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I. Introduction 

The federal government’s Race to the Top competition has promoted the adoption of test-

based performance measures as a component of teacher evaluations throughout many states. The 

validity of test-based measures of teacher performance has been the subject of ongoing debate 

among researchers and has been widely contested by teachers’ unions, however. A key concern 

is the extent to which nonrandom assignment of students to teachers may bias the results and 

lead to a misclassification of teachers as high or low performing (Koedle & Betts 2011; 

Rothstein 2010; Kane & Staiger 2008; Aaronson, Barrow, & Sanders 2007, Guarino, Reckase, & 

Wooldridge forthcoming). While the potential for nonrandom assignment to bias teacher value-

added measures (VAMs) has been well recognized, little research has investigated how 

principals assign students to teachers in practice and the direct consequences of their assignment 

behaviors for ongoing teacher evaluations.   

It is important to assess the extent to which evidence of nonrandom assignment can be 

found in the large administrative data sets used for VAM estimation. A few studies have 

approached this issue by considering broad statistical measures of sorting behavior (Aaronson, 

Barrow, & Sander, 2007; Clotfelter, Ladd, & Vigdor 2006).  Our study makes several key 

contributions to the literature.  First, we develop tests of sorting that are more useful and precise 

than those previously used in the literature.  Our tests lead us to revise prior conclusions as to the 

prevalence of sorting. Using a large longitudinal data set from an anonymous state,1 we find 

clear evidence that student grouping exists in a nontrivial number of schools—particularly 

grouping based on prior test scores—and that the extent of grouping varies considerably both 

within and across schools, a fact obscured by the approaches developed in prior research.   

                                                 
1 As a condition of data use, it has been requested that we do not refer to the state explicitly. 
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Second, we investigate teacher-student matching, thus extending the research beyond the 

simple investigation of tracking patterns. We distinguish between two components of nonrandom 

assignment and examine evidence of both: students being grouped together on the basis of some 

characteristic, and the systematic assignment of these groups to teachers.  We find evidence to 

suggest that in many cases teachers are nonrandomly assigned to classes. In particular, teachers 

with higher measured prior effectiveness tend to be assigned to classrooms with higher average 

prior achievement.  

Third, we show the implications of sorting for value-added using our statewide 

administrative data.  We demonstrate that statistical methods matter and that they react very 

differently to different sorting scenarios. To do so, we define subsamples of school-grade-years 

that exhibit different grouping and assignment behaviors and then examine correlations within 

subsamples among VAMs estimated in different ways.  We find the sensitivity of value-added to 

particular estimators differs in potentially important ways by subsample and that these 

differences align with predictions based on the standard value-added framework (Guarino et al., 

forthcoming).  These findings have important consequences for the proliferation of teacher 

evaluations systems that is currently the subject of intense scrutiny and controversy. 

This paper is organized as follows.  Section II provides a framework for thinking about 

the process by which principals assign students to teachers and discusses the implications for 

VAMs.  Section III discusses the data used.  Section IV discusses previous approaches to 

identifying nonrandom assignment in administrative data.  Section V outlines our approach to 

detecting nonrandom grouping and assignment and presents the findings.  Section VI shows how 

our results on the grouping and assignment decisions of schools can be used to inform value-

added estimation.  Section VII concludes.   
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II. Framework and Background 

The theoretical motivation for value-added models of teacher performance typically rests 

on the specification of an education production function, in which achievement is modeled as a 

function of all relevant past and present child, family, and schooling inputs.  Here, we focus on 

two estimating equations derived from this model that serve as the basis for most value-added 

estimation (for a detailed discussion of the derivation of these equations from the general model 

and the underlying assumptions see Hanushek, 1979, 1986; Todd & Wolpin, 2003; Harris, Sass, 

& Semykina, 2010; Guarino, Reckase & Wooldridge, forthcoming).  We start with a “lag score” 

specification controlling for prior achievement on the right hand side:  

(2.1) 𝐴𝑖𝑡 = 𝜏𝑡 + 𝜆𝐴𝑖,𝑡−1 + 𝑇𝑖𝑡𝛾 + 𝑋𝑖𝑡𝛽 + 𝑐𝑖 + 𝑢𝑖𝑡  
where  
𝐴𝑖𝑡 is student 𝑖′𝑠 test score in time 𝑡 
𝐴𝑖,𝑡−1 is prior achivement 
𝑇𝑖𝑡 is a vector of teacher indicators 
𝑋𝑖𝑡 are student and family characteristics 
𝑐𝑖 is an unobserved student heterogeneity term 
𝑢𝑖 is an unobserved error term 

 
Occasionally, researchers use the gain in test scores as the dependent variable, effectively 

assuming that λ is equal to 1. We will refer to this as the “gain score” specification: 

(2.2) 𝐴𝑖𝑡 − 𝐴𝑖,𝑡−1 = 𝜏𝑡 + 𝑇𝑖𝑡𝛾 + 𝑋𝑖𝑡𝛽 + 𝑐𝑖 + (𝜆 − 1)𝐴𝑖,𝑡−1 + 𝜈𝑖𝑡 
 

Note that we include the additional term, (λ−1) Ai,t-1, on the right hand side of equation (2.2) in 

order to emphasize the fact that if λ≠1 the choice to use a gain score specification may lead to an 

omitted variables bias.  This potential omitted variables problem will be the key focus of the 

analysis to follow. 

Generally speaking, our ability to consistently estimate the teacher value added 

coefficients (𝛾) hinges on what our estimation method requires about the correlation between 

teacher assignments (captured by Tit) and the unobserved factors affecting achievement, 𝑢𝑖𝑡, 𝑐𝑖, 
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and, in the case of the gain-score specification, (λ−1) Ai,t-1. Here, our concern lies with 

understanding how different student sorting and teacher assignment mechanisms employed by 

schools may affect these correlations and, in turn, value-added estimates based on equations (2.1) 

and (2.2). 

Throughout the paper, we distinguish how students are grouped together into classrooms 

from how teachers are assigned to those classrooms.  This leads to three distinct types of 

assignment mechanism that each has different value-added implications: random grouping of 

students into classes and random assignment of teachers to those classes, nonrandom grouping of 

students but with random assignment of teachers to the classes, and finally nonrandom grouping 

with nonrandom assignment. 

 In the simplest case, students may be randomly grouped into classrooms with no 

consideration given to the within-class composition of student ability or to the quality of the 

teacher assigned to the groups. In this case, given a sufficient number of observations per 

teacher, estimates of teacher value-added based on either equation (2.1) or (2.2) will tend to 

perform well since any omitted factors that contribute to achievement will be uncorrelated with 

teacher assignment. 

Now consider the case in which schools actively group students of similar ability together 

based on, say, prior achievement, demographic characteristics related to ability, or markers of 

ability unobserved by those outside the school.  Further assume that teachers are assigned to 

these classrooms in a systematic way according to each teacher’s ability to raise achievement.  

Grouping based on observable student demographic characteristics (captured in Xit) is of less 

concern for estimators that partial out this correlation as both equation (2.1) and (2.2) control for 

those factors.  Note, however, that grouping based on prior test scores coupled with nonrandom 
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assignment of teachers based on ability to those groups is problematic for estimates based on 

equation (2.2).  Specifically, (λ−1) Ai,t-1 is non-zero, correlated with teacher assignment, and 

omitted from the model in this case.  In contrast, by not restricting λ=1, estimates based on 

equation 2.1 are not subject to the same omitted variables bias.  Effectively the cost of assuming 

λ=1 is higher in these cases.2  

To help illustrate the implications of the bias we appeal to a simple stylized example of 

estimating value-added with a model of only two teachers.  While this certainly abstracts from 

the general problem of estimating equations (2.1) and (2.2), the simplified model will provide 

clear insights into the nature of the biases and inconsistencies that apply to the final estimation 

problem.  Consider the case with two teachers (denoted Teacher 0 and Teacher 1) where the true 

education production function is given by: 

(2.3) 𝐴𝑖 = 𝜆𝐴𝑖𝐿 + 𝛾𝑇𝑖 + 𝑢𝑖  
where  
𝐴𝑖 is current achievement 
𝐴𝑖𝐿 is prior achivement 
𝑇𝑖 = 0, 1 is an indicator for having Teacher 1 
𝑢𝑖  is a random error term 
0 ≤ 𝜆 ≤ 1  

 
It will be helpful to subtract 𝜆𝐴𝑖𝐿 from both sides of the equation: 

𝐴𝑖 − 𝜆𝐴𝑖𝐿 = 𝛾𝑇𝑖 + 𝑢𝑖  

This framework can be used to illustrate the direction of the bias associated with using the gain 

score equation when 𝜆 ≠ 1.  In this simple setup, the OLS estimate of 𝛾 using the lag score 

specification is simply the Wald Estimator comparing the mean outcomes, expressed net of the 

prior score (𝐴𝑖 − 𝜆𝐴𝑖𝐿), for students with Teacher 1 to those for Teacher 0: 
                                                 
2 Cases of explicit test score grouping and assignment will also be more sensitive to possible misspecification of the 
current-score-lag-score relationship, including possible nonlinearities.  In the analyses presented in this paper, we 
focus on specifications that assume a linear relationship between current and prior test scores.  However, we ran 
sensitivity analyses that used specifications that included various polynomials in prior achievement and found 
virtually identical results.  
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(2.4) 𝛾� = 𝐸[𝐴𝑖 − 𝜆𝐴𝑖𝐿�𝑇𝑖 = 1] − 𝐸[𝐴𝑖 − 𝜆𝐴𝑖𝐿�𝑇𝑖 = 0] 
= 𝐸[𝛾𝑇 + 𝑢𝑖|𝑇𝑖 = 1] − 𝐸[𝛾𝑇 + 𝑢𝑖|𝑇𝑖 = 0] = 𝛾 

 
Many of the potential issues we encounter will stem from using the “wrong” 𝜆.  In the case of the 

gain score specification, we have assumed 𝜆 = 1, implying the following estimating equation: 

