
A SUPPORT SYSTEM FOR ERROR CORRECTION
QUESTIONS IN PROGRAMMING EDUCATION

Yoshinari Hachisu and Atsushi Yoshida
Faculty of Science and Engineering, Nanzan University, 27 Seirei-cho, Seto-shi, Aichi-ken, Japan

ABSTRACT

For supporting the education of debugging skills, we propose a system for generating error correction questions of
programs and checking the correctness. The system generates HTML files for answering questions and CGI programs for
checking answers. Learners read and answer questions on Web browsers. For management of error injection, we have
analyzed types of errors and defined the processes of error injection as code transformation patterns. The system
synthesizes code fragments including errors by transforming correct code fragments according to the selected patterns.
Full coverage of all possible answers is difficult. Instead, we have adopted a strategy to restrict editable points and
possible answers from the educational view. To confirm the effectiveness of the system, we have generated questions
using several examples and applied them to a programming exercise as an evaluation experiment.

KEYWORDS

Error Correction Questions, Programming Education, Debugging

1. INTRODUCTION

In programming courses, students learn skills for coding, code reading, and debugging through various kinds
of exercises. Although debugging is important for actual software development, it is difficult for students,
even who have a good understanding of programming, to acquire skills to debug programs effectively [6][7].
In this paper, we focus on learning support for debugging, whose controlled exercises are difficult to be
provided.

Typical exercises in programming courses are describing full codes and filling empty boxes embedded in
the texts of codes. Through describing full codes, learners find errors and inevitably try to debug for
detecting faults. Debugging experiences, however, are different for each learner, and teachers cannot control
experiences for them to use all necessary debugging skills. In the case of exercises using questions for filling
empty boxes, learners may not have chances to debug because the codes they read do not include any errors,
and they can fill answers without compiling and testing. For controlling their experiences of debugging,
exercises using error correction questions are suitable. Learners read codes and need to detect errors that are
injected purposely. Teachers can select errors for injecting according to debugging skills to be learned.

Preparing error correction questions is, however, a tough work for teachers. It requires injecting various
errors in code fragments and check the correctness of all possible answers, some of which may be unexpected
one but correct. There are some researches for supporting these work flows [2][7][8][10], but a few ones for
automatic systems of question generation and correctness checking [2][8]. The key questions about
constructing the systems are how to manage error injection into code fragments and how to cover all possible
answers in correctness checking.

In this paper, we propose a system for generating error correction questions and checking the correctness.
The system generates HTML files including editable text forms for answering questions and CGI programs
for checking answers. They are deployed on a Web server and learners read and answer questions on Web
browsers. For management of error injection, we have analyzed types of errors and defined the processes of
error injection as code transformation patterns, which we call error patterns. The system synthesizes code
fragments including errors by transforming correct code fragments according to selected error patterns. If the
system allows the learners to edit any points in codes, it needs to accept all possible correct answers. Full
coverage of all possible answers is difficult. Instead, we adopt a strategy to restrict possible answers to the

International Conference e-Learning 2014

249

ones that is reasonable for learning objectives, which mean the syntax and semantics of the language, typical
program descriptions, and algorithms that learners should understand. We have analyzed types of possible
answers and propose constraints of editable points in codes on answering questions. For evaluating the
system, we have implemented a prototype of the system and generated questions for learning the syntax and
semantics of conditional branches, loops, arrays, strings, pointers, and structures, and a sorting algorithm.

The main contribution of this paper is to provide a fundamental framework of automatic generation and
checking answers of error correction questions for debugging exercises. On the framework, the errors are
defined as code transformation patterns, and this makes it easy for teachers to add new programs and errors.
We hope that the discussion about what errors and programs are effective in terms of acquiring debugging
skills and how we collect them in practical programming exercises is opened up.

In the following, we analyze error correction questions and discuss reasonable constraints in Section 2,
and show a design of the system in Section 3. In Section 4, we show an experiment for evaluating the system
and discuss its results. We show related works in Section 5 and conclude our research in Section 6. Though
we use the C language in this paper, our study is not restricted to it.

