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Developmental predictors of children’s fraction concepts and pro-
cedures at the end of fourth grade were investigated in a 2-year
longitudinal study. Participants were 357 children who started
the study in third grade. Attentive behavior, language, nonverbal
reasoning, number line estimation, calculation fluency, and reading
fluency each contributed uniquely to later conceptual understand-
ing of fractions. Number line estimation, attentive behavior, calcu-
lation fluency, and working memory made unique contributions to
acquisition of fraction arithmetic procedures. Notably, number line
estimation made the largest independent contribution in both
models. The results suggest that although there is considerable
shared variance among the predictors, both general and number-
related competencies are uniquely important for explaining why
some children struggle with fractions.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Fractions are central to elementary and middle school mathematics. Their importance is reflected
in their emphasis within the U.S. Common Core State Standards (Council of Chief State School Officers
& National Governors Association Center for Best Practices, 2010). Between fourth and sixth grades,
children are expected to acquire knowledge of fraction equivalence and ordering (e.g., comparison
of fractions with different numerators and denominators such as 3/4 and 1/2), learn fraction
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arithmetic procedures (e.g., addition and subtraction of mixed numbers with unlike denominators),
and solve word problems involving fractions.

Weak understanding of fractions has serious long-term consequences. Not only are fractions essen-
tial for learning algebra and more advanced mathematics (National Mathematics Advisory Panel
[NMAP], 2008), they also are important for daily life functioning such as managing personal finances
and doing home repairs. Knowledge of fractions is key for understanding rate of change, an integral
part of algebra. Elementary school students’ fraction knowledge predicts their algebraic knowledge
in high school even after controlling for family education and income, intellectual capacity, and
knowledge of whole number arithmetic (Siegler et al., 2012). Students who do not succeed in algebra
are less likely to graduate from college than are higher achieving students and have few career oppor-
tunities in STEM disciplines (science, technology, engineering, and mathematics; NMAP, 2008; Sadler
& Tai, 2007).

In the first few grades, math instruction focuses on whole numbers. Children come to see that
whole numbers have magnitudes that can be assigned locations on number lines and that each whole
number has a unique predecessor and successor. These insights are supported by children’s under-
standing of the cardinal meanings of number words and competency with counting (Baroody, Eiland,
& Thompson, 2009; Muldoon, Towse, Simms, Perra, & Menzies, 2013). With practice, young children
develop facility with whole number operations. Although whole number sense can support under-
standing of fractions, learning fractions poses additional conceptual challenges for young learners
(Hecht, Vagi, & Torgesen, 2007); multiplying fractions can yield answers smaller than either multipli-
cand, dividing fractions can yield answers larger than either dividend, identifying the predecessor and
successor of a fraction is impossible, and so on. Decimal fractions pose similar difficulties; for example,
the number with more digits is not necessarily larger, unlike with whole numbers.

Although the importance of fraction knowledge for understanding of most aspects of mathematics
is clear, little is known about why some children master fractions quickly but others struggle even as
adults. Therefore, in the current study, we identified predictors of fourth graders’ knowledge of frac-
tion concepts and procedures. Our goals were to advance understanding of mathematical develop-
ment and to pinpoint predictors of potential learning problems early so that educators can address
the difficulties before they become entrenched.

Our conceptual framework for identifying potential predictors of fraction learning grew out of
Geary’s (2004) model of mathematics learning. At the most general level, Geary’s model distinguishes
between mathematics concepts and mathematics procedures. Acquisition of mathematical knowledge
in any given area requires both accurate and fluent execution of procedures and concepts. Conceptual
knowledge and procedural knowledge are mutually supportive, with increasing competence of each
type contributing to increasing competence in the other (Hecht & Vagi, 2010, 2012; NMAP, 2008; Rit-
tle-Johnson & Siegler, 1998).

Within Geary’s (2004) model, general cognitive processes, such as working memory and attention,
support learning of both math concepts and procedures. The central executive controls the cognitive
processes that are needed for learning and executing procedures. Geary also identified both symbolic
and nonverbal cognitive systems as important for representing and manipulating mathematical infor-
mation. Language systems are important for learning number names and the verbal count sequence;
nonverbal reasoning is involved in representing and comparing numerical magnitudes. This model
guided the processes that were assessed in the current study.

