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HASTINGS ROBBINS-MONRO ALGORITHM 

Ji Seung Yang and Li Cai 
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Abstract 

The main purpose of this study is to improve estimation efficiency in obtaining full- 

information maximum likelihood (FIML) estimates of contextual effects in the framework of 

a nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-

Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). Results indicate that the MH-RM 

algorithm can produce FIML estimates and their standard errors efficiently, and the 

efficiency of MH-RM was more prominent for a cross-level interaction model, which 

requires five dimensional integration. Simulations, with various sampling and measurement 

structure conditions, were conducted to obtain information about the performance of 

nonlinear multilevel latent variable modeling compared to traditional hierarchical linear 

modeling. Results suggest that nonlinear multilevel latent variable modeling can more 

properly estimate and detect a contextual effect and a cross-level interaction than the 

traditional approach. As empirical illustrations, two subsets of data extracted from The 

Programme for International Student Assessment (PISA, 2000; OECD, 2000) were analyzed. 

Introduction 

In educational research, a contextual effect is traditionally defined as the difference 

between two coefficients in a hierarchical linear model (HLM) analysis framework (Raudenbush 

& Bryk, 1986; Willms, 1986; Lee & Bryk, 1989; Raudenbush & Willms, 1995): one from the 

individual-level and the other coefficient from the school-level. A representative application of 

this kind of contextual effect in education is discussed in Raudenbush and Bryk (2002) using a 

subset of High School and Beyond Data (HS&B). In this example, individual math achievement 

is regressed on individual-level socioeconomic status (SES) and school-level math achievement 

is regressed on aggregated school-level SES using multilevel modeling. The result shows that the 

two coefficient estimates are not the same, indicating two students who have the same SES level 

are expected to have different levels of math achievement depending on to which school a 

student belongs. Statistically significant difference between these two coefficients represents a 

significant compositional effect. 

While hierarchical linear modeling opened the door to defining and estimating contextual 

effects, there have been two unresolved methodological issues. The first one is related to the 

attenuated coefficient estimates due to measurement error in predictors (Spearman, 1904), and 
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the other is biased parameter estimates due to sampling error associated with aggregating level-1 

variables to form level-2 variables by simply averaging the values (Raudenbush & Bryk, 2002, 

chap.3). Accordingly, two regression coefficients at level-1 and level-2 tend to be attenuated 

when summed or averaged scores are used as predictors. 

To handle measurement error and sampling error more properly, multilevel latent variable 

modeling has been suggested as an alternative to traditional methods (e.g. Lüdtke et al., 2008; 

Lüdtke, Marsh, Robitzsch, & Trautwein, 2011; Marsh et al., 2009). For example, Lüdtke et al. 

(2008) proposed a multilevel latent variable modeling framework for contextual analysis. Lüdtke 

et al. (2008) examined the relative bias in contextual effect estimates when the traditional HLM 

is used under different data conditions. The results showed that the relative percentage bias of 

contextual effect was less than 10% across varying data conditions when a multilevel latent 

variable model was used. On the other hand, the relative percentage bias of contextual effect was 

up to 80% when the traditional HLM model was used. However, the traditional HLM can yield 

less than 10% relative bias under favorable data conditions—that is, when level-1 and level-2 

units exceed 30 and 500, respectively, and when there is substantial intra-class correlation (ICC) 

in the predictor (e.g., 0.3). While the manifest variables are limited to only continuous variables 

in Lüdtke et al. (2008), multiple categorical variables are used as manifest variables for both 

latent predictor and outcome variables in the current study. 

Another study using multilevel latent variable modeling for contextual effect analysis was 

conducted by Marsh et al. (2009). Marsh and colleagues examined and compared several 

contextual modeling options related to ”big fish-little-pond effect (BFLPE)” estimates using an 

empirical data set in which academic achievement and self-concept were measured by three and 

four continuous manifest variables, respectively. Among the tested models, a multilevel latent 

variable model that takes both measurement and sampling error into account yielded the largest 

BFLPE estimate. The authors described this model as a doubly latent variable contextual model. 

Such a model is theoretically the most desirable choice for researchers, since the model tries to 

take both measurement and sampling error into account by utilizing information from the 

manifest variables, rather than using summed or averaged scores of those manifest variables. 

Again, Marsh et al.’s (2009) study was limited, using three continuous manifest variables. 

While nonlinear multilevel latent variable modeling can deal with measurement and 

sampling error properly, this approach presents significant computational difficulties with 

categorical manifest variables. Standard approaches such as numerical integration (e.g., adaptive 

quadrature) or Markov chain Monte Carlo (MCMC; e.g., Gibbs Sampling) based estimation 

methods have important limitations that make them less practical for routine use, because their 

computational efficiency drops dramatically when the dimensionality is high. Lüdtke et al. 



3 

(2011) also reported the occurrence of unstable estimates. The model has difficulty converging 

when sample size is small and the intraclass correlation coefficient (ICC) in a predictor is small. 

Therefore, further research efforts are needed to improve estimation of contextual effect in the 

nonlinear multilevel latent variable modeling framework. 

The main objective of this study was to develop a more efficient estimation method for 

contextual effects in the nonlinear multilevel latent variable modeling framework, by adopting 

the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). 

Computational efficiency and parameter recovery were assessed in a comparison with an existing 

EM algorithm using adaptive Gauss-Hermite quadrature for numerical integration (e.g., Mplus; 

Muthén & Muthén, 2008). Another objective was to find, through a simulation study, how much 

measurement error and sampling error can influence contextual effect estimates under different 

conditions. The results provide the rationale for using computationally demanding nonlinear 

multilevel latent variable models. The last objective of the proposed study was to provide an 

empirical illustration of estimating contextual effects by applying nonlinear multilevel latent 

variable models to real data that contain more complex measurement structures and unbalanced 

data. Subsets from The Programme for International Student Assessment (PISA; Adams & Wu, 

2002) were analyzed to illustrate a contextual effect model and a cross-level interaction model. 

The particular contextual effect of interest in this study is one that occurs when a group-

level characteristic of interest is measured by individual-level characteristics, and the individual-

level characteristics are measured by categorical manifest variables. This study considers a 

contextual effect not only as a compositional effect that captures the influence of contextual 

variables on individual level outcomes, but also cross-level interactions that capture the influence 

of contextual variables on within-group slopes. 
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Contextual Effects in a Nonlinear Multilevel Latent Variable Model 

Structural Models 

The traditional HLM defines a compositional effect βc as follows: 

  (1) 

In Equation (1), Yij and Xij denote outcome and predictor values of student i in school j, 

respectively. Yij and Xij are typically constructed by summing item scores on self-report 

responses. The random effects rij and u0j are assumed to be normally distributed with zero means 

and variances (σ2 and τ). In this particular definition of a contextual effect as a compositional 

effect, the within-slope, γ10, is the same across groups as a fixed effect, which may or may not be 

appropriate, depending on the context. 

In a nonlinear multilevel latent variable model, instead of using Yij and Xij that are observed 

variables, we substitute them with latent variables ηij and ξij for individual i in group j. Those 

latent variables are connected to manifest variables through measurement models. For notational 

simplicity, latent individual deviations from latent group means (ξij − ξ.j ) can be defined as δij, 

and group mean deviations from the latent grand mean (ξ.j − ξ.. ) can be defined as δ.j. Then 

Equation (1) translates into the following compositional effect model: 

  (2) 

Yij = β0j + β1j (Xij − X.j ) + rij, 

β0j = γ00 + γ01 (X.j − X.. ) + u0j, 

β1j = γ10, 

γ10 = βw, 

γ01 = βb, 

βc = γ01 − γ10 

 

ηij = β0j + β1j δij + rij,  

β0j = γ00 + γ01 δ.j + u0j, 

β1j = γ10, 

γ10 = βw, 

γ01 = βb,  

βc = γ01 − γ10 
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βc is the compositional effect of this research interest. Similar to Equation (1), the random effects 

rij and u0j are assumed to be normally distributed with zero means and variances σ2 and τ00, 

respectively. 