2. TYPES OF ERROR CORRECTION QUESTIONS

2.1 Error Correction Questions

Figure 1. Error correction question (1): condition, loop, and array

ISBN: 978-989-8704-08-5 © 2014

250

An error correction question contains a program code including errors and requires the learners to modify
them correctly. An example is Fig. 1, whose specification is "Calculate the average value while reading a list
of integer values in a file, and then print a number of values that are greater than the average." Program (a) in
Fig. 1 is a correct program, and program (b) includes four errors: in Line 12, (1) the function name scan is
a misspell of scanf, and (2) an address operator & is missing in an argument; in Line 21, (3) the initializer
and the condition in the for loop do not match to the range of the array referred in the loop; in Line 23, (4)
variable count is referred without initialized. The underlined italic texts are editable elements, that is,
learners can modify them. The blank lines at Line 9, 17, 20, and 28 are also editable, where learners can add
statements. When a question has many editable elements, it tends to become difficult and to allow
unexpected answers. In Section 2.5, we discuss the restriction of editable code elements from the educational
view. Fig. 1 is a question designed for beginners of programming who is learning the syntax and semantics of
conditional branches, loops, and arrays. By this question, we hope that learners learn the usage of the scanf
function, necessity of variable initialization, and a typical loop to scan an array.

Figure 2. Error correction question (2): a sort program of an array of structures

We show another example in Fig. 2. It is a more complicated program using pointers, structures, and the
selection sorting algorithm; the structure person represents a personal physical datum for each person and
the function sort_by_height sorts an array of the structure. The sort function gets an array by argument
p and its size by argument size, and it sorts p in ascending order of a member height with the selection
sort algorithm. It contains five errors: (1) in Line 6 and 8, the type of function swap's arguments and local
variable tmp must be struct person; (2) in Line 19, the condition must be j < size; in Line 24, (3)
all address operator &s are missing for both arguments; (4) the index j of array p must be i; (5) all member
references of height are unnecessary.

These examples imply that error correction questions are more difficult than fill-in-the-blank questions.
Fig. 3 shows (a) an error correction question and (b) a fill-in-the-blank one about if-branches and strings.
The function strconv changes upper letters in the ASCII string s to lower ones and lower letters in s to
upper ones; for example, ”Hello World!” is changed to ”hELLO wORLD!”. Program (a) includes three
errors: in Line 3, (1) the equivalence operator in the condition of the while is wrong; (2) the logical
operators in Line 4 and 7 are wrong; in Line 7, (3) else is missing before if. In our experiences, error (3)
is relatively hard to find at a glance, although this program is simple and short. On an error correction
question, firstly, learners read a program, secondly, they find errors, and finally they correct the codes, that is,
adding, deleting, replacing, or moving codes. Finding and correcting errors require understanding the control
flows, data flows, and logics of programs in addition to the syntax of the language. On the other hand,
program (b) shows explicitly blank boxes where learners need to write correct codes. They may write correct
codes without comprehension of programs. For example, at the first blank in Line 7, there are clear hints, if
in Line 4 and the following parentheses. Furthermore, from the syntactical correctness, it should be filled
with either if, else if, while, or switch.

International Conference e-Learning 2014

251

Figure 3. Error correction question and fill-in-the-blank question: if-branches and strings

When we generate error correction questions, we need to maintain the readability of codes. Codes should
have comprehensive structures of the units of inputs, main processes, and outputs because learners may have
less skill for reading. Unnatural descriptions in codes may give undesirable hints to learners. We have
adopted the following coding styles: (S1) a variable is used for one purpose; (S2) the initialization of a
variable that is used in a loop should locate just before the loop; (S3) two semantic process units are
separated by a blank line; (S4) no successive blank lines are allowed. While injecting errors, removing
statements may cause two successive blank lines in codes. They should be integrated into one blank line
because they indicate a definite lack of a statement. For example, in Fig.1 (a), when we remove the
assignment statement in Line 21, we also remove the following new line because Line 20 is a blank line.

Table 1. Samples of errors for error correction questions of programs

Learning Objective Error Edit
Operation

Correctable

Point(s)

Possible
Represen-
tation(s)

Type

Reading primitive values
with scanf function

Missing address operator &s
before arguments (Fig. 1 error (2))

delete one one (a)

Reading strings with
scanf function

Unnecessary address operator &s
before arguments (char [])

insert one one (a)

Operators Wrong operator (Fig. 3 error (1),(2)) replace one one (a)

Branches Missing else (Fig. 3 error (3)) delete one one (a)

Loops Wrong initialization and condition
in a loop (Fig. 1 error (3))

replace one multiple (b)

Types Wrong type (Fig. 2 error (1)) replace one one (a)

Structures Unnecessary member references
(Fig. 2 error (5))

insert one one (a)

Data flows of variables
and initialization

Using a variable without
initialization (Fig. 1 error (4))

delete multiple one (c)

Data flows in a loop Moving the assignment before a
loop inside the loop

move multiple one (c)

The elements to be
swapped in the selection
sort algorithm

Using wrong indexes on swapping
elements in an array.