Fraction concepts and procedures

Fraction concepts include understanding that fractions represent parts of an object or parts of a set
of objects, that they can be represented by fraction symbols (e.g., 1/3), and that fractions are numbers
that reflect magnitudes (e.g., 2/5, 2/4, and 2/3 can be ranked from smallest to largest). Procedures in-
volve computation with fractions. Conceptual knowledge appears to play a particularly important role
in learning fraction procedures (Hallett, Nunes, & Bryant, 2010; Hecht & Vagi, 2010; NMAP, 2008;
Seethaler, Fuchs, Star, & Bryant, 2011; Siegler, Thompson, & Schneider, 2011; Vamvakoussi & Vosnia-
dou, 2010), although there is some evidence that fraction concepts and procedures are independently
related to general fraction performance (Hallett, Nunes, Bryant, & Thorpe, 2012). One reason is that if
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students understand why the procedures are appropriate, they are less likely to forget fraction proce-
dures such as the rule that common denominators are required for addition and subtraction but not
for multiplication or division (Hecht, 1998; Hecht, Close, & Santisi, 2003). Consistent with this analy-
sis, conceptual knowledge of fractions accounts for variance in students’ mathematics achievement
test scores above and beyond that accounted for by fraction computation skill; the reverse is not
the case (Siegler & Pyke, 2012; Siegler et al., 2011).

General predictors

A variety of general processes are related to mathematics learning in general and to fraction learn-
ing in particular. For example, mathematics performance is positively correlated with classroom
attention (e.g., Fuchs et al., 2005, 2006) and working memory (e.g., Kail & Hall, 1999; Lee, Ng, & Ng,
2009; Locuniak & Jordan, 2008; Passolunghi & Siegel, 2001; Swanson, 2006). However, these skills pre-
dict different types of mathematical knowledge. Fuchs and colleagues (2010) found that the ability to
solve addition and subtraction fact problems in first grade was predicted by classroom attention (as
measured by a teacher rating scale) over and above domain-specific number representation and esti-
mation performance; the central executive component of working memory was not uniquely related
to knowledge of addition and subtraction facts. In contrast, the same central executive components
were unique predictors of problem solving. Similarly, among fifth graders, nonverbal reasoning, con-
cept formation, and working memory have been found to be unique predictors for both whole and ra-
tional number computation, but language was a unique predictor only for rational number
computation (Seethaler et al., 2011). Hecht and Vagi (2010) found that fourth graders’ working mem-
ory and classroom attention uniquely predicted fifth graders’ fraction skills after controlling for sev-
eral domain-specific abilities.

Number-related cognitive predictors

Both nonverbal approximate and symbolic exact numerical representations are associated with
mathematics development (Hanich, Jordan, Kaplan, & Dick, 2001). Core nonverbal components of
number representations (the approximate number system or ANS) are seen during infancy—years be-
fore formal instruction (Feigenson, Dehaene, & Spelke, 2004). Individual differences in both preschool-
ers’ and school-age children’s nonverbal approximate number representations are associated with
conventional mathematics learning during elementary school (Halberda, Mazzocco, & Feigenson,
2008; Libertus, Feigenson, & Halberda, 2011). For example, Halberda and colleagues (2008) showed
that poor math achievement in elementary school is associated with high school students’ difficulty
in reliably discriminating which of two dot collections is more numerous when the ratio of dots in
the two collections is small. However, the extent to which the ANS is associated with early fraction
knowledge is unclear.

The ability to translate nonsymbolic magnitude representations to symbolic ones also influences
mathematical development. Supporting the importance of magnitude representations, accurate esti-
mation of the location of numerals on a number line correlates strongly with mathematics achieve-
ment (e.g., Booth & Siegler, 2006; Booth & Siegler, 2008; Geary, Hoard, Byrd-Craven, Nugent, &
Numtee, 2007; Geary, Nugent, Hoard, & Byrd-Craven, 2007; Siegler et al., 2011). Learning arithmetic
combinations involves more than rote memorization, as reflected by the finding that the large major-
ity of children’s errors are close in magnitude to the correct answer to the problem (Geary & Wiley,
1991; LeFevre et al., 1996; Siegler, 1988). Moreover, core deficits in symbolic magnitude processing
are a hallmark of learning disabilities in mathematics such as dyscalculia (Butterworth, Varma, & Lau-
rillard, 2011); that is, children with dyscalculia have trouble in seeing the value of a numeral relative
to other numerals even though they can differentiate between quantities represented nonverbally
(Rouselle & Noelle, 2007). Again, however, with the exception of Siegler and colleagues (2011) and Sie-
gler and Pyke (2012), all of the evidence comes from studies of math achievement with whole
numbers.

