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Abstract 
Empirical Bayes' (EB) estimation is a widely used procedure to calculate teacher value-added. It is primarily viewed as a way to make 

imprecise estimates more reliable. In this paper we review the theory of EB estimation and use simulated data to study its ability to 

properly rank teachers. We compare the performance of EB estimators with that of other widely used value-added estimators under 

different teacher assignment scenarios. We find that, although EB estimators generally perform well under random assignment of 

teachers to classrooms, their performance generally suffers under non-random teacher assignment. Under nonrandom assignment, 

estimators that explicitly (if imperfectly) control for the teacher assignment mechanism perform the best out of all the estimators 

we examine. We also find that shrinking the estimates, as in EB estimation, does not itself substantially boost performance. 
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Abstract: Empirical Bayes’ (EB) estimation has become a popular procedure used to calculate

teacher value-added, often as a way to make imprecise estimates more reliable. In this paper we

review the theory of EB estimation and use simulated and real student achievement data to study

the ability of EB estimators to properly rank teachers. We compare the performance of EB esti-

mators with that of other widely used value-added estimators under different teacher assignment

scenarios. We find that, although EB estimators generally perform well under random assign-

ment of teachers to classrooms, their performance suffers under nonrandom teacher assignment.

Under nonrandom assignment, estimators that explicitly (if imperfectly) control for the teacher

assignment mechanism perform the best out of all the estimators we examine. We also find that

shrinking the estimates, as in EB estimation, does not itself substantially boost performance.



1 Introduction

Empirical Bayes’ (EB) estimation of teacher effects has gained recent popularity in the value-

added research community (see, for example, McCaffrey et al. 2004; Kane & Staiger 2008; Chetty,

Friedman, & Rockoff forthcoming; Corcoran, Jennings, & Beveridge 2011; and Jacob & Lefgren

2005, 2008). Researchers motivate the use of EB estimation as a way to decrease classification

error of teachers, especially when limited data are available to compute value-added estimates.

Since teacher value-added estimates can be very noisy when there are only a small number of

students per teacher, EB estimates of teacher value-added reduce the variability of the estimates

by shrinking them toward the average estimated teacher effect in the sample. As the degree of

shrinkage depends on class size, estimates for teachers with smaller class sizes are more affected,

potentially helping with the misclassification of these teachers. EB, or “shrinkage, ” estimation

may also be less computationally demanding than methods that view the teacher effects as fixed

parameters to estimate. Finally, EB estimation has been motivated as a way to estimate teacher

value added when including controls for peer effects and other classroom-level covariates.

This paper analyzes the performance of EB estimation using both simulated and real student

achievement data. We first provide a detailed theoretical derivation of the EB estimator, which

has not previously been explicitly derived in the context of teacher value-added. This theoretical

discussion provides the basis for our expectations about how EB and other value-added estimators

will perform under the different simulation scenarios we examine. We test our theoretical predic-

tions by comparing the performance of EB estimators to estimators that treat the teacher effect as

fixed. We first use a simulation, where the true teacher effect is known, comparing performance

under random teacher assignment and various nonrandom assignment scenarios. In addition to the

random vs. fixed teacher effects comparison, we also examine whether shrinking the estimates

improves performance. Finally, we apply these estimators to real student achievement data to see

how the rankings of teachers vary across these estimators in a real-world setting.
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Despite the potential benefits of EB estimation, we find that the estimated teacher effects can

suffer from severe bias under nonrandom teacher assignment. By treating the teacher effects as

random, EB estimation assumes that teacher assignment is uncorrelated with factors that predict

student achievement – including observed factors such as past test scores. While the bias (tech-

nically, the inconsistency) disappears as the number of students per teacher increases – because

the EB estimates converges to the so-called fixed effects estimates – the bias still can be important

with the type of data used to estimate teacher VAMs. This is because the EB estimators of the

coefficients on the covariates in the model are inconsistent for fixed class sizes as the number of

classrooms grows. By contrast, estimators that include the teacher assignment indicators along

with the covariates in a multiple regression analysis are consistent (as the number of classrooms

grows) for the coefficients on the covariates. This generally leads to less bias in the estimated

teacher VAMs under nonrandom assignment without many students per teacher.

The paper begins in Section 2 with a detailed theoretical derivation of the EB estimator. Section

3 follows with a description of the five estimators we examine. Section 4 describes our simula-

tion design and the different student grouping and teacher assignment scenarios we examine, with

Section 5 providing the results of this analysis. Section 6 provides an analysis of these estimators

using real student achievement data, and Section 7 concludes.

2 Empirical Bayes’ Estimation

There are several ways to derive Empirical Bayes’ estimators of teacher value added. We adopt

a so-called “mixed estimation” approach, as in Ballou, Sanders, and Wright (2004), because it is

fairly straightforward and does not require delving into Bayesian estimation methods. Our focus

is on estimating teacher effects grade by grade. Therefore, we assume either that we have a single

cross section or multiple cohorts of students for each teacher. We do not include cohort effects;

multiple cohorts are allowed by pooling students across cohorts for each teacher.
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Let yi denote a measure of achievement for student i randomly drawn from the population. This

measure could be a test score or a gain score (i.e., current minus lagged score). Suppose there are G

teachers and the teacher effects are bg, g = 1, ...,G. In the mixed effects setting, the bg are treated

as random variables drawn from a population of teacher effects, as opposed to fixed population

parameters. Viewing the bg as random variables independent of other observable factors affecting

test scores has consequences for the properties of EB estimators.

Typically VAMs are estimated while controlling for other factors, which we denote by a row

vector xi. These factors include prior test scores and, in some cases, student-level and/or classroom-

level covariates. We treat the coefficients on these covariates as fixed population parameters. We

can write a mixed effects linear model as

yi = xiγ + zib + ui, (1)

where zi is a 1 × G row vector of teacher assignment dummies, b is the G × 1 vector of teacher

effects, and ui contains the unobserved student-specific effects. Because a student is assigned to

one and only one teacher, zi1 + zi2 + · · · + ziG = 1. Equation (1) is an example of a “mixed model”

because it includes the usual fixed population parameters γ and the random coefficients b. Even if

there are no covariates, xi typically includes an intercept. If xiγ is only a constant, so xiγ = γ, then

γ is the average teacher effect and we can then assume E(b) = 0. This means that bg is the effect

of teacher g net of the overall mean teacher effect.

Equation (1) is written for a particular student i so that teacher assignment is determined by the

vector zi. A standard assumption is that, conditional on b – so for a given set of teachers available

for assignment – (1) represents a linear conditional mean:

E(yi |xi,zi,b) = xiγ + zib, (2)
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which follows from equation (1) and

E(ui |xi,zi,b) = 0. (3)

An important implication of (3) is that ui is necessarily uncorrelated with zi, so that teacher assign-

ment is not systematically related to unobserved student characteristics once we have controlled

for the observed factors in xi.

If we assume a sample of N students assigned to one of G teachers, we can write (1) in matrix

notation as

y = Xγ + Zb + u, (4)

where y and u are N × 1, X is N × K , and Z is N × G. In order to obtain the best linear unbiased

estimator (BLUE) of γ and the best linear unbiased predictor (BLUP) of b, we assume that the

covariates and teacher assignments satisfy a strict exogeneity assumption:

E(ui |X,Z,b) = 0, i = 1, ...,N. (5)

An implication of assumption (5) is that inputs and teacher assignment of other students do not

affect the outcome of student i.

Given assumption (5) we can write the conditional expectation of y as

E(y|X,Z,b) = Xγ + Zb (6)

In the EB literature a standard assumption is

b is independent of (X,Z), (7)
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in which case

E(y|X,Z) = Xγ + ZE(b|X,Z) = Xγ = E(y|X) (8)

because E(b|X,Z) = E(b) = 0. Assumption (7) has the implication that teacher assignment for

student i does not depend on the quality of the teacher (as measured by the bg).

From an econometric perspective, the statement that E(y|X) = Xγ means that γ can be esti-

mated in an unbiased way by an OLS regression of

yi on xi, i = 1, ...,N. (9)

Consequently, we can estimate the effects of the covariates xi using a regression that completely

ignores teacher assignment. As a practical matter, this has a very important implication when

viewed from a classical, fixed parameters model – we are assuming that teacher assignment is

uncorrelated with the covariates xi. Correlation between teacher assignment and covariates in xi is

a potential source of bias in EB (and related) estimators of the teacher effects.

Under (5) and (7), the OLS estimator of γ is unbiased and consistent, but it is inefficient if we

impose the standard classical linear model assumptions on u. In particular, if the error variance

has the usual scalar structure,

V ar (u|X,Z,b) = V ar (u) = σ2
uIN , (10)

then

V ar (y|X,Z) = E[(Zb + u)(Zb + u)′|X,Z]

= ZV ar (b)Z′ + V ar (u) = σ2
bZZ′ + σ2

uIN ,
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where we also add the standard assumption that the elements of b are uncorrelated,

V ar (b) = σ2
bIG, (11)

and σ2
b is the variance of the teacher effects, bg.