(Fig. 2 error (4))

replace one one (a)

ISBN: 978-989-8704-08-5 © 2014

252

2.2 Errors for Questions

For analyzing types of errors used in error correction questions, we have collected errors in our programming
courses and the related papers [3][6][9][11]. These papers have reported that the students often make
syntactical mistakes such as missing a semicolon and lacking one of a pair of curly braces or parentheses. In
general, it is relatively easy for students to correct syntactical errors because a compiler detects them and
shows error messages with line numbers. We have collected logical errors such as using a variable without
initializing or initialized with a wrong value because these errors significantly contribute the development of
debugging skills Compilers do not detect these types of errors, and learners need to read a program carefully
and understand its logic.

We show examples of errors and the learning objectives of them in Table 1. We have analyzed these
errors in terms of edit operations and the numbers of correctable points and possible representation. A
correctable point means an editable point at which we can write a possible representation. A possible
representation is one of the code fragments that are acceptable as correct answers. It may be semantically
different from the original (see Section 2.4).

2.3 Edit Operations for Injecting Errors

We have analyzed edit operations to inject errors in code fragments. We have classified the operations into
four types: insert, delete, replace, and move. The column edit operation in Table 1 shows operations for each
error. Though an operation move is a combination of delete and insert, we have identified it as a primitive
because the two operations should be occurred simultaneously.

The errors injected by deleting code elements or replacing code elements with others are the most typical
ones. A missing assignment of an initial value and a wrong relational operator in a loop condition are
examples. They are caused by deleting the assignment or replacing the operator with another one. Error
correction questions of theses types are relatively easy to prepare. The number of these errors we found is
greater than the ones of others. Instead, the errors of insert and move are restricted. Though it is not difficult
to insert or move an element in codes, these errors would happen rarely because they break data flows or
introduce unnecessary statements in contexts, and it is easy for learners to find them.

If we may not consider all possible answers, checking the correctness of answers becomes easy to be
implemented; the system needs only to check that each modified element is same with the original one. For
the move operation, the system needs to check both of modifications of insert and delete are correct. The
difficulty is to cover all possible answers, and we discuss it in the next section.

2.4 The Number of Correctable Points and Possible Representation

We have analyzed correctable points and possible code fragments for the errors that we found. Possible
answers mean a set of answers whose positions in codes and representations are different. We ignore the
differences of the representations of syntactical equivalent expressions, such as a difference of a+b and b+a
because it is possible to generate all representations of expressions systematically. Our system is for
beginners education, and the expressions of the answers are small, for which it is possible to generate all
alternatives in practical time. We also ignore differences of white spaces. We explain how to ignore the
differences in our implementation in Section 3.1. In the following, we consider the possible answers whose
position and/or semantics are different.

The results of the analysis are shown in Table 1 as the numbers of correctable points and possible
representations. For considering the difficulty of the correctness checking, we categorize errors into four
types: (a) one correctable point and one representation, i.e., not existing any other answer, (b) one correctable
point and multiple possible representations, (c) multiple correctable points and one representation, and (d)
multiple correctable points and multiple possible representations.

Type (a) represents the errors for which the original positions and code fragments are the unique answers.
The supporting system checks only one position and one fragment for each error and is easy to be
implemented.

International Conference e-Learning 2014

253

Type (b) represents the errors for which the original positions are unique answers, but there are variations
in code fragments to be placed. For example, an n-times loop including an error, for (i=1; i<n; i++)
can be corrected as either for (i=0; i<n; i++) or for (i=1; i<=n; i++). They cannot be
checked syntactically, and this correctness depends on contexts.

Type (c) represents the errors for which the original code fragments are the unique answers, but the
position of each error is not fixed to one. An error of this type occurs when a statement is removed. For
example, in Fig. 1 (b), the initialization of variable count can be inserted at any lines between Line 9 and 20.

Type (d), which does not appear in Table 1, represents the errors that have multiple answers in positions
and code fragments. This type of errors makes the system complicated. The answers other than the original
ones tend to be unnatural and inadequate from the educational view. For example, we can correct the errors at
Line 21 in Fig. 1 (b) by replacing data[i] with data[i-1] in Line 22. If we restrict the correctable
points of the above example to Line 21, the error becomes type (a), which is the simplest type. This example
suggests us that restriction of acceptable answers is a reasonable approach.

2.5 Restriction of Correctable Points and Editable Points

How to restrict correctable points is a difficult question because they depend on the semantics of errors and
target codes. One of the simplest ways is to restrict to the original positions and code fragments, as type (a).
The errors in type (b) can be changed to type (a) by restricting correctable points. For example, in an error
code fragment of an n-times loop, for (i=1;i<n;i++), by allowing modification of the operator < in
the condition, only for (i=1;i<=n;i++) can be acceptable. For accomplishing this, the system needs
the ability to modify fine-grained elements.