A basic hypothesis of the current study was that accurate representations of numerical magnitudes
are essential for acquisition of both conceptual and procedural knowledge of fractions, just as they are
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with whole numbers. To test this hypothesis, we examined the degree to which a wide variety of cog-
nitive processes in third grade predicted fraction conceptual and procedural knowledge at the end of
fourth grade. For comparison, we also examined predictors of performance on a general mathematics
achievement measure that primarily involved whole numbers. The general cognitive predictors were
attentive behavior, working memory, language, and nonverbal reasoning; the number-specific cogni-
tive predictors were ANS acuity and number line estimation. We also controlled for third-grade read-
ing and mathematics fluency in the models. Multiple regression analyses allowed us to examine the
relative importance of these variables in predicting fraction concepts and procedures. The analyses
also permitted us to examine how much of the explained variance was unique to each variable rather
than shared.

Such information is essential for theoretical understanding of development of fraction knowledge
and also can inform instruction. Some predictors may be malleable—and, thus, potential targets for
instructional design. For example, representations of numerical magnitudes are highly responsive to
interventions; such interventions have been shown to improve a wide range of numerical knowledge
in young children (Booth & Siegler, 2008; Ramani & Siegler, 2008; Siegler & Ramani, 2009; Whyte &
Bull, 2008). Similarly, Fuchs and colleagues (2008) found that instruction designed to support execu-
tive control helps students with math difficulties to compensate for deficiencies in inattentive behav-
ior and improves their problem-solving performance. Predictors that account for unique variance in
fraction learning and that seem likely to be malleable can inform the development of interventions
for students who are struggling to learn fractions.

Method
Participants

Children were drawn from nine elementary schools in two public school districts in Delaware (on
the U.S. East Coast) that serve families of diverse socioeconomic status. Informed consent forms were
distributed to all third graders in the target schools. The initial sample size was 481. Only children
who completed all of the measures were included in the longitudinal analyses (N =357).! As shown
in Table 1, demographics were similar for participants and nonparticipants. Income status was deter-
mined by participation in the free or reduced price lunch program at school. Both school districts fol-
lowed the Common Core State Standards for math instruction in fourth grade and introduced fraction
instruction at roughly the same time.

Measures

Predictor measures

Language. The Peabody Picture Vocabulary Test-fourth edition (PPVT; Dunn & Dunn, 2007) was used
to assess language ability. On this test, participants are shown four pictures and are asked to point to
the one that corresponds to the word spoken by the assessor. The internal reliability of the measure is
high (o >.96). The correlation between the PPVT and a validated measure of verbal IQ is .89.

Nonverbal reasoning. The Matrix Reasoning subtest of the Wechsler Abbreviated Scale of Intelligence
(WASI; Wechsler, 1999) was used to assess nonverbal reasoning. Children are shown a series of grids
with pictures in all but one cell and are asked to choose one of five choices to complete the pattern.
Both the internal reliability of the measure (o >.90) and the correlation between it and overall WASI
performance IQ (r =.87) are high.

T The number of participants was slightly larger (N = 364) for the regression analyses with math achievement and number line
estimation as dependent variables because 7 children had left the study by the end of fourth grade, when the fractions measures
were administered.
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Table 1
Background information for study participants (N = 357) and nonparticipants (N = 124).
Characteristic Participants (mean Nonparticipants (mean
age = 105.97 + 5.35 months)? age = 106.10 + 5.70 months)?
n % n %
Gender
Male 169 47.3 66 53.2
Female 188 52.7 58 46.8
Race
White 191 53.5 63 50.8
Black 133 373 52 41.9
Asian/Pacific Island 21 5.9 7 5.6
American Indian/Alaskan  Native 12 3.4 2 1.6
Hispanic 56 15.7 24 194
Low income® 210 58.8 83 66.9
English language learner 41 11.5 11 8.9
Special education® 39 109 16 129

2 Mean age was determined at the beginning of the study.
> Low income refers to students receiving free or reduced price lunch.
¢ Special education indicates that the child is receiving special education services in school.

Attentive behavior. To measure attention, the inattention subscale of the SWAN Rating Scale (Swanson
et al.,, 2006) was used. This nine-item rating scale is based on the criteria for attention deficit hyper-
activity disorder for inattention from the fourth edition of the Diagnostic and Statistical Manual of Men-
tal Disorders (American Psychiatric Association, 1994). Teachers use a rating scale of 1 to 7 for each
item. In previous work at first to fifth grades (Fuchs et al., 2006, 2010), this instrument proved to
be highly reliable (o >.97). Teachers were instructed to rate children’s attention during math classes.

Working memory. Working memory was assessed with the Counting Recall subtest of the Working
Memory Test Battery for Children (WMTB-C; Pickering & Gathercole, 2001). This subtest has six items
that vary in the span that they demand. On each item, children count a set of between four and seven
dots on each of a series of cards. The number of cards whose dots need to be counted on a given item
varies with the span level. At the end of an item, children must recall, in order, the number of counted
dots that appeared on each card. Passing four items at a level allows children to go to the next level,
where the number of items that must be remembered increases by one item. Counting recall has been
demonstrated to be predictive of mathematics outcomes in the elementary grades (Fuchs et al., 2010).

