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Abstract 

In this paper, we examine the validity and precision of two nonexperimental study designs 
(NXDs) that can be used in educational evaluation: the comparative interrupted time series 
(CITS) design and the difference-in-difference (DD) design. In a CITS design, program impacts 
are evaluated by looking at whether the treatment group deviates from its baseline trend by a 
greater amount than the comparison group. The DD design is a simplification of the CITS 
design — it evaluates the impact of a program by looking at whether the treatment group 
deviates from its baseline mean by a greater amount than the comparison group. The CITS 
design is a more rigorous design in theory, because it implicitly controls for differences in the 
baseline mean and trends between the treatment and comparison group. However, the CITS 
design has more stringent data requirements than the DD design: Scores must be available for at 
least four time points before the intervention begins in order to estimate the baseline trend, 
which may not always be feasible.  

This paper examines the properties of these two designs using the example of the federal 
Reading First program, as implemented in a midwestern state. The true impact of Reading First 
in this state is known, because program effects can be evaluated using a regression discontinuity 
(RD) design, which is as rigorous as a randomized experiment under certain conditions. The 
application of the RD design to evaluate Reading First is a special case of the design, because 
not only are all conditions for internal validity met, but also impact estimates appear to be 
generalizable to all schools. Therefore, the RD design can be used to obtain a “causal 
benchmark” against which to compare the impact findings obtained from the CITS or DD 
design and to gauge the causal validity of these two designs.  

We explore several specific questions related to the CITS and DD designs. First, we examine 
whether a well-executed CITS design and/or DD design can produce valid inferences about the 
effectiveness of a school-level intervention such as Reading First, in situations where it is not 
feasible to choose comparison schools in the same districts as the treatment schools (which is 
recommended in the matching literature). Second, we explore the trade-off between bias 
reduction and precision loss across different methods of selecting comparison groups for the 
CITS/DD designs (for example, one-to-one versus one-to-many matching, and matching with 
replacement versus without replacement). Third, we examine whether matching the comparison 
schools on pre-intervention test scores only is sufficient for producing causally valid impact 
estimates, or whether bias can be further reduced by also matching on baseline demographic 
characteristics (in addition to baseline test scores). And fourth, we examine how the CITS 
design performs relative to the DD design, with respect to bias and precision. Estimated bias in 
this paper is defined as the difference between the RD impact estimate and the CITS/DD impact 
estimates.  
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Overall, we find no evidence that the CITS and DD designs produce biased estimates of 
Reading First impacts, even though choosing comparison schools from the same districts as the 
treatment schools was not possible. We conclude that all comparison group selection methods 
provide causally valid estimates but that estimates from the radius matching method (described 
in the paper) are substantially more precise due to the larger sample size it can produce. We find 
that matching on demographic characteristics (in addition to pretest scores) does not further 
reduce bias. And finally, we find that both the CITS and DD designs appear to produce causally 
valid inferences about program impacts. However, because our analyses are based on an 
especially strong (and possibly atypical) application of the CITS and DD designs, these findings 
may not be generalizable to other contexts. 
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Section 1 

Introduction 

In recent years, randomized experiments have become the “gold standard” for evaluating 
educational interventions. When implemented properly, randomization guarantees that the 
treatment and control groups produced are equivalent in expectation at baseline, so that any 
difference between the two groups after the start of the intervention can be attributed to the 
effect of the intervention. For this reason, randomized experiments provide unbiased estimates 
of program impacts that are easy to understand and interpret.  

For a variety of reasons, however, it is not always practical or feasible to implement a 
randomized experiment, in which case a nonexperimental design (NXD) must be used instead.1 
When using an NXD, researchers estimate the impact of a program by selecting a comparison 
group that looks similar to the treatment group on observed characteristics, typically through 
matching methods. An important threat to the causal validity of such designs is selection bias: 
Differences in outcomes between the treatment and comparison group may be due to pre-existing 
or unobserved differences between the two groups, rather than to the effect of the program being 
evaluated. An important challenge in the use of NXDs is to identify a comparison group that is 
equivalent to the treatment group in all ways except program participation. 

The internal (causal) validity of NXDs has been systematically examined in a body of 
literature known as “validation studies,” also called “within-study comparisons” or “design 
replication” studies. In such studies, researchers attempt to replicate the findings of a 
randomized experiment by using a comparison group that has been chosen using 
nonexperimental methods. The bias of the NXD is defined as the difference between the 
experimental impact estimate (the best existing information about the “true” impact of the 
program) and the nonexperimental estimate. A nonexperimental design is deemed “successful” 
at replicating the experimental benchmark if the bias is “sufficiently small.”2  

The results of these validation studies are mixed — in some cases NXDs are able to 
replicate the experimental result, while in other studies they produce findings that are 
substantially biased. Two recent surveys have tried to make sense of these findings by asking 
not only whether NXDs can provide the right answer, but also under what conditions they can 

                                                 
1In this paper, we use the term “nonexperimental design” to refer to any type of study that does not use 

random assignment to determine treatment receipt. Among nonexperimental designs, some types of design are 
sometimes referred to as “quasi-experimental,” but the use of this term and what it includes differs across 
disciplines and researchers, so we simply use the term nonexperimental. 

2Past studies have used different criteria for gauging what is “sufficiently small.” These criteria will be 
discussed in Section 4 of this paper. 
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do so. The first of these two syntheses by Glazerman, Levy and Meyers (2003) focuses on 
validation studies from the job training sector, while the second by Cook, Shadish, and Wong 
(2008) draws on recent studies from a variety of fields, including education. 

Both syntheses conclude that NXDs can replicate experimental results but that several 
necessary conditions must be met in order for impact estimates to be causally valid. First, the 
comparison group must be chosen from a group of candidates who have been prescreened 
based on having motivation and incentives similar to those of the treatment group (such as 
individuals who applied for the program).3 Second, the comparison group must be in close 
geographical proximity to the treatment group, for example, in the same city or region 
(geographically local). Third, pretest scores must be available for the outcome of interest. This 
makes it possible to determine whether the comparison group had outcomes similar to those of 
the treatment group before the start of the intervention; if not, the pretest data can be used to 
make the comparison group more similar to the treatment group at baseline (for example, via 
matching methods). 

Importantly, both reviews also find that the actual statistical methods or design used to 
make the treatment and comparison group more equivalent and to control for bias (for example, 
regression adjustment, propensity score matching, and difference-in-difference analysis) matter 
little with respect to internal validity and bias reduction. If the three necessary conditions listed 
above are not in place (that is, a comparison group that is prescreened and geographically local, 
and the availability of pretest scores for the analysis), even the most sophisticated statistical 
analysis cannot guarantee the right result. Conversely, if the three conditions are satisfied, all 
statistical methods will produce similar findings. 

On the other hand, findings from a recent validation study indicate that, in fact, the 
statistical method or design can matter, even when the right conditions are in place. In their 
validation study, Fortson, Verbitsky-Savitz, Kopa, and Gleason (2012) try to replicate the 
experimental results from a national charter school evaluation using various nonexperimental 
analyses. In their analysis, all three conditions for causal validity are present — the comparison 
group is restricted to the same set of districts as the treatment group (prescreened and local), and 
pretest scores are used to either conduct matching or to control for differences in pretest scores. 
The authors find that even if these conditions are in place, using a simple ordinary least squares 
(OLS) regression analysis to control for baseline pretest scores does not replicate the 
experimental findings. However, propensity score matching and other statistical approaches, 
such as a difference-in-difference (DD) analysis, do produce impact estimates that are not 
statistically different from the causal benchmark. These findings suggest that a fourth condition 

                                                 
3What we refer to as “prescreened” groups Cook and colleagues call “intact” groups. 
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for causal validity may be in order: One must also use a rigorous analytical design to properly 
eliminate or control for baseline differences in the outcome measure. 

While these recommendations are useful, there are still a few key gaps in the literature 
with respect to using NXDs for educational evaluation. The first is that previous validation 
studies have focused exclusively on nonexperimental designs that make use of only one or two 
years of pretest data, such as the DD design.4 The DD design evaluates the impact of a program 
by looking at whether the treatment group deviates from its baseline mean by a greater amount 
than the comparison group (that is, whether pre-post gains are larger for the treatment group). 
Previous studies have shown that the DD design can in some cases replicate the results of an 
experiment (Fortson, Verbitsky-Savitz, Kopa, and Gleason, 2012), but more generally the 
design’s validity is subject to an important threat: Larger pre-post gains for the treatment group 
may be due to a preexisting difference in baseline trends between the treatment and comparison 
group. If so, the impact findings from a DD design will be biased. Yet, with only two to three 
baseline time points, it is not possible to evaluate the plausibility of this threat or to control for it.  

If data are available for four or more baseline time points, a comparative interrupted 
time series (CITS) design can be used to address these limitations.5 With a CITS design, 
program impacts are evaluated by looking at whether, in the follow-up period, the treatment 
group deviates from its baseline trend (baseline mean and slope) by a greater amount than the 
comparison group. The CITS design is a more rigorous design in theory, because it implicitly 
controls for differences between the treatment and comparison group with respect to their 
baseline outcome levels and growth. On the other hand, the CITS design has more stringent 
data requirements than the DD design: Scores must be available for at least four time points 
before the intervention begins in order to estimate the baseline trend. (The rationale for this 
requirement will be discussed later in this paper.)6 While in some sectors this requirement poses 
a problem, in educational evaluation it is often the case that multiple consecutive years of test 
scores are available, especially at the school level, due to the No Child Left Behind Act 
(NCLB). NCLB, which was initiated in 2001, mandates that school-level test scores in math 
and reading be reported yearly for students in third to ninth grade, overall and for key 
demographic subgroups. Thus, the CITS design is a feasible NXD for evaluating school-level 
impacts.7 Given its greater rigor, the CITS design has the potential to reduce bias by a greater 
amount than the DD design, and its estimated impacts are more likely to be causally valid. Yet 

                                                 
4Shadish, Cook, and Campbell (2002) call this design a “non-equivalent comparison group design with 

pretest and posttest samples.” 
5Shadish, Cook, and Campbell (2002) call this design an interrupted time series design with comparison 

group. 
6See Cook, Shadish, and Wong (2008); Shadish, Cook, and Campbell (2002); and Meyer (1995). 
7NCLB mandates that school-level test scores in math and reading must be reported yearly for students in 

third to ninth grade, overall, and for key demographic subgroups. 
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to our knowledge, there has not yet been a within-study comparison of the validity of the CITS 
design, whether in education research or in other settings.8  

Another gap in the validation literature is that the DD design and matching methods 
have been examined as two separate types of analysis. Matching methods are typically 
implemented by using propensity score matching (or some other method) to create a “matched” 
comparison group that looks similar to the treatment group, and then estimating the impact of 
the program by comparing the outcomes of the treatment and comparison group at follow-up 
(postintervention). In contrast, the DD design is implemented by looking at whether gains over 
time for the treatment group are greater than gains for a comparison group that includes all 
available “untreated” schools. No matching is conducted to make the two groups more alike 
with respect to their baseline outcomes and characteristics, because the DD design implicitly 
controls for baseline differences in the outcome. Yet, in theory, we argue that there can also be 
benefits to using matching methods to select the comparison group for the DD (or CITS) 
design. As will be discussed later in this paper, an important threat to the validity of the DD 
(and CITS) design is that in the follow-up period, the treatment and comparison groups differ 
from each other in ways other than the receipt of the program — for example, if a policy shock 
affects one group but not the other. One way to mitigate such potential confounders is to make 
sure that the treatment and comparison groups used in the DD (or CITS) design have similar 
pre-intervention outcomes and characteristics. If the two groups are “matched” at baseline, this 
increases the likelihood that the two groups will be subject to the same policy shocks and 
respond to them in the same way during the follow-up period, thereby reducing the potential for 
bias. To our knowledge, no study has looked at the causal validity of a CITS or DD design 
where the comparison group has been matched on pre-intervention outcomes as a means of 
further strengthening the design. 