Strong restrictions, however, provide clear hints to learners and easily lead them to the answers. To avoid
correctable points becoming clear hints, we introduce editable points. Editable points exist at all positions
similar to correctable points and the learners cannot distinguish them on the system. For example, in Fig. 1
(b), the correctable point of lacking operator &s is at the front of the second argument at Line 12, and the
editable points are at the front of the second arguments in the printf functions at Line 19 and 27. Editable
points include correctable points, and we can define them in the same way of correctable points. The
difference between them is the modification of texts. When they are injected in the codes, the texts at the
correctable points are replaced with error ones, but the ones at the other editable points are not changed. This
introduction of editable points embraces the contradiction that they increase possible answers, which have
been excluded by the restriction of correctable points. Unfortunately, this contradiction is not able to resolve
systematically. How to select patterns for editable points are responsible for the users as teachers.

An error with multiple correctable points, like type (c), occurs when an assignment is deleted. The error
can be corrected by adding the original assignment at any point unless it is to preserve the original data flows.
Strictly speaking, the correctness checking of type (c) requires data flow analysis, which makes the system
complicated. To keep the system simple, we introduce the constraints reasonable from the educational view:
(i) only assignments for initialization can be deleted; (ii) editable points where learners can insert statements
are restricted to blank lines. The rule (i) is introduced because missing initializations are typical errors, and
the questions deleted other kinds of assignments become the same with fill-in-the-blank ones for
understanding algorithms which are out of our targets. The rule (ii) prevents the learners from confusing by
multiple possible answers. Under these constraints and the coding style (S1) and (S2) in Section 2.1, we can
identify the valid correctable points without data flow analysis, which are blank lines located between sibling
statements before the deleted assignment. For example, in Fig. 1 (b), the correctable points are the blank lines
at Line 9, 17, and 20; the one at Line 28 is not a correctable point.

The errors of type (d) are problematic, but they are minor in our experiences. The purpose of the error
correction questions is to develop skills for identifying typical errors. The errors of type (d) deeply depend on
semantics of code, and they are not typical. We should avoid this type of errors or try to change it to type (c)
or (a) by restriction of editable points. In this paper, we do not discuss this anymore.

ISBN: 978-989-8704-08-5 © 2014

254

3. AUTOMATIC GENERATION OF ERROR CORRECTION QUESTIONS

3.1 Overview of the Supporting System

We have developed a supporting system of error correction questions. Fig. 4 shows an overview of the
system. The system consists of two components. One is a presentation system that provides a set of error
correction questions to the learners, and they answer on it. The answers are checked by the system, and the
results are returned to the learners. It is implemented as a Web system, i.e., a set of HTML files, JavaScript
programs and Perl CGI scripts that are deployed on a web server. The learners read and answer questions on
web browsers. The other component of the system is a generating system of error correction questions. A
user as a teacher selects a correct program and error patterns. The system applies the patterns to the correct
program and generates both of an HTML file of the question and a CGI program for checking answers. The
HTML file contains a program including injected errors and editable points.

Figure 4. An overview of the supporting system for error correction questions.

The checking CGI programs can accept variants of expressions, such as a variant b+a for a+b. The
equivalence of expressions is complicated to evaluate in practice, and the development of the evaluation
algorithm is out of the scope of this paper. We have implemented an evaluation code optimized for our
examples. Answers for all examples are small expressions, and we do not accept unnatural answers, such as
a+0 for a and 5-5 for 0. Therefore, the number of variants that we should consider is small.

The presentation system needs to hide editable points from the learners. If all editable points explicitly
appear on question pages, the learners can easily guess the answers. For this requirement, we have adopted
JEIP1, a plug-in of jQuery, which hides editable points from a learner until the user moves the mouse over the
texts on them. If the user clicks an editable point, an input field and a save button appear at the point. After
changing and saving all editable points where the user consider need to modify, the user can submit answers
to the system by pressing the submit button.

A demonstration of error correction questions is available at http://ecq.tebasaki.jp/.

1 jQuery Edit In Place (JEIP), http://josephscott.org/code/javascript/jquery-edit-in-place/

International Conference e-Learning 2014

255

3.2 Error Patterns

For managing correct programs and errors separately, we define errors as code transformation patterns. We
also define editable points in the same way of errors, which do not modify programs in practice. This
separation makes it easy to add a code fragment and another type of errors newly. We have implemented the
system on a program transformation, called TEBA [4], which has a parser of code fragments including
additional symbols, such as program patterns. TEBA also provides a transformation system on token-based
syntax trees, and it allows modifying the fine-grained elements as discussed in Section 2.5.