Now consider a contextual effect as a cross-level interaction. The grand-mean-centered 

contextual variable (ξ.j ) is included in Equation (2) as a predictor for β1j. Therefore, β1j is re-

defined as follows: 

  (3) 

In Equation (3), γ11 is the parameter of research interest, which is the regression coefficient for 

the cross-level interaction term between level-1 and level-2 predictors. 

Measurement Models 

The measurement models define the relationship between observed (manifest) variables 

and latent variables. For simplicity, only the measurement models of level-1 latent predictor 

variable ξij will be described in this section, since the measurement models for other variables 

such as the latent outcome ηij follow the same principles. 

When manifest variables are graded response variables with multiple categories, 

Samejima’s (1969) model can be utilized. Let xijl ∈ {0, 1, 2, ..., Kl − 1} be an element of ith 

individual’s response in jth group to lth item that has Kl ordered categories. Then the logistic 

conditional cumulative response probability for each category is listed as follows: 

  (4) 

ηij = β0j + β1j δij + rij, 

β0j = γ00 + γ01 δ.j + u0j, 

β1j = γ10 + γ11 δ.j + u1j, 

 

P
θ 
(x

ijl ≥ 0|ξ
ij 

) = 1, 
 

Pθ (xijl ≥ 1|ξij ) = 
1
 

, 
1 + exp[−(b

1,l + a
l ξij )] 

P
θ 
(x

i jl ≥ 2|ξ
ij )

 = 
1 

, 
1 + exp[−(b

2,l + a
l ξij )] 

 …
 

   

Pθ (xijl 
≥ K

l − 1|ξij ) = 
1 

, 
1 + exp[−(bKl−1,l + a

l ξij)
] 
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The category response probability is defined as the difference between two adjacent 

cumulative probabilities: 

 Pθ (xijl = k|ξ
ij 

) = Pθ (xijl ≥ k|ξ
ij 

) − Pθ (xijl 
≥ k + 1|ξ

ij ),  (5) 

where Pθ (xijl ≥ Kl |ξij ) is zero. χk is an indicator function in which χk is 1 if xijl = k, or 0 

otherwise. The conditional density for xijl follows a multinomial with trial size 1 in Kl categories: 

  (6) 

The observed and complete data likelihoods of are suggested in Appendix A. 

Metropolis-Hastings Robbins-Monro Algorithm for Contextual Models 

An MH-RM algorithm was initially proposed by Cai (2008) for nonlinear latent structure 

analysis with a comprehensive measurement model, and the application of algorithm has been 

expanded to further measurement and statistical models (e.g., Cai, 2010a, 2010b). The MH-RM 

algorithm was motivated by Fisher’s Identity (Fisher, 1925), which proved that the gradient of 

the observed likelihood is the expectation of the gradient of the complete likelihood. While 

maximizing the observed likelihood, denoted as L(θ|Yo ), involves high-dimensional integrals, 

the complete data likelihood, denoted as L(θ|Y), involves a series of products of likelihoods that 

are fairly simple to maximize. Therefore, having plausible values of random effects and latent 

variables makes the estimation problem simpler. This also allows straightforward optimization of 

the complete data likelihood with respect to θ. However, proper imputation requires the 

distribution of the missing data to be conditional on the observed data. As the model is nonlinear, 

analytical derivation of the distribution of missing data conditional on the observed data is 

difficult. Nevertheless, a property of the posterior of the missing data enables us to have 

appropriate imputation. That is, the posterior of missing data, given observed data and a 

provisional θ, is proportional to the complete data likelihood. To utilize this property, 

Metropolis-Hastings sampler (MH; Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, 

& Teller, 1953) is adopted to produce the imputations from a Markov chain with the missing 

data posterior as the target. Then, the random imputations are combined into Stochastic 

Approximation using the Robbins-Monro algorithm (RM; Robbins & Monro, 1951). 

The (k + 1)th iteration of the MH-RM algorithm consists of 3 steps: Stochastic Imputation, 

Stochastic Approximation, and Robbins-Monro Update. 

fθ (xijl |ξij ) = 
Kl −1 

∏ 
k=0 

Pθ (xijl = k|ξij )
χk (xijl ). 
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Step 1. Stochastic Imputation 

Draw mk sets of missing data, which are the random effects and latent variables, from a 

Markov chain that has the distribution of missing data conditional on observed data as the target. 

Then, mk sets of complete data are as follows: 

  (7) 

Step 2. Stochastic Approximation 

Using Fishier’s Identity, a Monte Carlo approximation to ∇θl(θ
k |Yo ) can be computed as 

the sample average of complete data gradients. We also compute a recursive approximation of 

the conditional expectation of the information matrix of the complete data log-likelihood. For 

simplicity, let s(θ|Y) stand for ∇θl(θ|Y), and the sample average of complete data gradients can 

be written as: 

  (8) 

and Γk+1 is 

  (9) 

where H(θ|Y) is the complete data information matrix, which is −1 times the second derivative 

matrix of the complete data log-likelihood. The first and second order derivatives of the 

complete data models are suggested in Appendix B. 

Step 3. Robbins-Monro Update 

Now new parameters are estimated through the following update: 

  (10) 

The whole iteration process is composed of three stages: initial stage in which parameters 

are not updated (M1), constant gain stage in which parameters are updated with a constant gain 

(M2), and the decreasing gain stage in which parameters are updated with a decreasing constant 

gain so that they stop oscillating around MLE (M3). The iterations can be stopped upon 

convergence when the changes in parameter estimates are sufficiently small. Cai (2008) verified 

the asymptotic behaviors of MH-RM in time and that it converges to MLE. For further details 

about the algorithm itself, readers can refer to Cai (2008, 2010a, 2010b). 

{Y k+1
 ; j = 1, ..., mk} j 
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Approximation to the Observed Information Matrix 

One of the benefits of using the MH-RM algorithm is that the observed data information 

matrix can be recursively approximated as a byproduct of the iterations. The inverse of the 

observed data information matrix becomes the large-sample covariance matrix of parameter 

estimates. The square root of the diagonal elements are the standard errors. Another practical 

option for approximating the observed information matrix is a direct application of Louis’s 

(1982) approach, in which the score vector and the conditional expectation are approximated 

directly after they converge. In this study, the first method is called recursively approximated 

standard errors and the latter is called post-convergence approximated standard errors. 

Simulation Studies 

Simulation Study 1: Comparison of Estimation Algorithms 

The first simulation study was to examine the parameter recovery and standard errors when 

an MH-RM algorithm is implemented in comparison to those from an existing EM algorithm. 

Methods. The data-generating and fitted models followed Equation (2) for a compositional 

effect model and Equation (3) for a cross-level interaction model. The simulated data are 

balanced in that the number of level-2 units (ng) is 100 and the number of level-1 units per group 

(np) is 20. The generating ICC value for the latent predictor was 0.3. 

For the measurement model, five dichotomously scored manifest variables were generated 

for each latent trait (i.e., η, and ξ) using a 2-PL model. The item parameters were the same across 

levels, representing cross-level measurement invariance. 

100 data sets were generated with the same parameters but with 100 different random seeds 

for each model. The first 10 data sets were analyzed using two methods: an MH-RM algorithm 

implemented in R (R Core Team, 2012) and an adaptive quadrature EM approach implemented 

in Mplus (Muthén & Muthén, 2010). Then the other 90 data sets are all analyzed using the MH-

RM algorithm. 