𝐴𝑖 − 𝐴𝑖𝐿 = (𝜆 − 1)𝐴𝑖𝐿 + 𝛾𝑇𝑖 + 𝑢𝑖  

Now the Wald Estimate of 𝛾 can be expressed as: 

(2.5) 𝛾� = 𝐸[𝐴𝑖 − 𝐴𝑖𝐿�𝑇𝑖 = 1] − 𝐸[𝐴𝑖 − 𝐴𝑖𝐿�𝑇𝑖 = 0] 
= 𝐸[(𝜆 − 1)𝐴𝑖𝐿 + 𝛾𝑇𝑖 + 𝑢𝑖�𝑇𝑖 = 1] − 𝐸[(𝜆 − 1)𝐴𝑖𝐿 + 𝛾𝑇𝑖 + 𝑢𝑖�𝑇𝑖 = 0] 
= 𝐸[(𝜆 − 1)𝐴𝑖𝐿�𝑇𝑖 = 1] + 𝛾 − 𝐸[(𝜆 − 1)𝐴𝑖𝐿�𝑇𝑖 = 0] 
= 𝛾 + (𝜆 − 1) �𝐸[𝐴𝑖𝐿�𝑇𝑖 = 1] − 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 0]� 

 
If 𝜆 ≠ 1, then  𝛾� ≠ 𝛾 whenever the average prior achievement for students assigned to Teacher 0 

is not the same as for Teacher 1 (i.e. [𝐸[𝐴𝑖𝐿�𝑇𝑖 = 1] − 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 0] ≠ 0).  This formulation also 

illustrates how the type of non-random assignment will matter for our ability to rank the two 

teachers correctly.  Assume that Teacher 1 is the “better” teacher (𝛾 > 0) and the school engages 

in positive assignment with the best prior performing students matched to the better teacher so 

that 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 1] > 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 0].  In this case, (𝜆 − 1) < 0 and due to the assignment process 

𝐸[𝐴𝑖𝐿�𝑇𝑖 = 1] − 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 0] > 0 implying a negative bias in 𝛾�.  The magnitude of the bias 

term is driven by two factors: how far off the 𝜆 = 1 assumption is and the degree of grouping 

into the classes.  Importantly, if the negative bias is large enough (i.e. larger than 𝛾), our estimate 

of Teacher 1’s value-added relative to Teacher 0 will be of the wrong sign.  While the true 

ranking of the teachers would place Teacher 1 above Teacher 2, our estimates would reverse this 

ranking.  Just as important is the fact that if the bias is relatively small (i.e. smaller than 𝛾), we 

may have a biased estimate of Teacher 1’s value-added but we will still get the relative ranking 

right.  If the school engages in negative assignment placing the lowest prior performing students 
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with the “better” teacher, the sign of the bias term will be the product of two negative 

components since now 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 1] − 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 0] < 0.  In this case, no matter the size of the 

bias we still get the appropriate ranking of the two teachers.  This provides a clear implication for 

assessing value-added.  When the assignment process is generally negative (lower performing 

students with higher performing teachers), we expect rankings of teachers to be less sensitive to 

the choice of specification than under a positive assignment mechanism.3  Of course, any policy 

use depending on the magnitudes of the value-added point estimates will still be adversely 

affected by this bias. 

Finally consider the third case in which schools nonrandomly group students based on 

ability as before, however, now the teachers are randomly assigned to these classes. Such a 

grouping and assignment policy may be driven by the belief that teachers can better target their 

teaching with more homogeneous classrooms, coupled with an effort to “fairly” assign teachers 

to classes.   While the random assignment of teachers to the classes may, at first glance, seem to 

alleviate concerns over value-added estimates, this scenario can still lead to biased gain score 

estimates.  This problem stems from once again leaving (λ−1) Ai,t-1 in the error term and having 

some teachers assigned the classes with better prior performing students by chance.   

To illustrate the nature of the bias, let us return to our stylized example.  For now, assume 

that the two teachers are equally effective so that 𝛾 = 0 and we can express our gain score 

estimate as: 

𝛾� = (𝜆 − 1) �𝐸[𝐴𝑖𝐿�𝑇𝑖 = 1] − 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 0]� 

                                                 
3 Assignment based on a potential “match effect” (i.e., Teacher 1 is good with low preforming students) is more 
complicated.  The simplified example, however, is sufficient to illustrate the potential for divergent results between 
gain and lag score estimating equations when grouping and assignment is based on prior performance.  
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A clear implication of the 𝛾 = 0 assumption is that assignment based on teacher ability is not 

possible and must effectively be random.  Assume that, by luck, teacher one is given the better 

prior performing class so that 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 1] − 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 0] > 0 and 𝛾 is underestimated.  

Instead of ranking the teachers the same (the true ranking), we will rank Teacher 1 lower.  Even 

though nonrandom assignment of teachers based on ability is impossible in this case, we have 

biased value-added estimates due to a correlation in the sample between uncontrolled for student 

ability and teacher assignment.  Arguments for consistent estimation with nonrandom grouping 

but random assignment of teachers are based on the number of classes per teacher becoming 

large.  The basic intuition is that with random assignment to heterogeneous groups, a teacher’s 

luck in one year may be balanced out in the future.  With many classes per teacher and random 

assignment of teachers to classes, this small sample bias becomes less important with teachers 

receiving a range of class types over time.  A similar argument can be made in the presence of 

grouping on observable student characteristics for estimators that do not partial out this 

correlation.   

Returning to equations (2.1) and (2.2), assignment based on unobserved factors found in  

𝑐𝑖 or 𝑢𝑖𝑡 are more difficult to characterize.  For instance, prior test scores and student 

characteristics may only capture some of the considerations involved in making assignment 

decisions, but may miss differences in parental involvement in the decision process.  To be clear, 

such unobserved factors driving assignment decisions will only lead to an omitted variables 

problem if they also affect current test performance.  For the parental involvement example, we 

might suspect that parents who actively pursue a particular teacher assignment may also provide 

more educational investments leading to a non-zero correlation between these other unobserved 

investments and both the teacher dummy variables and current test score.  For the time-invariant 
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factors (captured in ci), methods that aim to account for this, such as student fixed effects or 

dynamic instrumental variable approaches, may be useful.  However, such methods typically 

involve strong additional assumptions (either that λ=1 or that the errors in 2.1 are serially 

uncorrelated) and greatly reduce the identifying variation, leading to potentially poor 

performance (Guarino et al., forthcoming).  Importantly, prior test scores may serve as a decent 

proxy in these cases as they are a function of ci.  That is, highly involved parents have likely 

been involved throughout their child’s education, so that part of this investment will be captured 

in the coefficient on prior scores.  When the grouping decision is based on time varying 

unobserved factors, there is little that can be done to directly control for this.  Once more, prior 

test scores may serve as a decent proxy for these factors if, say parents are responding to factors 

that affected prior performance. 

While not ubiquitous in the literature, gain-score formulations of the achievement 

regression have been used in recent work (for example, Jackson 2009, Koedel et al. 2012, 

Kinsler 2011, Lefgren & Sims 2012, Oketch et al. 2012, Subedi et al., 2011).  The motivation for 

using the gain score rather than the lag score varies.  In may be done to address issues of serial 

correlation (Jackson 2009) or measurement error (Koedel et al. 2012) in test scores, or to take 

advantage of panel data estimators aimed at improving efficiency (Hierarchical Linear Models, 

Feasible GLS, Empirical Bayes) or tackling identification issues (Fixed Effects) that are 

potentially inconsistent with the presence of lagged dependent variables.   

Given concerns that test scores are noisy measures of achievement, it is worth 

considering the measurement error motivation for using the gain score in more detail.  If the 

measurement error satisfies the classic errors in variables (CEV) assumptions, then it can lead to 

an attenuation bias in the estimate of λ in specification (2.1).  Importantly, under the CEV 
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assumptions, measurement error in the dependent variable does not lead to biased estimates.  

This fact helps motivate the use of the gain-score specification in the presence of measurement 

error, as it moves all of the error into the dependent variable.   

The first thing to note here is that we are not evaluating the estimate of λ, instead we are 

concerned with the estimated teacher effects. The attenuation bias in the estimate of λ is 

propagated to the teacher effect estimates depending on the relationship between prior scores and 

teacher assignments.  The role of attenuation bias in 𝜆 due to measurement error can also be 

explored in our stylized model.  Recall that our lag score specification was represented by the 

Wald estimator for the following model: 

𝐴𝑖 − 𝜆𝐴𝑖𝐿 = 𝛾𝑇𝑖 + 𝑢𝑖  

However, with classical measurement error in prior achievement, we estimate  �̃� < 𝜆 yielding the 

modified equation: 

𝐴𝑖 − �̃�𝐴𝑖𝐿 = �𝜆 − �̃��𝐴𝑖𝐿 + 𝛾𝑇𝑖 + 𝑢𝑖  

Now the appropriate Wald Estimate is: 

(2.6) 𝛾� = 𝐸�𝐴𝑖 − �̃�𝐴𝑖𝐿�𝑇𝑖 = 1� − 𝐸�𝐴𝑖 − �̃�𝐴𝑖𝐿�𝑇𝑖 = 0� 
= 𝐸��𝜆 − �̃��𝐴𝑖𝐿 + 𝛾𝑇𝑖 + 𝑢𝑖�𝑇𝑖 = 1� − 𝐸��𝜆 − �̃��𝐴𝑖𝐿 + 𝛾𝑇𝑖 + 𝑢𝑖�𝑇𝑖 = 0� 
= 𝛾 + (𝜆 − �̃�) �𝐸[𝐴𝑖𝐿�𝑇𝑖 = 1] − 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 0]� 
 

Due to attenuation4  �𝜆 − �̃�� > 0 so the sign of the bias term depends on the sign of 

�𝐸[𝐴𝑖𝐿�𝑇𝑖 = 1] − 𝐸[𝐴𝑖𝐿�𝑇𝑖 = 0]�.  If it is positive (Teacher 1 has the better students) then  𝛾� > 𝛾 

and we have overestimated Teacher 1’s value-added relative to Teacher 0.  If the assignment is 

negative (Teacher 0 has the better students), we will underestimate 𝛾, which implies 

                                                 
4 The extent of the attenuation depends on the variance of the measurement error and of the true knowledge once the 
other covariates have been partialled out.  When more of the variation in true knowledge is explained by the teacher 
indicators (as well as other covariates) the attenuation is stronger.  Therefore, the strength of the relationship 
between the true knowledge and teacher assignment will influence the attenuation.  The equations presented here are 
helpful for considering the extent to which a given level of attenuation is propagated to the teacher effect estimates. 
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overestimating Teacher 0’s ability relative to Teacher 1.  More generally, teachers with the better 

prior performing classes will be made to look better due to the attenuation bias in 𝜆.  Intuitively, 

the attenuation bias will reduce the estimated effect of prior scores.  This implies that when we 

see good prior performing students do better on current tests, too much of that achievement will 

be attributed to their teacher instead of their prior performance.  On the other hand, teachers with 

poorer performing students will look worse since the part of their student’s poor performance 

that is attributable to past achievement is underestimated. 