Approximate number system. Participants were assessed using Panamath software Version 1.21 (Hal-
berda et al., 2008). The task was administered on a laptop computer using settings for 10-year-olds
at medium difficulty for 5 min. On each trial, children were shown 5 to 21 blue circles and 5 to 21 yel-
low circles for 1382 ms; the number of circles of each color varied semi-randomly over items. The dots
were not interspersed; that is, the yellow dots appeared on the left half of the screen and the blue dots
appeared on the right half of the screen. The task was to indicate the more numerous set of dots by
pressing keys labeled with either a blue or yellow circle. Children completed a total of 120 trials.
The ratio of one color of circles to the other included the following four ratio ranges (30 trials/range):
1.15-1.28, 1.28-1.43, 1.48-1.65, and 2.43-2.71. The most difficult ratio (1.15) involved a comparison
of 15 versus 13 circles; the easiest ratio (2.71) involved a comparison of 8 versus 3 circles. A random
half of the trials involved displays in which the total area covered by blue dots was approximately
equal to the total area covered by yellow dots. For all trials, the sizes of the individual dots of each
color varied. Percentage correct, response time, and Weber fraction were recorded electronically to en-
sure reliability.

Number line estimation. Children estimated where whole numbers (0-1000) should be placed on 25-
cm number lines (Siegler & Opfer, 2003). Students were presented with 22 whole number estimation
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problems (56, 606, 179, 122, 34, 78, 150, 938, 100, 163, 754, 5, 725, 18, 246, 722, 818, 738, 366, 2, 486,
and 147). Prior to beginning the task, children were asked to show the assessor where 0 and 1000 go
on the number line. Feedback was provided for incorrect responses (Opfer & Siegler, 2007). Next, one
practice trial in which children received feedback was presented. The assessor asked children to mark
where 150 went on the number line. The assessor then marked the correct location and wrote the
number corresponding to children’s mark. The assessor verbally explained, “You told me that 150
would go here [pointing to children’s mark], but actually this is where 150 goes [pointing to correct
mark]. The line that you marked is where X actually goes.” After this feedback trial, the remaining
0 to 1000 number line problems were administered.

The score was calculated as the distance from the correct placement for each estimate averaged
across the 22 items. Higher percentages of absolute error indicated poorer performance. Internal reli-
ability on this task was .89.

Calculation fluency. On the Addition Fluency subtest of the Wechsler Individual Achievement Test
(WIAT; Psychological Corporation, 1992), students have 1 min to solve 48 addition problems in which
the addends are between 0 and 10. Test-retest reliability in third grade is .87.

Reading fluency. In the Sight Word Efficiency subtest of the Test of Word Reading Efficiency (TOWRE;
Torgesen, Wagner, & Rashotte, 1999), students are presented with a list of words and asked to read
aloud as many words as possible within 45 s. The number of words read correctly is the score. Both
test-retest reliability and alternate form reliability are higher than .90.

Outcome measures

Fraction concepts. Fraction concepts were assessed using 6 shaded fraction items (labeled as “fraction
concepts” in Hecht et al., 2003) and 18 released fraction items from recent National Assessments of
Educational Progress (NAEPs; U.S. Department of Education, 2007, 2009). For the shaded fraction
items, symbol-picture tasks were presented to students. A polygon figure or set of figures was next
to each fraction symbol. Students were instructed to shade the figure or set of figures to indicate
the amount represented by the fraction symbol. The NAEP items assess concepts such as part-whole
understanding (e.g., “Shade 1/3 of the rectangle above”), fraction comparison and equivalence (e.g.,
“Which picture shows that 3/4 is the same as 6/8?”), and number line accuracy (e.g., “On the portion
of the number line above, a dot shows where 1/2 is. Use another dot to show where 3/4 is.”). Response
formats included multiple choice, short answer, shading fractional parts of a whole, and labeling a
fraction on a number line. The maximum score was 24; reliability was .81 at the end of fourth grade.

Fraction procedures. The fraction procedures assessment, adapted from Hecht (1998), used eight frac-
tion computation items and eight corresponding fraction word problems. Each set of eight items con-
tained four addition and four subtraction items, and three of each set of eight items involved mixed
numbers. All problems involved fractions with the same denominators. The number sentences that
corresponded to the word problems were identical to those for the computation items. For example,
one addition word problem was, “Sara painted 2/5 of a picture on Monday and 1/5 of the picture on
Tuesday. How much of the picture did she paint during both days?” The corresponding computation
item was, “2/5+1/5=__." Coefficient alpha was .95 during the spring of fourth grade.

