
Time Series in Education: The Analysis of Daily Attendance in Two High Schools 
 
 
 
 

Matthijs Koopmans (Strategic Education Research Partnership Institute) 
 
 
 
 

Presented at the Annual Convention of the American Educational Research Association, New 

Orleans, LA, April 8‐12 
 
mkoopmans@serpinstitute.org 

 

 
 
 
Publication Date: 2011 

 
 
 



Time Series in Education: The Analysis of Daily Attendance in Two High Schools 

 

Matthijs Koopmans (Strategic Education Research Partnership Institute) 

 

Presented at the Annual Convention of the American Educational Research Association, New 
Orleans, LA, April 8-12  

mkoopmans@serpinstitute.org 

 

 

ABSTRACT 

This presentation discusses the use of a time series approach to the analysis of daily attendance in two 
urban high schools over the course of one school year (2009-10). After establishing that the series for 
both schools were stationary, they were examined for moving average processes, autoregression, 
seasonal dependencies (weekly cycles), outliers and heteroscedasticity. Seasonal dependencies were 
significant in both schools. In addition, contrary to what the traditional attendance statistics (mean, 
median, range) would lead one to expect, attendance differs appreciably in the two schools, with 
expanding variance and predictable Friday plunges in one school, and a clear trend toward lower 
attendance in days preceding holidays and vacations in the other. 
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The purpose of this presentation is to report on the analysis of daily high school attendance over the 
course of one school year (2009-10) in two urban high schools, using time series analysis. While 
significant conceptual work was done to appreciate the potential of time series analysis in education 
(Glass, 1972), there have not been very many instances in which the technique has been utilized to 
analyzing real education data.  The urban districts that have begun to publicize daily attendance rates on 
their websites have created an opportunity to conduct these types of analyses to help us appreciate the 
usefulness of the technique in educational research, as well as obtain a better understanding of how 
patterns of daily high school attendance behave over time. 

Attendance 

High school attendance and high school dropout are among our greatest concerns in educational policy. 
When considering how well students attend school, the common practice of relying on average daily 
attendance measures (e.g., National Center for Education Statistics, 2008) carries with it the implicit 
assumption that the mean is the best way of characterizing the distribution of attendance over time and 
that the distribution of errors over time is random. Moreover, reliance on an average conceals any 
information about the nature of fluctuations over time.  

The lack of attention to the effect of time on daily attendance patterns in high schools leaves a set of 
very interesting questions unanswered. Do attendance levels tend to go up, go down or stay the same in 
the course of a school year? Are there differences between schools in this respect? Is variance constant 
over time, or should we expect heteroscedastic patterns, with perhaps greater variability as the end of 
the school year approaches?  Is attendance on a given day a good indicator of what attendance will be 
on the next day?  Are there correlations between attendance on given weekdays and that on the same 
day in other weeks? With how much confidence can we predict school attendance going forward, based 
on what we know about existing patterns of attendance? How far into the future can we predict 
patterns of attendance at a given school? Is high fluctuation in attendance a predictor of a future decline 
in attendance rates? The educational literature is largely silent on these questions, which is remarkable 
considering how prominent low attendance and dropout are in our educational policy discussions.  

The purpose of this paper is to discuss the basics of time series modeling in situations where it cannot 
be assumed that observations are independent, and to explore how the approach can help us 
understand the contribution of time to patterns of school attendance.  A single case design is used to 
analyze separately the attendance in each of the two schools.  The analyses should therefore be seen as 
descriptive, with no claims to generalizability to other schools or school districts. 