While there will certainly be a trade-off between the attenuation bias of λ when 

estimating (2.1) and assuming λ = 1 in (2.2) when teacher assignments are based on prior scores, 

it is not clear a priori which bias is more severe.  Indeed, it seems quite plausible that an 

attenuated 𝜆 is less of a concern than assuming 𝜆 = 1.   Indeed, Guarino et al. (forthcoming) find 

simulation evidence that classical measurement error in test scores leads to only very small 

biases in the ranking of teachers in the data generating processes they consider.  The sensitivity 

to measurement error may well be different when considering the magnitude of VAMs rather 

than the ranking. 

Second, it is likely that the measurement error in test scores does not meet the CEV 

assumptions, as it is derived from the aggregation of the error on separate item responses by 

students.  As such, the attenuation bias result does not necessarily hold, and there may be 

problems with mismeasured dependent variables leaving specification (2.2) susceptible to bias as 

well.5  Ultimately, the analysis that follows will help identify scenarios in which the distinction 

between using specification (2.1) or (2.2) may lead to empirically important differences in the 

ranking of teachers.  While the issues underlying the motivation for the gain score specification 
                                                 
5 In fact, gain-score specifications can perform especially poorly under the measurement error induced by Item 
Response Theory scaling procedures—i.e., nonclassical measurement error (Guarino, Ham, Reckase, Stacy, and 
Wooldridge, 2013).   
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may certainly be important, it is equally important to weigh these considerations next to the cost 

outlined above of assuming λ=1, particularly if grouping based on prior test scores is common. 

Finally, it is important to emphasize that the lagged test score serves two functions:  one 

is to correctly partial out prior test scores and the other is to proxy for factors related to the 

assignment mechanism.  If observed prior scores are the basis for assignment, then they are 

important, and properly measured, controls. 

The focus of the first analytic section of this paper is to develop ways to best identify 

different grouping and assignment mechanisms in the types of administrative data sets 

commonly used for value-added in order to inform VAM estimation decisions.  While it is 

fundamentally impossible to identify perfectly the scenarios outlined above, it is possible to 

systematically characterize situations in which some estimators and models are likely to deviate 

from each other.  Once detection strategies for grouping and assignment have been developed, 

we demonstrate their importance in influencing the results of value-added estimation 

III.  Data 

The data used for this study come from the administrative records of a large and diverse 

state in the southeastern region of the US.  The data tracks students and teachers in grades one 

through six in the state’s public school system from the 2000-01 to the 2007-08 school year.  

With individual student test scores and course indicators linking students to their teachers, the 

data are ideal for the estimation of teacher value-added.  Importantly, the presence of course-

level linkages (as opposed to the school grade or exam-proctor linkages found in some similar 

data sets) allows us to identify the set of teachers a student could have potentially been assigned 

to in a given year.  Throughout the paper, we use student test scores in mathematics from the 

statewide standardized year end exams.  Typical of such large administrative data sets, there is 
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limited student information—primarily demographics (race/ethnicity, gender, disability status,6 

limited English proficiency, free or reduced lunch, country of birth), as well as information on 

school attendance/absences.  In addition, the data include demographic (race/ethnicity and 

gender) and professional (certification status, degree level, and experience7) variables for 

teachers.  The set of student and teacher characteristics will allow us to examine the extent of 

sorting and matching on observables.  Finally, we limit our analysis to teachers teaching a 

regular mathematics course (typically in middle school) or a comprehensive general education 

class (typically in elementary school).  Most of the analysis also focuses on school-grade-years 

with at least two teachers (i.e. situations in which nonrandom grouping and assignment is 

possible), leaving 26,177 school-grade-years covering 2,533 schools. 

Table 1 displays descriptive statistics for our main analysis sample.  In addition to means 

and standard deviations for the student and teacher variables we will use throughout the paper, 

we also provide counts of the number of students, teachers, and school-grade-year cells.  In each 

grade, we have roughly 900,000 students.  In fourth and fifth grade, there are over 46,000 

teachers, while in sixth grade there are just under 15,000 with many math teachers teaching 

multiple sections.   

IV. Previous Approaches to Identifying Nonrandom Grouping 

Given the difficulty of detecting nonrandom assignment to teachers, most researchers 

approach the problem by investigating evidence of some form of tracking or grouping of students 

                                                 
6 We distinguish between students with common “high incidence” disabilities and those with less common “low 
incidence” disabilities.  The disability categories coded as high incidence are:  Educable Mentally Handicapped, 
Trainable Mentally Handicapped, Orthopedically Impaired, Speech Impaired, Language Impaired, 
Emotional/Beahvioral Disability, Specific Learning Disability, Autistic Spectrum Disorder, Other Health Impaired.  
The disability categories coded as low incidence are: Deaf or Hard of Hearing, Visually Impaired, 
Hospital/Homebound, Profoundly Mentally Handicapped, Dual Sensory Impaired, Severely Emotionally Disturbed, 
Traumatic Brain Injured, Developmentally Delayed, and Established Conditions. 
7 Experience is measured as the sum of prior years spent in public and private schools both within and outside the 
state studied. 
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into classrooms.  While many papers have considered the teacher assignment decision quite 

generally from both quantitative and qualitative perspectives (Conger 2005, Feng 2010, 

Kalogrides et al. 2011), we are concerned with approaches that allow researchers to distinguish 

between different assignment processes and categorize schools accordingly.  Here we review two 

particularly influential approaches that have been applied to large administrative data sets from 

the Chicago Public Schools (Aaronson, Barrow, & Sander 2007) and North Carolina (Clotfelter, 

Ladd, &Vigdor 2006).  Both approaches have been used in a variety of papers to evaluate and 

justify the estimation of education production functions (Ammermuler & Pischke 2009; Gao 

2012; Goldhaber & Hansen 2010 and 2012; Goldhaber, Cowan, & Walch 2012; Koedel 2009; 

Koedel & Betts 2010 and 2011; Koedel, Leatherman, & Parsons 2012; Lavy 2011; Lugo 2011;  

Whitmore 2005). 

Aaronson, Barrow, and Sander (2007) (ABS) calculate the average within-class standard 

deviation of prior test scores for separate grade and year groupings.  This average “Actual” 

standard deviation is then compared with two counterfactual standard deviations.  The first 

counterfactual, referred to as “Perfect Sorting,” is obtained by ordering students based on their 

prior test score and creating counterfactual classrooms based on this hierarchy.    A second, 

“Random Sorting,” counterfactual is created in a similar way by ordering students randomly. The 

goal of this exercise is to see if the average Actual standard deviation is closer to the Perfect or 

Random sorting counterfactuals.  In their study of data from Chicago Public high schools, ABS 

found that the Actual was much closer to the Random Sorting outcome.  Applying this approach 

to our data yields similar results.8 

Clotfelter, Ladd, and Vigdor (2006) (CLV) look for evidence of student grouping in 

North Carolina by conducting a series of six chi-squared tests of whether student’s classroom 
                                                 
8 Results available upon request from the authors. 
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assignments were independent of the following characteristics: gender, race, FRL, attended same 

school in the prior year, had an above average prior test score, and the prior year’s report of 

parental education.  The chi-squared tests are performed by school on data from a single year and 

are pooled over third, fourth, and fifth grade.  CLV then categorize the 44.9% of schools that do 

not reject the null of random assignment in all six cases as non-tracking.  Once more, applying 

this approach to our data gives similar results, with 54% of schools classified as non-tracking. 

Both the ABS and CLV approaches have been used as evidence of random student 

grouping in order to justify the validity of education production function estimation.  However, 

by pooling data together and observing an aggregate measure in the ABS approach, the method 

misses important heterogeneity in the sorting behavior of schools.  Also, the test focuses on a 

single student characteristic while not exploring other observable characteristics that may drive 

the student grouping decision.  While the CLV approach considers other characteristics, each is 

tested independently without considering the potential relationships between different 

characteristics.  Thus, the CLV approach is susceptible to mischaracterizing the basis for sorting. 

For example, it can easily identify a school as failing the test of independence for both prior test 

scores and free-and-reduced-price lunch status, when in fact the perceived grouping based on 

FRL status is driven entirely by poorer test performance of FRL students.   

In this paper, we implement methods that allow us to uncover the heterogeneity in sorting 

behavior and take into consideration the relationship among several student characteristics.  

Further, we move beyond measures of student grouping and tackle the more difficult problem of 

detecting nonrandom teacher assignment to groups of students.   Finally, we demonstrate how 

grouping and assignment affect the results of value-added teacher performance estimation using 

different specification and estimation choices.  This discussion is particularly important for 



17 
 

policy applications in which it is not possible to isolate random grouping subsamples of schools 

in implementing policies.   

V. Investigation of Student Grouping and Teacher Assignment 

Nonrandom grouping of students into classrooms 

The student grouping and teacher assignment decision is a complex choice problem 

facing the school administration with potential input from others including teachers and parents.  