Under the assumption that σ2
b and σ2

u (or at least their ratio) are known, the BLUE of γ under

the preceding assumptions is the generalized least squares (GLS) estimator,

γ∗ = [X′(σ2
bZZ′ + σ2

uIN )−1X]−1X′(σ2
bZZ′ + σ2

uIN )−1y. (12)

The N × N matrix ZZ′ is a block diagonal matrix with G blocks, where block g is an Ng × Ng

matrix of ones and Ng is the number of students taught by teacher g. The GLS estimator γ∗ is the

well-known “random effects” (RE) estimator popular from panel data and cluster sample analysis.

However, it is important to understand that the “random effects” in this case are teacher effects,

not student-specific effects. Also, like the OLS estimator from equation (9), the GLS estimator γ∗

does not partial out the teacher assignment.

Before we discuss γ∗ further, it is helpful to write down the mixed effects model in perhaps a

more common form. After students have been designated to classrooms, we can write ygi as the

outcome for student i in class g and similarly for xgi and ugi. Then, for classroom g, we have

ygi = xgiγ + bg + ugi ≡ xgiγ + rgi, i = 1, ...,Ng, (13)

where rgi ≡ bg + ugi is the composite error term. In other words, the variation in ygi not explained

by xgi is due to teacher and individual student effects, and both of these (bg and ugi) are assumed

to be independent of xgi. Equation (13) also makes it easy to see that the BLUE of γ is the random

effects estimator. Further, the assumption E(ugi |Xg,bg) = 0 implies that covariates from student h

do not affect the outcome of student i. We can also see that OLS pooled across i and g is unbiased
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for γ because we are assuming E(bg |Xg) = 0.

What about estimation of b, the teacher effects? As shown in, say, Ballou, Sanders, and Wright

(2004), the BLUP of b under assumptions (5), (7), and (10) is

b∗ = (Z′Z + ρIG)−1Z′(y − Xγ∗) ≡ (Z′Z + ρIG)−1Z′r∗, (14)

where ρ = σ2
u/σ

2
b, and r∗ = y − Xγ∗ is the vector of residuals. Straightforward matrix algebra

shows each b∗g can be expressed as

b∗g = (Ng + ρ)−1
Ng∑
i=1

r∗gi =

(
Ng

Ng + ρ

)
r̄∗g

= *
,

σ2
b

σ2
b + (σ2

u/Ng)
+
-

r̄∗g = *
,

σ2
b

σ2
b + (σ2

u/Ng)
+
-

( ȳg − x̄gγ∗), (15)

where

r̄∗g = N−1
g

Ng∑
i=1

r∗gi = ȳg − x̄gγ∗ (16)

is the average of the residuals r∗gi = ygi − xgiγ
∗ within classroom g.

To operationalize γ∗ and b∗g, we must replace σ2
b and σ2

u with estimates. There are different

ways to obtain estimates depending on whether one uses OLS residuals after an initial estimation

or a joint estimation method. With the composite error defined as rgi = bg + ugi, we can write

σ2
r = σ2

b + σ2
u . An estimator of σ2

r can be obtained from the usual sum of squared residuals from

the OLS regression

ygi on xgi, i = 1, ...,Ng, g = 1, ...,G. (17)

Call the residuals r̃gi. Then a consistent estimator is

σ̃2
r =

1
(N − K )

G∑
g=1

Ng∑
i=1

r̃2
gi, (18)
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which is just the usual degrees-of-freedom (df) adjusted error variance estimator from OLS.

To estimate σ2
u , write rgi−r̄g = ugi−ūg, where r̄g is the within-teacher average, and similarly for

ūg. A standard result on demeaning a set of uncorrelated random variables with the same variance

gives V ar (ugi − ūg) = σ2
u (1 − N−1

g ) and so, for each g, E
[∑Ng

i=1(rgi − r̄g)2
]

= σ2
u (Ng − 1).When

we sum across teachers it follows that

1
(N − G)

G∑
g=1

Ng∑
i=1

(rgi − r̄g)2 (19)

has expected value σ2
u . To turn (19) into an estimator we can replace rgi with the OLS residuals,

r̃gi, from the regression in (17). The estimator based on the OLS residuals is

σ̃2
u =

1
(N − G)

G∑
g=1

Ng∑
i=1

(r̃gi − r̃g)2. (20)

With fixed class sizes and G getting large, the estimator that uses N in place of N − G is not

consistent. Therefore, we prefer the estimator in equation (20), as it should have less bias in

applications where G/N is not small. With many students per teacher the difference should be

minor. We could also use N − G − K as a further df adjustment, but subtracting off K does not

affect the consistency.

Given σ̃2
r and σ̃2

u , we can estimate σ2
b as

σ̃2
b = σ̃2

r − σ̃
2
u . (21)

In any particular data set – especially if the data have been generated to violate the standard as-

sumptions listed above – there is no guarantee that expression (21) is nonnegative. A simple

solution to this problem (and one used in software packages, such as Stata) is to set σ̃2
b = 0 when-

ever σ̃2
r < σ̃2

u . In order to ensure this happens infrequently with multiple cohorts, we compute σ̃2
u
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by replacing r̃g with the average obtained for the particular cohort. This ensures that, for a given

cohort, the terms
∑Ng

i=1(r̃gi − r̃g)2 are as small as possible. In theory, if there are no cohort effects

we could use an overall cohort mean for r̃g. But using cohort-specific means reduces the problem

of negative σ̃2
b when the model is misspecified.

An appealing alternative is to estimate σ2
b and σ2

u jointly along with γ, using software that

ensures nonnegativity of the variance estimates. The most common approach to doing so is to

assume joint normality of the teacher effects, bg, and the student effects, ugi, across all g and i

– along with the previous assumptions. One important point is that the resulting estimators are

consistent even without the normality assumption; so, technically, we can think of them as “quasi-

” maximum likelihood estimators. The maximum likelihood estimator of σ2
u has the same form as

in equation (20), except the residuals are based on the MLE of γ rather than the OLS estimator. A

similar comment holds for the MLE of σ2
b (if we do not constrain it to be nonnegative). See, for

example, Hsiao (2003, Section 3.3.3).

Unlike the GLS estimator of γ, the feasible GLS (FGLS) estimator is no longer unbiased [even

under assumptions (5) and (7)], and so we must rely on asymptotic theory. In the current context,

the estimator is known to be consistent and asymptotically normal provided G → ∞ with Ng

fixed. In simulations, Hansen (2007) shows that the asymptotic properties work well when G is

roughly around 40 with Ng of a similar magnitude, and even somewhat larger. Consequently, the

asymtptotic approximations for the FGLS estimator of γ should be reliable in the vast majority

of VAM applications, which are typically applied at the district or state level with a large number

of teachers. In any case, our focus in this paper is not on estimation of γ but rather the teacher

effects, b. Often we can estimate b well, at least for ranking purposes, even when our estimator of

γ is severely biased. For estimating b, the number of students per teacher is what matters most. In

fact, without xi in the equation, it is only the number of students per teacher that matters. In our

simulations we use relatively few teachers, 36, because adding more teachers does not change our

ability to estimate the effects for a particular teacher.
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When γ∗ is replaced with the FGLS estimator and the variances σ2
b and σ2

u are replaced with

estimators, the EB estimator of b is no longer a BLUP. Nevertheless, we use the same formula

as in (15) for operationalizing the BLUPs. Conveniently, certain statistical packages – such as

Stata 12 with its “xtmixed” command – allow one to recover the operationalized BLUPs after

maximum likelihood estimation. When we use the (quasi-) MLEs to obtain the b∗g, we obtain what

are typically called the Empirical Bayes’ estimates.

One way to understand the shrinkage nature of b∗g is to compare it with the estimator obtained

by treating the teacher effects as fixed parameters. Let γ̂ and β̂ be the OLS estimators from the

regression

yi on xi, zi, i = 1, ...,N. (22)

Then γ̂ is the so-called “fixed effects” (FE) estimator obtained by a regression of yi on the controls

in xi and the teacher assignment dummies in zi. As with the “random effects” terminology it is

important to understand that regression (22) incorporates teacher fixed effects, not student fixed

effects. In the context of the classical fixed parameters model

y = Xγ + Zβ + u (23)

E(u|X,Z) = 0, V ar (u|X,Z) = σ2
uIN ,

γ̂ is the BLUE of γ and β̂ is the BLUE of β. As is well-known, γ̂ can be obtained by an OLS

regression where ygi and xgi have been deviated from within-teacher averages (see, for example,

Wooldridge 2010, Chapter 10). Further, the estimated teacher fixed effects can be obtained as

β̂g = ȳg − x̄g γ̂. (24)

Equation (24) makes computation of the teacher VAMs efficient if one does not want to run the

long regression in (22).
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By comparing equations (15) and (24), we see that the EB estimator b∗g differs from the fixed

effects estimator β̂g in two ways. First, and most importantly, the RE estimator γ∗ is used in

computing b∗g while β̂g uses the FE estimator γ̂. Second, b∗g shrinks the average of the residuals

toward zero by the factor
σ2

b

σ2
b + (σ2

u/Ng)
=

1
1 + (ρ/Ng)

(25)

where

ρ = σ2
u/σ

2
b. (26)

Equation (25) illustrates the well-known result that the smaller the number of students taught by

teacher g, Ng, the more the average residual is shrunk toward zero.