 Data Sources 

The urban district whose data are used in these analyses weekly publicizes the daily attendance data for 
each of its schools. Attendance data were recorded for the entire 2009-10 school year for a convenience 
sample of 25 schools. For the illustrative purposes of this paper, the attendance trajectories of two of 
these schools will be analyzed. Daily attendance data were recorded for the entire 2009-10 school year 
in these schools starting on September 9 and finishing at the close of the last full week of school (June 
11), yielding 183 observations for each school. For the days that schools were closed, the district 
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entered zeros on the attendance record. For this analysis, a nearest neighbor imputation was done 
substituting the value of 𝑌𝑡+1 for each 𝑌𝑡 = 0, unless 𝑌𝑡−1 was more typical (i.e., closer to the mean) of 
the series. If schools were closed for an entire week, that week was eliminated from the analysis, thus 
preserving the weekly cycles in the time series. 

Analytical Approach 

To understand how daily attendance behaves over time, an ordinary least squares regression of 
attendance outcomes on time is not sufficient, because it cannot be assumed that errors are 
independent. A time series approach enables one to model the dependencies in those errors and obtain 
a more reliable estimation of how time, in the course of one school year, affects attendance rates in a 
given school. In addition, it can be decided to what extent fluctuation patterns replicate over time in 
predictable ways.   

The analysis proceeds as follows. After establishing that the series for both schools are stationary, using 
the Dickey-Fuller Unit Root test (Fuller, 1996), the series are examined for moving average (MA) 
processes, autoregression (AR), as well as combined ARMA and seasonal MA and AR patterns, focusing 
on weekly cycles. It was also determined to what extent the series were impacted by the presence of 
outliers, and heteroscedasticity. Below, these procedures are described in greater detail.  All notation 
and descriptions are based on Cryer and Chan (2008). 

 Autoregressive (AR) Processes 

In an autoregressive process, the value of 𝑌𝑡 is predicted as a linear combination of its own past values, 
plus the error term 𝑒𝑡 that embodies variability occurring at time 𝑡 that is not explained by the past 
values. Hence, 𝑒𝑡 is often referred to as an innovation term. In its general form, this process is a pth 
order autoregression process, AR(p),  that can be summarized as follows: 

𝑌𝑡 =  𝜙1𝑌𝑡−1 +  𝜙2𝑌𝑡−2 + … +  𝜙𝑝𝑌𝑡−𝑝 +  𝑒𝑡 

This model estimates 𝑌𝑡 using p lags, with a parameter 𝜙 associated with each past value included in the 
model. It is assumed that for every 𝑡, 𝑒𝑡 is independent of 𝑌𝑡−1,𝑌𝑡−2,𝑌𝑡−3, … .   

A first order autoregressive model, AR(1), would be: 

𝑌𝑡 =  𝜙1𝑌𝑡−1 + 𝑒𝑡 

Assuming stationarity and a series mean of 0, the variance in the AR(1) case is equal to:  

𝛾0 =  
𝜎𝑒2

1 − 𝜙2 

In the more general case of AR(p), the variance is computed as: 

𝛾𝑘 =  𝜙𝑘 𝜎𝑒2

1−𝜙2
               for   k = 1, 2, 3, … 
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The autocorrelation in the general case can then be defined as: 

𝜌𝑘 = 𝛾𝑘
𝛾0

=  𝜙𝑘             

Moving Average (MA) Processes 

A moving average process describes time dependencies as a pattern of disturbances, where the 
estimation 𝑌𝑡 is based on the weighted sum of previous and current errors in the series. A general MA 
(q) model uses q lags for this estimation, and can be formulated as follows: 

𝑌𝑡 =  𝑒𝑡 −  𝜃1𝑒𝑡−1 −  𝜃2𝑒𝑡−2 −  …−  𝜃𝑞𝑒𝑡−𝑞 

A parameter 𝜃 is associated with each innovation included in the model. For a first order moving 
average, MA (1) process, this model simplifies to: 

𝑌𝑡 =  𝑒𝑡 −  𝜃1𝑒𝑡−1., 

with the following mean function: 

𝐸(𝑌𝑡) = 0. 