Considerations in such decisions are varied, including: achievement goals, noncognitive 

outcomes, peer interactions, and class size constraints, among many others.  Our interest lies in 

detecting observable differences across classroom groups that result from the student-teacher 

assignment decision and that may impact value-added estimators. We therefore estimate a series 

of Multinomial Logit (MNL) models of student assignment to classrooms separately for each 

school-grade-year combination, modeling the probability a student is assigned to a particular 

teacher given the student’s characteristics: 9 

(5.1) 
𝑃(𝑇 = 𝑗|𝑥) =

exp�𝑥𝛿𝑗�
1 + ∑ exp(𝑥𝛿ℎ)𝐽

ℎ=1
 

where 𝑗 = 1, 2, … , 𝐽 indexes teachers in the school − grade − year  
 

The student characteristics in x include the student’s lagged math score, indicators for 

race/ethnicity, gender, disability status, free or reduced price lunch status, limited English 

proficiency, whether a student was foreign born, new to the school, and the number of schools 

the student attended in the prior year.10  We are primarily interested in whether each of the 

characteristics is a statistically significant predictor of which teacher a student is assigned and 

less interested in the magnitude of the estimated partial effects, denoted 𝜕𝑃(𝑇 = 𝑗│𝑥)/𝜕𝑥𝑘.  

                                                 
9 Although essentially a reduced form approach, the properties of the MNL as a good approximation in modeling 
choice probabilities are well known (see Cramer 2007 for the binary case and McFadden 1974).   
10 The potentially time-varying student characteristics are recorded in the fall of the school year and are therefore 
based on prior evaluations, rather than responding to current teacher or class assignments. 
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Therefore, for each MNL, we test that null that the partial effect for a given characteristic, xk, is 

zero for all teachers: 

(5.2) 
𝐻0:

𝜕𝑃(𝑇 = 1|𝑥)
𝜕𝑥𝑘

=
𝜕𝑃(𝑇 = 2|𝑥)

𝜕𝑥𝑘
= ⋯ =

𝜕𝑃(𝑇 = 𝐽|𝑥)
𝜕𝑥𝑘

= 0 

 
We limit our analysis to cases in which the MNL likelihood function maximization 

converged within 300 iterations, covering over 99% of the possible cases.11    

This procedure gives a large number of results (up to 26,177) to be summarized.  In Table 

2, we show the percentage of school-grade-years for which a particular characteristic was found 

to be statistically significant at the 5% level (rejecting the null in (5.1). The table also displays 

the number of times the hypothesis in (5.1) was tested for a given variable.12  By looking at these 

rejection rates, we gain insight into the observable characteristics of students that tend to be 

related to classroom assignment across the state.13 We begin with MNL estimates from models 

that only included the lagged test score.  This set of results ties directly to the prior literature that 

looks for grouping based on prior achievement in isolation from other characteristics.  The 

significance rates for these MNL estimates are found in the first row of Table 2.  We see that 

roughly 25% of the school-grade-year cells show evidence of grouping based on prior 

achievement in both fourth and fifth grade.  In sixth grade, this percentage is much higher at 

67%.  This is perhaps not surprising, as in the state studied here many students make a 

promotional school change in grade six.  More specialization in courses occurs as students move 

to middle school.  Moreover, if administrators in the new school have less private information on 

                                                 
11 In order to improve the convergence rate, we use three maximization algorithms: Newton-Raphson for the first 
100 iterations, Davison-Fletcher-Powell for the next 100, and Broyden-Fletcher-Goldfarb-Shanno for the final 100.    
12 Note that the number of times a particular hypothesis test was run may be less than total number of estimates; for 
example, if there were no Asian students in the school, then that particular hypothesis test could not be run.   
13 By looking at statistical significance, our approach is easy to apply uniformly across a large number of estimates 
and, as we show later, is effective at identifying cases where value-added estimation is sensitive to non-random 
grouping. While potentially interesting, a comparison of the magnitudes of partial effects becomes much less 
tractable with more than two teachers. 
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the student’s ability, we might expect them to use observed prior achievement to engage in 

ability grouping.  Furthermore, these new middle schools tend to be larger, drawing from several 

feeder elementary schools, allowing the schools more opportunity to create differentiated 

sections of courses.   

Moving down the table, we present rejection rates from MNL estimates including the 

student covariates.  These results directly allow for relationships between prior test scores and 

student characteristics that had been ignored in previous approaches.  Among the characteristics, 

only the lagged test score shows evidence of being predictive of teacher assignment with a 

substantial degree of frequency.  While the rejection rates for prior scores in this specification 

fall slightly compared to those in the first row, suggesting that some of the perceived ability 

grouping may be driven by other characteristics, the general pattern across grades remains the 

same. 

Characteristics of schools that engage in nonrandom achievement grouping  

We next examine which characteristics of schools are associated with being more likely 

to reject the null in (5.1) for the student’s prior test score.  To do so, we further disaggregate the 

rejection rates in Table 2 across quartiles of school-level student characteristics.  Table 3 

presents these results using the 5% rejection rates for the prior test score from the estimates of 

MNL models that included other student covariates.  Note the “U” shaped pattern across the 

distribution of Black student populations in G4 and G5, with higher rejection rates in the low and 

high proportion Black schools.  This may relate to the extent of racial heterogeneity there is 

within schools (i.e., in more mixed schools, race becomes a characteristic to sort on in lieu of or 

in addition to using test scores, limiting the role test score sorting may play).  A similar pattern 

holds for the FRL populations as well.  Moving on we see higher rejection rates for larger 
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schools, those with a larger proportion of Hispanic and LEP students, and lower proportion 

disabled (G6 only).  On the surface, the higher rejection rates for larger schools fits nicely with 

the idea that  larger schools are afforded more opportunities to create specialized classes.  

However, in this context we cannot separate this effect from the fact that larger schools may 

have more precise estimates due to having more observations in the MNL.14  

The above evidence points to three key improvements over the prior approaches to 

identifying grouping.  First, the across school variation in grouping patterns explored in Table 3 

would be missed entirely by the ABS approach.  Second, the low rejection rates for other student 

characteristics suggest that, conditional on prior test scores, there is little scope for these 

characteristics to explain student grouping.  This result differs from what would be concluded by 

the CLV approach, which considers each characteristic independently.  Finally, to highlight the 

heterogeneity that might be missed by previous approaches to identify grouping, we can explore 

the stability of the grouping category for the same school-grades over time or across grades 

within the same school-year cell.  We see the school-grades fall in different categories in 

consecutive years between 35 and 38 percent of the time and, of the school-years with multiple 

grades, 20% are categorized differently across the grades.  This within school variation in 

grouping would be missed by the CLV and ABS approaches. 

Nonrandom assignment of teachers to classrooms 

The previous estimates attempt to uncover evidence of nonrandom grouping of students 

together into the same classrooms.  As discussed in Section II, such nonrandom grouping may 

lead to issues for value-added estimation even in the presence of the random assignment of 

                                                 
14 In simulations with students randomly grouped into classes, the rejection rate for the MNL test are 0.05, 0.02, 
0.01, and 0.01 for school-grade-years with 40, 80, 160, and 240 students, respectively.  These school-grade-year 
sizes were chosen to roughly reflect the actual distribution of size in our data.  Simulation details are available upon 
request and are similar in nature to those found in Guarino et al. (forthcoming). 
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groups to teachers.  However, the systematic assignment of teacher to these groups of students 

raises additional concerns.  Of particular concern for value-added estimation is whether high or 

low ability students are assigned teachers who are better or worse at improving achievement.   

The following approach is aimed at identifying cases of explicit matching of students to 

particular teachers based on the ability (or characteristics) of both the students and teachers.   

In order to explore the potential matching of students to teachers in this manner, we 

modify the previous MNL approach to include match-specific variables describing some aspect 

of a potential student-teacher match.  We will refer to these new estimates as the “matching 

logit” estimates.15  The estimates of 𝛿𝑗 from the previous MNLs varied by teacher (i.e., a 

different 𝛿 for each teacher) to give an indication of the likelihood that a student with particular 

characteristics is assigned to a particular teacher (indexed by 𝑗) relative to a comparison teacher.  

The matching logits do the same for student characteristics but estimate a single coefficient 

across all teachers for the Match variables discussed below for each school-grade-year cell, 

giving us an indication of whether the assignment process seemed to favor that particular type of 

match. 

In practice we estimate four separate models each with a different match-specific variable 

aimed at capturing some aspect of the student-teacher match that is related either directly or 

indirectly to ability matching.  The four match variables (1) pair student-teacher “ability” 

measures, (2) examine the consistent placement of high ability students with particular teachers, 

(3) pair more experienced teachers with high-performing students, and (4) match teachers and 

students on the basis of race. 

                                                 
15 Such a model can be estimated in Stata using the –asclogit- command.  Again, we apply a reduced form approach 
to obtain information about the realized student-teacher assignments.  
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The first MATCH variable relies on an OLS estimate of prior teacher value-added based 

on the lag score specification as a measure of teacher ability.  We use value-added estimated 

using all the prior years of data we have for the teachers.  We then create a variable indicating 

whether a given teacher is above average in prior value-added (High Value-Added) compared 

with all other teachers in that school-grade-year cell, denoted 𝑉𝐴𝑀𝑗𝐻 = 1(𝑉𝐴𝑀𝑗 > 𝑉𝐴𝑀�������).16  We 

also define an indicator for a student with above average prior achievement in that cell (High 

Achieving) 𝐴𝐶𝐻𝑖𝐻 = 1(𝐴𝑖,𝑡−1 > �̅�𝑡−1). The MATCH variable is then defined by:17 

𝑀𝐴𝑇𝐶𝐻𝑖𝑗1 = �
1 𝑖𝑓 𝑉𝐴𝑀𝑗𝐻 = 1 and 𝐴𝐶𝐻i𝐻 = 1 𝑂𝑅 𝑉𝐴𝑀𝑗𝐻 = 0 and 𝐴𝐶𝐻i𝐻 = 0 
0 𝑖𝑓 𝑉𝐴𝑀𝑗𝐻 = 0 and 𝐴𝐶𝐻i𝐻 = 1 𝑂𝑅 𝑉𝐴𝑀𝑗𝐻 = 1 and 𝐴𝐶𝐻i𝐻 = 0

 

Here, a positive estimate of γ suggests the school prefers to have high (low) ability students 

matched with high (low) ability teachers, while a negative estimate suggests that it prefers 

having high (low) ability students paired with low (high) ability teachers.  