Mathematics achievement. To measure general mathematics achievement, the Wide Range Achieve-
ment Test—fourth edition in math (WRAT; Wilkinson & Robertson, 2006) was used. This test measures
basic computation in addition, subtraction, multiplication, and division primarily with whole num-
bers. (Very few items involving fractions were attempted at the third- and fourth-grade levels.) Inter-
nal reliability of the WRAT is high (o >.90). The WRAT is highly correlated with other broad
mathematics achievement measures (Wilkinson & Robertson, 2006).
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Procedure

Language (PPVT), nonverbal reasoning (WASI Matrix Reasoning), attention (SWAN), reading flu-
ency (TOWRE), number line estimation, and calculation fluency (WIAT) were assessed during the win-
ter of third grade, and working memory (WMTB-C) was assessed during the spring of third grade. The
ANS task and mathematics achievement (WRAT) were assessed during the winter of fourth grade, and
fraction concepts and procedures were assessed during the spring of fourth grade, after all students
had received formal fraction instruction in school. With two exceptions, all predictor tests were
administered individually and all outcome measures were group administered. The exceptions were
that one predictor, calculation fluency, was given in a group and one outcome measure, fraction pro-
cedures, was given individually. Instructions to all tests were read verbatim.

Results

As indicated in Table 2, the mean scores on all measures for both nonparticipants (children who did
not complete all study measures) and participants were very similar. Little’s (1988) Missing Com-
pletely at Random (MCAR) test results were not significant, indicating that the data were missing com-
pletely at random. Because accuracy was near ceiling on the overall ANS task (M =.90), analysis of
accuracy on this task was limited to the 30 items in the most difficult ratio range (1.15-1.28), where
the mean accuracy was 81% (SD = 8.7).

Significant bivariate relations were present between most predictors and outcome variables (Ta-
ble 3). However, multivariate associations better capture the full network of relations among predic-
tors and criteria (Stevens, 2002; Tabachnick & Fidell, 2013). Therefore, the data were analyzed using
three direct entry (standard) multiple regression analyses (MRAs). Predictor variables were language
(PPVT), nonverbal reasoning (WASI matrices), attention (SWAN), working memory (WMTB-C), num-
ber line estimation, reading fluency (TOWRE), and calculation fluency (WIAT); dependent measures
were fraction procedures, fraction concepts, and fourth-grade mathematics achievement (WRAT).
Number line estimation also was included as a dependent measure in the final model. Because we
were interested in potentially malleable knowledge, we did not include background variables (age,
special education status, income status, and gender) in the reported regression models. Preliminary
results showed that the pattern of results concerning unique variance did not change when the demo-
graphics were included. Preliminary analyses also revealed that the ANS did not make significant con-
tributions to any of the models and, thus, was not included in the MRAs.

The MRA predicting fourth-grade fraction concepts was significant, R? =.562, F(7,349) = 63.853,
p =.001. See Table 4 for the unstandardized and standardized beta coefficients, standard errors, and
R-square change for each predictor variable, with all others controlled. Six predictors made unique
contributions to understanding of fraction concepts: number line estimation with whole numbers,

Table 2

Means of measures for study participants (N = 357) and nonparticipants (N = 124).
Predictor Participants Nonparticipants

M SD M SD

Language (percentile) 46.85 28.60 48.15 28.72
Nonverbal reasoning (scaled; M = 10) 9.75 3.24 10.02 3.31
Attention (raw) 36.98 11.82 35.96 12.64
Working memory (percentile) 30.67 2891 33.85 29.96
Number line estimation (% absolute error) 10.82 6.70 11.35 6.81
ANS (% correct) 80.91 8.68 82.44 9.34
Reading fluency (percentile) 64.51 25.20 63.31 23.86
Calculation fluency (percentile) 51.62 27.19 50.24 24.85
Math achievement, third grade (percentile) 58.26 27.45 53.60 26.95
Math achievement, fourth grade (percentile) 50.12 31.05 52.38 30.54
Fractions concepts (raw) 17.47 4.27 17.17 4.03

Fractions procedures (raw) 10.85 5.90 10.40 5.86




Table 3
Correlations among all measures.