An error pattern consists of two parts, before-part and after-part. A before-part is a target code to be
modified, and an after-part is a new code as a replacement. For abstraction of syntactic elements, typed
pattern variables can be used. In error patterns, the correct tokens in the before-part and the error tokens in
the after-part are surrounded by the special tag, <@ and @>. In an error patterns of delete type, the tag in
after-part surrounds an empty token since error tokens never exist. The line where the tag exists becomes a
blank line after the error pattern is applied. In an error pattern of insert type, the correct tokens in the before-
part are empty. In one of move type, we use the tag, <#@ and @>, for grouping a set of deleted tokens and
inserted ones. We describe an injection of editable points as an error pattern whose before-part and after-part
are the same. We show three examples of error patterns in Fig. 5.

Figure 5. Error patterns as code transformation

4. DISCUSSION

4.1 Generality of Error Patterns

To confirm that the system can generate error correction questions, we have defined 15 patterns for injecting
errors and 10 patterns for setting editable points, and applied them to 4 sample programs: Fig. 1, Fig. 2, Fig.
3, and a binary search function. The error patterns we defined are varied in generality. For example, a pattern
of removing addressing operators &s can be applied to all code fragments that include the operators. The
error pattern Fig. 5 (c) is less general, which depends on the function swap and the structure person. In our
defined patterns, 10 of 25 patterns are program specific. These patterns are difficult to be reused, but they are
useful for generating questions optimized for learning objectives. For example, in Fig 2., while we have
described an error pattern for inserting unnecessary references (Fig. 5 (c)), we have selected a member name,
height, because the specification of the program requires to sort data by the member. We have set an

ISBN: 978-989-8704-08-5 © 2014

256

editable point on the indexes of p[j], but not the ones of p[min]. If both of them are editable, another
answer becomes acceptable; the answers, p[min].height > p[j].height in Line 20 and
swap(&p[min], &p[j]) in Line 24, are valid. We also have made a space editable before variable tmp
in Line 8 because we expect that learners may insert * in the same way of the parameters *a and *b without
thinking semantics deeply.

From our experiences, the error patterns for learning the syntax and semantics of the language tend to be
general, and the ones for learning algorithms tend to be specific. For improving the reusability, we need to
investigate the way to make program specific patterns more general. It may be possible to describe the
contexts of applying patterns and its edit operations separately. Though the contexts depend on programs, we
expect operations can be described in general styles.

4.2 Experiment and Evaluation

We also have made an experiment of the programming exercise using the generated error correction
questions. The subjects are 10 undergraduate students in the third grade, who had taken programming courses
and have the skills for developing small programs. The purpose of the experiment is to find unexpected
answers. As a result, we have not found unexpected answers that are correct. This means the restriction of
our approach works as expected. We, however, have found redundant answers. For example, a student has
inserted avg = 0; at Line 9 in Fig. 1 (b). The variable avg is never referred before the assignment at Line
18, and no initialization is needed. In the question of Fig. 2, there was an answer that the condition of the
for at Line 17 was changed to i < size. Though it executes the redundant process on i == size-1, it
produces the same result as the original program. How to treat redundant answers depends on the purpose of
the exercises. Our system cannot support the case that the teachers want to judge redundant answers as
correct because the correctness checking is implemented based on text matching. For checking redundant
answers, it may be effective to compare the results of the original codes and the answered codes by tests for
the sufficient coverage of inputs, while it makes the system more complicated and requires more efforts for
teachers to prepare adequate test sets.

5. RELATED WORKS

AEGIS[2] is a system to generate questions from XML documents and supports three types: multiple choice,
fill-in-the-blank, and error correction. An error correction question is generated from a multiple choice
question by fusing the choices to the code. AEGIS requires describing a full XML description of questions,
including codes and errors, and does not support automatic synthesis of questions. Our system separates
descriptions of codes and error patterns and synthesizes questions from them. The interface of error
correction questions generated by AEGIS is quite simple. It shows the text of a code on which errors are
marked, and the learner inputs answers in the text fields. The interface of our system hides errors and allows
modifying the elements that are not in error. Our system provides an exercise environment similar to the
traditional ones using papers and pens.