A well-known algebraic result – for example, Wooldridge (2010, Chapter 10) – that holds for

any given number of teachers G is that

γ∗ → γ̂ as ρ→ 0 or Ng → ∞.1 (27)

Equation (27) can be verified by noting that the RE estimator of γ can be obtained from the pooled

OLS regression

ygi − θg ȳg on xgi − θgx̄g (28)

where

θg = 1 − *
,

σ2
u

σ2
u + Ngσ

2
b

+
-

1/2

= 1 −
(

1
1 + (Ng/ρ)

)1/2

. (29)

It is easily seen that θg → 1 as ρ→ 0 or Ng → ∞. In other words, with many students per teacher

or a large teacher effect variance relative to the student effect variance, the RE and FE estimates

can be very close – but never identical. Not coincidentally, the shrinkage factor in equation (25)

tends to unity if ρ → 0 or Ng → ∞. The bottom line is that with a “large” number of students

per teacher the shrinkage estimates of the teacher effects can be close to the fixed effects estimates.
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The RE and FE estimates also tend to be similar when σ2
u (the student effect) is “small” relative to

σ2
b (the teacher effect), but is an unlikely scenario.

An important point that appears to go unnoticed in applying the shrinkage approach is that, in

situations where γ∗ and γ̂ substantively differ, γ∗ suffers from systematic bias because it assumes

teacher assignment is uncorrelated with xi. Because γ∗ is used in constructing the b∗g in equation

(15), the bias in γ∗ generally results in biased teacher effects, which would be biased even if (15)

did not employ a shrinkage factor. The shrinkage likely exacerbates the problem: the estimates are

being shrunk toward values that are systematically biased for the teacher effects.2

The expressions in equations (15) and (24) motivate a common two-step alternative to the EB

approach and fixed effects approaches. In the first step of the procedure, one obtains γ̃ using the

OLS regression in equation (17), and obtains the residuals, r̃gi. In the second step, one averages the

residuals r̃gi within each teacher to obtain the teacher effect for teacher g. These estimated teacher

effects can be expressed as

β̃g = N−1
g

Ng∑
i=1

r̃gi = ȳg − x̄g γ̃, (30)

which has the same form as (24) with the important difference that γ̃ is used in place of γ̂. We call

this approach the “average residual” (AR) method. After obtaining the averages of the residuals

one can, in a third step, shrink the averages using the empirical Bayes’ shrinkage factors in equation

(15). This “shrunken average residual” (SAR) method typically obtains the shrinkage factors using

the estimates in equations (18) and (20).

With or without shrinking, the AR approach suffers from systematic bias if teacher assignment,

zi, is correlated with the covariates, xi. In effect, the AR approach partials xi out of yi but does not

partial xi out of zi, the latter of which is crucial if xi and zi are correlated. The so-called “fixed

effects” regression in (22) partials xi out of zi, which makes it a more reliable estimator under

nonrandom teacher assignment – perhaps much more reliable with strong forms of nonrandom
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assignment. Since the fixed effects estimation of the teacher VAMs allows any correlation between

zi and xi, we thus expect it to outperform EB estimation and strongly outperform SAR under

nonrandom assignment. The bias due to nonrandom allocation of students to teachers is also

discussed in Rothstein (2009, 2010).

It is also important to know that the SAR approach is inferior to the EB approach under nonran-

dom assignment. The logic is simple. First, the algebraic relationship between RE and FE means

that γ∗ tends to be closer to the FE estimator, γ̂, than the OLS estimator, γ̃. Consequently, under

nonrandom teacher assignment, the estimated teacher effects using the RE estimator of γ will have

less bias than the estimates that begin with OLS estimation of γ. Second, if teacher assignment is

uncorrelated with the covariates, the OLS estimator of γ is inefficient relative to the RE estimator

under the standard random effects assumptions (because the RE estimator is FGLS). Thus, the only

possible justification for SAR is computational simplicity when the number of controls in xi is very

large. For the kinds of data sets widely available, the computational saving from using SAR rather

than EB is likely to be minor.

3 Summary of Estimation Methods

In this paper we examine five different value-added estimators used to recover the teacher

effects and apply them to both real and simulated data. Some of the estimators use EB or shrinkage

techniques, while others do not. They can all be cast as a special case of the estimators described

in the previous section. For clarity, we briefly describe each one, with additional reference to each

of these specifications provided in Table A.1. Associated Stata 12 code is available upon request.

The estimators can be obtained from a dynamic equation of the form

Ait = λAi,t−1 + Xitδ + Zit β + vit , (31)
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in which Ait is achievement (measured by a test score) for student i in grade t, Xit is a vector

of student characteristics, and Zit is the vector of teacher assignment dummies. This is similar

to equation (1) but with the lagged test score written separately from Xit for clarity. Also, Xit

is omitted from the estimation of the teacher effects in the simulation analysis below, as student

characteristics are not included in the data generating process. The EB estimator we analyzed in

Section 2 was for the case of a single cross-section of students, and so we only use one grade –

fifth grade – for the analysis.

We first analyze EB LAG, a dynamic MLE version of the EB estimator that treats the teacher

effects as random. This technique obtains the estimates of the teacher effects using the normal

maximum likelihood in the first stage, where the error includes teacher random effects (along with

the student-specific error). In the second stage, the shrinkage factor is applied to these teacher

effects. As described in Rabe-Hesketh and Skrondal (2012), this two step procedure can be per-

formed in one-step using the “xtmixed” command in Stata 12 with teacher random effects. The

predicted random effects of this regression are identical to shrinking the MLE estimates by the

shrinkage factor. This procedure is generally justified even if the unobservables do not have nor-

mal distributions, in which case we are applying quasi-MLE. A second estimator we consider is

the average residual (AR) method described in Section 2, which is obtained by first using the OLS

regression in (17) and then using (30). Recall that the AR method essentially differs from EB LAG

in that it uses OLS to estimate γ in the first stage.3 We expect the EB LAG estimator to outperform

the AR estimator in most scenarios, given that EB LAG generally uses a more reliable estimator

of γ.

We compare the AR and EB estimators with estimators that partial out teacher assignment

when estimating γ, thereby allowing teacher assestimators that are correlated with lagged test

scores and student characteristics. This third estimator is obtained by simply applying OLS to

(31), by pooling across students and classrooms. We call this the “dynamic OLS” or “DOLS”

estimator. The inclusion of the lagged test score accounts for the possibility that teacher assignment
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is related to students’ most recent test score. Guarino, Reckase, and Wooldridge (forthcoming)

discuss the assumptions under which DOLS consistently estimates β when (31) is obtained from

a structural cumulative effects model, and the assumptions are quite restrictive. More importantly,

their simulations show the DOLS estimator often estimates β well, at least for ranking purposes,

even when the assumptions underlying the consistency of DOLS fails.

Given that EB estimation is often motivated as a way to increase precision and decrease mis-

classification, we also analyze whether shrinking AR and DOLS estimates enhances performance.

Thus, the fourth estimator we analyze is our shrunken average residual (SAR) estimator. This es-

timator takes the AR estimates from (17) and shrinks them by the shrinkage factor described in

equation (25). Shrinking the AR estimates does not result in a true EB estimator since AR uses

OLS in the first stage, but it is commonly used as a simpler way of operationalizing the EB ap-

proach (see, for example, Kane and Staiger, 2008). As discussed in Section 2, with a sufficiently

large number of students per teacher, the EB LAG estimator converges to the DOLS estimator,

but SAR does not. Thus, as the number of students per teacher grows, we would expect EB LAG

to perform more similarly to DOLS than SAR. Finally, we consider a shrunken DOLS (SDOLS)

estimator, which takes the DOLS estimated teacher fixed effects and shrinks them by the shrinkage

factor derived in Section 2. Although SDOLS is rarely done in practice and is not a true EB esti-

mator, we include it as an exploratory exercise in order to better determine the effects of shrinking

itself when the number of students per teacher differs. When the class sizes are all the same, the

shrunken estimates (SDOLS and SAR) will only differ from the unshrunken estimates by a con-

stant positive multiple. Thus, shrinking the DOLS or AR estimates will have no effect in terms of

ranking teachers. It is important to keep in mind that, unlike DOLS and SDOLS, the AR and SAR

estimators do not allow for general correlation between the teacher assignment and past test scores

(or other covariates).
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4 Comparing VAM Methods Using Simulated Data

The question of which VAM estimators perform the best can only be addressed in simulations

where the true teacher effects are known. Therefore, to evaluate the performance of EB estimators

relative to other common value-added estimators, we apply these methods to simulated data. This

approach allows us to examine how well various estimators recover the true teacher effects under a

variety of student grouping and teacher assignment scenarios. Using data generated as described in

Section 4.1, we apply the value-added estimators discussed in Section 3 and compare the resulting

estimates with the true teacher effects.