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. Age® -

2. Gender® -.068 -

3. Minority® —-.047 .018 -

4. English language .015 —.028 .016 -
learner

5. Low income* 1467 016 2097 1417 -

6. Special education® 222" —.064 .070 -.013  .092 -

7. Language —-.088 —.063 —.237" —2297 —408" -.194" -

8. Nonverbal reasoning —.178"" .107° —.109" .043 —251" —.145" 465" -

9. Attention —2217" 147" —.146" 004 —.224"" —343" 3327 392" -

10. Working memory -.1377 -021 -.131" -055 —.063 —229" 2317 322" 315" -

11. Number line 19177 19377 228" 071 2097 3337 —412" —3717 —-3997 -.344"
estimation’

12. ANS -121° .073  .009 .037 —.040 114" .104 106" 2427 129" 1200 -

13. Reading fluency —-260" —.039 —.110" —-.074 —212"° —432" 3457 206" 449" .196" -362" .126° -

14. Calculation fluency —.052 —.117° —-.100 —.045 —.134" -245" 183" .186"" 336" .228° -.348" .051 .380" -

15. Fraction concepts —256" .042 —.170" —089 —293"" —373" 504" 453" 552" 348" 590" .155" 451" 439" -

16. Fraction procedures —.188"" .046 -.072 .012 —.109" -2507 3107 3347 364" 33577 —4397 102 234" 3057 6227 -

17. Math achievement, —-.131" -.071 -.257" .065 —253"7 —2927" 413" 429" 4907 354" —.433"7 120" 4517 5317 5977 .406™"
third grade

18. Math achievement, —.230"" —.040 —-.160"" .053 —281"" —342" 4117 434" 5707 34177 —.4927° 1927 4717 4967 704" 472" 7397 -

fourth grade

a
b
c
d

e

Age was determined at the beginning of the study.
Gender was coded 1 = male, 0 = female.
Minority status was coded 1 = minority, 0 = nonminority.
Low income refers to students receiving free or reduced price lunch.
Special education indicates that the child is receiving special education services in school and was coded 1 = receives special education services.

T On the number line estimation task, lower scores indicate higher performance.

p<.05.
" p<.01.
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Table 4

Results of multiple regression for third-grade predictors of fraction concepts during spring of fourth grade.
Variable B SEB B (AR?)? Bivariate correlation
Language .043 .009 196" (.026) .504
Nonverbal reasoning 078 .030 1117 (.008) 453
Attention .081 .016 225" (.033) 552
Working memory .036 .033 .044 (.002) 348
Number line estimation -.173 028 -271"" (.049) —.590
Reading fluency .034 .017 .086" (.005) 451
Calculation fluency .106 .025 1697 (.022) 439
Constant 3.691 1.659

Note. R=.749, R? = 562 (N = 357, p <.001).

" p<.05.

" p<.01.

** p<.001.

2 R? change after all other variables have been entered.

Table 5

Results of multiple regression for third-grade predictors of fraction procedures during spring of fourth grade.
Variable B SEB B (AR?)? Bivariate correlation
Language .025 .017 .081 (.005) 310
Nonverbal reasoning .093 .053 .097 (.006) 334
Attention .068 .028 135" (.012) 364
Working memory 158 .058 1377 (.015) 335
Number line estimation —.208 .049 -237" (.037) —.439
Reading fluency —-.021 .030 -.037 (.001) 234
Calculation fluency 110 .044 126" (.012) 305
Constant 1.244 2923

Note. R =.535, R? =.287 (N =357, p<.001).

" p<.05.

" p<.01.

" p<.001.

2 R? change after all other variables have been entered.

attention, language, calculation fluency, nonverbal reasoning, and (to a lesser extent) reading fluency.
The relative unique contribution of the independent variables was evaluated through the interpreta-
tion of standardized beta coefficients (Cohen, Cohen, West, & Aiken, 2003; Keith, 2006; Pedhazur,
1997). Importantly, number line estimation made the largest unique contribution; its predictive value
was 1.6 times as large as that of calculation fluency (|—.271/.169]) and 1.4 times as large as that of lan-
guage (|-.271/.196]).

The overall association of the MRA predicting fourth-grade fraction procedures was statistically
significant but accounted for less variance, R? =.287, F(7,349)=20.030, p =.001. Table 5 presents
the unstandardized and standardized beta coefficients, standard errors, and R-square change for each
predictor variable, with all others controlled. Four predictors made unique contributions to profi-
ciency with fraction arithmetic procedures: number line estimation, attention, working memory,
and calculation fluency. Number line estimation with whole numbers again made the largest unique
contribution; its predictive value was 1.9 times as large as that of calculation fluency (]—.237/.126|)
and approximately 1.7 times as large as that of working memory (|-.237/.137]).