For compositional effect estimation, the MH-RM algorithm’s convergence criterion was 

5.0 × 10−5, and the maximum numbers of iterations for each stage were M1 = 100, M2 = 500, 

and M3 = 600. For the cross-level interaction model, the MH-RM algorithm convergence 

criterion was 5.0 × 10−5 and the maximum numbers of iterations for each stage were M1 = 100, 

M2 = 800, and M3 = 800. To calculated post-convergence approximated standard errors, 100 to 

500 samples were used for the compositional effect model, and 100 to 800 samples were used for 

the cross-level interaction model. The convergence rates at the given number of iterations were 
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100% and 52% for the compositional effect model and the cross-level interaction model, 

respectively. 

Results: Compositional effect model. The generating values and the corresponding 

estimates for the compositional effect model from different algorithms are summarized in Table 

1. The first column contains the true parameters for the measurement and structural parameters. 

The second set of columns and the third set of columns include the estimates and SEs from EM 

with different numbers of adaptive quadrature points (5 and 14). The means of point estimates 

and standard errors from different algorithms are generally very close to one another. For 

structural parameter estimates in the first panel, the number of quadrature points does not appear 

to make a large difference, though 14-quadrature-point estimates are slightly closer to the MH-

RM estimates and the generating values in terms of τ00 and var(ξ.j ). For measurement parameter 

estimates, both the means of point estimates and the standard errors were the same up to the 

second decimal point across different numbers of quadrature points. 

Table 1 

Generating values and estimates for a compositional effect model (N=2,000, ng=100, np=20, 10/10 converged) 

  EM (5qp)  EM (14qp)  MH-RM 

 θ E(θˆ) E{se(θˆ)} E(θˆ) E{se(θˆ)} E(θˆ) E{se(θˆ)} 

   Structural parameters    

γ01 1.00 1.02 0.19 1.01 0.19 1.00 0.18 
γ10 0.50 0.52 0.05 0.51 0.05 0.52 0.09 
τ00 1.00 0.90 0.16 0.91 0.17 0.93 0.16 

var(ξ.j ) 0.43 0.40 0.07 0.42 0.07 0.42 0.07 

   Measurement parameters    

ax1 0.80 0.79 0.07 0.79 0.07 0.79 0.08 

ax2 1.00 1.01 0.08 1.01 0.08 1.00 0.09 

ax3 1.20 1.24 0.09 1.24 0.09 1.24 0.11 

ax4 1.40 1.39 0.10 1.39 0.10 1.39 0.12 

ax5 1.60 1.67 0.14 1.67 0.14 1.69 0.15 

ay1 0.80 0.78 0.06 0.78 0.06 0.78 0.06 

ay2 1.00 1.00 0.07 1.00 0.07 1.00 0.07 

ay3 1.20 1.23 0.09 1.23 0.09 1.23 0.08 

ay4 1.40 1.40 0.11 1.40 0.11 1.40 0.10 

ay5 1.60 1.61 0.13 1.61 0.13 1.60 0.12 

cx1 -0.80 -0.75 0.08 -0.75 0.08 -0.75 0.06 

cx2 0.00 0.02 0.08 0.02 0.08 0.02 0.05 

cx3 1.20 1.30 0.11 1.30 0.11 1.29 0.08 

cx4 -0.70 -0.61 0.11 -0.61 0.11 -0.62 0.07 

cx5 0.80 0.92 0.14 0.92 0.14 0.92 0.08 
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cy1 -0.80 -0.80 0.11 -0.80 0.11 -0.81 0.06 

cy2 0.00 0.01 0.13 0.01 0.13 0.00 0.05 

cy3 1.20 1.19 0.16 1.19 0.16 1.18 0.08 

cy4 -0.70 -0.74 0.18 -0.74 0.18 -0.75 0.07 

cy5 0.80 0.79 0.21 0.79 0.21 0.78 0.08 

   Efficiency    

When 1 processor is used 5∼7 min 60∼100 min 35∼40 min 

Note. θ = Generating values; E(θˆ) = mean of point estimates; E{se(θˆ)} = mean of estimated SEs (post-convergence 

approximated SEs); a = item slope parameters; c = item threshold parameters; qp = number of quadrature points 

used in estimation. 

In contrast, mean standard error estimates are slightly different between MH-RM and EM 

results in that the standard error estimates from MH-RM algorithm for intercepts are smaller than 

those from the EM algorithm. The log of standard error estimates from the EM algorithm and log 

of post-convergence approximated standard errors from the MH-RM algorithm are plotted 

against log standard deviations of point estimates in Figure 1. The estimates are clustered on the 

diagonal line, indicating that estimated standard errors are generally close to the Monte Carlo 

standard deviations of the point estimates, except for the intercept parameter standard errors, 

which appear to be underestimated when the post-convergence approximation is used for the 

MH-RM algorithm. 

 

Figure 1. Comparisons of standard errors for item parameters. 

When one processor was used for estimation, the 5 quadrature point EM required a very 

short time, while the 14 quadrature point EM required over an hour. The MH-RM algorithm 
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required about 40 minutes. Given that the MH-RM is implemented in R (an interpreted 

language) and Mplus is written in FORTRAN (a compiled language), the estimation time can be 

even more substantially shortened if the MH-RM is implemented with a compiled language. 

To examine the performance of the MH-RM algorithm further, 100 generated data sets 

were analyzed, and the results are summarized in Table 2. The means of point estimates are 

reasonably close to generating values in general, with slight underestimation of variance 

estimates in the structural parameters. For structural parameters, the Monte Carlo standard 

deviations of parameter estimates (column 5) are also similar to both standard error estimates 

(column 4 and 6) as expected; the largest difference is 0.02. 
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Table 2 

Generating values and estimates for a compositional effect model (N=2,000, ng=100, np=20) 

 θ E(θ
ˆ
) E{se1(θ

ˆ
)} SD(θ

ˆ
) E{se2(θ

ˆ
)} 

95% 

Coverage 

using se1 

  Structural parameters   

γ01 1.00 0.99 0.17 0.19 0.18 95.0 

γ10 0.50 0.50 0.06 0.07 0.09 95.0 

τ00 1.00 0.97 0.20 0.18 0.16 89.0 

var(ξ.j ) 0.43 0.43 0.08 0.09 0.07 89.0 

  Measurement parameters   

ax1  0.80  0.80 0.07 0.06 0.07  98.0 

ax2  1.00  1.01 0.10 0.09 0.09  91.0 

ax3  1.20  1.22 0.12 0.10 0.11  92.0 

ax4  1.40  1.40 0.12 0.10 0.13  84.0 

ax5  1.60  1.60 0.15 0.13 0.15  73.0 

ay1  0.80  0.80 0.07 0.07 0.06  95.0 

ay2  1.00  1.01 0.07 0.07 0.07  94.0 

ay3  1.20  1.21 0.10 0.09 0.09  86.0 

ay4  1.40  1.39 0.10 0.09 0.10  89.0 

ay5  1.60  1.61 0.10 0.13 0.13  74.0 

cx1  0.80  0.80 0.14 0.08 0.06  94.0 

cx2  0.00  0.00 0.07 0.09 0.05  95.0 

cx3 -1.20 -1.22 0.09 0.12 0.08  91.0 

cx4  0.70  0.69 0.12 0.11 0.07  89.0 

cx5 -0.80 -0.80 0.12 0.15 0.08  89.0 

cy1  0.80  0.81 0.08 0.09 0.06 87.0 

cy2  0.00  0.01 0.11 0.11 0.06 78.0 

cy3 -1.20 -1.20 0.13 0.13 0.08 75.0 

cy4  0.70  0.71 0.15 0.15 0.07 62.0 

cy5 -0.80 -0.79 0.14 0.18 0.08 59.0 

Efficiency 

 35∼40min 90∼120min  
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Note. θ = Generating values; E(θˆ) = mean of point estimates; E{se1(θˆ)} = mean of recursively approximated 

standard error estimates (67 converged replications); E{se2(θˆ)} = mean of post-convergence approximated standard 

errors; SD(θˆ) = Standard deviation of point estimates; 95% Coverage using se1: Percentage coverage rate of 

generating value using post-convergence approximated standard errors; a = item slope parameters; c = item 

threshold parameters. 