Variance in an MA (1) process can be expressed in terms of the moving average parameter estimate as 
follows: 

𝑉𝑎𝑟(𝑌𝑡) =  𝜎𝑒2 (1 + 𝜃2), 

and the autocorrelation function for the first lag (k = 1) as follows: 

𝜌𝟏 =
−𝜃𝟏

1 + 𝜃12
 

For subsequent lags in an MA(1) model, 𝜌𝑘 = 0.  

Autoregressive Moving Average (ARMA) Processes 

If time series seems to contain both autoregressive and moving average processes, a model can be fitted 
that combines the AR and MA components. A first order ARMA model can be defined as follows: 

𝑌𝑡 =  𝜙1𝑌𝑡−1 + 𝑒𝑡 −  𝜃𝑡−1 

This equation can be extended as described above for AR and MA separately to include higher order 
terms for both components. 

Seasonal Autoregressive and Moving Average Patterns 

An important part of many time series analyses is the detection and analysis of cyclical patterns, that is, 
patterns that repeat in a predictable manner (e.g., weekly, monthly or yearly). In the analysis of school 
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attendance, it makes intuitive sense to consider weekly cycles by estimating AR and MA processes 
across a five-day lag. Thus, we consider a seasonal AR (1)5 model: 

 

𝑌𝑡 =  Φ1𝑌𝑡−5 +  𝑒𝑡 .  

as well as a seasonal MA (1)5 model: 

𝑌𝑡 =  𝑒𝑡 −  Θ1𝑒𝑡−5, 

We also estimated were the second order seasonal variants, i.e. AR (2)5, 

𝑌𝑡 =  Φ1𝑌t−5 + Φ2𝑌t−10 +  𝑒t, 

and MA (2)5,  

𝑌𝑡 =  𝑒𝑡 −  Θ1𝑒𝑡−5 −  Θ2𝑒𝑡−10, 

respectively, for the MA and the AR components of the seasonal process.  Also considered was a mixed 
seasonal ARMA (1,1)5 model, defined as: 

𝑌𝑡 =  Φ1𝑌𝑡−5 + 𝑒𝑡 −  Θ1𝑌𝑡−5 

Outliers 

Outliers were identified in the series for each of the two schools, and it was assessed whether those 
outliers were additive or innovative. Outliers are considered additive if they perturb the system at one 
time point t  = T, but not beyond that point.  Outliers are considered innovative if the parameters 
associated with the estimation of their effects continue influence the estimation of 𝑌𝑡 in subsequent 
lags. If outliers are additive, the perturbed series can be described as: 

 
𝑌𝑡′ =  𝑌𝑡 +  𝜔𝐴𝑃𝑡𝑇 

where: 

𝑌𝑡′ is the perturbed attendance 

𝑌𝑡 is the unperturbed attendance 

𝑃𝑡𝑇 = 1 at impact; 0 otherwise ; i.e., the  pulse 

𝜔𝐴 is the estimated impact of the pulse on 𝑌𝑡 

Innovative outliers produce the following perturbation pattern: 

𝑌𝑡′ = [ 𝑒𝑡 +  Ψ1𝑒𝑡−1 +  Ψ 2𝑒𝑡−2 + … ] + Ψ𝑡−𝑇 𝜔𝐼 
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or 

𝑌𝑡′ =  𝑌𝑡 + Ψ𝑡−𝑇 𝜔𝐼. 

If t > T, 𝜔𝐼 expresses the added perturbation after T. As the weights Ψ are moved from t to t + 1, t + 2, 
…, etc, the impact of this perturbation term on the series gradually diminishes. The procedures 
described by Chang, Tiao and Chan (1988) and Cryer and Chan (2008) were used to detect both types of 
outliers in the series and they were incorporated them into the models accordingly. 