The MRA predicting fourth-grade mathematics achievement also was significant, R? =.529,
F(7,356)=57.143, p =.001. See Table 6 for the unstandardized and standardized beta coefficients,
standard errors, and R-square change for each predictor variable, with all others controlled. Calcula-
tion fluency and attention made the largest unique contributions. The predictive value of calculation
fluency was 1.8 times as large as that of nonverbal ability (|—.254/.142|) and 1.85 times as large as that
of number line estimation (]—.254/—.137|). Similarly, the predictive value of attentive behavior was
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Table 6
Results of multiple regression for third-grade predictors of mathematics achievement (WRAT) during winter of fourth grade.
Variable B SEB B (AR?)? Bivariate correlation
Language .023 .011 094" (.006) 411
Nonverbal reasoning 113 .035 142" (.014) 434
Attention .109 .018 265" (.046) .570
Working memory .057 .038 .060 (.003) 341
Number line estimation —.100 .032 -.137" (.012) —.492
Reading fluency .062 .020 1377 (.013) 471
Calculation fluency 183 .029 254" (.051) 496
Constant 11.374 1.935
Note. R=.727, R = 529 (N = 364, p <.001).
" p<.05.
" p<.01.
" p<.001.

2 R? change after all other variables have been entered.

Table 7

Results of multiple regression for third-grade predictors of number line estimation during winter of third grade.
Variable B SEB B (AR?) Bivariate correlation
Language —-.071 018 —.208""" (.031) —412
Nonverbal reasoning —.131 .057 —.120" (.010) -.371
Attention —.071 030 ~125° (.010) ~.399
Working memory —.207 .061 —.159"" (.021) —.344
Reading fluency —-.073 .032 -.118" (.010) -.362
Calculation fluency —.165 .047 —.168"" (.023) —.348
Constant 37.972 2431

Note. R=.579, R? =.336 (N =364, p <.001).

" p<.05.

*** p<.001.

3 R? change after all other variables have been entered.

approximately 1.9 times as large as that of nonverbal ability (|.265/.142|) and 1.9 times as large as that
of number line estimation (].265/—.137]).

Finally, an analysis was performed to determine predictors of number line estimation accuracy,
R? =336, F(6,357) = 30.066, p = .001. Table 7 shows the unstandardized and standardized beta coeffi-
cients, standard errors, and R-square change for each predictor variable, with all others controlled. All
of the variables were uniquely but moderately predictive. Language (—.208) was the strongest
predictor.

Discussion

We assessed predictive relations between third graders’ performance on cognitive, behavioral, and
achievement measures and the same children’s fraction concepts and procedures and mathematics
achievement in fourth grade. Significant bivariate correlations were present between most predictors
and outcome measures.

The ANS task produced near ceiling levels of accuracy. However, on the most difficult magnitude
comparisons, where the ratios of the two sets of dots were smallest, small but generally significant
correlations with our outcome measures were present. Mazzocco, Feigenson, and Halberda (2011) re-
ported much stronger correlations between ninth-grade ANS performance and mathematics achieve-
ment in elementary school than were found in the current study. However, in that study, the ANS did
not uniquely predict performance on rank ordering of fractions and decimals over and above a
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symbolic number identification task. Mazzocco and colleagues observed that mapping precision with
number symbols was more predictive than nonsymbolic approximation for tasks that are “signifi-
cantly removed from intuitive computations” (p. 12). Our results support this interpretation.

The number line estimation task, which requires translation between symbolically and nonsymbol-
ically represented whole number magnitudes, was much more strongly correlated with fraction con-
cepts and fraction procedures than was the ANS task. Previous work with younger children also has
shown that symbolic magnitude comparison tasks are more closely linked with conventional mathe-
matics outcomes than are nonsymbolic ANS-type tasks (Holloway & Ansari, 2009; Soltesz, Szucs, &
Szucs, 2010).

The contribution of our predictors varied somewhat for the fraction outcome measures. For fraction
procedures, the predictors accounted for approximately 30% of the variance in performance, with
number line estimation, working memory, attentive behavior, and calculation fluency each making
unique contributions. Number line estimation made the largest unique contribution; its predictive va-
lue was nearly twice as large as that calculation fluency. For fraction concepts, the predictors ac-
counted for a much larger portion of the variance (56%), with number line estimation, calculation
fluency, language, nonverbal reasoning, and attentive behavior making unique contributions; number
line estimation and attentive behavior made the largest unique contributions. These results suggest
that although there is considerable shared variance among the predictors, both number-specific and
more general competencies are uniquely important for explaining why some children struggle with
fractions. The relatively small amount of variance accounted for by the set of predictors for fraction
procedures may reflect the influence of instruction. That is, some children may have learned to add
and subtract fractions in a relatively rote fashion. However, it should be noted that the fraction pro-
cedures assessed in the current study involved only simple calculations with like denominators. The
skills used to solve more difficult procedural problems with unlike denominators may show a different
pattern of findings. For example, working memory, attention, or reasoning abilities might become
increasingly important when students must convert 6/10 to 3/5 and so forth.