Recursively approximated standard errors are closer to the Monte Carlo standard deviations 

of item parameter estimates than the post-convergence approximated standard errors. More 

specifically, the most prominent differences are found in the standard errors of intercept 

parameters in that post-convergence approximated standard errors for item intercept parameters 

are underestimated. 

Results: Cross-level interaction model. The generating values and the corresponding 

estimates from analyzing the first simulated data set using different algorithms are summarized 

in Table 3. Unlike the composition effect model results, the number of quadrature points for the 

EM algorithm makes some noticeable differences in the mean point estimates as well as the 

standard errors. 

Table 3 

Generating values and estimates for a cross-level interaction model (N=2,000, ng=100, np=20, 

1st simulated data set) 

  EM (5qp)  EM (8qp)  MH-RM 

 θ E(θˆ) E{se(θˆ)} E(θˆ) E{se(θˆ)} E(θˆ) E{se(θˆ)} 

  Structural parameters   

γ01 1.00 1.86 0.25 1.35 0.22 1.44 0.22 

γ10 0.50 1.94 0.15 0.63 0.13 0.63 0.05 

γ11 0.50 1.27 0.45 0.83 0.29 0.83 0.06 

τ00 1.00 0.85 0.11 0.88 0.12 0.90 0.18 

τ11 1.00 0.78 0.33 0.83 0.25 0.79 0.16 

τ01 0.50 0.96 0.15 0.49 0.12 0.49 0.11 

var(ξ.j ) 0.43 0.40 0.02 0.39 0.05 0.39 0.07 



14 

  EM (5qp)  EM (8qp)  MH-RM 

 θ E(θˆ) E{se(θˆ)} E(θˆ) E{se(θˆ)} E(θˆ) E{se(θˆ)} 

  Measurement parameters   

ax1  0.80  0.78 –  0.78 –  0.78 0.08 

ax2  1.00  1.40 0.14  0.96 0.14  0.96 0.07 

ax3  1.20  2.05 0.19  1.41 0.19  1.41 0.12 

ax4  1.40  2.37 0.21  1.62 0.21  1.63 0.18 

ax5  1.60  2.51 0.24  1.69 0.25  1.71 0.12 

ay1  0.80  0.79 0.00  0.79 0.00  0.79 0.05 

ay2  1.00  0.95 0.11  0.93 0.11  0.93 0.06 

ay3  1.20  1.17 0.11  1.15 0.12  1.16 0.07 

ay4  1.40  1.00 0.14  0.98 0.15  1.22 0.08 

ay5  1.60  1.43 0.18  1.40 0.19  1.51 0.09 

cx1 -0.80 -0.68 0.06 -0.73 0.07 -0.74 0.05 

cx2  0.00  0.10 0.08  0.10 0.08  0.09 0.05 

cx3  1.20  1.43 0.11  1.43 0.12  1.41 0.09 

cx4 -0.70 -0.52 0.11 -0.51 0.12 -0.53 0.08 

cx5  0.80  1.11 0.13  1.10 0.14  1.09 0.08 

cy1 -0.80 -0.72 0.09 -0.73 0.11 -0.73 0.06 

cy2  0.00  0.03 0.11  0.04 0.13  0.03 0.06 

cy3  1.20  1.26 0.14  1.26 0.16  1.26 0.08 

cy4 -0.70 -0.53 0.14 -0.52 0.16 -0.52 0.07 

cy5  0.80  0.96 0.17  0.96 0.20  0.96 0.08 

   Efficiency    

8 processors 15 min 100 min 60min 

1 processor 40 min 4hour 40 min  

Note. θ = Generating values; E(θˆ) = mean of point estimates; E{se(θˆ)} = mean of estimated SEs 

(post-convergence approximated SEs); a = item slope parameter; c = item threshold parameter; qp 

= number of quadrature points used in estimation. Mplus does not allow standardized factor 

identification option; therefore, anchoring the first factor loading option was used to estimate the 

model and the results are transformed to make the estimate comparable. The differences are 

particularly prominent in the structural parameters and the slopes of predictor-side indicators, as 

within-level variance estimates of the predictor were different across the number of quadrature 

points being used. However, the results from MH-RM algorithm are closer to the 8-quadrature-

points results, indicating that reducing the number of quadrature points for a higher dimensional 

model is not desirable. 
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Efficiency of the MH-RM algorithm compared to the EM algorithm was more prominent 

for this cross-level interaction model, even as it is still in R. Using Mplus, even with 8 

processors, the estimation took more than 1 hour and 30 minutes, while it took similar or even 

shorter time for the MH-RM algorithm implemented in R. When 1 processor was used, it took 

about 4 to 5 hours to yield a result using Mplus. This difference is remarkable considering that R 

does not have support for multi-processors. 

For further analysis, more simulated data sets were analyzed by applying the MH-RM 

algorithm, and the generating values and corresponding estimates are summarized in Table 4. 

The largest relative bias of the parameter estimates for both measurement and structural parts is 

less than 10%. Means of standard error estimates and Monte Carlo standard deviations of point 

estimates are reasonably compatible; however, underestimation of standard errors for threshold 

estimates was consistent, indicating that the post-convergence approximation approach can be 

chosen for efficiency reasons, but with a cost in accuracy. 

Table 4 

Generating values and estimates for a cross-level interaction 

model using MH-RM algorithm (N=2,000, ng=100, np=20, 26/50 

converged) 

 θ E( ̂) E{se( ̂)} SD( ̂) 

 Structural parameters  

γ01 1.00 1.07 0.18 0.21 

γ10 0.50 0.55 0.07 0.14 

γ11 0.50 0.46 0.27 0.19 

τ00 1.00 1.06 0.29 0.17 

τ11 1.00 1.05 0.28 0.27 

τ01 0.50 0.50 0.15 0.12 

var(ξ.j ) 0.43 0.43 0.07 0.09 
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 θ E( ̂) E{se( ̂)} SD( ̂) 

 Measurement parameters  

ax1  0.80 0.78 0.08 0.06 

ax2  1.00 0.98 0.08 0.08 

ax3  1.20 1.23 0.11 0.09 

ax4  1.40 1.37 0.12 0.14 

ax5  1.60 1.59 0.18 0.12 

ay1  0.80 0.77 0.06 0.06 

ay2  1.00 0.97 0.07 0.06 

ay3  1.20 1.19 0.11 0.06 

ay4  1.40 1.37 0.12 0.14 

ay5  1.60 1.56 0.17 0.13 

cx1 -0.80 -0.77 0.06 0.09 

cx2  0.00 0.00 0.05 0.09 

cx3  1.20 1.21 0.08 0.12 

cx4 -0.70 -0.66 0.07 0.14 

cx5  0.80 0.78 0.08 0.14 

cy1 -0.80 -0.79 0.06 0.12 

cy2  0.00 0.00 0.06 0.15 

cy3  1.20 1.21 0.09 0.19 

cy4 -0.70 -0.67 0.08 0.23 

cy5  0.80 0.84 0.09 0.24 

 Efficiency  

 60∼90min  

Note. θ = Generating values; E(θˆ) = mean of point estimates; 

E{se(θˆ)} = mean of estimated SEs (post-convergence 

approximated SEs); a = item slope parameter; c = item threshold 

parameter. 