Itoh et al. proposed a method for generating error-correction exercises for learning algorithms [10]. It
determines the fault positions by the algorithm design paradigm and injects faults by the syntax-directed
faults patterns, which are specific to the algorithm education. By specifying a set of correct programs, an
algorithm design paradigm such as divide-and-conquer, the number of errors to be injected, and the number
of source code files to be generated, the system generates source codes including errors automatically.
Though it supports error injection, it does not propose a method for the correctness checking. Our system
allows injecting an error at any positions, and it does not depend on specific domains of program educations.
However, it requires manual selection of error patterns while considering possible answers. A support
method for selecting patterns is a future work. Patterns should be selected from the multiple views such as
learning objectives, the difficulty of questions, the degree of learners’ understanding, and so on.

From the view of code transformation, our system is a kind of a mutation system [1][5]. A mutation
system generates multiple variants of a code by adding small changes to its copies. The distinctive
application is the test set evaluation in which test sets are tested how many variants they can detect as errors.
Mutant systems add changes randomly, but our system adds changes in a restricted manner.

International Conference e-Learning 2014

257

6. CONCLUSION

We have proposed a support system for generating error correction questions and checking answers. On the
system, we can describe error patterns of injecting errors to codes, and the system synthesizes questions from
them. The system also generates CGI programs for checking answers. We have collected some typical errors
in programming and generated questions. We have showed the validity of our system by a small experiment.
We need to make experiments with a large number of subjects.

Collecting other errors that are effective for acquiring debugging skills is a future work. Although some
researches have reported syntax errors by novice programmers [3][6]][9][11], a few logical errors are known.
While we can collect syntax errors by logging compile errors, to collect logical ones we need to investigate
programming processes; we have an interest in how they correct faulty programs, for which compilers report
no error. Work-in-progress codes and input data they select to test programs may be helpful for teachers to
analyze their errors. An integrated development environment for education is one of the suitable systems to
preserve learners’ processes.

We hope that discussion about learning support for debugging using error correction questions is opened
up.

ACKNOWLEDGEMENT

This work has partially been supported by Nanzan University Pache Research Subsidy I-A-2.

REFERENCES

Journal
[1] Jia, Y. and Harman, M., 2011, An Analysis and Survey of the Development of Mutation Testing, IEEE Transactions

on Software Engineering, Vol. 37, No. 5, pp.649-678.
[2] Suganuma, A. et al., 2005, Automatic Exercise Generating System That Dynamically Evaluates both Students' and

Questions' Levels (in Japanese), Journal of Information Processing Society of Japan, Vol. 46, No. 7, pp. 1810-1818
[3] Tuugalei, I. and Mow, C., 2012, Analyses of Student Programming Errors In Java Programming Courses, Journal of

Emerging Trends in Computing and Information Sciences, Vol. 3, No. 5, pp. 739-749.
[4] Yoshida, A. et al., 2012, A Source Code Rewriting System based on Attributed Token Sequence (in Japanese),

Journal of Information Processing Society of Japan, Vol. 53, No. 7, pp. 1832-1849.
Conference paper or contributed volume
[5] Agrawal, H. et al., 1984, Design of Mutant Operators for the C Programming Language, Technical Report SERC-

TR41-P, Purdue University.
[6] Ahmadzadeh, M., et al. 2005, An Analysis of Patterns of Debugging Among Novice Computer Science Students,

Proceedings of the 10th annual SIGCSE conference on Innovation and technology in computer science education,
Lisbon, Portugal, pp. 84-88.

[7] Chmiel, R. and Loui, M.C., 2004, Debugging: from Novice to Expert, Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education, Virginia, USA, pp. 17-21.

[8] Hachisu, Y. and Yoshida, A., 2013, Generation of Error Correction Questions for Beginners of Programming (in
Japanese), Foundation of Software Engineering XX (FOSE2013), Kaga, Japan, pp.35-40.

[9] Hristova, M., et al., 2003, Identifying and correcting Java Programming Errors for Introductory Computer Science
Students, Proceedings of the 34th SIGCSE technical symposium on Computer Science Education, Reno, USA, pp.
153-156.

[10] Itoh, R. et al., 2007, A Fault Injection Method for Generating Error-correction Exercises in Algorithm Learning,
Proceedings of the 8th International Conference on Information Technology Based Higher Education and Training,
Kumamoto, Japan, pp. 200-205.

[11] Jackson, J., et al., 2005, Identifying Top Java Errors for Novice Programmers, Proceedings Frontiers in Education
35th Annual Conference, Indiana, USA. pp. T4C-24 - T4C-27.