Although our number line estimation task involved whole numbers, it nevertheless was a highly
important predictor of fraction outcomes. Siegler and colleagues (2011) observed, “Numerical devel-
opment involves coming to understand that all real numbers have magnitudes that can be ordered and
assigned specific locations on number lines” (p. 274). Both whole numbers and fractions have magni-
tudes and are interspersed on number lines; students who acquire this insight with whole numbers
seem to have an advantage in learning fraction concepts as well. In addition, thinking about parts
and wholes may well facilitate number line estimation with whole numbers; for example, to estimate
754 on a 0-to-1000 number line, it would be adaptive to mentally divide the line into quarters to get
close to 750 or 3/4 of 1000.

Attention and language comprehension were distinctive domain-general predictors of fraction con-
cepts over and above the contributions of reading, nonverbal reasoning, working memory, and the
mathematics predictors. The special relation to language might reflect the verbal nature of many frac-
tion concept items (e.g., “These three fractions are equivalent. Write two more fractions that are
equivalent to them.”) The relation might also reflect the importance of vocabulary knowledge for
acquiring fraction understanding, which might in turn affect children’s later procedural competence
with fractions. Seethaler and colleagues (2011) found that language was uniquely predictive of frac-
tion procedures in fifth grade (they did not focus on fraction concepts), which we did not find in fourth
grade. The later influence of language on fractions procedures might be associated with the mutually
supportive relation between fraction concepts and procedures (Hecht & Vagi, 2010).

In addition to expanding our understanding of the acquisition of fraction conceptual and proce-
dural knowledge, the current findings are useful for thinking about instruction. Fraction conceptual
knowledge drives the learning of more advanced mathematics such as algebra (NMAP, 2008). The
development of fraction reasoning, as measured by our fraction concepts instrument, is related to a
mix of cognitive, behavioral, and numerical abilities. However, knowledge of numerical magnitudes,
as indicated by accuracy of number line estimation, appears to be an especially strong early predictor
of performance after children’s first year of formal fraction instruction. It is more strongly predictive
than proficiency in whole number computational fluency or attentional capacity.
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The current findings suggest that to prepare children for the challenging fourth-grade curriculum
in fractions recommended in the Common Core State Standards, primary-grade math instruction
should target children’s number competence related to their understanding of numerical magnitudes.
Recent randomized studies have revealed that understanding of numerical magnitudes is malleable in
most children (e.g., Jordan, Glutting, Dyson, Hassinger-Das, & Irwin, 2012; Ramani & Siegler, 2008) and
that children who have learned numbers in a meaningful way become fluent with number combina-
tions more easily than those with weaker number sense (Jordan, Kaplan, Ramineni, & Locuniak, 2008).

Although performance on our counting recall working memory task was significantly correlated
with outcome measures, it was a unique predictor of performance only on fraction procedures. It is
possible that working memory makes a larger contribution to fraction performance in later grades
when the demands for holding and manipulating numerical information increase. It should also be
noted that working memory is not a unitary construct (Baddeley, 1986); other processes related to
the phonological loop and the visual sketchpad might make additional contributions to fraction
learning.

The challenge for fraction instruction is to help children understand that magnitudes are a property
not only of whole numbers but of all real numbers; that is, children need to learn that any real number
can be placed on a number line—positive and negative numbers; whole numbers and fractions; com-
mon fractions, decimals, and percentages (Siegler et al., 2011). Although fractions pose unique chal-
lenges, understanding of whole number magnitudes provides children with a foundation for
acquiring corresponding knowledge about fractions. Similarly, understanding fraction magnitudes
provides them with a solid base for learning fraction procedures. A recent large randomized control
trial (Fuchs et al., 2012) showed that a fourth-grade intervention that focused primarily on fraction
concepts, especially understanding of fraction magnitudes, enhanced at-risk learners’ fraction proce-
dures as well as concepts more than standard classroom instruction. This was the case even though
the classroom instruction allocated much more instructional time to fraction procedures than did
the intervention.

The current results raise numerous questions for future investigations. Does understanding of
numerical magnitudes continue to be strongly predictive of acquisition of fraction arithmetic proce-
dures in later grades, or do other domain-specific and domain-general processes become more impor-
tant as children progress to middle and high school? Is early fraction knowledge predictive of
mathematics achievement in middle and high school? Will instruction in fraction concepts related
to magnitude understanding increase later mastery of fraction arithmetic procedures, or are the
two correlated but not causally related? Answering these and other questions raised by the current
study promises to contribute to both mathematics education and theoretical understanding of math-
ematical development.
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