While the approach based on estimated value-added is certainly informative and 

interesting, it rests on having a reliable estimate of value-added.  As a major part of the 

motivation for this exercise is to determine conditions under which informative value-added 

estimation may be plausible, it is difficult to make this assumption ex ante.  In order to address 

this, we create a second match variable that does not rely on a potentially inconsistent value-

added estimate.  We view observing the consistent placement of teachers with high or low 

performing students as a potential marker of ability matching.  To be clear, this does not presume 

anything about the ability of the teachers assigned to the classes, but, in the presence of the sort 

of ability assignment we are concerned with, we would expect the same teachers to have similar 

classes year-to-year.  Finding evidence of consistent placement does not necessarily indicate 

                                                 
16 For this match variable, we necessarily must drop teachers without prior value-added. 
17 Note that by using prior value-added, these estimates are based on different cohorts of students than those we are 
using to make the match variables avoiding any mechanical relationship between prior VAM and prior test scores.   
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ability matching is taking place, however the absence of consistent placement is certainly 

suggestive that ability assignment is not likely, or at least not persistent. 

To operationalize this concept, the second match variable is created in a similar manner 

using the teacher’s prior incoming class average of student scores, rather than value-added.  

Define an indicator for a teacher having an above average incoming class the previous year as 

𝐶𝐿𝐴𝑆𝑆𝑗𝐻.  Importantly, this measure is based on the performance of those students the year 

before they had that teacher. Therefore, the second MATCH variable is defined as: 

𝑀𝐴𝑇𝐶𝐻𝑖𝑗2 = �
1 𝑖𝑓 𝐶𝐿𝐴𝑆𝑆𝑗𝐻 = 1 and 𝐴𝐶𝐻i𝐻 = 1 𝑂𝑅 𝐶𝐿𝐴𝑆𝑆𝑗𝐻 = 0 and 𝐴𝐶𝐻i𝐻 = 0 
0 𝑖𝑓 𝐶𝐿𝐴𝑆𝑆𝑗𝐻 = 0 and 𝐴𝐶𝐻i𝐻 = 1 𝑂𝑅 𝐶𝐿𝐴𝑆𝑆𝑗𝐻 = 1 and 𝐴𝐶𝐻i𝐻 = 0

 

Third, we consider whether more experienced teachers receive higher performing 

students, given the finding in some prior research that more experienced teachers may be more 

effective at raising test scores (Goldhaber 2008). First define an indicator function for a teacher 

with above average experience in that school-grade-year-cell (High Experience) by 𝐸𝑋𝑃𝑗𝐻 =

1(𝐸𝑋𝑃𝑗 > 𝐸𝑋𝑃������).   The third MATCH variable is then defined as: 

𝑀𝐴𝑇𝐶𝐻𝑖𝑗3 = �
1 𝑖𝑓 𝐸𝑋𝑃𝑗𝐻 = 1 and 𝐴𝐶𝐻i𝐻 = 1 𝑂𝑅 𝐸𝑋𝑃𝑗𝐻 = 0 and 𝐴𝐶𝐻i𝐻 = 0 
0 𝑖𝑓 𝐸𝑋𝑃𝑗𝐻 = 0 and 𝐴𝐶𝐻i𝐻 = 1 𝑂𝑅 𝐸𝑋𝑃𝑗𝐻 = 1 and 𝐴𝐶𝐻i𝐻 = 0

 

Finally, we create a racial match variable.  Schools may choose to match students to 

teachers based on race for a variety of reasons (see Dee, 2004 for evidence that racial matches 

improve student achievement).  Given potential differences in student or teacher ability by race, 

this may indirectly lead to ability matching.  The indicator for whether a potential student-

teacher match represents a racial match is constructed as follows: 

𝑀𝐴𝑇𝐶𝐻𝑖𝑗4 = �
1 𝑖𝑓 𝑅𝐴𝐶𝐸𝑖 = 𝑅𝐴𝐶𝐸𝑗
0 𝑖𝑓 𝑅𝐴𝐶𝐸𝑖 ≠ 𝑅𝐴𝐶𝐸𝑗
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Two matching logits are estimated separately for each MATCH variable, one with and 

one without a set of student specific variables.18  In specifications that include the student 

covariates, we exclude those student-level variables that were used to create the applicable 

MATCH variable.  For instance, we exclude the child race indicators for the race match variable 

and the student’s prior test score for the other three match variables.   As before, we present 

rejection rates for the null that γ=0.  We also present rejection rates for one-tail tests to look for 

evidence that γ>0 or γ<0, as unlike in the MNL case, the sign of γ provides information on the 

sorting behavior.  We also display the total number of hypothesis tests. 

Beginning with the student-score-teacher-value-added match variable, we see that with 

no additional covariates we reject the null that schools do not match students to teachers based 

on the prior performance of both students and teachers 15% and 16% of the time in fourth and 

fifth grade, respectively.  We find the evidence of this sort of matching is much stronger in sixth 

grade with a rejection rate of 42%.  We find statistically significant negative assignment between 

7% and 16% of cases.  There is evidence that positive assignment is much more common among 

the school-grade-year cells tested.   When including the set of student covariates, we see the 

rejection rates fall slightly in all grades, suggesting that some of the perceived matching of high 

(low) prior performing students with high (low) prior value-added teachers uncovered in the first 

three columns is being driven by the grouping of students with similar observed characteristics 

into classrooms.   

The evidence here suggests that ability matching, while not the prevailing assignment 

mechanism, influences principals’ decisions to assign students to teachers in a nontrivial number 

                                                 
18 The included student covariates are the number of absences the prior year, race indicators, the student’s prior 
achievement, indicators for gender, FRL status, and whether a student is new to a school.  We utilize the same 
maximization scheme as for the MNL, allowing for 300 iterations alternating between three maximization 
algorithms. 
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of schools—as we reject the null that the coefficient on the match variable is zero in 10 to 15 

percent of fourth grade school-year cells, 11 to 16 percent of fifth, and 33 to 42 percent of sixth 

grade school-year cells.  Of course, it should be noted that with this many estimates one might 

expect a rejection about 5 percent of the time, so some of these lower percentages may not be 

indicative of a noticeable amount of nonrandom assignment.  However, if other criteria related to 

student and teacher ability are being used to make decisions, to the extent that our ability 

measures are only proxies, we may understate the extent of ability matching.     

The match variable based on the incoming ability of the teacher’s previous class is found 

to be statistically significant more frequently than the value-added based indicator for all but the 

negative one-tail tests (bottom panel of Table 4).  This is perhaps not surprising, as we have 

noted that this measure will likely capture any sort of persistent assignment of teachers to high or 

low performing students.  The rejection rates follow a similar pattern to the VAM based 

matching case as we add covariates.  However, these results are stronger than those for matching 

on the teacher’s prior value-added—in some cases, quite a bit stronger.  These findings suggest 

that regardless of whether principals are matching students to teachers based on ability, many are 

consistently assigning certain teachers high or low ability classes.  In particular, in 51 to 64 

percent of the school-years in the sample, sixth grade teachers who had high ability classes in the 

past year were likely to get high ability students again, which, as we have shown above, may 

cause problems for value-added.   

From the teacher experience/student test score match, we see that in 14% and 15% of 

fourth and fifth grade cells there is evidence of matching based on this characterization.  

However, in sixth grade, nearly half of all cells reject the null.  This would seem to suggest that 

many middle schools assign more experienced teachers to classrooms of better prior performing 
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students.  Adding other student characteristics reduces the rejection rate to 36%.  Here, we also 

see that some schools show evidence of negative matching (high experience with low 

performers). 

Finally, for the racial match variable we see that when excluding other covariates, 

nearly10% of cases show some evidence of matching based on this characteristic for fourth and 

fifth grade and nearly 18% for sixth grade.  The inclusion of the student covariates does little to 

change the overall rejection rates in the two earliest grades; however, it does reduce the rejection 

rate for sixth grade to roughly 9%.  Importantly, none of the school-grade-years tested provide 

evidence of explicit racial “mismatch” (a preference for assigning students to teachers of a 

different race) as shown by the second row displaying 0% for each grade and specification. 

It is worth noting the lower convergence rates for the matching logit than for the MNL 

estimation.  For instance, in fourth grade there were 11,116 school-grade-year cells in which the 

MNL estimation converged when including our full set of covariates while only 3,993 did so in 

the racial matching logit estimation with student covariates.19  This represents a nontrivial drop 

in the number of results and serves as a limitation of this approach.  However, for the school-

grade-cells in which estimation was possible, this approach provides useful information on the 

underlying preferences driving student-teacher assignment decisions.  Furthermore, in more 

localized settings with only a handful of schools, it may be possible to appropriately 

“troubleshoot” in order to find specifications and maximization algorithms that perform better. 

                                                 
19 The lower rates of convergence can be the result of several factors.  In many cases, multicollinearity creates flat 
regions of the likelihood function.  For instance, when all the teachers in a school-grade-year are of the same race, 
say White, there is no within-student-across-teacher variation in the racial match variable.  Effectively the matching 
logit becomes an MNL with a single White/Other Race indicator rather than the set of race indicators in the MNL 
we estimate.  With little variation across students in this variable (i.e. if most students are White), the match variable 
becomes highly collinear with the constant in the model.  Since the other match variables rely on an above-average 
below-average distinction within school-grade-years this leads to more variation and better convergence. Generally, 
the matching logit requires a more complicated likelihood function that can be more difficult to estimate.  See Gould 
(1996) for a discussion of the convergence of MLE estimation in Stata. 
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VI. Comparing the Performance of Common Value-added Estimators under Different 

Assignment Conditions 

Our preceding analyses have established the fact that schools can differ widely in the 

observed use of student tracking and teacher assignment mechanisms. Given the importance of 

understanding the context driving such decisions for the estimation of teacher value-added, we 

now consider how to use the information gathered so far to inform VAM estimation.   