Given the iteration conditions, only 26 of 50 replications converged within the specified 

number of iterations. For this condition, the cause of low convergence rate was mostly due to the 

approximation of observed data information matrix rather than point estimates themselves. Either 

allowing larger numbers of iterations or achieving more efficient approximation of the observed 
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data information matrix would help the convergence rate increase. As a trial, 1000 iterations was 

tried, and this could increase the convergence rate up to 78% for this condition. 

Simulation Study 2: Comparison of Models 

Methods. The second simulation study was conducted to examine how measurement error 

and sampling error may influence compositional effect and cross-level interaction estimates 

across different conditions with both a traditional HLM model and a latent variable model. 

Simulation conditions. Data generation conditions varied with respect to compositional 

effect sizes (compositional effect of 0, 0.2 or 0.5 and cross level interaction of 0, 0.5 or 1), 

sampling conditions (ng=100, n p=20; ng=100, n p=5; ng=20, n p=20), ICC sizes (0.1 or 0.3), 

and measurement conditions (see, Table 5). 100 and 50 replications were attempted for the 

contextual effect model and cross-level interaction model, respectively. 

Table 5 

Conditions of measurement models and generating values for item parameters 

 Measurement Model 1  

Condition Slope Intercept 

 
ξij indicators 

X1∼X5 (2PL) 

ηij indicators 

Y1∼Y5 (2PL) 

X1, Y1 0.8 -1 

X2, Y2 1.0 0 

X3, Y3 1.2 1 

X4, Y4 1.4 -0.5 

X5, Y5 1.6 0.5 

 Measurement Model 2  

 
ξij indicators 

X1∼X5 (GR, K=5) 

ηij indicators 

Y1∼Y5 (GR, K=5) 

X1, Y1 0.8 -1, 0, 1, 2 

X2, Y2 1.0 -1, 0, 1, 2 

X3, Y3 1.2 -1, 0, 1, 2 

X4, Y4 1.4 -1, 0, 1, 2 

X5, Y5 1.6 -1, 0, 1, 2 
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Analysis. Each data set has three sets of parameter estimates: 1) estimates from analyzing 

the generating values of ηij and ξij with a traditional multilevel model, which is treated as the gold 

standard (denoted as G), 2) estimates obtained by applying latent variable model (denoted as L), 

and 3) the estimates from analyzing the observed summed scores with the manifest variable 

approach (denoted as M). All of the traditional HLM analyses were conducted using an R 

package nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2012). 

Statistics. To compare these three sets of estimates, three statistics are calculated: 1) the 

percentage bias of the estimate relative to the magnitude of generating value, 2) the observed 

coverage of the 95% confident interval (CI) for true value, and 3) the observed power to detect 

the effect of interest as significant. 

It should be noted that the regression coefficient estimates from the observed summed 

score analysis using a traditional multilevel model are not on the same scales as those obtained 

using the latent variable approach. To make the coefficient estimates more comparable, the 

estimates from traditional model approach were standardized by multiplying the parameter 

estimates by the ratio of standard deviation of the predictor to the standard deviation of the 

outcome. 

Results: Compositional effect model. Relative percentage bias in γˆ 01 and γˆ 10 is 

summarized in Figure 2. First, with respect to measurement model 1, in which the generating 

values of ηij and ξij are analyzed, the bias of γˆ 01 ranged from 1 to 15% across the sampling 

conditions. While latent variable modeling analysis resulted in similar magnitude of bias with the 

generating value analysis, traditional HLM resulted in substantial bias (from 30 to 70%) in both 

estimates (see, the gray bars in Figure 2). Therefore, small ICC conditions are problematic in 

general. When small ICC is combined with a small number of people per group, the bias gets 

worse. It is noteworthy that the bias in the compositional effect from the traditional model can be 

upward when the ICC is large and the contextual effect size is small (see, the last plot of Figure 

3). Performance of the traditional model and the latent variable model in terms of estimating γˆ 

01, γˆ 10, and compositional effect, is similar across measurement conditions (see, Figure 4), 

indicating the measurement model is a less influential source of bias in this study. 
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Figure 2. Relative Percentage Bias in γˆ 01 (first two plots) and γˆ 10 (last two plots), Large CE, MM 1. 

 

Figure 3. Relative Percentage Bias in γˆ 01 − γˆ 
10

, Large (first two plots) and Small CE (last two plots), MM 1. 
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Figure 4. Relative Percentage Bias in γˆ 
01 − γˆ 

10, Large 

CE, MM 2. 

Second, to examine the performance of standard errors, the 95% CI coverage rate for the 

true compositional effect was calculated across simulated data conditions and models. Results 

are summarized in Figure 5. When generating values are analyzed, the coverage rates of 

contextual effect across sample conditions are generally as close to 95%, except for the cases 

where ICC is small and the number of group sampled is small. In this case the coverage rate can 

be low as 85%. The coverage rates of the latent variable model were also similar to those from 

generating value analysis, ranging from 88% to 98% for measurement model 1 and 2. When 

more item parameters need to be estimated, the sample is associated with a small ICC, and a 

small number of groups are sampled, the coverage rate can be as low as about 79%. Traditional 

model performance in terms of coverage rate for the contextual effect can be very problematic 

when both the number of people per group and ICC are small, in that the coverage can be as low 

as 7%. 
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Figure 5. 95% Coverage of γˆ 01 − γˆ 10, Large CE, MM 1. 

Third, Figure 6 shows empirical Type I error rates of models across data conditions. 

Generating a value analysis model yields acceptable Type I error rates of .05 to .07 across 

sampling conditions. The latent variable model is similar, except for the cases when the number 

of people per group is small. When the number of people per group is small and ICC is small, 

Type I error increases to .14, indicating that it is more likely to conclude that there is a 

significant contextual effect than other approaches. For a traditional model, the Type I error rate 

inflation is huge—up to .57 when ICC is large and the number of people per group is large. 

Under the conditions when small ICC combines with a small number of group or a small number 

of people per group, the Type I error of the traditional model remains at a proper level. 

 

Figure 6. Empirical Type I error rates, MM 1. 
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When a compositional effect is large (see Figure 7), generating value analysis yields power 

of about .85 when ICC is large and the number of groups is large. When ICC is small, the power 

decreases to as low as .35 even with favorable sampling conditions. The lowest power (.15) is 

found when ICC is small and the number of groups is small. The patterns are similar for the 

latent variable model, but the latent variable model yields a slightly higher percentage of 

significant compositional effects in this condition. While the traditional model can yield a very 

high percentage of significant compositional effects when the ICC is large and the number of 

people per group is large, the power decreases remarkably when both ICC and the number of 

people per group or the number of groups are small. 

 

Figure 7. Percentage of significant compositional effect, Small (first two plots) and Large CE (last two plots), MM 1. 

Results: Cross-level interaction model. The relative percentage bias in γˆ 11 across 

simulated data conditions is summarized in Figure 8. First, when generating values are analyzed, 

bias can be as small as about 2% when the sampling condition is favorable and ICC is large 

enough. However, the bias can be as large as about 40% even when generating values are 

analyzed when the ICC is small and the number of groups sampled is 25. While the traditional 

approach yields more than 75% underestimation across conditions and reached almost 100% 

when a small ICC is combined with limited sample conditions, the bias in γˆ 11 from the latent 

variable model analysis was smaller than that from the manifest variable model analysis. 



23 

 

Figure 8. Relative Percentage Bias in γˆ 11, Small CLI, MM 1. 