4.1 Simulation Design

Much of our main analysis focuses on a base case that restricts the data generating process to a

relatively narrow set of idealized conditions (e.g., no measurement error, no peer effects, constant

teacher effects. However, we do relax some of these conditions as sensitivity tests of the main

results. The data are constructed to represent grades three through five (the tested grades) in a

hypothetical school. For simplicity and comparison with the theoretical predictions, we assume

that the learning process has been going on for a few years but only calculate estimates of teacher

effects for fifth grade teachers – a single cross section.4 We create data sets that contain students

nested within teachers, with students followed longitudinally over time in order to reflect the in-

stitutional structure of an elementary school. Our simple baseline data generating process is as

follows:

Ai3 = λAi2 + βi3 + ci + ei3

Ai4 = λAi3 + βi4 + ci + ei4 (32)

Ai5 = λAi4 + βi5 + ci + ei5
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in which Ai2 is a baseline score reflecting the subject-specific knowledge of child i entering third

grade; Ait is the grade-t test score (t = 3,4,5); λ is a time constant decay parameter, where lambda

is set equal to zero in the simulations for lag scores greater than one year prior; βit is the teacher-

specific contribution to growth (the true teacher value-added effect); ci is a time-invariant student-

specific effect (may be thought of as “ability” or “motivation”); and eit is a random deviation for

each student. We assume independence of eit over time, a restriction implying that past shocks

to student learning decay at the same rate as all inputs (see Guarino, Reckase, and Wooldridge,

forthcoming, for a more detailed discussion of this “common factor restriction” assumption). In

all of the simulations reported in this paper, the random variables Ai2, βit , ci, and eit are drawn

from normal distributions with zero means. The standard deviation of the teacher effect is .25, the

standard deviation of the student fixed effect is .5, and the standard deviation of the random noise

component is 1. These give relative shares of 5, 19, and 76 percent of the total variance in gain

scores (when λ = 1), respectively. Given that the student and noise components are larger than

the teacher effects, we call these “small” teacher effects. We also conduct a sensitivity analysis

using “large” teacher effects, where the true teacher effects are drawn from a distribution with a

standard deviation of 1. The baseline score is drawn from a distribution with a standard deviation

of 1. We also allow for correlation between the time-invariant child-specific heterogeneity, ci, and

the baseline test score, Ai2, which we set to 0.5. This correlation reflects that students with better

unobserved “ability" likely have higher test scores as well.

Our data are simulated using 36 teachers per grade and 720 students per cohort. For estimating

teacher effects, it is the number of student per teacher that is important. The number of teachers

only impacts the precision of the estimates of λ and the population variances and, as discussed

earlier, results in Hansen (2007) indicate that 36 teachers is sufficient. In order to create a situation

in which there is a substantial variation in class size – to showcase the potential disparities between

EB/shrinkage and other estimators – we vary the number of students per classroom. Teachers

receive classes of varying sizes, but receive the same number of students in each cohort. The
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size of class each teacher receives is random, but ensures that twelve teachers have classes of 10

students, twelve teachers have a class size of 20, and twelve teachers have class sizes of 30. We

simulate the data using both one and four cohorts of students to provide further variation in the

amount of data from which the teacher effects are calculated. In the case of four cohorts, data are

pooled across the cohorts so that value-added estimates are based off of sample sizes of 40, 80, and

120, instead of 10, 20, and 30 as in the one cohort case. Therefore, we would expect that estimates

in the four cohort case to be less noisy than those from the one cohort case, possibly mitigating the

potential gains from EB estimation.

To create different scenarios, we vary two key features: the grouping of students into classes

and the assignment of classes of students to teachers within schools. We generate data using each

of the seven different mechanisms for the assignment of students outlined in Table A.2. Students

are grouped into classrooms either randomly, based on their prior year achievement level (dynamic

grouping or DG), or based on their unobserved heterogeneity (heterogeneity grouping or HG). In

the random case, students are assigned a random number and then grouped into classrooms of

various sizes based on that random number. In the grouping cases, students are ranked by either

the prior test score or their fixed effect and grouped into classrooms of various sizes based on that

ranking. Teachers are assigned to these classrooms either randomly (denoted RA) or nonrandomly.

Teachers assigned nonrandomly can be assigned positively (denoted PA), meaning the best teachers

are assigned to classrooms with the best students, or negatively (denoted NA), meaning the best

teachers are assigned to classrooms with the worst students.

These grouping and assignment procedures are not purely deterministic, as we allow for a ran-

dom component with standard deviation of 1 in the assignment mechanism. As a sensitivity analy-

sis, we also set this standard deviation to 0.1, meaning the grouping of students into classrooms is

more deterministic. We use the estimators discussed in Section 3, but with only a constant, teacher

dummies (if applicable), and the lagged test score included as covariates. We use 100 Monte Carlo

replications per scenario in evaluating each estimator.
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4.2 Evaluation Measures

For each estimator across each iteration, we save the individual estimated teacher effects and

also retain the true teacher effects, which are fixed across the iterations for each teacher. To study

how well the methods recover the true teacher effects, we adopt five simple summary measures

using the teacher level data. The first is a measure of how well the estimates preserve the rankings

of the true teacher effects. We compute the Spearman rank correlation, ρ̂, between the estimated

teacher effects and the true effects and report the average ρ̂ across the 100 iterations. Second, we

compute a measure of misclassification. These misclassification rates are obtained as the percent-

age of above average teachers in the true quality distribution (i.e., teachers with true βg > 0) who

are misclassified as below average in the distribution of estimated teacher effects for the given esti-

mator. Given that this is just an arbitrary cutoff point, we also obtain the fraction of teachers in the

outside tails of the distribution that are incorrectly classified (e.g., fraction of teachers that are in

the bottom quintile of the true distribution, but estimated to lie in one of the other four quintiles).

In addition to examining rank correlations and misclassification rates, it is also helpful to have a

measure that quantifies some notion of the magnitude of the bias in the estimates. Given that some

teacher effects are biased upwards and others downwards, it is difficult to capture the overall bias

in the estimates in a simple way. For each simulation, we create a statistic, θ̂, that captures how

closely the magnitude of the deviation of the estimates from their mean tracks the magnitude of the

deviation of the true effects from the true mean. To calculate this measure, we regress the deviation

of the estimated teacher effects from their overall estimated means on the analogous deviation of

the true effects generated from the simulation – for each estimator. We can represent this simple

regression as

β̂g −
¯̂β = θ̂(βg − β̄) + residualg, (33)

in which β̂g is the estimated teacher effect and βg is the true effect of teacher g. From this sim-

ple regression, we report the average coefficient, ¯̂θ, across the 100 replications of the simulation
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for each estimator. This regression tells us whether the estimated teacher effects are correctly dis-

tributed around the average teacher. If θ̂ = 1, then a movement of βg away from its mean is tracked

by the same movement of β̂g from its mean. Because the estimated teacher effects are deviated

from the overall mean of the estimated effect, ¯̂θ will not pick up additive bias that affects each

teacher effect in the same way. However, one is not typically concerned about such biases if the

estimated effects are used for comparisons among teachers.

When θ̂ ≈ 1, it makes sense to compare the magnitudes of the estimated teacher effects across

teachers. If θ̂ > 1, the estimated teacher effects amplify the true teacher effects. In other words,

teachers above average will be estimated to be even more above average and vice versa for below

average teachers. An estimation method that produces θ̂ substantially above one generally does

a good job of ranking teachers, but the magnitudes of the differences in estimated teacher effects

cannot be trusted. The magnitudes also cannot be trusted if θ̂ < 1, and ranking the teachers

generally becomes more difficult since the estimated effects are compressed relative to the true

teacher effects. In some policy applications, the relative magnitudes of the estimated teacher effects

might be important, and so we report the average value of θ̂ across the simulations. Doing so

allows us to determine scenarios where the magnitudes of estimated teacher effects are meaningful.

Further, the measure provides insight into why some methods rank teachers relatively well even

when the estimated effects are systematically biased, often quite badly.

The precision of these methods is also a key consideration when evaluating the overall perfor-

mance. As described in Section 2, EB methods are not unbiased when the teacher effects are treated

as fixed parameters we are trying to estimate. However, if the identifying assumptions hold, these

methods should provide more precise estimates. This is one motivation for using EB methods, as

estimates should be more stable over time, leading to a smaller variance in the teacher effects. As

the teacher effect is fixed for each teacher across the 100 iterations, we have 100 estimates of each

teacher effect. As a summary measure for the precision of the estimators, we calculate the standard

deviation of the 100 teacher effect estimates for each teacher and then take a simple average across
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all teachers.