Heteroscedasticity 

To deal with heteroscedasticity the conditional variance was estimated using a generalized 
autoregressive conditional heteroscedasticity GARCH(1,1) model which includes two lags of conditional 
variance in the model. The conditional variance is estimated as 

𝑟𝑡 =  𝜎𝑡|𝑡−1 + 𝜀𝑡 

𝜎𝑡|𝑡−1
2 =  𝜔 +  𝛼1𝑟𝑡−12 +  𝛽1𝜎𝑡−1|𝑡−2

2  

or 

𝜎𝑡|𝑡−1
2 = (1 − 𝛼1 −  𝛽1)𝜎2 +  𝛼1𝑟𝑡−12 + 𝛽1𝜎𝑡−1|𝑡−2

2  

where α, β and ω are parameters associated with the estimation of the conditional variance at lag 1 and 
lag2, and {εt} represent the innovations to the system. Assuming that {εt} has a unit variance, 𝑟𝑡 =
 𝜎𝑡|𝑡−1. 

 Also considered was the estimation of heteroscedasticity estimating conditional variance at one lag only 
GARCH(1,0):  

𝜎𝑡|𝑡−1
2 =  𝜔 +  𝛼1𝑟𝑡−12 . 

 

Results 

Table 1 summarizes some of the main characteristics of the two schools whose attendance patterns are 
analyzed. The most remarkable differences between these two schools are their sizes (School 1 enrolled 
3,254 students in 2009-10 and School 2 enrolled 212), and grade configuration. School 1 served grades 
9-12, while School 2, a recently created small high school, served only grades 9 and 10 in 2009-10. There 
are also some demographic differences between the two schools, with 16% of the students identified as 
Asian/Pacific Islander in School 1 and only 4.7% in School 2; 36.3% of the students in School 2 were 
African American, compared to 12.9% in School 1. The percent of teachers with five years of experience 
or more is higher in School 1 (71.4%) than in School 2 (42.9%).  
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Table 2 provides the summary statistics for the daily attendance rates in both schools.  It can be seen 
that attendance in the two schools looks approximately the same on these summary measures: mean 
attendance equals 77.4% in School 1 and 78.6% in School 2; the medians are 78.9 and 81.7%, 
respectively. The range is somewhat narrower in School 1 (from 41.7% to 84.8%) than in School 2 (from 
43.8% to 90.7%)  A discussion of daily attendance measures over time in each of the two schools 
follows. 

 School 1 

Figure 1a shows the daily attendance at School 1 for the entire 2009-10 school year; Figure 1b shows the 
same series with the days of the week labeled (R is Thursday). Some prominent outliers can be seen in 
the series. In addition, it appears that attendance tends to be lower on Fridays, suggesting a seasonal 
pattern. Figure 2 shows the autocorrelation function (ACF) plot for this school.  The dotted lines in the 
plot mark a 95% confidence interval. The spikes at lag 5 in both plots point to a seasonal pattern that 
could be either autoregressive or moving average, but most likely not both. The plot does not indicate 
any non-seasonal autoregressive or moving average processes (nor does the partial ACF plot).  The 
Dickey-Fuller Unit Root test (Fuller, 1996) shows no evidence of non-stationarity (ADF=-5.28, k=4, 
p<.10), indicating that we can assume that the series is linear with a zero mean. 

Table 3 summarizes the model fitting process for School 1. Consistent with what the ACF plot indicates, 
first order AR and MA processes do not improve the fit of the model (see Model II and III). The AR (1) 
parameter 𝜙1 and MA (1) parameter 𝜃1 estimates are not different from zero and the goodness of fit 
indicators (log likelihood and Aiken’s Information Criterion) are indistinguishable from the baseline 
model (Model I).  Adding seasonal terms to the model improves matters somewhat, showing a slightly 
better fit for the seasonal AR (1)5 model (Model V with Φ1 = .23) than for the seasonal MA (1)5 model 
(Model IV with Θ1 = 18). An ARMA (1,1)5 model (Model VI) further improved the estimation of the 
series, with Φ1= .98 and Θ1 = -.91. Since second order seasonal AR and MA models did not further 
improve goodness of fit, Model VI was used as the basis for outlier detection.  Detected outliers were 
included in a next model, and an assessment was again made as to whether outliers could be found in 
the new models, to be incorporated into a subsequent model.  Table 3 summarizes this iterative process 
(Models VII through X) showing the considerable improvements after outlier removal, with substantial 
increases in the log-likelihood function (from -576.61 for Model VI to -409.56 for Model X), and 
substantial reductions in the information criterion (from 1159.22 to 845.10).   