Coverage rates for true cross-level interaction effects using 95% confidence intervals are 

reported in Figure 9. When generating values were analyzed, 95% confidence intervals covered 

the true cross-level interaction 81 to 100% of the time. When the latent variable model was 

applied, the coverage rates ranged from 12 to 87% depending on sampling conditions. When the 

number of sampled groups was small, the confidence intervals hardly captured the true values, 

even with the latent variable modeling approach. However, these coverage rates were still much 

higher than those from the traditional model approach. As bias in estimates was big and the 

standard error estimates were small in the traditional model approach, it was extremely rare to 

observe that confidence intervals actually covered the true value. Most of the coverage rates 

were 0. 
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Figure 9. 95% coverage rates of γˆ 11, Small CLI, MM 1. 

Figure 10 shows observed percentage of significant cross-level interaction across different 

sampling conditions and analysis models. Results from the generating value analyses are 

encouraging in that power can be about .80 for both large and small cross-level interactions, as 

long as ICC is large enough and a sufficient number of groups is sampled. However, when a 

small number of groups is sampled, the power can be as low as .32 for a large cross-level 

interaction and .06 for a small cross-level interaction. The latent variable model approach can 

detect cross-level interaction better than the traditional modeling approach in that the percentages 

of significant cross-level interactions are higher in general than those from the traditional model 

analysis. However, when the cross-level interaction is large and the sampling condition is 

favorable with large ICC, the traditional model can detect the effect slightly more frequently than 

the latent variable modeling approach. However, it should be noted that the CI’s do not cover the 

true value in this case, even though the traditional model can detect the existence of the cross-

level interaction. It is notable that the power of the traditional model decreases dramatically 

when either ICC or the number of people per group is small. 



25 

 

Figure 10. Percentage of significant compositional effect, Small (first two plots) and Large (last two plots) CLI, 

MM 1. 

Empirical Applications 

Compositional Effect Model: A ”Big-fish-little-pond” Effect 

Data. For this compositional effect analysis, a subset of PISA (2000; OECD, 2000) data 

were extracted and analyzed. A sample of students from the United States who worked on 

reading literacy booklets 8 and 9 was analyzed in this study for the purpose of illustration. These 

two booklets included 32 reading items (3 graded responses items with 3 categories and 29 

dichotomously scored items) and there were 667 students from 141 schools. The number of 

students within a school ranged from 1 to 8, which is rather a small number of students per 

group. The outcome variable self concept in reading was measured by three items (CC02Q05, 

CC02Q09, and CC02Q23). Each item has a Likert-type scale, ranging from 1 (disagree) to 4 

(agree). 

Results. The structural parameter estimates from the multilevel latent variable model 

analysis (EM algorithm and the MH-RM algorithm) and traditional multilevel model analysis are 

reported in Table 6. In general, a positive and significant within-level coefficient γˆ 10 is found 

across different models and algorithms. Between-level coefficient γˆ 01 estimates were not 

significantly different from 0 when the multilevel latent model was applied, while the estimate 

was significantly different from 0 when the traditional multilevel was applied, due to the small 

standard error. 
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Table 6 

Structural parameter estimates from PISA 2000 USA data analysis using the compositional effect model 

 Latent variable model Manifest variable model 

 MH-RM  EM  EM 

Parameter θ  ̂ se( ̂) t-value  ̂ se( ̂) t-value  ̂ se( ̂) t-value 

γ10 0.42 0.06 7.17 0.42 0.05 7.92 0.11 0.01 7.75 

γ01 0.16 0.11 1.43 0.18 0.11 1.68 0.07 0.02 3.60 

τ00 0.47 0.11 0.39 0.47 0.11 4.28 0.37 0.61 (SD) 190.31 (χ2) 

var(ξ.j ) 0.12 0.07 2.30 0.11 0.06 1.86 N/A N/A N/A 

BFLPE -0.27 0.13 -2.12 -0.24 0.12 -1.98 -0.04 0.02 -1.76 

Computation 

time 

1 hour 40 min 

M1=100, M2=300, M3=300 

burn-in=5 

1 hour 40 min 

14qp, 1 processor 
   

Note. Reported standard errors for MH-RM algorithm are from recursively approximated observed data information. 

M1=Number of maximum iterations at initializing stage; M2=Number of maximum iterations at the constant gain 

stage; M3=Number of maximum iterations at the decreasing gain stage; qp=number of adaptive quadrature points. 

The compositional effect “big-fish-little-pond” is calculated by subtracting γˆ 10 from γˆ 01. 

The direction of the compositional was negative as reported in previous research (Marsh et al., 

2009). This indicates that two students who have the same levels of achievement can have 

different level of academic self-concept, depending on the group-level academic achievement. 

As the compositional effect is negative, the students who belong to a higher-level achievement 

group tend to have lower academic self-concept compared to students who belong to a lower-

level achievement group. On the other hand, the students who belong to a lower-level 

achievement group tend to have higher academic self-concept compared to students who belong 

to a higher-level achievement group—just like a fish that feels big if the pond where it lives is 

small. However, in terms of the statistical significance of the compositional effect, the traditional 

model yields that the effect is not significantly different from 0. This result is consistent with 

what was found in the simulation study presented in Figure 7 in that the power of the latent 

variable model to detect a compositional effect is higher than that of the traditional model, when 

the data set is associated with a sufficiently large number of groups and a small number of 

students per group. 

Cross-level Interaction Model: Co-operative Learning Preference and Reading Literacy 

Data. For this cross-level interaction model analysis, a subset of PISA 2000 was extracted 

and analyzed. The data were collected in Korea, and those students who were administered 
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booklets 8 and 9 for reading literacy were used in this analysis. In the process of data cleaning, 4 

reading items were dropped, since all item responses were zero. 29 item responses (3 graded 

responses and 26 dichotomously scored items) of 1,103 students in 143 schools were analyzed. 

These 29 items are the indicators for the latent predictor variable. The number of students within 

a school ranged from 1 to 8, which can be considered a small number of students per group. The 

outcome variable, co-operative learning preference, was measured by four items (CC02Q02, 

CC02Q08, CC02Q19, and CC02Q22). Each item has a Likert-type scale, ranging from 1 

(disagree) to 4 (agree). 

Results. The structural parameter estimates from the multilevel latent variable model 

analysis (EM algorithm and the MH-RM algorithm) and traditional multilevel model analysis are 

reported in Table 7. In general, positive within- and between-level coefficients (γˆ 10 and γˆ 01) 

were found, indicating that the level of co-operative learning preference and reading literacy is 

positively associated. However, none of these were statistically significant when the MH-RM 

algorithm was applied, and only the between-level coefficient was significant at a p < .05 level 

when the EM algorithm was applied, which is also different from the traditional HLM analysis in 

that both coefficients are statistically different from 0 due to the small standard errors. 
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Table 7 

Structural parameter estimates from PISA 2000 Korea data analysis using the cross-level interaction model 

 Latent variable model  Manifest variable model 

 MH-RM  EM  EM 

Parameter θ  ̂ se( ̂) t-value  ̂ se( ̂) t-value  ̂ se( ̂) t-value 

γ10 0.021 0.061 0.315 0.229 

(0.018) 

0.149 1.538 0.066 0.019 3.339 

γ01 0.045 0.068 0.739 0.233 

(0.032) 

0.009 26.972 0.041 0.016 2.618 

γ11 -0.088 0.062 -1.417 -0.364 

(-0.050) 

0.296 -1.232 -0.004 0.019 -1.363 

τ00 0.021 0.005 4.556 0.002 

(0.034) 

0.000 3.918 0.353  0.594 

 (SD) 

 192.83 

 (χ2) 

τ11 0.073 0.015 4.709 1.744 

(0.060) 

0.615 2.837 0.005  0.070 

 (SD) 

 147.04 

 (χ2) 

τ01 -0.029 0.006 -4.517 -0.052 

(-0.030) 

0.016 -3.211 -0.023  0.598 

 (SD) 

 172.75 

 (χ2) 

var(ξ.j ) 0.817 0.007 118.852 0.629 

(0.830) 

0.088 7.123 N/A N/A N/A 

Computation 

time 

18 hours 

M1=100, M2=1000, M3=1000 

3000 for SE 

burn-in=5 

8 hours 

5qp,1processor 

Mstep iteration=5000 

M convergence=0.00001 

   

Note. Reported standard errors for the MH-RM algorithm are obtained using the post-convergence approximated 

observed data information. Numbers in () are transformed point-estimates for comparison since different 

identification option was used form Mplus running. M1=Number of maximum iterations at initializing stage; 

M2=Number of maximum iterations at the constant gain stage; M3=Number of maximum iterations at the 

decreasing gain stage; qp=number of adaptive quadrature points. 

