 1:  Rejection rate of test with estimated mean teacher 
effect.  Row 2:  Rejection rate of test with mean teacher indicators.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  

Hausman Test 
λ=.5 

Cluster at Student Level Cluster at School Level 

Estimator 
 
 
 

Assignment 
Mechanism 

POLS RE POLS 

 

RE 

 

 1 1 1 1 
RG-RA 0.94 0.94   

 1 1 1 1 
DG-RA 1 1   

 1 1 1 1 
DG-PA 1 1   

 1 1 1 1 
DG-NA 1 1   

 1 1 1 1 
BG-RA 1 1   

 1 1 1 1 
BG-PA 1 1   

 0.53 0.53 0.32 0.41 
BG-NA  1 1   

 1 1 1 1 
HG-RA 0.98 0.98   

 0.63 0.63 0.47 0.53 
HG-PA 0.97 0.97   

 1 1 1 1 
HG-NA 1 1   
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Table 5:  Leads Test Rejection Rates.  Results from 100 replications.  Vertically scaled test scores.  λ=1.  
Correlation of student fixed effect with scorebase is .5.  Row 1:  Rejection rate of test with estimated lead teacher 
effect.  Row 2:  Rejection rate of test with future teacher indicators.   
 

 
 
  

Leads Test 
λ=1 

Cluster at Student Level Cluster at School Level 

Estimator 
 
 
 

Assignment 
Mechanism 

POLS 

 

DOLS 

 

RE FE POLS 

 

DOLS 

 

RE 

 

FE 

 

 0.1 0.03 0.01 0.07 0.15 0.03 0.05 0.07 
RG-RA 0.05 0.04 0.05 0.03     

 1 0.36 0.95 0.16 0.97 0.02 0.57 0.16 
DG-RA 1 1 1 0.18     

 1 1 1 1 1 1 1 1 
DG-PA 1 1 1 1     

 1 1 1 1 0.74 1 0.8 1 
DG-NA 1 1 1 1     

 0.65 0.08 0.35 0.09 0.55 0.03 0.31 0.06 
BG-RA 0.68 0.09 0.61 0.09     

 1 0.14 1 0.06 1 0.15 1 0.04 
BG-PA 0.97 0.11 0.97 0.1     

 0.13 0.22 0.6 0.06 0.06 0.22 0.49 0.13 
BG-NA  0.97 0.1 0.97 0.1     

 0.86 0.36 0.54 0.04 0.7 0.25 0.43 0.1 
HG-RA 0.94 0.73 0.88 0.07     

 1 1 1 0.06 1 1 1 0.06 
HG-PA 1 1 1 0.09     

 0.59 0.76 0.56 0.08 0.19 0.51 0.2 0.06 
HG-NA 1 1 1 0.09     
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Table 6:  Leads Test Rejection Rates.  Results from 100 replications.  Vertically scaled test scores.  λ=.5.  
Correlation of student fixed effect with scorebase is .5.  Row 1:  Rejection rate of test with estimated lead teacher 
effect.  Row 2:  Rejection rate of test with future teacher indicators.   
 

 
 

Leads Test 
λ=.5 

Cluster at Student Level Cluster at School Level 

Estimator 
 
 
 

Assignment 
Mechanism 

POLS 

 

DOLS 

 

RE FE POLS 

 

DOLS 

 

RE 

 

FE 

 

 0.13 0.03 0.13 0.06 0.11 0.02 0.16 0.09 
RG-RA 0.02 0.04 0.02 0.03     

 1 0.38 1 0.62 0.99 0.02 0.99 0.55 
DG-RA 1 1 1 0.38     

 1 1 1 1 1 1 1 1 
DG-PA 1 1 1 1     

 1 1 1 1 1 1 1 1 
DG-NA 1 1 1 1     

 0.1 0.09 0.1 0.09 0.11 0.03 0.14 0.05 
BG-RA 0.52 0.08 0.52 0.13     

 0.98 0.28 0.98 0.07 0.88 0.26 0.95 0.07 
BG-PA 0.9 0.15 0.91 0.14     

 0.78 0.32 0.78 0.17 0.65 0.25 0.71 0.14 
BG-NA  0.78 0.23 0.78 0.14     

 0.1 0.35 0.1 0.04 0.06 0.25 0.1 0.06 
HG-RA 0.23 0.73 0.23 0.05     

 0.71 1 0.71 0.12 0.56 1 0.65 0.15 
HG-PA 0.7 1 0.71 0.12     

 0.99 0.63 0.99 0.07 0.97 0.32 0.97 0.12 
HG-NA 0.76 1 0.77 0.12     