All but one of the outliers detected through this process were additive outliers.  The parameter 
estimates associated with each outlying attendance date show the size of the drop, or the pulse 
response on each particular day.  Inspecting those estimates in Model X shows specifically that October 
14, October 30 and March 19 deviate from the series by more than 30 percentage points. Some of these 
dates invite speculation about the reason for the discrepancies. October 30 is the Friday before 
Halloween, November 25 is the Wednesday before Thanksgiving, February 11 followed a snow day on 
the 10th, and February 25 preceded one on the 26th; June 11 was the last Friday concluding a full week of 
school.  October 9th was an innovative outlier with a gradually diminishing influence on the series as 
time progressed. Its positive value (5.52) suggests a relatively good Friday turnout on that particular day.  
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School 2 

Figure 3a shows the daily attendance rates for School 2; Figure 3b shows the same series with labels for 
the days of the week. It can be seen that daily attendance rates over time in this school display a 
pronounced Friday-effect. The autocorrelation and partial autocorrelation plots shown in Figure 4a and 
Figure 4b suggest a seasonal AR (2) process with the ACF tailing off slowly at t = 5, t =10, t =15 and t =20, 
while the PACF cuts off after two seasonal lags (t = 5 and t = 10).  The plots in Figure 3 and 3b also show 
clear signs of heteroscedasticity, with a progressive increase in variability as the school year progresses.  
The plot of the first difference of the series ( 𝑌𝑡 −  𝑌𝑡−1) shows this trend more clearly (see Figure 5). 
However, since the Dickey-Fuller Unit Root test shows no evidence of non-stationarity (ADF=-3.65, k=9, 
p<.10), we assume a constant mean function and do not analyze the series based on the first difference. 

Table 4 summarizes the model fitting process for School 2. First and second order AR and MA 
parameters (not shown) were not statistically significant. Seasonal effects, i.e., five day cycles, are 
estimated in Models II through V. It can be seen that the best fitting model is the seasonal AR(2)5 model 
with highest log-likelihood values and lowest AIC values; both coefficients depicting the autoregressive 
seasonal process are statistically significant (Φ𝑡−5 =  .31 and Φ𝑡−10 =  .37).  

Model VI summarizes the outlier detection process and indicate a substantial improvement in the 
goodness of fit as indicated by log-likelihood and AIC values.  The dates with outlying values have 
significantly lower attendance, as indicated by the negative values of the coefficients, and estimated 
plunge at the perturbation points are 24.48 (October 30, pre-Halloween), -31.03 (February 11, post-
snow day) and  -17.24 (March 19).The ACF plots for Model VI show no remaining autocorrelation. 
However, the Ljung-Box test statistic (Cryer & Chan, 2008) shows that if more than lags or more are 
included in the test, there are clear signs of heteroscedasticity, as the statistic turns significant at k>= 9.  