Finally, to further analyze the variance-bias tradeoff for each of these estimators, we also in-

clude the average mean squared error (MSE). This measure averages the following across all g

teachers and across simulation runs:

FMSEg = (βg − β̂g)2 (34)

This provides a simple statistic to determine whether the bias induced by shrinking is justifiable

due to gains in precision.

5 Simulation Results

Tables 1 and 2 report the five evaluation measures described in Section 4.2 for each particu-

lar estimator-assignment scenario combination. For ease in interpreting the tables, a quick guide

to the descriptions of each of these estimators, grouping-assignment mechanisms, and evaluation

measures can be found in Appendix tables A.1 through A.3. As these shrinkage and EB estimators

are often motivated as a way to reduce noise, one might expect these approaches to be most bene-

ficial with very limited student data per teacher. Thus, we estimate teacher effects using both four

cohorts and one cohort of data. The tables show results for the case λ = .5. Though not reported,

we also conducted a full set of simulations for λ = 0.75 and λ = 1, and the main conclusions are

unchanged. The full set of simulation results is available upon request from the authors.

5.1 Fixed Teacher Effects versus Random Teacher Effects

In Table 1, we first compare the performance of the DOLS estimator, which treats teacher

effects as fixed parameters to estimate, to the AR and EB LAG estimators that treat teacher effects

as random. Under nonrandom assignment of teachers, we expect DOLS, which explicitly controls
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for teacher assignment through the inclusion of teacher assignment indicators, to perform better

than those estimators treating the teacher effects as random. When teacher assignment is based on

the lagged test score, DOLS directly controls for the assignment mechanism by including both the

lagged score and teacher dummies and should perform well in this case. The simulation results

presented here largely support this hypothesis.

5.1.1 Random Assignment

We begin with the pure random assignment (RA) case (i.e., the case of no teacher sorting),

where EB-type estimation methods are theoretically justified. The results of the random assign-

ment case are given in the top panel of Table 1, and they suggest very little substantial difference

between the performance of the fixed and random effects estimators under this scenario. As the

theory suggests, EB LAG performs well in the four cohort case, with rank correlations between

the estimated and the true teacher effects near 0.86, which is nearly the same as the 0.85 rank

correlation for DOLS and AR. In addition to very similar rank correlations, the misclassification

rates are very similar across the three estimators, with about 15 percent of above average teachers

misclassified as below average. These estimators also misclassify 28 percent of the teachers that

should be classified in the bottom quintile. The similarities between the three estimators in terms

of rank correlation and misclassification rates remains when using only one cohort. Reducing the

amount of data used to estimate the teacher effects lowers the performance of all estimators, de-

creasing the rank correlations and increasing the misclassification rates. With one cohort, rank

correlations between the estimated and true teacher effects are about 0.65 to 0.67, and between 25

and 26 percent of above average teachers are misclassified as below average.

In addition to rank correlations and misclassification rates, we also examine the bias and preci-

sion of the estimators. While DOLS and AR appear to be unbiased with average θ̂ values close to

1, EB LAG substantially underestimates the magnitudes of the true teacher effects with an average

θ̂ value of 0.78 using four cohorts and 0.49 using one cohort. This bias is likely the result of the

22



shrinkage technique that is applied, but this shrinkage does cause EB LAG to be slightly more

precise than AR or DOLS. While DOLS and AR both have similar average standard deviations

of the estimated teacher effects near 0.13 and 0.27 in the four and one cohort cases, respectively,

EB LAG has lower average standard deviations of 0.12 and 0.18, respectively. Given the precision

gain in EB LAG, the MSE measure suggests that EB LAG may be preferred to DOLS or AR under

random assignment.

We now move to the cases where the students are nonrandomly grouped together, but teachers

are still randomly assigned to classrooms. We allow for nonrandom grouping based on either

the prior year test score (dynamic grouping, DG) or student-level heterogeneity (heterogeneity

grouping, HG). Under these DG-RA and HG-RA scenarios in Table 1, we see a fairly similar

pattern as in the RA scenario, although the overall performance of all estimators is somewhat

diminished, especially in the HG-RA scenario.

5.1.2 Dynamic Grouping and Nonrandom Assignment

The performance of the various estimators diverges noticeably under nonrandom teacher as-

signment. We continue to nonrandomly group teachers as described above, but now allow for

nonrandom assignment of students to teachers. Classes with high test scores or high unobserved

ability can be assigned to either the best (positive assignment - PA) or worst (negative assignment

- NA) teachers. A key finding of this analysis is the disparity in performance between the DOLS

estimator and estimators that fail to allow for correlation between the teacher assignment and the

assignment mechanism (e.g., AR and EB LAG). These results suggest that, when there is non-

random teacher assignment based on the prior test score, estimators explicitly controlling for the

teacher assignment should be preferred.

Similar results hold for both DG-PA and DG-NA, so we focus only on the DG-PA results here.

Under the DG-PA scenario, DOLS substantially outperforms AR and EB LAG. When using four

cohorts, DOLS has a rank correlation of 0.86 under DG-PA, while AR and EB LAG have rank
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correlations of 0.60 and 0.76, respectively. AR and EB LAG also have large misclassification

rates, with 28 to 32 percent of above average teachers being misclassified as below average com-

pared with only 23 percent for DOLS. Although not listed in the table, DOLS also misclassifies

fewer teachers in the bottom quintile – DOLS only misclassifies 28 percent of the teachers that

should be classified in the bottom quintile, while EB LAG and AR misclassify 39 and 49 percent,

respectively.

In addition to misclassifying and poorly ranking teachers, the AR and EB LAG methods also

underestimate the magnitudes of the true teacher effects. While DOLS has an average θ̂ value of

0.99, the AR and EB LAG estimators have average θ̂ values of 0.53 and 0.49, respectively. While

some of the bias of the EB LAG estimates can be attributed to shrinkage, the larger issue is the

bias caused by the failure of the AR and EB LAG approaches to allow for correlation between the

lagged test score (i.e., the assignment mechanism in these scenarios) and the teacher assignment, a

correlation that DOLS explicitly allows for with the inclusion of teacher dummies in the regression.

Which estimator is preferred based on MSE differs depending on the number of cohorts. In the four

cohort case, DOLS, EB LAG and AR have MSE values of 0.018, 0.037, and 0.024, respectively.

When only one cohort is used, EB LAG has the smallest MSE of 0.051, while DOLS and AR have

MSE values of 0.074 and 0.091, respectively. Despite the gain in precision, the average bias across

all teachers (based on β̂g − βg) and simulation reps in EB LAG is nearly three times that of DOLS.

Given the poor teacher rankings for EB LAG in this case, the consequences of the extreme bias

cannot be ignored, even if the MSE measure suggests it should be preferred.

These simulation results also verify an important result of the theoretical discussion: the per-

formance of EB LAG approaches the performance of DOLS as the number of students per teacher

grows. We see less of a disparity in the performance of DOLS and EB LAG when computing

VAMs using four cohorts compared to one, but the relative performance of AR does not improve

with more students per teacher. For example, under DG-PA with one cohort of students, AR and

EB LAG have rank correlations of 0.38 and 0.45, respectively, compared to 0.63 for DOLS. With
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four cohorts of students, the rank correlation for EB LAG is much closer to that for DOLS (0.76

and 0.86, respectively) than is the rank correlation for AR (0.60). This theoretical result is also ap-

plicable to the SAR estimator we examine below, which is used as a simpler way to operationalize

the EB approach. In summary, EB LAG, which uses random effects estimation in the first stage, is

preferred to AR under nonrandom teacher assignment, as the EB estimates approach the preferred

DOLS estimates that treat teacher effects as fixed.

5.1.3 Heterogeneity Grouping and Nonrandom Assignment

As a final scenario we examine the case of nonrandom teacher assignment to students grouped

on the basis of student-level heterogeneity. The results for these HG scenarios are especially

unstable: all estimators do an excellent job ranking teachers under positive teacher assignment

and a very poor job under negative teacher assignment. In the HG-PA case with four cohorts

of students, the magnitudes of the estimated VAMs are amplified as seen by the large average

values for θ̂ between 1.43 and 1.61. This improves the ability of the various estimators to rank

teachers as evidenced by the high rank correlations of about 0.94 for all estimators. The EB LAG

estimator performs the best in this scenario, as it performs as well as the other estimators in terms

of ranking and misclassification of teachers but has the smallest MSE measure. Under HG-NA

with four cohorts, the performance of all estimators falls substantially, largely caused by severely

underestimated teacher effects (θ̂ values between 0.15 and 0.33). These compressed teacher effect

estimates make it difficult to rank teachers in this scenario, resulting in low rank correlations for

all estimators between 0.38 and 0.41. Just as in the HG-PA scenario, the performance of the three

estimators under HG-NA is very similar across the evaluation measures we examine.