We first describe a set of four value-added estimators in fairly common use and discuss 

how they should be expected to perform in random versus nonrandom grouping and assignment 

scenarios.  Under random grouping and assignment, the estimators can be expected to show more 

agreement in their rank ordering of teachers than under nonrandom grouping and assignment 

(Guarino et al., forthcoming). To test our predictions, we estimate teacher value-added in 

mathematics and reading20 using subsets of our data based on the degree of nonrandom grouping 

and assignment, and we display rank correlations within each subsample among the estimates 

produced by the different estimators.   

Using the MNL results that included all student covariates, we distinguish between two 

types of school-grade-year cells, those that exhibited evidence of grouping students based on 

rejecting the null that prior test scores were related to classroom grouping at the 5% level (the 

“Grouping” subsample) and those that did not (the “Non-Grouping” subsample).21  The labels 

Grouping and Non-Grouping were chosen to emphasize that the MNL results tell us about the 

                                                 
20 To save space throughout, we have reported only mathematics results up to this point.  However, as the value-
added implications are the key focus of the study, we provide the reading results here for comparison.  The grouping 
and assignment categories described below are based on analogous reading analyses, the results of which are 
available upon request. 
21 While we could use other student characteristics to define groups, the fact that we found little evidence of 
grouping on the other characteristics, conditional on prior scores, implies that the prior score results are the most 
empirically interesting. The results are robust to using a 10% significance level cutoff. 
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grouping of students into classes but nothing about the subsequent assignment of teachers to 

these classes.   

To address the potential teacher assignment decisions, we similarly divide our sample of 

school-grade-years into “Positive Matching,” “Negative Matching,”and “Non-Matching” 

subsamples based on the teacher VAM/student score matching logits that included additional 

student covariates.  While this distinction explores the grouping and assignment decision in more 

detail, there are advantages to using the MNL results as well.  Namely, with higher rates of 

convergence and not requiring prior value-added, the MNL based subsamples give better 

empirical coverage while still reflecting grouping scenarios that may lead to problems in 

identification. In the end, both can be thought of as providing markers of potentially problematic 

grouping/assignment mechanisms. 

Estimation approaches 

We estimate teacher value-added using separate grade-year cross sections of student level 

observations and employ four separate estimation approaches involving the two estimating 

equations discussed in section II.22 The main features of estimation that we vary are the lag score 

versus the gain score specifications and the treatment of the teacher effects as fixed or random.  

The specifications with fixed teacher effects (equations 2.1 and 2.2) are estimated by Ordinary 

Least Squares (OLS), include teacher indicator variables, and retain their coefficients as our 

teacher effects, yielding our OLS Lag and OLS Gain estimators.   

                                                 
22 We also estimate teacher value-added using student-level panel data (i.e., with several years of data for each 
student) to estimate value-added for teachers in across multiple grades and years. Those results—which do not yield 
qualitatively different conclusions—are presented in the appendix.  Panel data includes more information on 
teachers who have been teaching for longer periods of time, because we see the performance of multiple cohorts of 
students.  As such, it can be helpful to address issues of noise, small sample biases (of the type discussed in section 
II), or unobserved student heterogeneity. However, collection of sufficient panel data for every teacher can be costly 
and delay feedback to teachers.  Further, some of the estimator/model combinations we consider are not appropriate 
for use with panel data.  Therefore, value-added based on cross-sectional data can be appealing for some policy uses.   
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Teacher effectiveness estimates derived from the lag-score and gain-score specifications 

would be expected to differ under nonrandom student grouping and nonrandom teacher 

assignment based on prior test scores.  As such, we expect the two approaches to yield similar 

value-added estimates in cases where there is little evidence of grouping and assignment based 

on prior achievement but to diverge in cases where such evidence exists.   

When teacher effects are treated as random, we use a mixed effects modeling approach 

estimated by Maximum Likelihood23 to obtain Empirical Bayes shrinkage estimates of teacher 

effects. These are labeled EB Lag and EB Gain; they are estimates of the Best Linear Unbiased 

Predictors (BLUP) of the teacher effects under appropriate assumptions (See Guarino et al. 

forthcoming, Ballou et al. 2004, and Guarino, Reckase, Maxfield, Thompson, and Wooldridge 

(2013) for detailed discussions). 

The EB approach used here is based on the following mixed effects model: 

(6.1) 𝐴𝑖𝑗 = 𝜆𝐴𝑖𝑡−1 + 𝑋𝑖𝑡𝛽 + 𝜇𝑗 + 𝜀𝑖𝑗 
𝜉𝑖𝑗 = 𝜇𝑗 + 𝜀𝑖𝑗 
where 𝑖 indexes students and 𝑗 indexes teachers 

 
In this set-up, the coefficients on the prior score (𝜆) and the student covariates (𝛽) are treated as 

fixed, while the teacher effects (𝜇𝑗) are treated as random.  Importantly, this loosely implies that 

teacher effects are assumed to be uncorrelated with the prior test scores and student covariates.  

In the mixed effects set up, the EB teacher effects estimates can be obtained by appropriately 

scaling an initial teacher effect estimate by a measure of reliability, specifically, 𝑉𝐴𝐸𝐵 =

𝜉𝚥� [ 𝜎𝜇2

𝜎𝜇2+
𝜎𝜀
2

𝑛𝑗

].  Here, (𝜉𝚥� ) is the within teacher mean student residual (inclusive of the teacher random 

effects), 𝜎𝜇2 is the variance of teacher effects, 𝜎𝜀2 is the student variance, and nj is the number of 
                                                 
23 In this setup, the coefficients in equation (6.1) below can be estimated by Feasible Generalized Lest Squares 
(FGLS) or MLE.  We opt for MLE using the –xtmixed- command in Stata with the BLUP random effect estimates 
easily obtained postestimation by the –predict , reffects- command. 
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student level observations for teacher j.  From here it is easy to see that the EB estimate 

“shrinks” an estimated teacher effect toward the mean (normalized to be zero) with noisier 

estimates based on fewer student observations shrunk more. 

A key difference between the OLS and EB approaches is that the OLS approach 

employed here includes indicators for each teacher, treating the teacher effects as fixed, rather 

than random as in the EB case.  By leaving the teacher effects in the error term, EB approaches 

do not partial out the relationship between teacher assignment and the other included covariates, 

effectively assuming that this covariance is zero.  The OLS approach adopted here does take this 

covariance into account when estimating both the teacher effects and the coefficients on the 

student covariates.  In cases where teacher assignment is related to student covariates we might 

expect this distinction between OLS and EB to become more important than when there is little 

evidence such a relationship.  However, the extent of these differences is an empirical matter. 

Results comparing value-added estimation approaches on different subsamples 

Table 5 displays the VAM rank correlations across estimators within each sample using 

Math test scores, while Table 6 shows the same for Reading.  For ease of reporting, the rank 

correlations are calculated pooling together all cross sectional value-added results (i.e., each 

teacher-grade-year accounts for one observation).24  Starting in Panel A, the OLS Lag and OLS 

Gain estimates show a rank correlation in the nongrouping sample of 0.858 in Math and 0.813 in 

Reading.  The rank correlation for the two OLS estimators drops noticeably to 0.754 when 

applied to the grouping sample in Math.  The difference for Reading is even more stark, with a 

Grouping rank correlation of only 0.591.  This closely matches our prediction that fixing λ=1 

will be more important in cases where student grouping is related to prior student performance.   

                                                 
24 Separate analysis by grade-year estimation sample yields very similar results and is available upon request.   
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Moving to the comparison between the OLS Lag and EB Lag estimates for the 

nongrouping sample we see a very strong rank correlation of 0.982 in Math and 0.963 in 

Reading.  The grouping samples also show strong, albeit slightly smaller, rank correlations of 

0.976 and 0.955.  The small difference across samples and the overall strength of the rank 

correlations suggest, at least in this setting, that the decision to estimate by OLS or EB makes 

relatively little difference for ranking teachers when lagged test scores are included on the right-

hand side. If instead of ranking teachers, we were interested in the relative magnitude of teacher 

effects, this distinction would become more pronounced. The other rank correlations across 

Panel A follow similarly, with the lag/gain distinction leading to empirically relevant differences 

in our teacher rankings.   

In Panel B, we see a very similar story across our matching samples, however, the 

differences are less pronounced.  While the comparison between the positive and negative 

matching subsamples generally goes in the direction predicted, the difference in rank correlations 

is rather small.  The lack of a result here may be due to several reasons, including the fact that 

this is a small and select subsample of teachers with prior value-added or that there may be an 

orthogonal source of bias affecting both the prior value-added and the subsequent predictions by 

subsample.  Regardless, the fact that the rank correlations are uniformly smaller in either 

matching scenario than the non-matching, indicates that we have uncovered a difference in 

assignment patterns that impacts value-added estimation.  

Another way to check the robustness of teacher value-added estimates to nonrandom 

grouping and assignment is to consider how teachers would be classified into performance 

categories by different estimators.  We thus divide teachers into quintiles based on their 

estimated math value-added.  We then look to see how robust this grouping of teachers is to the 
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use of alternative estimators across our samples.  Figure 1 displays histograms that show how a 

teacher’s designated quintile may differ across estimation approaches.  For example, the first 

histogram in the top panel of Figure 1 shows the distribution of teacher value-added quintiles 

using the OLS Gain estimates for all teachers who were in the 1st (lowest) quintile using the OLS 

Lag estimates for the grouping sample.  The next histogram in the panel shows the distribution of 

quintiles based on the OLS Gain estimates for those in the 2nd quintile of the OLS Lag estimates 

for the same sample.  The remaining panels follow similarly. 