To address the heteroscedastic tendency in the series, table 5 summarizes the properties of the models 
that estimate the conditionality of the variance in the series on previous lags, using the general 
autoregressive conditional heteroscedasticity approach (GARCH) outlined above. The model estimates 
the contribution of the conditional variances at lag 1 and lag 2 of the series using the residuals of Model 
IV (no outliers) and Model VI (with outliers). Model IVa and IVb show the improvements to the goodness 
of fit of Model IV with lag 1 and lag 1 + 2 conditional variances. Models VIa, VIb and VIc show such 
improvment for the models that include the outliers (Model VI). The GARCH models were fitted to the 
residuals of Model IV and Model VI. The improvements to both models IV and VI indicate that including 
conditional variances for the first two lags, improves the goodness of fit for both Model IV and VI, but 
that it does not matter a great deal whether the conditional variances are modeled over one or two lags. 
Contrary to the other models considered, the GARCH (2,1) model, which includes a coefficient for 

𝛽2𝜎𝑡−2|𝑡−3
2   in the estimation of 𝜎𝑡|𝑡−1

2  passes the test for normally distributed residuals (Shapiro’s W = 

.99, p > .05), although the differences in error distribution between Models VIa, VIb and VIc are 
superficial. 
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Discussion 

A lot of valuable information can be added to the traditional summary statistics of daily attendance by 
looking closely at how attendance patterns behave over the course of the school year.  The analyses 
presented in this paper reveal some of these patterns. In both schools, there is a seasonal trend in 
attendance rates indicating a weekly cyclical nature. This trend is particularly pronounced in School 2, 
where fewer students attend school on Friday than on other days of the week.  Also noteworthy is the 
prominent role of outliers in the time series. The distribution of attendance is negatively skewed, and 
significant model improvements are obtained in both schools, by detecting those outliers and estimating 
their impact on the series. While the time series in both schools contain outlying values, the two schools 
are nonetheless dissimilar in this respect.  School 1 has eight days with outlying attendance rates, while 
School 2 has only three. In addition, in School 1, all outliers appear to be additive indicating that they do 
not impact the series beyond the particular date itself, while School 2 has one innovative outlier (March 
19), whose influence gradually diminishes as time progresses.  The similarities between the two schools 
are also noteworthy. The three outlying dates in School 2 are all outlying dates in School 1 as well. One 
marks the anticipation of Halloween with lower attendance (October 30) and another follows what was 
a snow-day in the Northeast (February 11).  In School 1, there are more examples of these kinds of 
outlying days (the anticipation of Thanksgiving on November 25, and the Christmas Vacation on 
December 23), while in School 2, there are not. On the other hand, in School 2, attendance rates are 
persistently lower on Fridays than on other days of week, a trend that is found only to a very modest 
extent in School 1. Apparently, where it comes to attendance, different high schools may have different 
‘relaxation points.’ It is beyond the scope of this investigation to decide whether these dips emanate 
from the community, local peer culture or the schools themselves. Notable differences between the two 
schools include size (School 1 is a large  high school serving 3,254 students and School 2 is a small one 
serving 212, Table 1) and grade configuration (School 1 serves grades 9-12 + special education, while 
School 2 served grade 9 and 10 and special education in 200-10, Table 1). 

It is of interest to note that there is much less variability in daily attendance rates in School 1 than in 
School 2. Moreover, in School 2, variability in attendance rates increases as the school year progresses, 
while in School 1, it does not. While this shift over time does not rise to the level of non-stationarity of 
the series, attendance in School 2 is clearly heteroscedastic, and modeling conditional variances into the 
time series models does indeed improve the goodness of fit of the models.  

For feedback purposes, teachers and administrators at the school and school district level could benefit 
from the availability of daily attendance data such as those summarized here because they reveal where 
the irregularities lie in school wide daily attendance records and to what extent there are shifts in 
collective attendance behavior in the course of a school year that it would be helpful to know. The 
availability of this information enables schools and districts to implement a more focused attendance 
policy than would be possible based on average daily attendance measures, which conceal most of the 
trends discussed in this paper (see Table 2).   