Why is the performance of DOLS, AR, and EB LAG so similar under HG-PA and HG-NA,

while differing so greatly under DG-PA and DG-NA? Despite correlation between the baseline

test score and the student fixed effect, the lagged test score appears to be a weak proxy for the

assignment mechanism in the HG scenarios. Since none of the three estimators do well at allowing
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for the correlation between the assignment mechanism and the teacher assignment in these cases,

the distinction between estimators that include teacher fixed effects and those that treat teacher

effects as random is less stark. As found in Guarino, Reckase, and Wooldridge (forthcoming), a

gain score estimator with student fixed effects included is the most robust in these HG scenarios,

as it does allow for the correlation between the assignment mechanism (i.e., student fixed effect)

and the teacher assignment (i.e teacher dummy variables). Their results lend further support the

conclusion that allowing for this correlation is extremely important in the performance of these

value added estimators when there is nonrandom assignment.

5.2 Shrinkage versus Non-Shrinkage Estimation

Use of EB and other shrinkage estimators is often motivated as a way to reduce the noise in

the estimation of teacher effects, particularly for teachers with a small number of students. Greater

stability in the estimated effects is thought to reduce misclassification of teachers. We observed

in section 3.1 that EB LAG was generally outperformed by the fixed effects estimator, DOLS.

However, under nonrandom teacher assignment, we are unable to tell how much of the bias in the

EB LAG estimator is due to treating the teacher effects as random and how much is due to the

shrinkage procedure. To examine the effects of shrinkage itself, we compare the performance of

unshrunken estimators, DOLS and AR, with their shrunken versions, SDOLS and SAR, in Table

2. Although SDOLS is not a commonly used or theoretically justified estimator, we explore it here

to identify whether shrinking teacher fixed effect estimates could be useful in practice.

Our simulation results show that there is no substantial improvement in the performance of the

DOLS or AR estimators after applying the shrinkage factor to the estimates. Using four cohorts

of students, the performance measures for DOLS and AR compared to their shrunken counterparts

are nearly identical to two decimal places across all grouping and assignment scenarios. Even with

very limited data per teacher in the one cohort case, when we would expect shrinkage to have a

greater effect on the estimates, we find very little change in the performance of the estimators after
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the shrinkage factor is applied.

In the one cohort case, shrinking either the DOLS or AR estimates slightly decreases (in the

second decimal place) both the average θ̂ values and average standard deviation of the estimated

teacher effects. This increased bias in the estimates is expected when applying the shrinkage

factor and, depending on the scenario and estimator we examine, the effect of this precision-bias

tradeoff may increase or decrease the MSE measure when comparing the shrunken and unshrunken

estimates. Shrinking the DOLS and AR estimates generally reduces the MSE, due to increased

precision, but makes no substantial difference on the misclassification rate of teachers, regardless

of which misclassification rate we use.

The effect of shrinkage itself does not appear to be practically important for properly ranking

teachers or to ameliorate the performance of the biased AR estimator found in the DG-PA and

DG-NA scenarios. Given that shrinking the AR estimates does little to mitigate the performance

drop of AR under DG-PA and DG-NA, our evidence suggests that shrinking the DOLS estimates

is preferred to the AR estimates, if such techniques are desired.

5.3 Sensitivity Analyses

As mentioned in Section 4.1, we also test the sensitivity of these results by changing some

of the parameters of the model. First, we increase the standard deviation of the distribution from

which the true teacher effects are drawn. As expected from the discussion in Section 2, when

teacher effects are “large” EB LAG performs similarly to DOLS, while the AR method continues

to suffer in performance under the DG-PA and DG-NA scenarios. Second, we allow for more

non-randomness (i.e., decrease the amount of noise) in the assignment of teachers into classrooms.

As the assignment of teachers becomes more deterministic, the performance of AR and EB LAG

suffers even more in terms of lower rank correlations and higher misclassification rates than what

is observed in the results in Table 1 and 2. Given that some models use multiple prior test scores

(e.g., EVAAS, VARC), we also estimate DOLS, AR, and EB LAG with multiple lagged test scores
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as a sensitivity analysis. Although adding multiple lags improves the performance of AR and EB

LAG in the random assignment case, the performance of these estimators are still outperformed

by DOLS in the DG-PA and DG-NA scenarios. As a final sensitivity test we include a peer effect

(e.g., avg. ci of student’s classmates) in the underlying DGP. Even when peer effects are included,

EB LAG and AR continue to suffer in performance under the DG-PA and DG-NA cases.

6 Comparing VAM Methods Using Real Data

We also apply these estimation methods to actual student-level test score data and examine the

rank correlations between the estimated teacher effects of the various estimators for each school

district. In addition to rank correlations, we also examine whether teachers are being classified in

the extremes uniformly across all of the estimators we examine. Although the real data does not

allow comparison between the estimated effects and the true teacher effects, we are able to make

comparisons between the estimated effects of the different estimators. This comparison provides a

measure of the sensitivity of the estimated teacher effects to specifications that shrink the estimates

and/or treat the teacher effects as random or fixed. The results of this analysis provide some

perspective on the impact of shrinking and Empirical Bayes’ methods in a real-world setting.

6.1 Data

We apply the five methods described in Section 3 to data from an anonymous southern U.S.

state. While state teacher evaluation systems often compute value-added for all teachers in the

state, it is not uncommon for districts to conduct their own value-added analyses for high stakes

decision-making. Statewide computation of value-added applies a one-size-fits all approach, choos-

ing one estimator for teachers in all districts while largely ignoring the differences in assignment

mechanisms across districts. Thus, within-district value-added calculations may better rank teach-

ers than statewide systems. To compare with our simulated analysis we estimate teacher effects
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district-by-district using equation (30), with math test scores as the dependent variable and controls

for various student characteristics and dummies for the year. Student characteristics include race,

gender, disability status, free/reduced price lunch eligibility, limited English proficiency status,

and the number of student absences from school. Given that the simulations do not include student

characteristics, we also conduct a sensitivity analysis that omits these variables.

The data span 2001 through 2007 and grades four through six, but test scores from the annual

assessment exam administered by the state are collected for each student from grades three through

six. The data set includes 1,488,253 total students from which we have at least one current year

score and one lagged score. Only 482,031 students have test scores for all grades. For simplicity

and comparison with the simulation results, we estimate the value-added measures for the 20,749

unique teachers with fifth grade students in the 67 districts, but again teachers receive multiple

cohorts of students. While the average number of cohorts per teacher across the 67 districts is 3.88,

we do observe 39 percent of teachers for only one year and an additional 20 percent of teachers

for four or more years. On average, teachers have about 25 students per year, with only a small

percentage (less than two percent) teaching more than 30 students per year. The high percentage

of teachers that we observe for only one year could motivate researchers to employ shrinkage

and EB estimators as a way to reduce precision problems due to minimal data. While there are

seven very large districts with over 800 fifth grade teachers, the average number of fifth grade

teachers in the other sixty districts is 172. In addition, 18 of the 67 districts have less than 36 total

fifth grade teachers (the number we use in the simulation) suggesting that the simulation results

are comparable to many of the smaller districts in the state. It is key to note that our sensitivity

analysis that increased the number of simulated teachers to 72 yielded similar results, suggesting

that our simulation is also representative of larger districts.
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6.2 Results

Figure 1 presents box plots that depict the distributions of the within-district rank correlations

between the various lagged score estimators, DOLS, SDOLS, AR, SAR, and EB LAG. The results

presented here are for math scores, but the results are similar when reading scores are used. The

results presented here also include student characteristics. Although there is no change in the over-

all conclusions if these are omitted, the distributions between all of the estimators are slightly more

dispersed. As in the discussion of the simulation results, we first compare the DOLS estimator,

which treats the teacher effects as fixed, with the estimators that treat the teacher effects as ran-

dom. Comparing DOLS and AR, we find that the median rank correlation is around 0.99, but there

are nine districts with rank correlations below 0.90 and 2 districts with correlations below 0.50.

We also observe a slightly lower median rank correlation between DOLS and EB LAG, at around

0.97, with five districts with rank correlations below 0.90 and three below 0.50. These results are

not inconsistent with our simulation results: the performance of DOLS, AR, and EB LAG is very

similar under cases of random assignment of teachers to classrooms, but the performance of AR

and EB LAG is substantially different from DOLS under non-random assignment based on prior

test scores. Thus, it could be the case that these outlier districts observed in the left tails of the top

two box plots may be composed of schools that engage more heavily in nonrandom assignment of

teachers to classrooms.

Comparing the two estimators that do not explicitly control for the teacher assignment, AR

and EB LAG, we find that while the median rank correlation is 0.96, nine districts have rank

correlations of between 0.82 and 0.92. These results suggest that the estimates are somewhat

sensitive to how the teacher effects are calculated in the first stage. This was also the case in the

simulated results, where the performance of the AR estimator suffered more than the performance

of the EB LAG estimator in cases of non-random assignment based on the prior test score.