The histograms in Figure 1 tell a similar story to the rank correlations in Table 5 with 

stronger agreement among gain-score and lag-score estimates in the nongrouping sample than in 

the grouping sample.  For instance, nearly 74% of teachers placed in the highest quintile by the 

OLS Lag estimator are also in the top quintile by the OLS Gain estimator for the nongrouping 

sample.  However, less than 64% in the top quintile by OLS Lag are also placed in the top 

quintile by OLS Gain when looking at the grouping sample.  We also see that the probability of 

placing teachers in the same quintile by OLS Lag and EB Lag is slightly lower in the grouping 

than in the nongrouping sample (between 3-5 percentage points).  This suggests that while the 

rank correlations presented above are relatively weakly affected by the choice of OLS versus EB 

estimation methods, there is some scope for this choice to affect the grouping of teachers into 

relative performance categories, a practice that is often suggested as a component of teacher 

evaluation and one that is sometimes used to allot rewards and sanctions.   

VII. Conclusion 

In this paper, we have demonstrated the importance of methodological choices in 

estimating teacher performance using value-added models, uncovering a set of phenomena of 

high policy relevance in the current climate of educational reform aimed at accountability.  We 
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have developed and applied a careful approach to identifying evidence in large administrative 

data sets of nonrandom assignment of students to teachers, documenting considerable differences 

across schools in the extent of this behavior and showing how to use this information to inform 

value-added estimation.   

We find clear evidence that many schools do engage in student grouping based on prior 

academic performance a fact that has been obscured by the more aggregated statistics used in the 

prior literature to identify such sorting.  We find less evidence that schools commonly group 

students in classrooms based on other characteristics, conditional on prior achievement.  

Importantly, we see large variation in the extent of grouping when looking across school-grade-

years.  Further, we see some variation in the extent of this grouping across schools serving 

different student populations.  For instance, schools with higher Limited English Proficiency 

student populations are more likely to be found to engage in test score grouping.  

We also find evidence to suggest that some explicit student-teacher ability matching takes 

place, particularly for certain school-grade-years.  The presence of matching represents a greater 

threat to the ability of VAMs to recover reliable effect estimates. Although we are limited in our 

ability to accurately pinpoint these instances and capture the full extent of ability matching, our 

results provide suggestive evidence that such matching does occur.  Overall, our use of 

multinomial logit techniques represents a significant contribution to the effort to diagnose 

nonrandom grouping and assignment in nonexperimental contexts—an issue that must be 

grappled with in policy as well as research applications due to increased pressures to evaluate 

teachers according to their performance.   

Importantly, we find that categorizing schools based on observed patterns of grouping 

and assignment can lead to substantial differences in the sensitivity of value-added estimates of 
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teacher effectiveness to different estimation procedures.  Namely, the manner in which the 

chosen model takes prior student achievement into account, through a gain score or lag score 

specification, becomes more important in cases of student achievement grouping and 

assignment. In prior work using simulations (Guarino et al. forthcoming), OLS applied to a lag 

score specification that treats teacher effects as fixed was shown to be more adept at recovering 

true teacher effects across a number of different assignment scenarios.  Here, our investigations 

have borne out predictions that this specification will produce estimates that diverge from those 

from the gain-score specification under circumstances in which nonrandom grouping and 

assignment based on prior scores is detectable.  That the OLS Lag estimator controls for this 

potential confounder directly, reinforces the evidence that in many cases this estimator may be 

preferable to other popular estimators currently in use.   At the very least, the motivation for 

using a gain-score formulation should be balanced against this clear and identifiable threat to 

validity in cases of explicit test-score grouping.  This is particularly true in cases in which a 

single estimator of teacher effectiveness is relied upon (e.g., in many policy scenarios).25  

Our results suggest caution when settling upon an estimation strategy that is to be 

universally applied across schools, and, in particular, in applying estimation strategies that rely 

on assumptions of persistent decay.  Methods will matter and are of particular relevance in policy 

applications that assign rewards and sanctions to teachers based on value-added.    

                                                 
25 Note that researchers comparing alternative estimators of education production functions as part of robustness 
checks should also consider our results in weighing the validity of each estimate. 
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Appendix A: Performance of Panel Data Value-added Estimates 

In the panel data context, we use four different model/estimator combinations.  As in the 

cross-section case, we estimate value-added by OLS using both the Lag Score and Gain Score 

specifications (OLS Lag and OLS Gain).  The panel context presents additional challenges and 

opportunities for estimating value-added.  Namely, both OLS estimators ignore the presence of 

unobserved student heterogeneity.  To address this possibility, the gain score specification can be 

easily estimated allowing for student fixed effects, yielding our “Fixed Effects” (FE Gain) 

estimator.  The appeal of the FE Gain estimator comes at the cost of using the gain score 

specification.  This is due to the strict exogeneity assumption needed for the consistency of FE 

that is violated when a lagged dependent variable is included on the right hand side.  Thus, like 

OLS Gain, it may lead to an omitted variables problem if teacher assignment is based on prior 

scores, here conditional on the student heterogeneity. 

A final panel data estimator considered is the Empirical Bayes (EB) shrinkage estimate of 

teacher effects applied to the Gain score equation (EB Gain).Importantly, in the panel data 

context, the EB estimator requires a similar strict exogeneity assumption to FE Gain, once again 

precluding estimation of the lag score specification.  Like the OLS Gain and Lag estimators, EB 

Gain does not allow for unobserved student heterogeneity to be correlated with inputs.   

Many of the predictions outlined in the main text for the cross-sectional estimates apply 

here to the panel case.  However, the introduction of the FE Gain estimates provides a distinct set 

of predictions. Differences in estimated value-added between OLS Lag and FE Gain will result 

from the appropriateness of the gain score specification, the importance of time-invariant 

unobserved student heterogeneity in the teacher assignment decision, potential violation of the 

strict exogeneity assumption, and increased noise due to the within student demeaning.  As such, 
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we might expect larger divergence between estimates for this comparison than others, regardless 

of the grouping and assignment scenario.  In contrast, comparisons between OLS Gain and FE 

Gain will not depend on the appropriateness of the gain score specification as both estimators 

rely on the gain score assumptions.  However, due to the other differences in assumptions, we 

expect ranking of teachers to generally diverge the most when comparing FE Gain to any of our 

other estimators. 

 Appendix Table A1 displays rank correlations between the panel data estimators within 

the different samples defined in the main text.  As in the cross-sectional case, we see that the 

Gain/Lag decision holds more weight than the OLS/EB decision, with rank correlations 

diverging more when comparing an estimate from the gain score specification to one from the 

lag score specification.  As predicted, the rank correlations with the FE Gain estimator tend to be 

relatively low overall yet slightly higher for OLS Gain than OLS Lag.  Interestingly, the rank 

correlations are noticeably larger in the nongrouping and nonmatching samples with particularly 

striking differences between matching and nonmatching samples.  The ranking of teachers in our 

matching samples are highly sensitive to the choice of estimating by OLS Lag or FE Gain with  

rank correlations under 0.25.  Given the many reasons for these two estimators to diverge 

(outlined above), it is difficult derive simple recommendations other than to urge cautious 

interpretation of results and a careful choice of preferred estimator. 
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Table 1: Main Analysis Sample: School-Grade-Years with More Than One Class 

  
Grade 

  
G4 G5 G6 All 

Observations     
Students 950,915 949,849 883,423 2,784,187 
Teachers 48,947 46,800 14,718 110,465 
School-Grade-Years  11,139 10,984 4,054 26,177 

 
        

 
Mean SD Mean SD Mean SD Mean SD 

Student Variables         
Prior Test Score 1400 276 1508 247 1651 222 1516 270 
Asian 0.02 0.14 0.02 0.14 0.02 0.15 0.02 0.14 
Black 0.23 0.42 0.22 0.42 0.23 0.42 0.23 0.42 
Hispanic 0.23 0.42 0.23 0.42 0.23 0.42 0.23 0.42 
Other Race 0.04 0.19 0.03 0.18 0.03 0.17 0.03 0.18 
Female 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
Disability: High Incidence 0.14 0.35 0.13 0.34 0.09 0.28 0.12 0.33 
Disability: Low Incidence 0.00 0.04 0.00 0.04 0.00 0.05 0.00 0.04 
Free or Reduced Lunch 0.51 0.50 0.50 0.50 0.49 0.50 0.50 0.50 
Limited English 0.05 0.21 0.04 0.19 0.04 0.18 0.04 0.20 
Foreign Born 0.08 0.27 0.09 0.28 0.10 0.30 0.09 0.28 
Days Absent Prior Year 7.17 6.91 7.19 6.95 7.42 7.39 7.25 7.08 
New to School 0.95 0.21 0.34 0.48 0.94 0.24 0.74 0.44 
Number of Schools Attended Prior 
Year 

1.09 0.30 1.07 0.28 1.08 0.29 1.08 0.29 

Teacher Variables         
Asian 0.01 0.09 0.01 0.07 0.01 0.10 0.01 0.08 
Black 0.13 0.33 0.15 0.36 0.19 0.39 0.15 0.35 
Hispanic 0.10 0.30 0.08 0.28 0.08 0.28 0.09 0.29 
Other Race 0.00 0.05 0.00 0.06 0.00 0.05 0.00 0.06 
Female 0.91 0.29 0.82 0.38 0.73 0.44 0.85 0.36 
Years Experience 9.77 9.82 11.29 10.66 10.24 10.34 10.48 10.28 
Prior Value-added 7.96 54.68 10.83 56.55 -10.43 55.88 6.98 56.04 
 
 
 
  



41 
 

Table 2: Predictors of Classroom Grouping: Percentage of Separate School-Grade-Year MNLs in which the 
Predictor was Significant at the 5% Level 

 
Grade 

 
G4 G5 G6 

 
Percentage # Tests Percentage # Tests Percentage # Tests 

Specification 1 Prior Score Only 
Prior Math Score 24.52% 11,137 25.35% 10,981 67.34% 4,054 