The analysis presented here has several important limitations. The rates analyzed here are school wide 
and therefore do not reveal differences by grade level, nor do they allow disaggregation of student 
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groups by gender and socioeconomic and ethnic categories. From a policy perspective, this information 
may be highly valuable as well.  Ultimately, information of high school attendance is of interest in the 
context of college preparation and dropout prevention efforts. It would therefore be of interest also to 
analyze the attendance rates of cohorts of students who are followed for a four-year period, starting in 
grade 9 to attempt to describe whether and how growing instability in school-wide attendance may 
initiate a downward trend (self-organized criticality, Bak, 1996).  

There are also inherent limitations to the use of single case designs, as they remain particular to the 
schools whose attendance is analyzed. While interesting in their own right, case studies such as these 
can also be used as a tool to generate hypotheses that can be tested on a larger sample of schools. Such 
an analysis would involve pooling the time series of the individual schools to estimate between school 
variability in processes such as those described in this paper.  
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Table 1. Summary Student and School Characteristics: School 1 and School 2 

School School 1 School 2 
Grade configuration 9-12 & 

SE 
9-10 & 

SE 
Students   
N enrolled 3,254 212 
% Male 51.4 61.3 
% Native Am. .2 1.4 
% Asian/Pacific 16 4.7 
% Hispanic 58.8 53.8 
% African Am. 12.9 36.3 
% White 12.1 2.8 
% Not responding 0.2 0.9 
% ELL 14.4 13.2 
% General Ed. 87.3 82.6 
% below poverty 60.2 60 
Teachers   
% > 5 yrs. exp.  71.4 42.9 
% w/ Master’s 90 86 
Students per Teacher 16.6 14.9 

 

 

Table 2. Summary Statistics Attendance Rates School 1 and School 2 

 M (SD) MD Range N 
School 1 77.4 (5.9) 78.9 41.7 – 84.8 183 
School 2 78.6 (8.9) 81.7 43.8 – 90.7 183 
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Table 3. Summary of Model Selection Process School 1: Coefficients and Goodness of Fit Statistics 

MODEL I II III IV V VI VII VIII IX X 
 
 
 
Parameters 

Baseline MA (1) AR (1) MA (1)5  AR(1)5 ARMA 
(1,1)5 

 ARMA 
(1,1)5 

 
with 

outliers 
(Step 1) 

ARMA 
(1,1)5 

 

with 
outliers 
(Step 2) 

ARMA 
(1,1)5 

 

with 
outliers 
(Step 3) 

ARMA 
(1,1)5 

 

with 
outliers 
(Step 4) 

Intercept 
(se) 

77.4 
(.44) 

77.4 
(.45) 

77.4 
(.45) 

77.36 
(.5) 

77.33 
(.55) 

77.23 
(1.07) 

77.58 
(.77) 

77.4 
(.9) 

77.33 
(.97) 

77.26 
(1.0) 

𝜃1 
(se) 

 .04 
(.08) 

        

𝜙1 
(se) 

  .04 
(.08) 

       

Θ1 
(se) 

   .18 
(.07) 

 -.91 
(.09) 

-.49 
(.1) 

-.4 
(.09) 

-.37 
(.09) 

-.36 
(.09) 

Φ1 
(se) 

    .23 
(.07) 

.98 
(.04) 

.87 
(.06) 

.9 
(.05) 

.9 
(.04) 

.91 
(.04) 

Oct 9 
(t=23) 
(se) 

         5.52 
(1.93) 

Oct 14 
(t=26) 
(se) 

      -30.48 
(2.75) 

-30.77 
(2.11) 

-30.83 
(1.98) 

-30.85 
(1.93) 

Oct 30 
(t=38) 
(se) 

      -31.39 
(2.75) 

-31.53 
(2.11) 

-31.55 
(1.98) 

-31.34 
(1.93) 

Nov 25 
(t=56) 
(se) 

        -8.54 
(1.98) 

-8.55 
(1.93) 

Dec 23 
(t=76) 
(se) 

       -14.65 
(2.11) 

-14.83 
(1.98) 

-14.84 
(1.93) 