On the topic of matching methods, we see three other gaps in the literature. The first 
relates to the relative precision of alternate matching estimators. Understandably, the discussion 
of NXDs has focused on the causal validity of estimated impacts (or conversely, their “bias” 
relative to experimental estimates). However, the precision of impact estimates from NXDs — 
defined as the inverse of the variance of the impact estimate (standard error squared) — is also 
important. True impacts, if they exist and can be estimated, can be detected only if the impact 
estimate is sufficiently precise. So, ideally, an impact estimate should be both unbiased and 
precise. As noted earlier, previous reviews have shown that the choice of statistical method for 
matching matters little when it comes to bias reduction — what matters most are the groups 
being compared and the data that are available for controlling for between-group differences. 
                                                 

8In their review, Cook, Shadish, and Wong. (2008) mention that having multiple years of pretest data (as 
in a CITS design) is desirable and better than having only one or two years of pretest data. However, their 
review does not include any validation studies of the CITS design, probably because none have been 
conducted. 
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However, not all statistical matching methods are equivalent when it comes to the precision of 
the resulting impact estimates. Some approaches may lead to greater precision than others, 
because they produce larger comparison groups. This may be especially important in the 
context of a school-level impact evaluation in which sample sizes are small relative to a student-
level impact evaluation.  

The second issue is whether nonexperimental comparison groups should be chosen 
based on characteristics other than pretests. Earlier applications of matching methods have used 
“off the shelf” demographic characteristics as matching variables (ethnicity or socioeconomic 
status, for example). However, the choice of these characteristics was largely driven by the fact 
that pretest scores were not available for matching purposes. If pretest scores are available, is it 
necessary to also match on demographics? In theory, matching on both pretests and 
demographic characteristics could further improve the comparability of the two groups. Indeed, 
a recent study by Steiner, Cook, Shadish, and Clark (2010) finds that matching on 
demographics and pretests leads to greater bias reduction than matching on pretests alone. 
However, we would argue that in some contexts, and most notably in school-level evaluations 
where samples are smaller, it may be difficult to find a comparison group that has both similar 
pretest scores and demographic characteristics. If so, matching on both pretests and 
demographics could undermine the similarity of the treatment and comparison group with 
respect to pretests, which is probably the most important criterion for causal validity. 

The third issue — which is especially relevant for educational evaluation — is whether 
NXD estimates are still valid when the comparison group is not “geographically local.” To meet 
this condition in educational evaluation, one would have to restrict the comparison group to the 
same set of districts as the treatment group. However, this may be difficult to do in practice, 
especially if the intervention being evaluated is a school-level reform. Such reforms are often 
implemented districtwide, which means that there are no “untreated” comparison schools in the 
same district. Even if the reform is not districtwide, schools chosen for the reform are typically 
characterized by some marker of poor performance (like low test scores), which makes them 
unusual if not unique relative to the untreated schools in the district. In this case, it would be 
inappropriate to limit the comparison group to schools in the same set of districts as the 
treatment schools.  

Accordingly, our goal in this paper is to extend the literature by addressing the 
following research questions: 

• Can the CITS and DD designs provide internally valid estimates of the 
impact of a school-level intervention, even when it is not possible to use a 
geographically local comparison group?  
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• How do the CITS design and the DD design compare with respect to bias 
reduction and precision?  

• Can the precision of impact estimates from the CITS and DD designs be 
improved without compromising causal validity, through the choice of 
matching method (and thus the resulting sample sizes)? 

• Is bias reduction stronger or weaker when both pretests and baseline 
demographic characteristics are used for matching, as opposed to pretests 
only? 

To answer these questions, we conducted a validation study of the CITS and DD 
designs based on the federal Reading First program as implemented in a midwestern state. The 
Reading First Program was established under the No Child Left Behind Act of 2001. The 
program is predicated on findings that high-quality reading instruction in the primary grades 
significantly reduces the number of students who experience difficulties in later years. 
Nationwide, the program distributed over $900 million to state and local education agencies for 
use in low-performing schools with well-conceived plans for improving the quality of reading 
instruction. The federal funding had to be used on reading curricula and teacher professional 
development activities that are consistent with scientifically based reading research (Gamse, 
Jacob, Horst, Boulay, and Unlu, 2008). 

The midwestern state used in this paper is unique, in that Reading First funds were 
allocated statewide and based on a rating system that was in large part subjective. This means 
that the school-level impact of Reading First can be estimated using a regression discontinuity 
(RD) design. Although RD designs are NXDs, they are now considered a “gold standard” 
design in program evaluation.9 When the conditions for a valid RD design are met, this design 
can be used to obtain internally valid estimates of program impacts. As will be shown in this 
paper, these conditions are all met in the example of Reading First. It will also be argued that 
the characteristics of the Reading First rating system — and the resulting relationship between 
these ratings and test scores — are such that the RD design also produces impact estimates that 
are generalizable to all Reading First schools, which is typically not the case with an RD design. 
In the case of Reading First, then, the RD estimates can be used as a “benchmark” for assessing 
the causal validity of corresponding CITS and DD results. The latter two NXDs can also be 
used to evaluate the intervention, because school-level test scores on state assessments are 
available for multiple years, both before and after Reading First was implemented in the state. 

                                                 
9The U.S. Department of Education’s What Works Clearinghouse has broadened its definition of “gold 

standard” research to include regression discontinuity designs (Sparks, 2010). The review by Cook, Shadish, 
and Wong (2008) also concludes that the RD design and experiments produce comparable impact estimates.  
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Since the state is relatively large, there is also a large pool of elementary schools from which to 
choose comparison groups.  

Importantly, our paper meets several requirements for a strong validation study. As 
noted elsewhere, one of the potential weaknesses of a validation study is that the causal 
benchmark is known, so there may be an incentive for researchers to keep trying new NX 
analyses until they find one that replicates the causal benchmark (Bloom, Michalopolous, and 
Hill, 2005). To prevent this from happening, we prespecified our methods in a research proposal 
to the U.S. Department of Education. In addition, we were also able to replicate our analysis 
across multiple outcome measures, to see whether our conclusions hold across different follow-
up years (first and second year of the intervention) and across different subject areas (reading 
scores and math scores).10  

This paper proceeds as follows. Section 2 describes the dataset and measures that are 
used to estimate the impact of Reading First on test scores. Section 3 presents impact estimates 
based on an RD design, and demonstrates that these findings can be used as a causal benchmark 
for validating the CITS and DD designs. Section 4 describes the analytical framework of the 
DD and CITS analyses, including an overview of these two designs, the process for selecting 
comparison schools, and the characteristics of these schools. Section 5 presents the estimated 
impact of Reading First based on the CITS and DD designs, and compares these results with the 
“benchmark” estimates from the RD design. Section 6 concludes with a discussion of the results 
and our recommendations. 

Throughout this paper, we will refer to the DD and CITS designs as “nonexperimental” 
designs (NXD). However, it is worth noting that these designs are sometimes referred to as 
“quasi-experimental” designs (QED). The distinction between nonexperimental designs and 
quasi-experimental designs was popularized by Shadish, Cook, and Campell (2002) as a way of 
emphasizing that some nonexperimental designs are more rigorous than others: QEDs are 
designs that make use of a comparison group and pretests, while NXDs are designs that do not 
include these design elements. In principle, this distinction is a useful one, but unfortunately, in 
recent years the label “quasi-experimental” has also been used to refer to weaker study designs. 
To avoid confusion, we will simply refer to the DD and CITS designs as nonexperimental, but 
we note that they would be considered quasi-experimental in the classification system of 
Shadish and colleagues.  

In this paper, we will also refer to the mean “counterfactual outcome” for a given study 
design. The counterfactual outcome is defined as what would have happened to the treatment 

                                                 
10Even though reading achievement is the primary target of Reading First, validation studies can also 

examine impacts on outcomes that might not be affected by the intervention (such as math), to see whether 
NXDs can replicate the “zero” impact.  
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group in the absence of the intervention. (In Reading First, for example, the counterfactual 
outcome is represented by the test scores that students in Reading First schools would have 
gotten had their school not received program funding.) The impact of a program is defined as 
the average outcome of program participants minus their mean counterfactual outcome. By 
extension, the rigor of a nonexperimental design depends on whether the comparison group 
accurately portrays the mean counterfactual outcome for the treatment group. As will be 
explained in this paper, how the mean counterfactual outcome is estimated depends on the type 
of study design that is used.  

Finally, it should be emphasized that this paper represents an especially strong 
application of the CITS and DD designs. As noted earlier, the CITS design can be implemented 
with a minimum of four baseline time points, while the DD design can be implemented with 
only one time point. However, in our analysis, the number of baseline years used for each 
design exceeds these minima: We use six baseline time points for the CITS design and three 
time points for the DD design. This analytical decision was made because our goal is to 
examine the properties of each design under the most favorable conditions for that design. On 
the one hand, this may limit the generalizability of our findings, and especially the results for 
the DD design, which is often implemented with only one baseline time point. On the other 
hand, our analysis provides a useful first step in gauging whether these two designs can provide 
causally valid results when data availability is optimal. In future work, we will examine whether 
our findings hold when fewer years of baseline data are used for each design. 

 



9 
 

Section 2 

Data Sources and Measures 

In this paper, we use several data sources to estimate the impact of Reading First: 

• State assessment scores: Data on third-grade reading scores (the outcome of 
interest11) are available at the school-level from the state’s department of 
education Web site. The third-grade reading assessment used by the state is 
the Comprehensive Test of Basic Skills (CTBS/5), a nationally norm-
referenced test administered each spring. Scores are scaled as normal curve 
equivalents (NCEs) and are available from spring 1999 to spring 2006.12 We 
also use data on third-grade math test scores (in NCEs) as a secondary 
outcome. Even though reading achievement is the primary target of Reading 
First — and math is not supposed to be affected — we can examine whether 
the CITS and DD designs are also able to replicate the impact of Reading 
First on math scores. 

• Common Core of Data (CCD) and U.S. Census: To describe the samples 
and identify matched comparison schools, we use information on the 
characteristics of schools and districts. Information on school characteristics 
(enrollment, demographic characteristics, and location) is obtained from the 
Common Core of Data (CCD) at the National Center for Education Statistics 
(NCES), for the 1998-1999 to 2005-2006 school years. We also use yearly 
child poverty rates by school district, for children 5 to 17 years of age, from 
the U.S. Census Bureau’s Small Area Income and Poverty Estimates 
(SAIPE). Poverty rates are available for 1999 to 2005.13  

• Reading First rating: For the regression discontinuity (RD) analysis, we 
obtained data on the rating that was used to allocate Reading First funds in 
the state that we study. The rating assesses the “curricular” quality of 
schools’ application, and its values range from 33 to 185. Ratings were 
provided by the midwestern state.  