Specification 2 Prior Score with Other Covariates 
Prior Math Score 20.62% 11,110 21.41% 10,927 63.23% 4,030 
Asian 0.29% 5,828 0.31% 6,200 1.38% 3,041 
Black 1.39% 10,252 1.46% 10,174 5.16% 3,894 
Hispanic 1.10% 9,826 1.45% 9,808 3.66% 3,827 
Other Race 0.37% 8,393 0.35% 8,336 1.37% 3,569 
Female 1.54% 11,095 1.63% 10,914 7.65% 4,025 
Disabled- High Incidence 4.66% 10,915 5.30% 10,734 17.91% 3,965 
Disabled- Low Incidence 0.19% 1,068 0.16% 1,267 0.83% 1,079 
FRL 4.20% 10,870 4.30% 10,722 8.67% 3,990 
LEP 1.12% 6,331 0.95% 6,288 8.31% 2,827 
Foreign Born 0.75% 8,824 0.86% 8,990 3.45% 3,623 
Prior Year Absences 3.98% 11,103 3.99% 10,919 7.03% 4,028 
Student in New School 6.18% 8,156 3.76% 9,172 11.89% 2,574 
Number of Schools in Year 2.94% 10,717 7.03% 10,378 6.44% 3,976 

Pseudo 𝐑𝟐 Distribution 
 

 
 

 
 

 
5th Percentile 0.11 0.11 0.05 
Median 0.21 0.21 0.16 
95th Percentile 0.44 0.46 0.47 
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Table 3: MNL Rejection Rates for Prior Scores in Specfication 2: Broken Out by Quartiles of 
School-level Student Characteristics 
School Characteristic Grade Q1 Q2 Q3 Q4 All 
Black 4 26.12% 20.06% 15.43% 21.07% 20.62% 

 
5 25.58% 20.50% 17.15% 22.67% 21.41% 

 
6 62.35% 63.87% 60.06% 67.28% 63.23% 

Hispanic 4 14.44% 15.72% 21.69% 29.96% 20.62% 

 
5 14.92% 15.83% 23.39% 30.76% 21.41% 

 
6 53.75% 55.30% 68.42% 74.21% 63.23% 

Disabled 4 22.20% 21.82% 21.38% 17.95% 20.62% 

 
5 22.18% 23.94% 21.74% 18.43% 21.41% 

 
6 67.79% 67.04% 56.56% 49.20% 63.23% 

FRL 4 22.69% 17.32% 17.21% 25.30% 20.62% 

 
5 21.76% 19.91% 18.58% 25.48% 21.41% 

 
6 60.94% 63.54% 63.03% 66.35% 63.23% 

LEP 4 13.31% 19.48% 24.04% 25.31% 20.62% 

 
5 12.75% 20.20% 25.39% 26.76% 21.41% 

 
6 51.18% 60.04% 67.46% 73.30% 63.23% 

Enrollment 4 9.89% 14.00% 22.69% 37.15% 20.62% 

 
5 10.61% 14.87% 23.46% 37.21% 21.41% 

 
6 37.60% 48.31% 61.94% 71.46% 63.23% 
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Table 4: 5% Significance-level Rejection Rates of Match Variables from Matching Logit Estimates  

  
MATCH Variable Only MATCH and Other Covariates 

MATCH Variable Test 4th Grade 5th Grade 6th Grade 4th Grade 5th Grade 6th Grade 
VAM-Score Match γ≠0 14.65% 15.67% 42.16% 10.92% 11.87% 33.03% 

 
γ<0 7.52% 7.44% 15.92% 6.41% 6.79% 13.16% 

 
γ>0 12.88% 14.00% 32.64% 9.93% 10.55% 25.60% 

 
# 5372 5915 1639 4743 5745 1535 

        Class-Score Match γ≠0 33.00% 32.84% 63.78% 21.71% 22.99% 50.99% 

 
γ<0 0.01% 0.01% 0.07% 0.38% 0.48% 0.28% 

 
γ>0 41.71% 41.74% 68.89% 29.42% 29.90% 56.04% 

  # 8269 8836 2681 7291 8544 2516 
        
Exp-Score Match γ≠0 13.94% 15.26% 44.47% 10.23% 11.93% 36.15% 

 
γ<0 8.63% 9.20% 21.32% 7.01% 7.78% 17.52% 

 
γ>0 11.59% 12.10% 29.33% 8.82% 10.06% 24.68% 

 
# 8049 8643 2584 7086 8390 2415 

        
Racial Match γ≠0 9.83% 9.39% 17.92% 9.69% 9.48% 9.37% 

 
γ<0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 
γ>0 10.03% 10.37% 17.34% 9.17% 9.57% 9.53% 

 
# 4507 4930 1384 3993 4798 1291 

Note: The test column indicates the alternative hypothesis; therefore the first row indicates the 
percentage of times the test rejects the null of a zero coefficient, the second row of each panel indicates 
the percentage of times our results provide evidence of negative assignment, while the third row does so 
for positive assignment 
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Table 5: Cross-Sectional Math VAM Rank Correlations by Grouping and Matching 
Samples 

Panel A: Grouping and Nongrouping Samples 
Estimator/Model 

 
OLS Lag OLS Gain EB Lag 

 
Sample G NG G NG G NG 

OLS Gain G 0.754      

 
NG  0.858     

EB Lag G 0.976  0.752    

 
NG  0.982  0.854   

EB Gain G 0.737  0.969  0.776  

 
NG  0.851  0.979  0.874 

 
Panel B: Positive, Negative, and Non-matching Samples 

Estimator/Model 
 

OLS Lag OLS Gain EB Lag 

 
Sample +M -M NM +M -M NM +M -M NM 

OLS Gain +M 0.807          -M  0.813        

 
NM   0.845   

    EB Lag +M 0.985  
 

0.807  
     -M  0.984   0.812     

 
NM   0.988   0.844   

 EB Gain +M 0.791   0.979   0.820    -M  0.801   0.982   0.825  

 
NM 

 
 0.841 

 
 0.985 

 
 0.859 

Sample sizes: G=50,812; NG=91,533; +M=8,483; -M=4,382; NM=44,614 
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Table 6: Cross-Sectional Reading VAM Rank Correlations by Grouping and Matching 
Samples 

Panel A: Grouping and Nongrouping Samples 
Estimator/Model 

 
OLS Lag OLS Gain EB Lag 

 
Sample G NG G NG G NG 

OLS Gain G 0.591 
     

 
NG 

 
0.813     

EB Lag G 0.955 
 

0.598 
   

 
NG 

 
0.963 

 
0.803   

EB Gain G 0.558 
 

0.941 
 

0.623 
 

 
NG 

 
0.792 

 
0.957 

 
0.834 

 
Panel B: Positive, Negative, and Non-matching Samples 

Estimator/Model 
 

OLS Lag OLS Gain EB Lag 

 
Sample +M -M NM +M -M NM +M -M NM 

OLS Gain +M 0.702  
        -M  0.724        

 
NM 

 
 0.811   

    EB Lag +M 0.974  
 

0.720  
     -M  0.970   0.727     

 
NM 

 
 0.969 

 
 0.806   

 EB Gain +M 0.677  
 

0.969  
 

0.727  
  -M  0.699   0.965   0.742  

 
NM 

 
 0.790 

 
 0.968 

 
 0.828 

Sample sizes: G=38,976; NG=78,573; +M=6,640; -M=3,954; NM=50,836 
 
 



46 
 

 

0
20

40
60

80
10

0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

OLS Lag 1st Quintile OLS Lag 2nd Quintile OLS Lag 3rd Quintile OLS Lag 4th Quintile OLS Lag 5th Quintile

Pe
rc

en
t

OLS Lag by OLS Gain: Grouping Sample
0

20
40

60
80

10
0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

OLS Lag 1st Quintile OLS Lag 2nd Quintile OLS Lag 3rd Quintile OLS Lag 4th Quintile OLS Lag 5th Quintile

Pe
rc

en
t

OLS Lag by OLS Gain: No Grouping Sample

0
20

40
60

80
10

0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

OLS Lag 1st Quintile OLS Lag 2nd Quintile OLS Lag 3rd Quintile OLS Lag 4th Quintile OLS Lag 5th Quintile

Pe
rc

en
t

OLS Lag by EB Lag: Grouping Sample

0
20

40
60

80
10

0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

OLS Lag 1st Quintile OLS Lag 2nd Quintile OLS Lag 3rd Quintile OLS Lag 4th Quintile OLS Lag 5th Quintile

Pe
rc

en
t

OLS Lag by EB Lag: No Grouping Sample

Figure 1: OLS Lag Quintile by OLS Gain and EB Lag Quintiles
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Appendix Tables 
Appendix Table A1: Panel VAM Rank Correlations by Grouping and Matching Samples 

Panel A: Grouping and NonGrouping Samples from MNL results 
Estimator/Model 

 
OLS Lag OLS Gain EB Gain 

 
Sample G NG G NG G NG 

OLS Gain G 0.805 
     

 
NG 

 
0.852 

    EB Gain G 0.777 
 

0.966 
   

 
NG 

 
0.829 

 
0.960 

  FE Gain G 0.517 
 

0.573 
 

0.578 
 

 
NG 

 
0.635 

 
0.661 

 
0.647 

 Panel B: Matching and Nonmatching Samples from CL results 
Estimator/Model 

 
OLS Lag OLS Gain EB Gain 

 
Sample +M -M NM +M -M NM +M -M NM 

OLS Gain +M 0.858         
 -M  0.849        

 
NM   0.854       

EB Gain +M 0.766   0.913      
 -M  0.798   0.951     

 
NM   0.831   0.968    

FE Gain +M 0.232   0.271   0.266   
 -M  0.147   0.227   0.276  

 
NM   0.567   0.596   0.580 

Sample sizes: G=26,887; NG=36,421; +M=8,049; -M=4,300; NM=32,368 
 
 
 

 
 