ISBN: 978-989-8704-08-5 © 2014

258

	INTERNATIONAL CONFERENCE E-LEARNING 2014
	COPYRIGHT
	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURE
	FULL PAPERS
	CULTURE, GENDER AND TECHNOLOGY-ENHANCED LEARNING: FEMALE AND MALE STUDENTS' PERCEPTIONS ACROSS THREE CONTINENTS
	IPADS IN LEARNING: THE WEB OF CHANGE
	A BLENDED APPROACH TO CANADIAN FIRST NATIONS EDUCATION
	A STORYTELLING LEARNING MODEL FOR LEGAL EDUCATION
	ACCEPTANCE AND SUCCESS FACTORS FOR M-LEARNING OF ERP SYSTEMS CURRICULA
	SELF-REGULATION COMPETENCE IN MUSIC EDUCATION
	TIME-DECAYED USER PROFILE FOR SECOND LANGUAGE VOCABULARY LEARNING SYSTEM
	E-LEARNING TRENDS AND HYPES IN ACADEMIC TEACHING. METHODOLOGY AND FINDINGS OF A TREND STUDY
	PROOF OF ECONOMIC VIABILITY OF BLENDED LEARNING BUSINESS MODELS
	DOES SATELLITE TELEVISION PROGRAM SATISFY ETHIOPIAN SECONDARY SCHOOL STUDENTS?
	ORGANISATION AND MANAGEMENT OF A COMPLETE BACHELOR DEGREE OFFERED ONLINE AT THE UNIVERSITY OF MILAN FOR TEN YEARS
	STRUCTURAL RELATIONSHIPS BETWEEN VARIABLES OF ELEMENTARY SCHOOL STUDENTS’ INTENTION OF ACCEPTING DIGITAL TEXTBOOKS
	DYNAMIC FUZZY LOGIC-BASED QUALITY OF INTERACTION WITHIN BLENDED-LEARNING: THE RARE AND CONTEMPORARY DANCE CASES
	DO ENGLISH LISTENING OUTCOME AND COGNITIVE LOAD CHANGE FOR DIFFERENT MEDIA DELIVERY MODES IN U-LEARNING?
	THE USE OF ELGG SOCIAL NETWORKING TOOL FOR STUDENTS’ PROJECT PEER-REVIEW ACTIVITY
	EDUCATIONAL MULTIMEDIA PROFILING RECOMMENDATIONS FOR DEVICE-AWARE ADAPTIVE MOBILE LEARNING
	INSIDE, OUTSIDE, UPSIDE DOWN: NEW DIRECTIONS IN ONLINE TEACHING AND LEARNING
	A STUDY ON THE METHODS OF ASSESSMENT AND STRATEGY OF KNOWLEDGE SHARING IN COMPUTER COURSE
	USING AGENT-BASED TECHNOLOGIES TO ENHANCE LEARNING IN EDUCATIONAL GAMES
	DESIGNING A CULTURALLY SENSITIVE WIKI SPACE FOR DEVELOPING CHINESE STUDENTS' MEDIA LITERACY
	SHARED COGNITION FACILITATED BY TEACHER USE OF INTERACTIVE WHITEBOARD TECHNOLOGIES
	MODELING PEDAGOGY FOR TEACHERS TRANSITIONING TO THE VIRTUAL CLASSROOM
	THE EFFECTIVENESS OF SDMS IN THE DEVELOPMENT OF E-LEARNING SYSTEMS IN SOUTH AFRICA
	ONLINE LEARNING BEHAVIORS FOR RADIOLOGY INTERNS BASED ON ASSOCIATION RULES AND CLUSTERING TECHNIQUE
	THE USE OF SDMS IN DEVELOPING E-LEARNING SYSTEMS IN SOUTH AFRICA
	ASSESSMENT OF THE USE OF ONLINE COMUNITIES TO INTEGRATE EDUCATIONAL PROCESSES DEVELOPMENT TEAMS: AN EXPERIENCE IN POPULAR HEALTH EDUCATION IN BRAZIL
	STEREO ORTHOGONAL AXONOMETRIC PERSPECTIVE FOR THE TEACHING OF DESCRIPTIVE GEOMETRY
	DELIVERY OF E-LEARNING THROUGH SOCIAL LEARNING NETWORKS
	THE IMPLEMENTATION OF WEB 2.0 TECHNOLOGY FOR INFORMATION LITERACY INSTRUCTION IN THAI UNIVERSITY LIBRARIES
	DESIGNING EDUCATIONAL SOCIAL MACHINES FOR EFFECTIVE FEEDBACK
	A SUPPORT SYSTEM FOR ERROR CORRECTION QUESTIONS IN PROGRAMMING EDUCATION
	A PLATFORM FOR LEARNING INTERNET OF THINGS
	DEALING WITH MALFUNCTION: LOCUS OF CONTROL IN WEB-CONFERENCING