                                                 
11Although Reading First also targets reading instruction in Grades 1-2, reading achievement in these 

earlier grades is not tested by the state. State test scores are the basis for the present analysis. 
12The state’s use of the reading assessment was discontinued in 2007 and replaced by another. A different 

assessment was also used before 1999. 
13These data are measured by calendar year, not academic year. Calendar year 1999 is used for school year 

1998-99, and so on.  
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These data were used to create a panel (longitudinal) dataset for all elementary schools 
in the state. This dataset includes test scores and demographic information for eight school years 
(1998-1999 to 2005-2006). The implementation of Reading First began in 2004-2005, so there 
are six years of pre-intervention data (1998-1999 to 2003-2004) and two years of 
postintervention data (2004-2005 and 2005-2006).  

For the analysis, we restrict the dataset to elementary schools with complete test score 
data for all eight years of the study period (six baseline year and two follow-up years). In total, 
680 schools meet this requirement and are used in the analysis. Of these schools, 69 received 
Reading First funds and have complete test score data; these 69 schools comprise the treatment 
group for the present analysis.14  

                                                 
14Although 74 schools received funding, five schools do not have test score data for all eight school years 

in the study period (either because they opened more recently or were closed).  
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Section 3 

The Regression Discontinuity Design as a Causal  
Benchmark 

In a typical validation study (such as the studies reviewed earlier), the “causal benchmark” for 
true program impacts is provided by a randomized experiment. The reasons for this choice 
should be obvious. Because a “coin flip” is used to determine who gets into the program, the 
observed and unobserved characteristics of the treatment and control groups should be the same 
in expectation before the intervention begins. Therefore, the control group’s mean outcomes can 
be used to measure the mean counterfactual outcome for the treatment group. The difference 
between the treatment and comparison group’s mean future outcomes provides an internally 
valid estimate of the average program effect. For a given sample size, impact estimates from a 
randomized experiment are also more precise than most other study designs.  

In our validation study, however, the causal benchmark for the true impact is provided 
by a regression discontinuity (RD) design, rather than a randomized experiment. When properly 
implemented, an RD design can provide estimates of program impacts as rigorous as those from 
a randomized experiment. On the other hand, readers familiar with the RD design will recall 
that, unlike an experiment, the internal validity of the RD design is not guaranteed — it must 
satisfy several conditions for its impact estimates to be internally valid. The generalizability of 
its impact estimates can also be limited in certain contexts, and these estimates are always less 
precise than those from a randomized experiment. Therefore, the RD design can provide a 
plausible causal benchmark for the true impact of a program, but it is also incumbent on us to 
demonstrate that it is a valid benchmark in the context of Reading First.  

In this section, we review the RD design and we present findings for the effect of 
Reading First based on this design. We then demonstrate that these impact estimates satisfy all 
necessary conditions for using them as the causal benchmark in our validation exercise.  

Impact Estimates from the RD Design 
RD designs — first introduced by Thistlethwaite and Campbell (1960) — can be a highly 
rigorous method for evaluating social programs.15 RD designs can be used in situations where 
candidates are selected for treatment (or not) based on whether their “score” on a numeric rating 
exceeds a designated threshold or cut-point. Candidates scoring above or below a certain 

                                                 
15For an introduction to RD designs, see Cook (2008), Lee and Lemieux (2010), and Bloom (2012). For a 

discussion of these designs in the context of educational evaluation, see Jacob, Zhu, Somers, and Bloom (2012). 
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threshold are selected for inclusion in the treatment group, while candidates on the other side of 
the threshold constitute a comparison group. By properly controlling for the value of the rating 
variable in the regression analysis, one can account for any unobserved differences between the 
treatment and comparison group. This design is rigorous because — similar to an experiment — 
the process by which participants are assigned to the program is completely known. In a 
randomized experiment, assignment is based on a “coin flip”; in an RD design, assignment is 
based on whether individuals are above or below a known cut-off on a measurable criterion.  

The Reading First program can be evaluated using an RD design, because in the 
midwestern state that is the focus of this paper, Reading First funds were allocated to eligible 
schools with the highest quality applications based on a quantitative rating. Initial eligibility for 
the program was based on need, as evidenced by low reading proficiency scores and high 
poverty rates. After applications were received from eligible schools, an expert review panel 
was appointed by the state’s Reading First team to review the applicants for funding and to give 
them a rating.16 The ratings were based on the quality of the applicant’s proposed instructional 
strategy for improving reading instruction, and used a standardized protocol.17 In total, 199 
schools applied for Reading First funds and were rated (rating values range from 33 to 185). 
The 74 schools with the highest ratings were given Reading First funds, which is the number of 
schools that could be funded given the amount of money available to the state.  

Figures 3.1 and 3.2 demonstrate how the RD design can be used to estimate the impact 
of Reading First on reading score and math scores, respectively. These figures plot the 
relationship between schools’ score on their application for Reading First funds (the rating 
variable) and the average third-grade test scores of their students during a given follow-up year 
(the outcome of interest). The ratings in these figures have been centered at the cut-off score, so 
the cut-off is located at zero. Schools above the cut-off received Reading First funds, while 
schools below the cut-off did not. The RD design assumes that, in the absence of the program, 
the relationship between the assignment variable and test scores would be continuous. 
Therefore, if the program is effective, it will create a discontinuity in the relationship between 
the assignment variable and the outcome at the cut-off point. The size of this discontinuity — or  
                                                 

16The members of this panel had advanced degrees and were knowledgeable in scientifically based 
reading research and the importance of explicit, systematic instructional strategies in phonemic awareness, 
phonics, fluency, vocabulary development, and comprehension. They also had collective expertise in 
professional development, leadership, assessment, curriculum, and teacher education. Reviewers worked in 
three-member teams that reviewed and scored each application.  

17Ratings were based on the following nine criteria: (1) the program has been carefully reviewed; (2) the 
five components of reading instruction incorporate the five critical building blocks of effective reading 
instruction (phonemic awareness, decoding/word attack, reading fluency, vocabulary, and comprehension). (3) 
the program is based on sound principles of instructional design; (4) the program is valid and reliable; (5) the 
program employs a coherent instructional design; (6) content is organized around big ideas; (7) instructional 
materials contain explicit strategies; (8) instructional materials provide opportunities for teachers to scaffold 
instruction; (9) skills and concepts are intentionally and strategically integrated. 
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Figure 3.1

Relationship Between Reading Scores and Ratings

Reading First schools (N = 69) Non-Reading First schools (N = 99)Year 1
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Figure 3.2

Relationship Between Math Scores and Ratings

Reading First schools (N = 69) Non-Reading First schools (N = 99)Year 1
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the difference between treatment and comparison group outcomes at the cut-off — is the 
estimated impact of the program.18  

Based on these figures, it does not appear as though Reading First improved test scores, 
because there is no appreciable discontinuity in scores at the cut-off. We can formally estimate 
the size of the impact estimate — and test whether it is statistically different from zero — by 
fitting the following model: 

 
𝑌𝑗 = 𝜋0 + 𝜓0𝑇𝑅𝐸𝐴𝑇𝑗 + 𝜌0𝑅𝐴𝑇𝐼𝑁𝐺𝐶𝑗 + 𝜀𝑗 

 
where: 
 

𝒀𝒋𝒕 = Average third-grade test score (reading or math) for school j in 
the spring of a follow-up year t. 

𝑻𝑹𝑬𝑨𝑻𝒋 = Dichotomous indicator for whether school j is a treatment school 
(= 1 if school received Reading First funds; 0 if a non-Reading 
First school with a rating) 

𝑹𝑨𝑻𝑰𝑵𝑮𝑪𝒋 = Continuous variable for the rating assigned to schools’ 
application centered at the cut-off (= 0)  

 
In this model, 𝜓0 represents the estimated impact of the intervention in the follow-up 
year of interest.  
 

Table 3.1 presents the impact estimates from this model, scaled as effect sizes. Effect 
sizes are based on a standard deviation of 21.06, which by definition is the student-level 
standard deviation for scores in normal curve equivalents (NCEs).19 The findings confirm that 
Reading First did not improve reading or math achievement. All impact estimates are small in  

  
                                                 

18This application of the RD design represents a “sharp” RD design, because all schools complied with their 
treatment assignment (that is, all schools above the cut-off received funding, and none of the schools below the 
cut-off received funding). With a sharp RD design, the discontinuity at the cut-off is an estimate of the treatment 
on the treated (TOT). In contrast, a “fuzzy” RD design is one where there is noncompliance (no-shows and 
crossovers). In this situation, the discontinuity at the cut-off is an estimate of the “intent to treat” (ITT). 

19We use the student-level standard deviation because Reading First aims to improve student achievement. 
Normal curve equivalents are defined as 50 + 21.06z, where z is the z-score for a student’s score on the test. A 
standard deviation of 21.06 is used for scaling the test scores because this has the following result (assuming 
test scores are normally distributed): the NCE is 99 if the percentile rank of the raw score is 99; the NCE is 50 
if the percentile rank of the raw score is 50; the NCE is 1 if the percentile rank of the raw score is 1. 
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magnitude (ranging from -0.058 to 0.057), and none of them are statistically significant (the 
smallest is 0.434).  

It is important to note that the lack of program impacts does not invalidate or weaken 
the RD results as a causal benchmark. In a validation study, whether or not the program was 
effective is irrelevant. The key question is whether the comparison group provides the right 
estimate of the mean counterfactual outcome (the outcome in the absence of treatment). In fact, 
rather than comparing impact estimates from different study designs, one could instead directly 
compare the outcomes of the experimental control group (the counterfactual) and the 
nonexperimental comparison group (the counterfactual estimate).20 In practice, the outcomes of 
the treatment group are irrelevant, and by extension, the actual size of the impact is also 
irrelevant (whether zero or otherwise). In this paper, we cannot directly compare counterfactual 
estimates (comparison groups), because the RD design and the difference-in difference (DD) 
and comparative interrupted time series (CITS) design identify treatment effects differently. 
However, the same logic holds — the size of the true impact is inconsequential. What matters is 
whether the RD design provides a better estimate of the mean counterfactual outcome than the 

                                                 
20This strategy is used in Bloom, Michalopoulos, and Hill (2005); Heckman, Ichimura, Smith, and Todd 

(1998); and Heckman, Ichimura, and Todd (1997). If two impact estimates based on the same treatment group 
are equal, by extension the two comparison groups must have the same mean outcomes. This can be shown 
mathematically. Let T be the average outcome for the treatment group, C1 the average outcome for the 
experimental control group, and C1 the average outcome for the nonexperimental comparison group. The 
difference between the two impact estimates is = (T— C1) — (T— C2) = C2 — C1. 

Predicted Score Predicted Score Estimated Standard 
at Cut-Off at Cut-Off Estimated Impact Error

Subject -Year RF Schools Non-RF Schools Impact in Effect Size in Effect Size P-Value

Reading scores
Year 1 53.339 53.896 -0.556 -0.026 0.075 0.725
Year 2 51.306 50.116 1.190 0.057 0.072 0.434

Math scores
Year 1 53.690 54.918 -1.228 -0.058 0.075 0.540
Year 2 53.157 53.369 -0.211 -0.010 0.072 0.896

Number of schools 69 99

Estimated Impact on Test Scores, RD Design

NOTES: Test scores are scaled in normal curve equivalents (NCEs). Effect sizes are based on a standard deviation 
of 21.06, which is the student-level standard deviation for scores in NCEs. The statistical model used to estimate 
impacts includes a treatment group indicator and the rating variable centered on the cut-off of 145. 