For a thorough comparison with the simulation results, we also compare the shrunken and

unshrunken estimates of DOLS and AR using the real data. We find median rank correlations
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of around 0.97 for both the DOLS and SDOLS comparison and the AR and SAR comparison,

suggesting that shrinkage has a small impact on the estimates. It appears that in certain cases,

shrinkage may have a larger impact on the DOLS estimates, as two districts have rank correlations

of 0.50 and 0.72. Our simulation results suggested that shrinking the estimates had very little

impact on estimator performance.

In addition to rank correlation comparisons, we also examine the extent to which teachers

are classified in the tails of the distribution by the different estimators. If shrinkage is having

some effect, we would expect to see some teachers classified in the extremes to be pushed toward

the middle of the distribution after applying the shrinkage factor. Table 3 lists the fraction of

teachers ranked in the same quintile, either the top or bottom, by different pairs of estimators.

Comparing across estimators that assume fixed teacher effects to those that assume random teacher

effects, we do not see much movement across quintiles. For example, comparing DOLS to EB

LAG, we find that about 91 percent of the teachers that are classified in the top quintile using

DOLS are also in this quintile using EB LAG. This suggests that teacher assignment may not

be largely based on prior student achievement or that the prior test score is a poor proxy for the

true assignment mechanism. If the prior test score or other covariates insufficiently proxy for the

underlying assignment mechanism, then the choice to include teacher assignment variables will

matter little in how teachers are ranked.

Comparing the rankings of unshrunken and corresponding shrunken estimators, we see that

about 90 percent of teachers are ranked in the same quintile by both the unshrunken estimators

(DOLS and AR) and their shrunken counterparts (SDOLS and SAR). This suggests that shrinking

the estimates results in some reclassification of teachers in the tails to quintiles in the middle of

the distribution. Using real data, however, we are unable to tell whether this reclassification is

appropriate. Our simulated analysis suggested that shrinking the estimates had little impact if any

on misclassification rates.
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7 Conclusion

Using simulation experiments where the true teacher effects are known, we have explored the

properties of two commonly used Empirical Bayes’ estimators as well as the effects of shrinking

estimates of teacher effects in general. Overall, EB methods do not appear to have much advan-

tage, if any, over simple methods such as DOLS that treat the teacher effects as fixed, even in the

case of random teacher assignment where EB estimation is theoretically justified. Under random

assignment, all estimators perform well in terms of ranking teachers, properly classifying teachers,

and providing unbiased estimates. EB methods have a very slight gain in precision compared to

the other methods in this case.

We generally find that EB estimation is not appropriate under nonrandom teacher assignment.

The hallmark of EB estimation of teacher effects is to treat the teacher effects as random vari-

ables that are independent (or at least uncorrelated) with any other covariates. This assumption

is tantamount to assuming that teacher assignment does not depend on other covariates such as

past test scores (this is also true for the AR methods). When teacher assignment is not random,

estimators that either explicitly control for the assignment mechanism or proxy for it in some way

typically provide more reliable estimates of the teacher effects. Among the estimators and assign-

ment scenarios we study, DOLS and SDOLS are the only estimators that control for the assignment

mechanism (again, either explicitly or by proxy) through the inclusion of both the lagged test score

and teacher assignment dummies. As expected, DOLS and SDOLS outperform the other estima-

tors in the nonrandom teacher assignment scenarios. In the analysis of the real data, we found that

the rank correlations between, say, DOLS and EB LAG or DOLS and SAR are quite low for some

districts, suggesting that the decision between these estimators is important. Thus, if there is a

possibility of nonrandom assignment, DOLS should be the preferred estimator.

As predicted by theory and seen in the simulation results, the random effects estimator, EB

LAG, converges to the fixed effects estimator, DOLS, as the number of students per teacher gets
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large. Therefore, it could be that EB LAG is performing well in large samples simply because

the estimates are approaching the DOLS estimates. However, the average residual methods, AR

and SAR, do not have this property. Thus, despite the recent popularity, we strongly caution using

SAR as a simpler way to operationalize the EB LAG estimator. If EB-type methods are being used,

possibly as a way to control for classroom-level covariates and peer effects with minimal data (a

case that we do not consider in this paper), it is important to estimate the coefficients in the first

stage using random effects estimation, as in our EB LAG estimator, rather than OLS.

Lastly, we find that shrinking the estimates of the teacher effects does not seem to improve the

performance of the estimators, even in the case where estimates are based on one cohort of students.

The performance measures are extremely close in our simulations for those estimators that differ

only due to the shrinkage factor – DOLS and SDOLS or AR and SAR. The rank correlations

for these two pairs of estimators are also very close to one in almost all districts. Also, we find

in the simulations that shrinking the AR estimates, which is a popular way to operationalize the

EB approach, does not reduce misclassification of teachers. Thus, our evidence suggests that the

rationale for using shrinkage estimators to reduce the misclassification of teachers due to noisy

estimates of teacher effects should not be given much weight. Accounting for nonrandom teacher

assignment when choosing among estimators is more imperative.

Given the robust nature of the DOLS estimator to a wide variety of grouping and assignment

scenarios, it should be preferred to AR and EB methods when there is uncertainty about the true

underlying assignment mechanism. If the assignment mechanism is known to be random, applying

these AR and EB estimators can be appropriate, especially when the amount of data per teacher

is minimal. However, given that the assignment mechanism is not likely known, blindly applying

these AR and EB methods can be extremely problematic, especially if teachers are truly assigned

nonrandomly to classrooms. Therefore, we stress caution in applying theses AR and EB methods

and urge researchers and practitioners to be mindful of the underlying assignment mechanism

when choosing between the various value-added methods.
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Notes

1. Lockwood and McCaffrey (2007) have highlighted equation (27) in the context of student-

level panel data, essentially appealing to the first edition of Wooldridge (2010). In the panel data

setting (27) is arguably less relevant, as one rarely has more than a handful of time periods per stu-

dent. For additional discussion of the relationship between random and fixed effects estimators, see

Raudenbush (2009). In addition, Reardon and Raudenbush (2009) lay out the various assumptions

underlying value-added estimation.

2. Without covariates, the difference between the EB and fixed effects estimates of the bg is

much less important: they differ only due to the shrinkage factor. In practice, the fixed effects

estimates, β̂g, are obtained without removing an overall teacher average, which means β̂g = ȳg.

To obtain a comparable expression for b∗g we must account for the GLS estimator of the mean

teacher effect, which would be obtained as the intercept in the RE estimation. Call this estimator

µ∗b, which in the case of no covariates is γ∗. Then the teacher effects are

b∗g = µ∗b + ηg ( ȳg − µ∗b) = ηg ȳg + (1 − ηg)µ∗b = ȳg − (1 − ηg)( ȳg − µ∗b),

where ηg is the shrinkage factor in equation (25). Compared with the FE estimate of bg, b∗g is

shrunk toward the overall mean µ∗b. When the teacher effects are treated as parameters to estimate,

the b∗g are biased because of the shrinkage factor, even when they are BLUP.

3. While we obtained the expression that underlies AR estimation of γ, E(y|X) = Xγ, by

treating the teacher effects as random and independent of X and Z, the random effects structure is

not used by the AR method. Thus, it is preferred to view the AR method as a regression-based

approach that does not partial out teacher assignment when estimating γ. By contrast, the EB

approach exploits the random effects structure of the teacher effects to obtain the BLUE of γ and

the BLUP of the teacher effects.
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4. Despite only estimating value-added for grade 5 teachers, we keep the three grade structure

when generating the student test scores since the fifth grade achievement is based on more than

just the current teacher and prior test score of the student; it is a function of all prior teacher,

unobservable student, and random influences. Thus, to ignore that process and generate fifth grade

test scores based on a “baseline” fourth grade test score seems inappropriate given this context.
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Table 1: Simulation Results: Comparing Fixed and Random Teacher Effects Estimators

λ = 0.5 Four Cohorts One Cohort
G-A Evaluation DOLS AR EB LAG DOLS AR EB LAG

Mechanism Type

RA

Rank Correlation 0.85 0.85 0.86 0.65 0.65 0.67
Misclassification 0.15 0.15 0.15 0.25 0.25 0.26

Avg. Theta 1.01 1.01 0.78 1.03 1.03 0.49
Avg. Std. Dev. 0.13 0.14 0.12 0.28 0.27 0.18

MSE 0.018 0.019 0.013 0.076 0.076 0.034

DG-RA

Rank Correlation 0.85 0.85 0.86 0.64 0.64 0.65
Misclassification 0.15 0.16 0.16 0.26 0.25 0.25

Avg. Theta 1.01 0.99 0.77 1.00 0.98 0.45
Avg. Std. Dev. 0.14 0.14 0.12 0.27 0.27 0.19

MSE 0.019 0.020 0.014 0.075 0.071 0.034

DG-PA

Rank Correlation 0.86 0.60 0.76 0.63 0.38 0.45
Misclassification 0.15 0.28 0.22 0.26 0.35 0.48