The parameter estimate of interest that captures a cross-level interaction effect was γˆ 11, 

which appears to be negative in this particular example across computational algorithms and 

models. The negative cross-level interaction can be interpreted as the relationship between co-

operative learning preference and reading literacy is weaker in schools with higher achievement 

levels, indicating the slope of between two variables becomes less stiff as school-level 

achievement increases. If the negative cross-level interaction size is large enough, the direction 

of the relationship between the co-operative learning preference and reading literacy could be 

negative at schools where school-level reading literacy is very high. However, γˆ 11 was not 

statistically different from 0 across models and computational algorithms. 
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With respect to computation, an 8 adaptive quadrature points estimation using Mplus did 

not converge, and only a 5-quadrature-point solution was available with some changes in default 

settings that are related to the M-step. When the MH-RM algorithm was applied, it took 18 hours 

to estimate, and a large number of samples (3,000) were used to calculate the observed data 

information. 

Summary 

This study is situated in the current streams of research (e.g., Goldstein & Browne, 2004; 

Goldstein, Bonnet, & Rocher, 2007; Kamata, Bauer, & Miyazaki, 2008) that try to develop a 

comprehensive unified model that benefits from both multilevel modeling and latent variable 

modeling by combining multidimensional IRT and factor analytic measurement modeling with 

the flexibility of nonlinear structural modeling in a multilevel setting. Considering that one of the 

most urgent needs in developing a unified model is an efficient estimation method, the current 

study contributes to nonlinear multilevel latent variable modeling by investigating an alternative 

estimation algorithm. The principles of the MH-RM algorithm and the previous study results 

(Cai, 2008) suggest that the algorithm can be more efficient than the existing algorithms when a 

model is associated with a large number of latent variables or random effects. 

The main purpose of this study was to improve estimation efficiency in obtaining full-

information maximum likelihood (FIML) estimates of contextual effects by adopting the 

Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). R programs 

(R Core Team, 2012) implementing the MH-RM algorithm were produced to fit nonlinear 

multilevel latent variable models. Computation efficiency and parameter recovery were assessed 

by comparing results with an EM algorithm that uses adaptive Gauss-Hermite quadrature for 

numerical integration. Results indicate that the MH-RM algorithm can obtain FIML estimates 

and their standard errors efficiently, and the efficiency of MH-RM was more prominent for a 

cross-level interaction model, which requires 5-dimensional integration. While using the EM 

algorithm with only 8 adaptive quadrature points required about 100 minutes to estimate a cross-

level interaction model, the MH-RM algorithm required about 60 minutes to have similar results. 

Considering the difference between an interpreted language and a compiled language in which 

each algorithm is implemented, even more substantial improvement in efficiency is expected if 

the MH-RM algorithm is written in a compiled language in the future. 

The second purpose of this study was to provide information about the performance of 

nonlinear multilevel latent variable modeling compared to traditional HLM through a simulation 

study with various sampling and measurement structure conditions. Results suggest that 

nonlinear multilevel latent variable modeling can more properly estimate and detect a contextual 
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effect than the traditional approach in most conditions. Substantial bias was found in the 

between-level coefficient in the compositional model and in the cross-level interaction 

coefficient when the traditional model is applied, Notably, when the intraclass correlation (ICC) 

and the number of individuals per group were both small, the bias can be more than 80%, and the 

CIs hardly capture the true values. This is because that when the ICC is small, the between-group 

variance is too small to be decomposed and estimated, indicating between-group variation is 

small and the characteristic of interest is homogenous across groups. When this issue is 

combined with a small number of groups or a small number of people per group, the condition 

exacerbates the difficulty in estimating between-group variance and yield difficulty in 

convergence and biased estimates. 

Since the within-level coefficient is also underestimated in the traditional model analysis, 

the point estimate of a compositional effect can be unbiased when the ICC size and the number 

of level-1 units per level-2 unit are both large (e.g., ICC=0.3 and the number of level-1 units per 

level-2 =20). However, Type I error rates of the traditional model are substantially elevated (up 

to 60%) in this sampling condition, indicating that the compositional effect detected by the 

traditional model under desirable sampling conditions could be spurious. These unacceptable 

Type I error rates are caused by the small standard error of between-level regression coefficient 

in the traditional HLM. The standard error of the between-level coefficients in HLM is 

influenced by the variance of between-level coefficient estimate, which is the sum of parameter 

dispersion and error dispersion (Raudenbush & Bryk, 2002). As the error dispersion does not 

reflect measurement error in HLM, the variance of between-level coefficient estimate is 

underestimated and so is the standard error. In contrast, the latent variable approach yielded less 

biased estimates, and statistical inferences across sampling and the ICC size conditions were 

more consistent than those of the traditional model, as long as the number of groups is 

sufficiently large (25 was found to be too small). 

The third purpose of this study was to provide empirical illustrations using two subsets of 

data extracted from PISA (Adams & Wu, 2002). A negative compositional effect was found 

from the U.S. data in terms of the relationship between reading literacy and self-concept about 

reading, supporting the results from previous studies, which is called “Big-fish-little-pond” effect 

(e.g., Marsh et al., 2009). The compositional effect was statistically significant at p < .05 level 

when the nonlinear multilevel latent variable model was applied. On the other hand, the 

traditional HLM approach could not detect a statistically significant effect. It is because the 

power of HLM substantially decreases when the numbers of people per group are small and this 

subset of data was the case. With respect to a cross-level interaction model, the relation between 

reading literacy and co-operative learning preference was examined, using a subset of PISA data 
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collected in Korea. A negative, but not statistically significant, cross-level interaction was found 

between reading literacy and co-operative learning preference. The nonlinear multilevel latent 

variable model and the traditional HLM approach yielded similar results in that the cross-level 

interaction estimates were not statistically different from zero in both results. 