Table 3.1

DD and CITS Designs in Educational Evaluation
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other nonexperimental designs (NXD). Therefore, program effectiveness is not a necessary 
condition for a valid causal benchmark, but several other conditions do have to be satisfied, and 
we turn to them in the next section.  

Specification Tests on the Causal Benchmark 
An RD impact estimate must meet three conditions to serve as a causal benchmark. It must be: 
(1) internally valid, (2) generalizable to all schools in the sample, and (3) sufficiently precise to 
provide an acceptable chance of detecting a nonzero impact if it exists.21 These three conditions 
— and the specification tests used to assess them in the context of Reading First — are 
discussed below. In summary, the results of these tests indicate that the RD impact estimates in 
Table 3.1 satisfy all three conditions and that estimated impacts from the RD design can be used 
as a benchmark to study the causal validity of the DD and CITS designs. 

The RD Impact Estimates Must Be Internally Valid 

The causal validity of an RD design hinges on four important conditions, which are 
discussed below.22 The test results are summarized below, with more detailed findings 
presented in Appendix A. 

1) Nothing other than treatment status is discontinuous at the cut-point value of 
the RD rating (that is, there are no other relevant ways in which observations 
on one side of the cut-point are treated differently from those on the other 
side).  

One way to test this condition is to estimate the “impact” of Reading First on variables that 
should not be affected by the program, such as the demographic characteristics of the student 
body and school-level test scores in the baseline period. The estimated impact of Reading First 
on these variables should be zero or not statistically significant. Accordingly, we examined the 
impact of Reading First on school characteristics that should be unaffected by the program, in 
the last baseline year, the first follow-up year, and the second follow-up year (See Appendix A). 
We find that Reading First did not have a statistically significant impact on these characteristics.  

2) The rating variable cannot be caused by or influenced by the treatment. In 
other words, the rating variable is measured before the start of treatment or 
by a variable that can never change.  

                                                 
21Cook, Shadish, and Wong (2008) discuss the requirements for a strong within-study comparison of 

experimental and nonexperimental estimates. We have adapted these requirements to using an RD design 
rather than an experimental design as the benchmark.  

22See Bloom (2012) and Jacob, Zhu, Somers, and Bloom (2012) for a more detailed discussion. 
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As discussed earlier, ratings were assigned by an independent panel of experts based on a 
standard set of criteria, and therefore there was no opportunity to manipulate the ratings. Our 
qualitative review of the scoring materials and the rating process has convinced us that the 
ratings were indeed based on the scoring rubrics. Ratings were assigned before Reading First 
funds were awarded and could not have been influenced by the treatment or by political 
manipulation. Therefore, possible threats to validity leading to underestimates of program 
impacts — for example, that schools that received funds were somehow more disadvantaged, or 
that there was manipulation of ratings around the cut-off — are not plausible given the way in 
which the ratings were determined and funds were allocated.  

McCrary (2008) also proposes a formal test of whether the ratings were “manipulated.” 
This test examines whether the distribution of the ratings is “disrupted” at the cut-off value, 
which would suggest that some schools’ rating scores were artificially raised so that they could 
just make the cut-off and get funding. The test is conducted by first creating a histogram of the 
density of the ratings, and then using a local linear regression on either side of the cut-off to 
estimate the discontinuity in the ratings density at the cut-off. Based on this test we do not find 
any evidence of manipulation.23 

3) The cut-point is determined independently of the rating variable (that is, it is 
exogenous), and assignment to treatment is based entirely on the candidate 
ratings and the cut-point.  

The cut-point is exogenous because it is based on the amount of available funding. After ratings 
were assigned, schools that applied for Reading First were ranked from highest to lowest based 
on their rating, along with the amount of funding requested (which was based on the size of the 
school). Funding was awarded to the highest-rated schools in rank order, until the available pool 
of funds was exhausted. Based on this funding algorithm, the 74 schools with the highest rating 
were awarded Reading First funding.24 The cut-off is equal to the rating at which funds were 
exhausted. (The cut-point between the lowest-scoring winning school and the highest-scoring 
losing school is 145.)  

                                                 
23The size of the discontinuity in the distribution of ratings at the cut-off is 0.736 (in logs), with a standard 

error of 0.516. To run the test, one must choose a bin size for the histogram and a bandwidth for the local 
regression. McCrary proposes values based on a “rule of thumb,” but he stresses that these are only starting 
points, and that a more formal procedure should be used to determine the optimal bandwidth especially. 
Accordingly, we use the optimal bandwidth described in Imbens and Kalyanaraman (2009), which is 10 points 
on the rating scale; for the bin size, we use the default value proposed by McCrary (4.3 points). 

24Although 74 schools received funding, 69 are used in the analysis because 5 schools do not have test 
score data for all baseline years. Using the RD design, estimated impacts for the 69 schools used in the analysis 
do not differ appreciably from impacts based on all 74 schools. 
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4) The functional form representing the relationship between the rating variable 
and the outcome is continuous throughout the analysis interval absent the 
treatment, and is specified correctly.  

To estimate the impact of Reading First on student achievement, we use a simple linear RD 
model. We are confident that this is the correct functional form for several reasons. First, 
graphical inspection of the relationship between ratings and test scores clearly shows that it is 
linear and flat (Figures 3.1 and 3.2). Second, as a sensitivity test, we estimated impacts based on 
alternate function forms — allowing the relationship between the rating and test scores to be 
quadratic and cubic (see Appendix A). Impact estimates based on these alternate forms are not 
statistically significant and are similar in magnitude to the results based on a simple linear 
functional form. 

As a further specification test, the literature also recommends that impacts be estimated 
using only the subset of observations around the cut-off. The relationship between the rating 
variable and test scores is more likely to be linear around the cut-off, so impact estimates based 
on observations in this area are more likely to be correct. Accordingly, Figures 3.3 and 3.4 
present RD impact estimates for different bandwidths h around the cut-off, for impacts on 
reading and math test scores, respectively. For all bandwidths — even those closest to the cut-
off, where the functional form is most likely to be linear — we see that the estimated impact of 
Reading First hovers around zero and is not statistically significant.  

In summary, these sensitivity analyses indicate that the RD estimate meets all four 
conditions for its internally validity and that the estimated impact of Reading First is not 
statistically significant and is zero for all practical purposes.  

The RD Impact Estimates Must Be Generalizable to All Reading First 
Schools 

In addition to being causally valid, the RD design must measure the same causal 
quantity as the DD and CITS designs to which it will be compared. In an RD, the mean 
counterfactual outcome for the treatment group is represented by the predicted outcomes of the 
comparison group at the cut-off point. Therefore, strictly speaking, RD impact estimates 
represent the effect of the program for participants around the cut-off only (the “local” average 
treatment effect). In contrast, the DD and CITS designs provide an estimate of the average 
impact for all Reading First schools (the average treatment effect).  

Therefore, in order to use the RD as a benchmark, we must demonstrate that the RD 
estimates are generalizable to all schools. And specifically, we need to show that the Reading 
First had a “zero” impact not only for schools around the cut-off, but also for schools further 
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Figure 3.3

RD Impact Estimate on Reading Scores (and 95% CI) by Bandwidth Around Cut-Off
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Figure 3.4

RD Impact Estimate on Math Scores (and 95% CI), by Bandwidth Around Cut-Off
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away from the cut-off. We use three specification tests to assess whether impacts are 
heterogeneous across Reading First schools. 

The first test compares the slopes of test scores against ratings on either side of the cut-
off. If Reading First had somehow had an impact on Reading First schools further from the cut-
off, an increase in these schools’ test scores would make the slope for Reading First schools 
different (steeper) than the slope for non-Reading First schools. As seen in Figures 3.1 and 3.2, 
however, the slope of the relationship between ratings and school-level test scores is the same 
on either side of the cut-off (and, in fact, it is flat). A statistical test confirms that the difference 
between slopes is not statistically significant (see Appendix A). This indicates that Reading First 
did not affect the test scores of schools further away from the cut-off any more than the test 
scores of schools closer to the cut-off.  

The second way to examine whether effects are heterogeneous is to look at whether the 
estimated impact for all schools differs from the impact for schools around the cut-off. As 
shown in Figures 3.3 and 3.4, the estimated impact is the same (“zero”) for both groups of 
schools. The estimated impact of Reading First is stable across different subsamples of schools, 
which provides further evidence that the program did not improve the test scores of any 
particular subgroup of schools.  

The third test of impact heterogeneity — proposed by Wing and Cook (2013) — is a 
test that can be used when a baseline measure of the outcome variable is available. The test is 
illustrated in Figure 3.5. The first step is to look at the relationship between the rating variable 
and the outcome variable in the baseline period (in this case, reading test scores in 2004), which 
provides a “benchmark” for the functional form of this relationship before the program began. 
This is the dotted line in Figure 3.5. The second step is to plot the relationship between the 
ratings and test scores in the follow-up period (the solid line in Figure 3.5). The final step is to 
compare these two relationships above the cut-off. If the relationships are parallel, this indicates 
that the intervention has a homogeneous impact for all observations above the cut-off. If the 
relationships are not parallel, this indicates that the impact of the intervention is heterogeneous: 
If the lines diverge as the rating increases, the impact of the intervention is larger for 
observations farther from the cut-off, whereas if the lines converge as the rating increases, the 
impact of the intervention is greater for observations around the cut-off. As seen in Figure 3.5, 
the lines for reading scores (top panel) and math scores (bottom panel) are virtually parallel 
above the cut-off. For both outcome measures, the slope of the two lines does not differ by a 
statistically significant amount above the cut-off point. This suggests that the impact of Reading 
First was uniformly “zero” for all schools above the cut-off. If we were to trust visual inspection 
over the statistical test — and assume that the lines converge above the cut-off — the 
conclusion is the same: The program was not any more effective for schools with higher ratings.  
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Figure 3.5

Relationship Between Reading Scores and Ratings, 
Baseline vs. Year 1
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In conclusion, the findings from these specification tests strongly suggest that the 
“zero” impact of Reading First can be generalized to all schools in the sample. The most 
convincing piece of evidence in support of this claim is the fact that the relationship between 
ratings and test scores is almost perfectly horizontal. Because there is no relationship between 
the ratings and test scores, it seems highly implausible that there would be a relationship 
between the ratings and the magnitude of the impacts. Therefore, the estimated impact from the 
RD design represents the average treatment effect of Reading First, which is the same causal 
quantity that will be obtained from the DD and CITS designs.  

The RD Impact Estimates Must Be Sufficiently Precise to Detect Policy-
Relevant Impacts 

As demonstrated elsewhere, estimates from the RD design have less statistical precision 
than other study designs (Bloom, 2012; Schochet, 2008).25 In practice, the standard error of 
impact estimates is two to four times greater for an RD design than for a randomized 
experiment with the same sample size. This is because there is a high correlation between the 
rating variable (RATING) and treatment status (TREAT) on the right-hand side of the RD model, 
which increases the standard error of the impact estimate.  

By extension, a potential concern for this study is that Reading First may have 
improved test scores by a policy-relevant amount, but that these effects are not being detected 
because the precision of the estimated impact from the RD design is too low. We argue, 
however, that the statistical precision of the RD findings presented earlier is sufficient to make 
reliable conclusions, for two reasons. 