Avg. Theta 0.99 0.53 0.49 0.98 0.52 0.16
Avg. Std. Dev. 0.13 0.19 0.16 0.27 0.30 0.22

MSE 0.018 0.037 0.024 0.074 0.091 0.051

DG-NA

Rank Correlation 0.85 0.62 0.78 0.67 0.41 0.48
Misclassification 0.14 0.26 0.20 0.25 0.34 0.47

Avg. Theta 1.01 0.54 0.53 1.03 0.54 0.17
Avg. Std. Dev. 0.14 0.19 0.15 0.27 0.29 0.22

MSE 0.019 0.035 0.022 0.074 0.086 0.050

HG-RA

Rank Correlation 0.72 0.73 0.73 0.58 0.59 0.60
Misclassification 0.23 0.22 0.23 0.29 0.29 0.30

Avg. Theta 1.02 1.02 0.86 1.00 0.99 0.54
Avg. Std. Dev. 0.21 0.21 0.18 0.32 0.31 0.21

MSE 0.046 0.045 0.033 0.100 0.097 0.044

HG-PA

Rank Correlation 0.94 0.93 0.94 0.81 0.79 0.81
Misclassification 0.09 0.10 0.10 0.17 0.18 0.19

Avg. Theta 1.61 1.52 1.43 1.60 1.51 1.06
Avg. Std. Dev. 0.20 0.19 0.16 0.31 0.30 0.19

MSE 0.042 0.038 0.027 0.097 0.092 0.035

HG-NA

Rank Correlation 0.39 0.38 0.41 0.26 0.25 0.28
Misclassification 0.35 0.35 0.38 0.40 0.41 0.55

Avg. Theta 0.33 0.32 0.15 0.34 0.33 0.06
Avg. Std. Dev. 0.22 0.23 0.22 0.32 0.32 0.24

MSE 0.050 0.052 0.047 0.101 0.102 0.058

Note: Rows of each scenario represent the following:
First - Rank corr. of estimated effects and true effects
Second - Fraction of above average teachers misclassified as below average
Third - Average value of θ̂
Fourth - Average standard deviation of estimated teacher effects across 100 reps
Fifth - MSE measure
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Table 2: Simulation Results: Comparing Shrunken and Unshrunken Estimators

λ = 0.5 Four Cohorts One Cohort
G-A Evaluation DOLS SDOLS AR SAR DOLS SDOLS AR SAR

Mechanism Type

RA

Rank Correlation 0.85 0.85 0.85 0.85 0.65 0.66 0.65 0.66

Misclassification 0.15 0.15 0.15 0.15 0.25 0.25 0.25 0.25
Avg. Theta 1.01 1.01 1.01 1.01 1.03 0.99 1.03 0.99

Avg. Std. Dev. 0.13 0.13 0.14 0.14 0.28 0.26 0.27 0.26
MSE 0.018 0.018 0.019 0.019 0.076 0.068 0.076 0.068

DG-RA

Rank Correlation 0.85 0.85 0.85 0.85 0.64 0.64 0.64 0.64
Misclassification 0.15 0.15 0.16 0.16 0.26 0.25 0.25 0.25

Avg. Theta 1.01 1.01 0.99 0.99 1.00 0.96 0.98 0.94
Avg. Std. Dev. 0.14 0.14 0.14 0.14 0.27 0.26 0.27 0.25

MSE 0.019 0.019 0.020 0.020 0.075 0.067 0.071 0.064

DG-PA

Rank Correlation 0.86 0.86 0.60 0.60 0.63 0.63 0.38 0.38
Misclassification 0.15 0.15 0.28 0.28 0.26 0.27 0.35 0.36

Avg. Theta 0.99 0.99 0.53 0.53 0.98 0.92 0.52 0.49
Avg. Std. Dev. 0.13 0.13 0.19 0.19 0.27 0.25 0.30 0.29

MSE 0.018 0.018 0.037 0.037 0.074 0.064 0.091 0.081

DG-NA

Rank Correlation 0.85 0.85 0.62 0.62 0.67 0.67 0.41 0.41
Misclassification 0.14 0.14 0.26 0.26 0.25 0.25 0.34 0.34

Avg. Theta 1.01 1.01 0.54 0.53 1.03 0.97 0.54 0.51
Avg. Std. Dev. 0.14 0.14 0.19 0.19 0.27 0.25 0.29 0.28

MSE 0.019 0.019 0.035 0.035 0.074 0.063 0.086 0.077

HG-RA

Rank Correlation 0.72 0.72 0.73 0.73 0.58 0.59 0.59 0.59
Misclassification 0.23 0.23 0.22 0.22 0.29 0.29 0.29 0.29

Avg. Theta 1.02 1.02 1.02 1.02 1.00 0.96 0.99 0.96
Avg. Std. Dev. 0.21 0.21 0.21 0.21 0.32 0.30 0.31 0.30

MSE 0.046 0.046 0.045 0.045 0.100 0.091 0.097 0.088

HG-PA

Rank Correlation 0.94 0.94 0.93 0.93 0.81 0.81 0.79 0.79
Misclassification 0.09 0.09 0.10 0.10 0.17 0.17 0.18 0.18

Avg. Theta 1.61 1.61 1.52 1.52 1.60 1.56 1.51 1.46
Avg. Std. Dev. 0.20 0.20 0.19 0.19 0.31 0.30 0.30 0.29

MSE 0.042 0.042 0.038 0.038 0.097 0.089 0.092 0.084

HG-NA

Rank Correlation 0.39 0.40 0.38 0.38 0.26 0.27 0.25 0.26
Misclassification 0.35 0.35 0.35 0.35 0.40 0.41 0.41 0.41

Avg. Theta 0.33 0.33 0.32 0.32 0.34 0.32 0.33 0.31
Avg. Std. Dev. 0.22 0.22 0.23 0.23 0.32 0.30 0.32 0.30

MSE 0.050 0.049 0.052 0.051 0.101 0.091 0.102 0.091
Note: Rows of each scenario represent the following:
First - Rank corr. of estimated effects and true effects
Second - Fraction of above average teachers misclassified as below average
Third - Average value of θ̂
Fourth - Average standard deviation of estimated teacher effects across 100 reps
Fifth - MSE measure
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Figure 1: Spearman Rank Correlations Across Different VAM Estimators
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Table 3: Fraction of Teachers Ranked in Same Quintile by Estimator Pairs

DOLS SDOLS AR SAR

Top Quintile
SDOLS 0.91
AR 0.94 0.89
SAR 0.89 0.94 0.91
EB LAG 0.87 0.95 0.86 0.93

Bottom Quintile
SDOLS 0.89
AR 0.96 0.88
SAR 0.88 0.95 0.89
EB LAG 0.87 0.98 0.86 0.96
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A Appendix

Table A.1: Description of Value-Added Estimators

Estimator Acronym Description Teacher Effects

Empirical Bayes’ EB LAG Two-step approach: Estimate teacher effects using MLE on dy-
namic equation and then shrink estimates by shrinkage factor Random

Average Residual AR
Estimate dynamic equation by OLS and compute residuals for
each student. Then compute the average of these residuals for
each teacher to get estimated teacher effect

Random

Shrunken Avg. Residual SAR
Two-step approach: Compute average residual for each teacher
using residuals from OLS on dynamic equation. Then shrink
average residual for each teacher by shrinkage factor

Random

Dynamic OLS DOLS Estimate teacher effects using ordinary least squares on dy-
namic equation Fixed

Shrunken DOLS SDOLS Two-step approach: Estimate teacher effects using dynamic
equation and then shrink estimates by shrinkage factor Fixed

Table A.2: Definitions of Grouping-Assignment Mechanisms

Name of G-A Mechanism Acronym Grouping students in
classrooms Assigning students to teachers

Random Assignment RA Random Random
Dynamic Grouping - Random

Assignment DG-RA Dynamic (based on prior test
scores) Random

Dynamic Grouping - Positive
Assignment DG-PA Dynamic (based on prior test

scores)
Positive corr. between teacher effects and prior

student scores
Dynamic Grouping - Negative

Assignment DG-NA Dynamic (based on prior test
scores)

Negative corr. between teacher effects and prior
student scores

Heterogeneity Grouping - Random
Assignment HG-RA Static (based on student

heterogeneity) Random

Heterogeneity Grouping - Positive
Assignment HG-PA Static (based on student

heterogeneity)
Positive corr. between teacher effects and

student fixed effects
Heterogeneity Grouping - Negative

Assignment HG-NA Static (based on student
heterogeneity)

Negative corr. between teacher effects and
student fixed effects

Table A.3: Description of Evaluation Measures of Value-Added Estimator Performance

Evaluation Measure Description

Rank Correlation Rank correlation between estimated teacher effect and true teacher effect
Misclassification Fraction of above average teachers that are misclassified as below average
Average Theta Average value of θ̂
Avg. Std. Dev. Average standard deviation of estimated teacher effects across the 100 simulation reps
MSE Average value of FMSE = (β j − β̂ j )2
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