	SHORT PAPERS
	COPYRIGHT AND CREATIVE COMMONS LICENSE: CAN EDUCATORS GAIN BENEFITS IN THE DIGITAL AGE?
	THE CURRICULUM DESIGN AND DEVELOPMENT IN MOOCS ENVIRONMENT
	STAKEHOLDERS INFLUENCE IN MALTESE TOURISM HIGHER EDUCATION CURRICULUM DEVELOPMENT
	ONLINE SOCIAL NETWORKS AND COMPUTER SKILLS OF UNIVERSITY STUDENTS
	IMPLEMENTATION OF ARTIFICIAL INTELLIGENCE ASSESSMENT IN ENGINEERING LABORATORY EDUCATION
	AN EXPLORATION OF THE ATTITUDE AND LEARNING EFFECTIVENESS OF BUSINESS COLLEGE STUDENTS TOWARDS GAME BASED LEARNING
	APPLICATION OF E-LEARNING TECHNOLOGIES TO STUDY A SCHOOL SUBJECT
	POSSIBILITIES OF IMPLEMENTATION OF SMALL BUSINESS CHECK - UP METHODOLOGY IN COMPARATIVE ANALYSIS OF SECONDARY SCHOOLS AND UNIVERSITIES IN SLOVAKIA
	DIGGING THE VIRTUAL PAST
	TECHNOLOGY ACCEPTANCE OF E-LEARNING WITHIN A BLENDED VOCATIONAL COURSE IN WEST AFRICA
	DEVELOPMENT OF AN E-LEARNING PLATFORM FOR VOCATIONAL EDUCATION SYSTEMS IN GERMANY
	FACEBOOK MEDIATED INTERACTION AND LEARNING IN DISTANCE LEARNING AT MAKERERE UNIVERSITY
	ASSESSING THE PURPOSE AND IMPORTANCE UNIVERSITY STUDENTS ATTRIBUTE TO CURRENT ICT APPLICATIONS
	E-LEARNING SYSTEM FOR DESIGN AND CONSTRUCTION OF AMPLIFIER USING TRANSISTORS
	TECHNOLOGY, GENDER ATTITUDE, AND SOFTWARE, AMONG MIDDLE SCHOOL MATH INSTRUCTORS
	STRUCTURING LONG-TERM FACULTY TRAINING ACCORDING TO NEEDS EXHIBITED BY STUDENTS’ WRITTEN COMMENTS IN COURSE EVALUATIONS
	INTEGRATION OF PBL METHODOLOGIES INTO ONLINE LEARNING COURSES AND PROGRAMS
	IMPROVING TEACHER-STUDENT CONTACT IN A CAMPUS THROUGH A LOCATION-BASED MOBILE APPLICATION
	INCORPORATING COLLABORATIVE, INTERACTIVE EXPERIENCES INTO A TECHNOLOGY-FACILITATED PROFESSIONAL LEARNING NETWORK FOR PRE-SERVICE SCIENCE TEACHERS
	THE EFFICIENCY OF E-LEARNING ACTIVITIES IN TRAINING MENTOR TEACHERS
	DEVELOPMENT OF AN IOS APP USING SITUATED LEARNING, COMMUNITIES OF PRACTICE, AND AUGMENTED REALITY FOR AUTISM SPECTRUM DISORDER
	USING CASE-BASED REASONING TO IMPROVE THE QUALITY OF FEEDBACK PROVIDED BY AUTOMATED GRADING SYSTEMS
	INTERNATIONAL MULTIDISCIPLINARY LEARNING: AN ACCOUNT OF A COLLABORATIVE EFFORT AMONG THREE HIGHER EDUCATION INSTITUTIONS
	INTERACTIVE LEARNING TO STIMULATE THE BRAIN’S VISUAL CENTER AND TO ENHANCE MEMORY RETENTION

	REFLECTION PAPERS
	HOW DIGITAL TECHNOLOGIES, BLENDED LEARNING AND MOOCS WILL IMPACT THE FUTURE OF HIGHER EDUCATION
	FACTORS INFLUENCING THE ACCEPTANCE OF E-LEARNING ADOPTION IN LIBYA’S HIGHER EDUCATION INSTITUTIONS
	MOTIVATION AS A METHOD OF CONTROLLING THE SOCIAL SUBJECT SELF-LEARNING

	POSTERS
	DESIGNING ENVIRONMENT FOR TEACHING INTERNET OF THINGS
	FOSTERING CRITICAL THINKING SKILLS IN STUDENTS WITH LEARNING DISABILITIES THROUGH ONLINE PROBLEM-BASED LEARNING
	A SYSTEM FOR THE AUTOMATIC ASSEMBLY OF TEST QUESTIONS USING A NO-SQL DATABASE

	AUTHOR INDEX