First, the minimum detectable impact for the RD analysis in this paper is sufficiently 
small to be policy-relevant. Based on the standard errors reported in Table 3.1, the minimum 
detectable effect size (MDES) — or the smallest true impact that can be detected with 80 
percent power and an alpha level of 5 percent — ranges from 0.20 to 0.21.26 We argue that this 
level of precision is acceptable, because smaller true impacts would not be policy-relevant; this 
is also the level of precision in many (if not most) school-level random assignment studies. 

Second, we are confident that the true impact of Reading First is zero and that our 
conclusion that the program did not improve test scores is correct. To verify this proposition, we 
conducted a simple exercise. As shown in Figure 3.1, there is virtually no relationship between 
the ratings and reading test scores (the slope is horizontal). Therefore, in theory it is not 

                                                 
25See Appendix B for further details on the minimum detectable effect size for the RD design, as well as 

the DD and CITS designs. 
26The MDES is equal to 2.8 times the standard error in effect size. 
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necessary to control for the rating variable in the RD analysis, in which case the RD analysis 
model reduces to the model for a randomized experiment:  

𝑌𝑗 = 𝜋0 + 𝜓0𝑇𝑅𝐸𝐴𝑇𝑗 + 𝜀𝑗 

Based on this model, we find that the estimated impact on reading scores in the first 
year of Reading First (in effect size) is -0.015 and that this estimated impact is still not 
statistically significant at the 5 percent level, even though the precision of this analysis is much 
greater than the RD analysis. (The MDES for the “experimental” analysis is 0.14). This further 
supports our claim that conclusions from the RD design are not simply due to a lack of 
statistical power. 
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Section 4 

The Difference-in-Difference Design and the Comparative  
Interrupted Time Series Design: Analytical Framework 

Having established that the regression discontinuity (RD) design provides a reliable causal 
benchmark for the true impact of Reading First, we now turn to the two nonexperimental 
designs that are the focus of this paper: the comparative interrupted time series (CITS) design 
and the difference-in-difference (DD) design. As explained earlier, these two designs represent 
a trade-off between rigor and data requirements. The CITS design is more rigorous but requires 
more years of baseline data (four or more), while the DD design — which can be seen as a 
“simplification” of the CITS design — requires fewer years of baseline data, but its impact 
estimates are potentially more biased. The key question here is whether a DD design can 
produce internally valid estimates, in the event that sufficient data are not available for using a 
CITS design. 

In this section, we begin by discussing how these two designs can be used to evaluate 
the impact of a school-level intervention such as Reading First. We then describe the 
comparison schools for these two designs — the process and methods used for selecting them 
and their characteristics relative to Reading First schools. 

Overview of the DD and CITS Designs 
As noted earlier, the DD design evaluates the impact of a program by looking at whether — 
relative to the pre-intervention period — the treatment group makes greater subsequent gains 
than does the comparison group on the outcome of interest. This design has been used to 
evaluate a wide range of school-level education reforms, including the Talent Development 
program (Herlihy and Kemple, 2004; Kemple, Herlihy, and Smith, 2005), Project GRAD 
(Snipes, Holton, Doolittle, and Sztejnberg, 2006), and the First Things First program (Quint, 
Bloom, Black, and Stephens, 2005).  

Figure 4.1 demonstrates the DD design using the example of Reading First, based on 
hypothetical data. Here we assume that third-grade reading scores are available for three 
baseline years and two follow-up years. To estimate program impacts, the first step is to 
determine the amount by which school’s average test scores change from baseline to follow-up 
(“change from baseline mean”). This change over time is estimated for both the treatment group 
(Reading First schools) and for comparison schools, for each follow-up year. The estimated 
impact of the program is then obtained as the change over time in the Reading First schools 
minus the change over time in the comparison schools. Mathematically, this is equivalent to
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Figure 4.1

Estimating the Impact of Reading First Using a Difference-in-Difference Design
(Hypothetical Data)

RF schools baseline mean

Comparison schools baseline mean

Follow-up period

Reading First begins 
Fall 2004

Change from baseline mean 
(RF schools)

Change from baseline mean 
(comparison schools)

ESTIMATED IMPACT = 
Change (RF) - Change (comparison) 
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estimating the difference in reading scores between Reading First schools and comparison 
schools at follow-up, and then subtracting the difference between the two groups of schools at 
baseline. Thus, the design implicitly adjusts for any difference in baseline means between 
treatment and comparison schools.  

The rigor of the DD design (and any nonexperimental design) hinges on whether its 
comparison group provides a valid estimate of the mean counterfactual outcome for the 
treatment group. In a DD design, the estimated counterfactual outcome is the comparison 
group’s change over time from its baseline mean. In other words, we must assume that in the 
absence of the intervention, the treatment group would have made the same average gains (or 
losses) as the comparison group.  

An important (and credible) threat to this assumption is that treatment and comparison 
schools may have different “maturation” rates. In Figure 4.1, for example, the larger gains made 
by Reading First schools could actually be due to a preexisting difference in the growth rates of 
treatment and comparison schools (as opposed to the impact of Reading First). Unfortunately, 
with less than four years of pretest data, it is almost impossible to determine the extent to which 
differential growth rates are a threat to causal validity.  

The CITS design addresses these concerns by making use of multiple years of pretest 
data. The impact of a program is evaluated by looking at whether — once the program begins 
— the treatment group deviates from its pre-intervention trend by a greater amount than does 
the comparison group. If so, the program is considered effective. The CITS design has more 
stringent data requirements than the DD design; in order to reliably estimate baseline trends, the 
CITS design requires pretest data for at least four time points before the intervention begins. For 
this reason, the CITS design has been less frequently used in program evaluation.27 However, 
due to the reporting requirements of No Child Left Behind, school-level test scores are now 
publicly available on a yearly basis, which makes the CITS design eminently feasible for 
evaluating school-level interventions. Bloom (2003) provides a general discussion of 
interrupted time series designs — with and without comparison groups — in the context of 
education research. 

Figure 4.2 demonstrates, using hypothetical data, how the CITS design can be used to 
evaluate Reading First, assuming that six years of pretest data are available. (The reading scores 
for the last three baseline years are the same as in Figure 4.1.) The first step in a CITS design is 
to estimate the trend in third-grade test scores for each school during the baseline period. The 
second step is to estimate the amount by which schools’ test scores deviate from their baseline 
trend in the follow-up period (“deviations from baseline trend”). Average deviations from trend

                                                 
27It has been used to evaluate the Jobs-Plus program (Bloom and Riccio, 2005), as well as No Child Left 

Behind (Dee and Jacob, 2011; Wong, Cook, and Steiner, 2011).  
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Figure 4.2

Estimating the Impact of Reading First Using a Comparative Interrupted Time Series Design 
(Hypothetical Data) 

RF schools baseline trend

Comparison schools baseline trend

Reading First begins 
Fall 2004

Follow-up period

ESTIMATED IMPACT = 
Deviation from trend (RF) -

Deviation from baseline trend 
(RF schools)

Deviation from baseline trend 
(comparison schools)
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are obtained for both Reading First schools and comparison schools. Finally, the impact of the 
intervention is estimated as the difference between the deviation from trend in treatment schools 
and the deviation from trend in comparison schools. If the program is effective, the deviation 
from trend for treatment schools will be greater than that for comparison schools.  

The CITS design has greater potential than the DD design to provide valid inferences 
about program impacts, because it implicitly controls for differences between the “natural 
growth” rates of treatment and comparison schools. Figures 4.1 and 4.2 illustrate this point. In 
this hypothetical example, the DD design would incorrectly show that the program was 
effective. However, the CITS design would reveal that, in fact, the treatment and comparison 
schools are on different growth trajectories and that gains made by the treatment schools during 
the follow-up period are actually due to its higher pre-intervention growth rate and not to the 
effect of Reading First. 

The CITS design is an especially rigorous study design for estimating longer-term 
impacts. By “longer term,” we mean impacts occurring in two to three years of follow-up, 
whereas “shorter-term” impacts are those in the first year of implementation. The ability to 
estimate longer-term impacts is important in educational evaluation, because it can take several 
years for an intervention to show visible effects on student achievement. Yet, longer-term 
impacts are harder to estimate because they are based on projections further into the future. 
Obtaining accurate projections is especially complicated when the slope of the baseline trend is 
not flat. The steeper the baseline slope, the less credible are projections further into the follow-
up period, and by extension, the more questionable are estimates of longer-term impacts (since 
marked improvements for long periods of time are likely to be difficult to sustain).  

Because the CITS design can account for baseline trends, it is better positioned than a 
DD design to estimate longer-term impacts, for two reasons. First, the CITS design can make 
more reasonable projections about longer-term outcomes and impacts because these projections 
are based on past trends. Second, the CITS design also provides a more realistic estimate of the 
precision of impact estimates: The standard error of the estimated impact increases for longer-
term impacts, to account for the fact that projections into the follow-up period are less reliable 
as time goes by. In contrast, the DD design assumes that the reliability of projections is the same 
across follow-up periods, no matter how far into the future, and therefore the precision of DD 
estimates is the same regardless of the follow-up year. In education research, the assumption 
that longer-term projections are as reliable as short-term projections is unlikely to be correct, 
because the environment is unstable and constantly in flux. Therefore, the observed precision of 
DD impact estimates overestimates their true precision, especially for longer-term impacts. For 
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this reason, the CITS design provides a better reflection of the true precision of impact estimates 
than a DD design.28  

All things considered, the rigor of a nonexperimental design can be viewed along a 
continuum defined by the number of years of available pretest data. With no pretest data at all, 
the validity of any NX impact estimate is not credible. With one to two years of baseline data, 
the causal validity of short-term impacts is questionable though credible. However, longer-term 
impacts should not be trusted because there is no known baseline trend from which to project 
outcomes far into the future. With three years of baseline data, the baseline mean is estimated 
with greater reliability and is less sensitive to policy shocks in any given year, which 
strengthens our ability to identify a credibly similar comparison group. Also, even though pre-
intervention trends cannot be formally modeled, it becomes possible to gauge (at least 
descriptively) whether the treatment and comparison group have similar baseline slopes. In this 
context, the causal validity of short-term impacts is relatively sound, and longer-term impacts 
can be estimated, but only if baseline trends are quite flat (since projections into the future are 
more credible and reliable when outcomes are stable). With at least four years of baseline data, 
the validity of short-term impacts is strongest, because one can explicitly choose a comparison 
group with similar pre-intervention trends or statistically control for existing differences in 
baseline trends. Moreover, because baseline trends can be formally modeled, outcomes can be 
projected further into the future — and longer-term impacts can be estimated — even when the 
baseline slope is not flat. Having multiple years of pretest data also makes it possible to 
appropriately build additional uncertainty about future projections into the standard errors of 
long-term impact estimates (through estimates of the corresponding “standard errors of 
forecast”). Of course, there are limits to how far projections can be made. Even with many years 
of baseline data, impacts more than three years into the future should be viewed with extreme 
caution, because projections past this point become very unreliable 

Though the CITS design is located at the favorable end of this continuum, it is not 
without limitations. In a CITS design, the comparison group’s deviation from its baseline trend 
provides an estimate of the mean counterfactual outcome for the treatment group. However, a 
potential threat to this assumption is that the treatment and comparison group are not subject to 
the same “policy events” occurring at the same time as the intervention being evaluated, such as 
another school reform initiative or massive staff turnover. If only one group of schools is subject 
to these additional events (whether treatment or comparison schools), the comparison group’s 
deviation from its trend will not provide the right counterfactual outcome for the treatment 
group, and the estimated impact of the program will be biased.29  

                                                 
28See Appendix B for technical details on the precision of CITS and DD designs.  
29For example, one can imagine a situation in which Reading First schools simultaneously implemented 

comprehensive school reform X in the follow-up period. This is a plausible scenario, because Reading First 
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That said, differential policy shocks are a threat to validity for both the DD and CITS 
designs. As argued by Cook and colleagues (2008), this threat can be mitigated by choosing 
comparison schools that are “local” and that have similar pretest scores. Strictly speaking, it is 
not necessary for the treatment and comparison groups to have similar pretest means, because 
the DD and CITS designs implicitly adjust for preexisting differences.30 Indeed, as mentioned 
earlier, previous validation studies have not taken the extra step of finding “matched” 
comparison schools for the DD design (for example, Fortson, Verbitsky-Savitz, Kopa, and 
Gleason, 2012). However, if schools have similar means and trends at baseline, this increases 
the likelihood that they will be subject to the same types of policy shocks (and have similar 
responses to them) in the follow-up period. In other words, the comparison group will have 
greater “credibility” or “face validity” as the source of counterfactual outcomes; hence the 
importance of strengthening the DD and CITS designs by carefully (and thoughtfully) selecting 
comparison schools. This process is discussed in the next section. 