Unlike the results from the simulation study, the results of empirical applications were not 

dramatically different in model comparison-wise. One possible explanation is that predictor 

variable reading literacy is measured by a large number of well-developed items for these 

empirical applications, and accordingly, the summed scores are very reliable. However, in other 

circumstances where less reliable measures (e.g., affective domain measures or teacher 

instructional variables) are used as predictors or where even a smaller number of people per 

group are sampled, it is expected to observe more substantial differences between the results 

from a nonlinear multilevel latent variable model and a traditional HLM. In addition, these two 

models also can yield divergent statistical inferences even when there are a sufficient size of ICC 

and a large number of people per group due the substantial elevation of Type I error rates when 

the traditional HLM is applied. Therefore, a wide range of further empirical applications should 

be followed, and the improved estimation efficiency, by adopting an MH-RM algorithm for the 

nonlinear multilevel latent variable models, can contribute to further applications by making the 

nonlinear multilevel latent variable modeling framework more practical in routine use. 
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Appendix A: observed and complete data likelihoods

The conditional density for xijl follows a multinomial with trial size 1 in Kl categories:

fθ(xijl|ξij) =
Kl−1

∏
k=0

Pθ(xijl = k|ξij)
χk(xijl), (1)

where χk is an indicator function in which χk is 1 if xijl = k, or 0 otherwise. As ξij is
measured by xij, ηij is measured by yij, the conditional density of yij is written as:

fθ(yij|ηij) = fθ(yij|ξij, ξ.j, βj, rij), (2)

If we integrate rij out of Equation (2),∫
fθ(yij|ξij, ξ.j, βj) fθ(rij)d(rij) = fθ(yij|ξij, ξ.j, βj), (3)

where fθ(rij) is the density of a normal distribution N(0, σ2). For identification purpose,
σ2 is fixed at 1 in this study, which makes fθ(rij) the density of a standard normal
random variable. Integrating out ξij yields

fθ(yij, xij|ξ.j, βj)

=
∫

fθ(xij|ξij) fθ(yij|ξij, ξ.j, βj) f (ξij)d(ξij) (4)

When J and Ij stand for the number of groups and number of individuals in group j, the
conditional joint density of y.j and x.j for group j is the multiplication of the conditional
joint densities for yij and xij in the same group as can be seen in the following equation:

fθ(y.j, x.j|ξ.j, βj) =

Ij

∏
i=1

fθ(yij, xij|ξ.j, βj) (5)

Integrating out level-2 latent variable and random coefficients ξ.j and βj yields

fθ(y.j, x.j) =
∫ Ij

∏
i=1

fθ(yij, xij|ξ.j, βj) f (ξ.j) f (βj)d(ξ.j)d(βj) (6)

In this manner, one can integrate all latent variables and random coefficients out of
the model to get a marginal distribution from which the parameters can be estimated.
Treating ηij, ξij, ξ.j, βj and rij as missing data, the complete data likelihood, when J and
Ij stand for the number of groups and number of individuals in group j, is:

J

∏
j=1

[ Ij

∏
i=1

fθ(yij|ξij, ξ.j, βj, rij) fθ(xij|ξij) fθ(ξij) fθ(rij)
]
× fθ(βj) fθ(ξ.j) (7)

where fθ(xij|ξij) = ∏Lx
l=1 fθ(xijl|ξij) and fθ(yij|ξij, ξ.j, βj) = ∏

Ly
l=1 fθ(yijl|ξij, ξ.j, βj). Lx and

Ly are the number of manifest variables for ξij and ηij, respectively.
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Appendix B: First and second order derivatives of the complete data models
Latent Structure Models

Denote the expected value and covariance matrix of η by µ and Σ. When µ and Σ contain
parameter vectors θ and τ respectively, the complete data log-likelihood function can be
written as,

l = −1
2
[η− µ(θ)]′[Σ(τ)]−1[η− µ(θ)]− 1

2
log|Σ(τ)| − 1

2
Nlog2π. (8)

Then the first derivative of l with respect to the parameter vector θ is

∂l
∂θ

=
∂µ
′

∂θ
Σ(τ)−1(η− µ(θ)). (9)

The first derivative of l with respect to a parameter τk is

∂l
∂τk

= −1
2

[
tr(Σ−1 ∂Σ

∂τk
)− (η− µ)′Σ−1 ∂Σ

∂τk
Σ−1(η− µ)

]
. (10)

The second derivative of l with respect to the parameter vector θ is

∂2l
∂θ∂θ′

= −∂µ
′

∂θ
Σ−1 ∂µ

′

∂θ
′ +

{
(η− µ)′Σ−1 ∂2µ

∂θi∂θ′

}
. (11)

The second derivative of l with respect to parameters τk and τs is

∂2l
∂τs∂τk

= −1
2

{
tr
(

Σ−1 ∂Σ
∂τs

Σ−1 ∂Σ
∂τk

Σ−1 ∂2Σ
∂τs∂τk

)
+ (η− µ)′

[
(−1)Σ−1 ∂Σ

∂τs
Σ−1 ∂Σ

∂τk
Σ−1 + Σ−1 ∂2Σ

∂τs∂τk
Σ−1

− Σ−1 ∂Σ
∂τk

Σ−1 ∂Σ
∂τs

Σ−1
]
(η− µ)

}
. (12)

Graded Responses

For the manifest variables that have more than two categories, Equation (??) can be
redefined as follows, suppressing subscripts:

T0 = 1,

T1 =
1

1 + exp[−(b1,l + aξ)]
,

T2 =
1

1 + exp[−(b2,l + aξ)]
,

...

TK−1 =
1

1 + exp[−(bKl−1,l + aξ)]
,

TK = 0
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The cumulative response probability for a category k is defined as Pk = Tk − Tk+1. Tak-
ing the log of the likelihood function of the complete data model yields the following
equation,

l =
K−1

∑
k=0

χk(x)logPk =
K−1

∑
k=0

χk(x)log(Tk − Tk+1), (13)

where x is the response to a graded item with K categories. The first derivatives of the
complete data model log-likelihood are

∂l
∂bk

=
∂

∂bk
(χk−1(x)log(Tk−1 − Tk) + χk(x)log(Tk − Tk+1))

= −( χk−1(x)
Tk−1 − Tk

− χk(x)
Tk − Tk+1

)
∂Tk
∂bk

∂l
∂a

=
K−1

∑
k=0

χk(x)
Tk − Tk+1

(
Tk
∂a
− Tk+1

∂a
),

where
∂Tk
∂bk

= Tk(1− Tk),
∂Tk
∂a

= Tk(1− Tk)ξ.

The second derivatives are given by

∂2l
∂b2

k
= −( χk−1(x)

(Tk−1 − Tk)2 +
χk(x)

(Tk − Tk+1)2 )(
∂Tk
∂bk

)2

−( χk−1(x)
Tk−1 − Tk

− χk(x)
Tk − Tk+1

)(
∂

∂bk

∂Tk
∂bk

)

∂2l
∂bk−1∂bk

=
χk−1(x)

(Tk−1 − Tk)2 (
∂Tk−1

∂bk−1
)(

∂Tk
∂bk

)

∂2l
∂bk+1∂bk

=
χk(x)

(Tk+1 − Tk)2 (
∂Tk+1

∂bk+1
)(

∂Tk
∂bk

)

∂2l
∂a∂bk

= − χk(x)
(Tk+1 − Tk)2 (

∂Tk
∂bk

)(
∂Tk
∂a
− ∂Tk+1

∂a
)

+
χk−1(x)

(Tk−1 − Tk)2 (
∂Tk
∂bk

)(
∂Tk−1

∂a
− ∂Tk

∂a
)

−( χk−1(x)
Tk−1 − Tk

− χk(x)
Tk − Tk+1

)(
∂

∂a
∂Tk
∂bk

)

∂2l
∂a∂a′

=
K−1

∑
k=0
{− χk(x)

(Tk − Tk+1)2 (
∂Tk
∂a
− ∂Tk+1

∂a
)(

∂Tk
∂a′
− ∂Tk+1

∂a′
)

+
χk(x)

Tk − Tk+1
(

∂

∂a
∂Tk
∂a′
− ∂

∂a
∂Tk+1

∂a′
)},
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where

∂

∂bk

∂Tk
∂bk

= Tk(1− Tk)(1− 2Tk)

∂

∂a
∂Tk
∂bk

= Tk(1− Tk)(1− 2Tk)ξ

∂

∂a
∂Tk
∂a

= Tk(1− Tk)(1− 2Tk)ξξ ′.