Jan 25 
(t=94) 
(se) 

      -16.13 
(2.74) 

-16.2 
(2.11) 

-16.21 
(1.98) 

-16.22 
(1.93) 

Feb 11 
(t=107) 
(se) 

      -20.08 
(2.83) 

-24.06 
(2.21) 

-24.09 
(2.09) 

-24.11 
(2.03) 

Feb 25 
(t=112) 
(se) 

       -16.2 
(2.21) 

-16.25 
(2.09) 

-16.27 
(2.03) 

Mar 19 
(t=128) 
(se) 

      -32.99 
(2.74) 

-32.77 
(2.11) 

-32.73 
(1.99) 

-32.71 
(1.93) 

June 11 
(t=183) 
(se) 

      -15.17 
(3.02) 

-14.66 
(2.43) 

-14.54 
(2.31) 

-14.48 
(2.26) 

σ2 34.79 34.73 34.74 33.4 33.05 31.5 8.89 5.76 5.23 5.0 
LL -584.43 -584.28 -584.28 -580.79 -579.86 -576.61 -460.94 -422.23 -413.53 -409.56 
AIC 1170.86 1172.56 1172.59 1165.59 1163.73 1159.22 939.87 866.46 851.05 845.1 
   

 



12 
 

Table 4. Summary of Model Selection Process School 2: Coefficients and Goodness of Fit Statistics  

MODEL I II III IV V VI 
Parameter Baseline AR (1)5  MA (1)5  AR (2)5  MA (2)5  AR (2)5 

with 
outliers 

Intercept 78.65 
(.66) 

78.42 
(1.09) 

78.58 
(.78) 

78.22 
(1.5) 

78.48 
(.94) 

78.45 
(1.52) 

𝜃1 
(se) 

      

𝜙1 
(se) 

      

Θ1 
(se) 

  .29 
(.05) 

 .34 
(.07) 

 

Θ2 
(se) 

    .39 
(.06) 

 

Φ1 
(se) 

 .49 
(.06) 

 .31 
(.07) 

 .24 
(.06) 

Φ2 
(se) 

   .37 
(.07) 

 .48 
(.06) 

Oct 30 
(t=38) 
(se) 

     -24.45 
(5.51) 

Feb 11 
(t=107) 
(se) 

     -31.03 
(5.5) 

Mar 19 
(t=128) 
(se) 

     -17.24 
(5.49) 

σ2 78.86 59.62 68.14 51.21 55.78 38.59 
LL -659.3 -634.41 -646.15 -621.2 -628.61 -595.88 
AIC 1322.61 1274.82 1298.29 1250.4 1265.23 1203.75 
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Table 5. Conditional Variance Models: School 2 

  

Model Order Coefficients Goodness of Fit 

 AR(P) 
GARCH  
(q, p) 

𝜔 𝛼1 𝛽1 𝛽2 LL df/k AIC 

IVa 2 0,1 
50.34 
(3.76) 

.02 
(.04) 

  -616.57 2 1237.14 

IVb 2 1,1 
3.43 

(6.03) 
.02 

(.03) 
.91 

(.14) 
 -615.93 3 1240.86 

VIa 
2 

with 
outliers 

0,1 
38.3 

(4.81) 
.01 

(.07) 
  -590.9 2 1185.8 

VIb 
2 

with 
outliers 

1,1 
1.41 

(1.64) 
.04 

(.04) 
.92 

(.07) 
 -589.22 3 1187.45 

VIc 
2 

with 
outliers 

2,1 
32.98 

(184.3) 
.02 

(.07) 
.13 

(2.77) 
.00 

(4.67) 
-588.1 4 1192.21 
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Figure 1b. Daily Attendance 2009−10: School 1 (Days Marked)
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Figure 2. Autocorrelation Function (ACF): Attendance Rates School 1
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Figure 4a. Autocorrelation Function (ACF): Attendance Rates School 2
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