Selection of Comparison Groups 
One of the research questions of this paper is whether — in the context of the DD and CITS 
designs — some comparison group selections methods are superior to others with respect to 
bias reduction and/or precision gain. As noted elsewhere in this paper, there are many different 
strategies and methods for choosing comparison schools, some of which may provide a better 
representation of the mean counterfactual outcome than others (smaller bias). Similarly, some 
selection strategies yield larger comparison groups than others and, accordingly, will produce 
more precise impact estimates (greater precision). Therefore, in this paper we use several 
methods for selecting comparison groups, with the goal of comparing their bias reduction and 
precision gain.  

Prescreened Groups 

As argued by Cook, Shadish, and Wong (2008), comparison groups are more likely to 
provide the right counterfactual outcome when they are somehow “prescreened” for program 
participation. For example, members of a convincing comparison group should meet the 
geographical or needs-based conditions for participating in the intervention (prescreened for 

                                                                                                                                               
schools might be more proactive about school improvement than other schools. In this situation, the 
comparison group’s deviation from trend or mean in the follow-up period will not accurately portray the 
deviation that Reading First schools would have experienced in the absence of the Reading First. Specifically, 
comparison schools did not implement either the comprehensive school reform or Reading First; therefore, a 
comparison of Reading First and comparison schools will provide an estimate of both Reading First and the 
other school reform, rather than just the effect of Reading First.  

30The DD design implicitly controls for baseline differences in mean scores, while the CITS design also 
controls for any differences in baseline trends. 
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eligibility), or have taken the further step of submitting their name for consideration 
(prescreened for motivation). Narrowing the comparison pool based on ability, motivation, or 
some other known selection criterion is a way of simulating the selection process by which 
treatment schools came to be participants, which is important for producing a credible 
comparison group. 

Accordingly, our first comparison group consists of schools that are located in districts 
eligible for Reading First funds. To be eligible, schools had to meet several criteria at both the 
district level and the school level. In terms of district-level requirements, a school had to be 
located in a Local Education Agency (LEA) that had at least one school with more than 50 
percent of students reading below proficiency in fourth grade; a school’s LEA also had to fall 
within one of three prespecified categories for school improvement.31 In terms of the school-
level eligibility requirements, schools themselves had to be among those in their district with the 
highest proportion of low-income students; have 50 percent or more students below “proficient” 
on the fourth-grade state reading assessment; and receive Title I funds.  

Unfortunately, there are constraints on our ability to exactly identify eligible schools. 
We know which districts (LEAs) were eligible for Reading First, but we cannot identify exactly 
which schools within those districts were eligible. Therefore, our “eligible” group includes all 
schools in eligible districts — for a total 419 comparison schools spread across 79 eligible 
school districts — rather than eligible schools. The fact that we are unable to identify eligible 
schools may compromise this group’s credibility as a source of counterfactual outcomes, 
because the “eligible” group could include schools that were, in fact, not eligible to apply (or in 
other words, schools that are higher achieving than Reading First schools).  

We use two strategies to create a more credible comparison group for Reading First 
schools. First, as an alternative comparison group, we use the 99 schools that applied for 
Reading First funds but did not receive them. By definition, these schools met all school-level 
and district-level eligibility criteria, but in addition, similar to the Reading First schools (the 
treatment group), they also had the motivation and resources to apply. These nonwinning 
applicants are the “non-RF group” in the RD design in Section 3.  

As a second strategy for enhancing the credibility of the comparison groups, we use 
statistical matching methods to identify schools — among the “eligible” group — that are 
similar to the Reading First schools based on pretests and other school-level eligibility criteria 

                                                 
31The three categories are: (1) The LEA has jurisdiction over a geographic area that includes an area 

designated as an empowerment zone (EZ) or an enterprise community (EC); (2) the LEA has jurisdiction over 
a significant number or percentage of schools that are identified for school improvement under section 1116(b) 
of Title I of the Elementary and Secondary Education Act (ESEA); or (3) the LEA has the highest number or 
percentage of children in the state who are counted by the U.S. Department of Education under section 1124(c) 
of Title I of the ESEA. In total, 103 districts in our midwestern state were eligible for Reading First funds. 



35 
 

(the percentage of low-income children and Title I status). In real-world applications, 
information on which schools applied for a program is not always known or relevant, so 
matching may be the only option for creating a credible comparison group. The creation of 
“matched” comparison sets is described in the next section. 

Matched Groups 

The creation of matched comparison groups entails three types of decisions. The first is 
the pool of candidates from which the comparison group is to be selected (comparison pool). 
The second is the set of characteristics on which to match schools (matching characteristics). 
The third is the statistical method used to select comparison schools (matching method). We 
created several comparison school sets based on different combinations of these factors, as 
described in greater detail below. 

Comparison Pool 

For the candidate pool for matching, we use the already defined group of 419 schools 
located in districts that are eligible to apply for Reading First funds. Matching is undertaken 
among the pool of schools in eligible districts (rather than among the 99 applicant schools), 
because some matching methods require a relatively large sample size; therefore, it is 
technically preferable to use the larger “eligible” pool as the group from which to select 
comparisons.  

With respect to the matching exercise itself, Cook, Shadish, and Wong (2008) as well 
as others have emphasized the importance of using comparisons that are geographically local.32 
In the case of Reading First, this would entail further restricting the comparison pool to schools 
in the same set of districts as the Reading First schools. In our study, taking this step would 
violate one of the conditions for a strong validation study. As discussed in Section 2, the RD 
design and the DD/CITS designs must provide impact estimates for the same target population, 
and therefore the comparability of the RD control group and the DD/CITS comparison groups 
is essential. If the candidate pool were restricted to schools in the same districts as the RF 
schools, all comparison schools (100 percent) used in the DD and CITS analysis would be 
located in districts that received Reading First funds, by definition. In contrast, only 59 percent 
of control schools in the RD design (those with a rating below the cut-off) are located in a 
district that received Reading First funds. As a result, if the comparison pool was strictly 
“local,” the RD and DD/CITS designs would be based on comparison groups with different 
compositions. However, by relaxing the requirement that comparison schools be “local,” the 

                                                 
32For example, see Heckman and Smith (1999); Heckman, Lalonde, and Smith (1999); and Heckman, 

Ichimura, and Todd (1997). 
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comparison group for the DD/CITS designs will include schools in districts that did not receive 
Reading First funds, just like the RD control group.33  

Although our inability to use a “local” comparison group is counter to conventional 
wisdom on “best practices,” it does afford an opportunity to examine whether using 
geographically local comparisons is a necessary condition for the causal validity of the DD and 
CITS designs. This is a relevant question in educational evaluation, because using comparisons 
in the same districts as the treatment schools may not always be feasible or appropriate. A 
pertinent example is when there is spillover of reform components to other schools within the 
district. In this situation, comparing treatment schools with other schools in their district would 
be biased downward, in which case it may be preferable to match the treatment schools to 
comparison schools located outside of the district. Although using comparison schools in the 
same districts is best where appropriate, it is also important to consider whether another option 
(that is, outside the district or a mix of within and outside as in the case of Reading First) might 
be more suitable, given the characteristics of the intervention.  

Characteristics Used for Matching  

The primary characteristic used for matching Reading First schools to comparison schools are 
the third-grade test scores of schools during the pre-intervention period. Pretests are strong 
predictors of outcomes in the follow-up period, so matching on school-level pretest scores (and 
where possible, their baseline trends) increases the credibility of comparison schools as a 
counterfactual for the treatment schools. For the analysis of impacts on reading achievement, 
we use reading test scores in the baseline period to identify “matched” comparison schools; 
similarly, for evaluating impacts on math achievement, we use math pretest scores to identify 
comparison schools. 

In addition to pretests, we examine whether there is any benefit to also matching on 
other school characteristics like demographics. Specifically, we tried matching on test scores 
plus the following 12 school characteristics: the location of the school (rural or urban), total 
school enrollment, third-grade enrollment, the percentage of students who receive free or 
reduced price lunch, the racial/ethnic composition of the school (percentage of students who are 
white, black, Hispanic, Asian, or other), the percentage of third-grade students who are girls, the 
pupil-teacher ratio, and child poverty rates for the district. These characteristics were chosen 
because they have been used in the past to predict test scores. Matching on these characteristics 
may improve the comparability of the treatment and comparison schools and further reduce 
bias, because schools’ eligibility for Reading First funds was partly based on characteristics 
such as the percentage of low-income students.  
                                                 

33For example, among the comparison groups used in this analysis, the percentage of schools located in a 
district that did not receive Reading First funds ranges from 48 percent to 64 percent. 
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The number of years of baseline data used for matching depends on the design. For the 
CITS design, we use all six pre-intervention years of test scores and demographic data for 
matching (spring 1999 to 2004). For the DD design, we use the three most recent pre-
intervention years (spring 2002 to 2004). Recall that the CITS design requires only four data 
points, and the DD design requires only one baseline point, so again we want to emphasize that 
our analysis represents a strong application of these two study designs. This is especially true 
for the DD design: As discussed earlier, using more baseline data points (and especially going 
from one data point to three data points) considerably strengthens the rigor of the analysis.  

The next step in our analysis is to create a propensity score based on the matching 
characteristics. Because several characteristics and multiple years of data are used for matching, 
we need to collapse these variables into an overall index of “similarity” to make the process of 
matching more tractable. Several one-dimensional indices have been proposed — such as the 
Mahalanobis distance and the Euclidian distance — but in our analysis we use the propensity 
score method because it is the most common (Rosenbaum and Rubin, 1983).  

The propensity score is calculated by fitting the following logistic regression model to a 
dataset that includes Reading First schools and schools in the “eligible” group (the candidate 
pool used for matching):34 

𝑙𝑜𝑔𝑖𝑡�𝑇𝑅𝐸𝐴𝑇𝑗� = 𝛼 + � 𝛿𝑡𝑆𝐶𝑂𝑅𝐸𝑡
2004

𝑡=𝑇0
+ � � 𝛽𝑘𝑡𝑆𝑘𝑡

12

𝑘=1

2004

𝑡=𝑇0
+ 𝜀𝑗 

 

 

Where: 
 

𝑻𝑹𝑬𝑨𝑻𝒋 = Dichotomous indicator for whether school j is a treatment 
school (= 1 if treatment school; 0 if a school in the 
comparison pool) 

𝑺𝑪𝑶𝑹𝑬𝒕 = School-level test score in Year t (reading scores to create 
comparison groups for impacts on reading; math scores for 
impacts on math) 

𝑺𝒌𝒕 = School characteristic S in Year t (12 characteristics) 
𝜺𝒋 = Random error term for school j  

 

                                                 
34This regression is estimated on a “flattened” dataset — that is, with one observation per school. Time-

varying characteristics are expressed as multiple variables. For example, there is one test score variable per 
academic year (for example, READ1999, READ2000, etc.), and one value for each school characteristic per 
school year (for example, ENROLLMENT1999, ENROLLMENT2000, etc.). 
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The estimated coefficients from this logistic regression represent the relationship 
between school baseline test scores and characteristics and the log odds of being in the 
treatment group. They can be used to obtain the predicted probability that a school will be in the 
treatment group (that is, receive Reading First funds), given its characteristics. This predicted 
probability is defined as the propensity score. Viewed otherwise, the propensity score is simply 
a weighted composite of test scores and school characteristics, where the weight for a given 
characteristic is proportional to its ability to predict treatment status.35 Importantly, the 
difference between schools’ propensity scores provides a measure of their “dissimilarity.”  

We estimate several sets of propensity scores for our analysis, based on different 
combinations of matching covariates and years of baseline data. For the CITS design, we use a 
propensity score based on all six years of pre-intervention data (t = 1999 to 2004). For the DD 
design, we use only three pre-intervention years of test scores and demographic data (t = 2002 
to 2004). For each design, we estimate two sets of propensity scores: (a) one that includes test 
scores only and (b) one based on test scores and other baseline school characteristics.36 We also 
estimate separate propensity scores for math and reading. In total, we use eight sets of 
propensity scores, defined by number of year of baseline data (six or three), matching 
characteristic (test scores or test scores plus demographics), and subject matter (reading scores 
or math scores).  

These propensity scores are then used as the metric for choosing comparison schools 
that are most “similar” to the Reading First schools. The algorithms (matching methods) used to 
select schools are described in the next section. In practice, we use the logit of the propensity 
score for matching, as recommended in the literature.37  

                                                 
35An alternative to matching on the propensity score is to match directly on schools’ baseline mean test 

score and the slope of their baseline scores, using multidimensional matching. We conducted this analysis as a 
sensitivity check. The results from this analysis produce similar results (see Appendix F). However, the 
propensity score approach is easier to execute in practice, which is why it is the focus of our paper. 

36Some schools do not have complete data on all of these school characteristics. We therefore impute these 
characteristics using a “dummy variable” approach (Allison, 2001). The missing value is imputed using a 
constant, and for each characteristic, we create a dichotomous indicator for whether a data point is imputed (= 1 
if imputed, 0 otherwise). In the propensity score regression, we then include both the imputed characteristic and 
the missing data dichotomous indicator for that characteristic. In this way, “missingness” contributes to 
information determining probability of treatment assignment (Hansen, 2004). 

37 The logit transformation is used for three reasons (Rubin, 2001). Because the logit transformation makes 
the propensity score linear, it is more relevant for assessing the results of linear modeling adjustments. Second, 
linear propensity scores tend to yield distributions with more similar variances and symmetry. Third, linear 
propensity scores are easier to relate to benchmarks in the literature on adjustments for covariates, which are 
based on linearity assumptions. 
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Matching Methods 

As mentioned in the introduction, previous reviews have concluded that the statistical 
method used to select comparison schools matters little in terms of bias reduction. However, the 
choice of matching method does affect the number of comparison schools selected, and 
therefore the precision of impact estimates. In school-level impact evaluations — which 
typically have few units — maximizing the sample size may be an important consideration. 
Therefore, we create comparison school sets using matching methods that differ with respect to 
the number of comparison schools selected.38 

The first selection method that we examine — and the one that is most popular in 
evaluation research — is nearest neighbor matching, also called “one-to-one” matching. This 
method chooses the most similar comparison school for each treatment school, based on the 
propensity score. Matching is conducted with replacement, which means that a given 
comparison school can be chosen as the “best” match for more than one treatment school. In 
this way, each treatment school is matched to the school that is most similar to it. The advantage 
of this type of matching is that it minimizes bias. Its disadvantage is that of all selection 
methods examined in this paper, it yields the smallest comparison group: Assuming that there 
are n treatment schools, there will be at most n unique comparison schools and perhaps far 
fewer than that, since a given comparison school can be matched to more than one treatment 
school.  

For this reason, we also examine two selection approaches that yield larger comparison 
groups. These methods increase the sample size by “relaxing” some of the constraints imposed 
by using one-to-one matching with replacement. However, in doing so, these methods also 
introduce greater risk that impact estimates will be biased. Therefore, the question of interest is 
whether these alternative selection methods can increase the precision of impact estimates 
without compromising their causal validity.  

The first alternative is to conduct one-to-one matching without replacement. In this 
variant of the nearest neighbor approach, a given comparison school can be matched to only one 
treatment school.39 Therefore, if there are n treatment schools, there will also be n unique 
comparison schools. When matching without replacement, two different approaches can be 
used. The first is to match each treatment school, one at a time, to its nearest neighbor among 
the remaining schools in the comparison pool at that point. There are several problems with this 
approach. The first is that a treatment school matched later in the process could end up with a 
poor match, which could reduce the overall balance between the treatment and comparison 
                                                 

38Methods not examined in this paper, for example, are kernel and local linear matching (Diaz and Handa, 
2006) and full matching (Hansen, 2004). 

39In contrast, one-to-one matching with replacement is sometimes called greedy nearest neighbor 
matching. 
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group. Second, the resulting comparison pool (and its quality) depends on the order in which 
treatment schools are matched. Therefore, when matching without replacement, a better 
approach is to use optimal nearest neighbor matching instead (Rosenbaum, 1989). When using 
an optimal algorithm, the goal is to find a comparison group of size n that minimizes the total 
distance between treatment and comparison schools, as opposed to the distance between each 
individual treatment-comparison pair. By this token, the optimal approach reduces the extent to 
which bias increases when comparison schools are selected without replacement. Moreover, 
with optimal matching, the order in which treatment schools are matched is irrelevant.40 This is 
the approach used in our analysis when matching without replacement. 

The second alternative for increasing the size of the comparison group is to use radius 
matching, also known as “one-to-many” or “caliper” matching. In this approach, each treatment 
school is matched to all “suitable” comparison schools, defined as all schools within a given 
distance (or radius) of the treatment school as measured by the propensity score. Radius 
matching is conducted with replacement (a comparison school can be matched to more than one 
treatment school). The advantage of this method is that the size of the comparison group is 
larger than that for one-to-one matching; thus impact estimates are more precise. However, if 
the radius is too wide, greater precision will come at the cost of less “suitable” comparison 
schools, which could introduce bias into the impact estimate.  

The challenge is finding the optimal radius — one that maximizes the sample size 
without compromising the validity of the comparison group as a source of estimates of the 
mean counterfactual outcome. Rough guidelines for the radius exist in the literature. Cochran 
and Rubin (1973) recommend a radius of 0.25 standard deviations (SD) on the propensity score 
as being sufficiently small to eliminate bias.  

However, when pretest scores are available for two or more baseline years (as they are 
for the CITS design and in some cases the DD design), we propose that a more rigorous method 
can be used to determine the optimal radius.41 Specifically, we can choose the radius based on 
the program’s “impact” in the last baseline year. Because the intervention has not yet started at 
this point in time, we know that Reading First’s true impact in the last baseline year is zero, so 
we can use this as a benchmark for choosing the right radius. As the radius for matching 
expands, the estimate of this impact may deviate from zero because we are selecting “less 
similar” schools, but the precision of the impact estimate will increase as we include more 
schools in the comparison group. The goal is to choose the largest radius that still provides an 
estimated impact that does not differ statistically from zero.  

                                                 
40In contrast to the “optimal” algorithm, the first approach (where each treatment school is matched one at 

a time) is sometimes referred to as a “greedy” matching algorithm. 
41We are not aware of this method having been used in other studies. 
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We can use the mean squared error (MSE) as a metric for capturing the trade-off 
between bias and precision as the radius expands. The MSE for radius R is defined as follows: 

𝑀𝑆𝐸�𝑅 = 𝜑𝑅�
2 + 𝑣𝑎𝑟(𝜑𝑅� ) 

 

The first term, 𝜑𝑅�
2 , is the square of the estimated impact in the last baseline year based 

on a comparison group selected using radius R. Because the true impact in the last baseline year 
is zero, the first term 𝜑𝑅�

2 is also the squared bias of the estimated impact in the last baseline 
year.42 The second term measures the variance of the estimate. Assuming that there are multiple 
“good” matches for each comparison school, the MSE should initially decrease as the radius 
expands (since the variance will decrease without increasing bias). Then at some point, the 
MSE will start to increase as “bad” matches are chosen and bias is introduced into the estimates. 
Thus, the MSE is a useful measure for capturing the trade-off between bias and precision when 
selecting a radius.43  

In practice, the optimal radius (and the final comparison group) can be determined by 
following these steps:  

(1) The propensity score is calculated using pre-intervention data excluding the 
last baseline year (the latter being reserved for impact estimation in the next 
step);44  

(2) Then for different values of radius R: 
a. Each Reading First school is matched to all comparison schools 

within radius R, based on the propensity score from Step 1.45 
b. The impact in the last baseline year (which should be zero) is then 

estimated using the resulting comparison schools,46 and the MSE for 
radius R is calculated based on the estimated impact and its standard 
error. 

(3) The “optimal” radius can then be determined — it is defined as the radius 
with the smallest MSE. In our analysis, the optimal radius ranges from 0.08 

                                                 
42The bias of 𝜑𝑅�  is equal to 𝜑𝑅�  minus the true impact of zero.  
43In its most general form, the estimated MSE is defined as: 

𝑀𝑆𝐸�𝜃�� = �𝜃� − 𝜃∗�2 + 𝑣𝑎𝑟(𝜃�)  
where 𝜃∗ is the true value of the parameter of interest and 𝜃�� is its estimate.  
44This means that in this step, five baseline data points are used to estimate the propensity score for the 

CITS design and two baseline data points are used for the DD design. 
45For RF schools for which there is no match within radius R, we relax the criterion and simply select their 

nearest neighbor, in order to ensure that all schools have a match.  
46Impacts are estimated based on a variant of the CITS and DD models shown in Section 5. 
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to 0.21 SD, depending on the study design and matching characteristics (see 
Table 4.1).47  

(4) Finally, the optimal radius is used to choose the final comparison group. 
Specifically, the propensity score is reestimated using all years of baseline 
data.48 Then each Reading First school is matched to all comparison schools 
whose propensity score is within the optimal radius. 

A limitation of the MSE and, by extension, this approach for determining the optimal 
radius, is that, in practice, it must be calculated using the estimated bias rather than the true bias, 
because the latter is unknown. The estimated bias is equal true bias plus random sampling error 
arising from the fact that the bias itself is an estimated quantity. The problem is that these two 
components behave differently as the radius widens: True bias increases, while random 
sampling error decreases, because the number of comparison schools, and the sample size, is 
getting larger. Consequently, as the radius widens, the estimated bias can decrease even when 
true bias is increasing. This means that the “optimal” radius — which is chosen based on the 
estimated bias — will be larger than the optimal radius that would have been chosen based on 
the true bias (had it been known). Stated otherwise, the “optimal” radius could, in fact, be too 
wide. Despite these limitations, we believe that the MSE is the best approach available to us for 
selecting the radius, because it is a data-driven method rather than an ad-hoc rule.  

Summary 

Table 4.1 summarizes the comparison sets used in the analysis of impacts on reading 
and math scores. These sets can be grouped into three categories:  

• “Prescreened” groups of comparison schools that are not matched but that 
resemble the Reading First schools with respect to either geography (all non-
Reading First schools in the state), eligibility (all non-Reading First schools 
in eligible districts), or motivation (schools that applied for Reading First 
funds but did not win);  

• Matched comparison sets for the CITS analysis (created by matching on a 
propensity score calculated from six years of baseline data);  

                                                 
47All optimal radii are below 0.25 SD, which is the maximum recommended in this literature (Cochran 

and Rubin, 1973). The standard deviation used to define the radius is the school-level standard deviation of the 
logit of the propensity score for all treatment schools and eligible comparison schools in the matching pool; we 
use the school-level SD because it is the unit of analysis for matching. 

48Six years of baseline data for the CITS design and the three most recent baseline years for the DD 
design. 



 
 

Definition of Group/ With Matching
Comparison Set Name Selection Method Replacement? Characteristics Reading Math Reading Math Reading Math

Prescreened groups
State All non-RF schools in state -- -- -- -- 611 611 -- --

Eligible
All non-RF schools in 
   eligible districts

-- -- -- -- 419 419 -- --

Applicants All non-RF schools that 
   applied for funds

-- -- -- -- 99 99 -- --

Matched sets selected from "eligible" pool

For CITS design*
  Nearest neighbor Nearest neighbor Yes Baseline reading scores 1 1 62 59 -- --
  NN w/out replacement Nearest neighbor (optimal) No Baseline reading scores 1 1 69 69 -- --
  Radius Radius Yes Baseline reading scores 20 [1-41] 30 [1-50] 369 349 0.10 0.13
  Radius w/ demographics Radius Yes Baseline scores + 

demographics
25 [1-66] 22 [1-68] 324 323 0.09 0.08

For DD design**
  Nearest neighbor Nearest neighbor Yes Baseline reading scores 1 1 58 65 -- --
  NN w/out replacement Nearest neighbor (optimal) No Baseline reading scores 1 1 69 69 -- --
  Radius Radius Yes Baseline reading scores 31 [1-54] 51 [2-86] 363 346 0.14 0.21
  Radius w/ demographics Radius Yes Baseline scores + 

demographics
9 [1-23] 87 [1-164] 260 350 0.02 0.20

Number of
Unique
Comparison
Schools

Number of
Comparison
Schools per
Treatment Schoola

Optimal
Radius

Comparison School Sets

Table 4.1

DD and CITS Designs in Educational Evaluation

(continued)
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* Matching is based on a propensity score calculated from 6 pre-intervention (baseline) years of data.
** Matching is based on a propensity score calculated from 3 pre-intervention (baseline) years of data.

aMean (range).

Table 4.1 (continued)

NOTES: -- = Not applicable. 

44 



45 
 

• Matched comparison sets for the DD analysis (created by matching on a 
propensity score calculated from three years of baseline data).  

As explained earlier, matched comparison groups were chosen from the “eligible” pool 
based on different selection methods and matching characteristics to further improve the 
comparison schools as the source of mean counterfactual outcomes. The first matched group of 
schools is chosen based on the nearest neighbor method with replacement, the second using 
nearest neighbor matching without replacement (based on an optimizing algorithm), and the third 
using the radius method. All three sets are matched using a propensity score calculated from 
pretests only. The fourth comparison set uses radius matching, but matching is based on a 
propensity score calculated from pretests plus baseline demographics. Impact estimates based on 
the latter comparison group will be compared with those from the third group (radius matching 
based on pretests only) to examine whether also matching on demographic characteristics leads 
to greater bias reduction. We focus on radius matching for this comparison, because this method 
yields the largest sample and therefore the most reliable comparison of bias reduction.49  

Two other issues are worth highlighting. First, among the “prescreened” groups, we 
include all non-Reading First schools in the state as a comparison group. This group is least 
likely to provide the correct counterfactual outcome, because some schools in the state were not 
even eligible for Reading First funds. However, we still include them as a comparison group in 
this paper, in order to examine the validity of the DD and CITS designs when no “prescreening” 
or matching is undertaken to improve the credibility of the comparison pool. Second, the CITS 
and DD comparison sets are matched using more years of baseline data than is typical for these 
designs (especially the DD design, which is often implemented with only one year of baseline 
data). Therefore, they represent especially strong applications of these designs. 

Characteristics of the Comparison Groups 
Having chosen several viable comparison groups, the next step is to gauge their similarity to 
Reading First schools (the treatment group) before the start of the intervention, with respect to 
baseline test scores and demographic characteristics. As explained earlier, strictly speaking, the 
treatment and comparison group do not need to have similar baseline test scores before the 
intervention begins, because differences in test scores and slopes are controlled for by the 
analysis model. However, similar pretest scores — and if possible, similar demographic 
characteristics — do give greater credibility to the comparison group as the basis for estimating 
mean counterfactual outcomes in the follow-up period. For the purposes of this discussion, we 
will focus on the comparison groups used to estimate impacts on reading achievement, since the 
pattern of results for math is similar (see Appendix C).  

                                                 
49See Appendix C for tables showing the amount of overlap between schools in these sets. 
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Accordingly, Tables 4.2 to 4.4 present the characteristics of the comparison groups used 
in the reading analysis. In these tables, statistical tests of the difference between Reading First 
schools and other groups are not shown, for two reasons. First, the precision of the estimated 
difference varies across comparison groups. For a difference of given magnitude, comparison 
groups with more schools are more likely to be deemed statistically different from Reading First 
schools. Second, our goal is to assess the relative similarity of groups, so the statistical 
significance of differences is less relevant than the size of the observed differences and 
ultimately the size of the estimated bias. To this end, the tables present (in parentheses) the 
difference between Reading First schools and other groups as a standardized mean difference or 
effect size. These effect sizes are based on the school-level standard deviation for all schools in 
Reading First-eligible districts (69 Reading First schools plus the 419 non-Reading First schools 
in the eligible comparison pool) in the last baseline year.50 As a rule of thumb in propensity 
score matching, it has been suggested that treatment and comparison groups should differ by not 
more than 0.25 SD on key characteristics (Ho, Imai, King, and Stuart, 2007), so values greater 
than this threshold are flagged in the tables (“X”).  

Table 4.2 presents the characteristics of the three prescreened comparison groups 
relative to the characteristics of Reading First schools (the treatment group). As expected, given 
the eligibility requirements, Reading First schools are much lower performing than other 
schools in the state (effect size difference = 0.70 for reading test scores in the last baseline year). 
Yet, Reading First schools are also lower performing than schools in districts that did meet the 
eligibility criteria (effect size difference = 0.53), which indicates that schools that were 
motivated to apply for Reading First funds had the lowest test scores among those eligible. For 
this reason, Reading First schools are most similar to the “applicant” group in terms of reading 
achievement — the effect size difference in pretest scores for this group is 0.05. On the other 
hand, Reading First schools and the “applicant” group are dissimilar with respect to 
demographic characteristics; effect size differences in racial/ethnic composition, enrollment, 
and poverty are larger than 0.25.  

Tables 4.3 and 4.4 present the characteristics of the matched comparison groups chosen 
from the “eligible” group. We see that all matched comparison groups are reasonably similar to 
Reading First schools with respect to the baseline slope in test scores, as well as demographic 
characteristics. Importantly, effect size differences with respect to the propensity score are small  

                                                 
50See “Selection of Comparison Groups” earlier in this section for a discussion of the eligibility 

requirements. We use the school-level standard deviation (rather than the student-level standard deviation), 
because in the matching literature, standardized mean differences are gauged based on the SD for the unit of 
observation (in this case schools). We use the standard deviation for all schools in eligible districts because it 
constitutes the largest relevant pool of schools. We use characteristics in the last baseline year because 
outcomes are not yet affected by the intervention at this point in time, and matching will be based on baseline 
characteristics. 
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RF
School Characteristic Schools State Eligible Applicants

Baseline reading test scores

Predicted score in last baseline year 52.75 57.69 56.51 53.07
(0.7) X (0.53) X (0.05)

Baseline trend (6 years) 1.24 1.26 1.28 1.23
(0.01) (0.03) (-0.01)

Demographic characteristics (last baseline year)

Urban schools (%) 37.68 34.26 35.80 22.22
(-0.07) (-0.04) (-0.32) X

Enrollment 382.61 409.56 400.13 362.55
(0.17) (0.11) (-0.13)

Free/reduced-price lunch (%) 65.64 53.96 57.97 70.73
(-0.56) X (-0.37) X (0.24)

Racial/ethnic composition (%)
  White 81.35 88.31 85.73 88.36

(0.37) X (0.23) (0.37) X
  Hispanic 2.50 1.60 1.68 1.35

(-0.24) (-0.22) (-0.31) X
  Black 15.17 9.16 11.54 9.70

(-0.37) X (-0.22) (-0.33) X
  Other 2.50 1.60 1.68 1.35

(-0.24) (-0.22) (-0.31) X
Number of 3rd-grade students 59.97 62.89 60.59 52.04

(0.1) (0.02) (-0.28) X
Female 3rd-graders (%) 47.91 47.48 47.56 46.69

(-0.09) (-0.08) (-0.26) X
Children in poverty in district (%) 22.00 20.66 22.45 25.75

(-0.19) (0.06) (0.54) X
Pupil-teacher ratio 14.47 15.57 15.40 14.32

(0.45) X (0.38) X (-0.06)

Number of schools 69 611 419 99

NOTES: Values shown in parentheses are the difference between RF and comparison schools in 
effect size. Effect sizes are calculated using the school-level standard deviation based on all schools 
in RF-eligible districts in the last baseline year (including both RF schools and non-RF schools). 
Differences greater than 0.25 SD are indicated with an "X." Statistical tests of the difference between 
Reading First schools and comparison schools are not shown, because the precision of the estimated 
difference varies across the comparison groups. (For a given effect size, larger comparison groups are 
more likely to be deemed statistically different from RF schools.)

Comparison Groups

Characteristics of Reading First Schools and Prescreened Comparison Groups 
(for Impacts on Reading Scores)

Table 4.2

DD and CITS Designs in Educational Evaluation
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in magnitude, which indicates that the matching process has been properly executed. However, 
in terms of test score levels in the last baseline year, the comparability of the matched sets is 
more mixed. We note the following patterns across Tables 4.3 and 4.4:  

 
• Selection methods (“nearest neighbor” versus “radius”). Among 

matching methods, the nearest neighbor method produces the most similar 
comparison groups with respect to reading scores in the last baseline year. 
Effect size differences range from -0.004 to 0.11 when this method is used, 
which is on par with differences for the “applicant” group. In contrast, 
differences for the radius method range from 0.23 to 0.33. This pattern of 
results is to be expected, because the radius method selects several “suitable” 
matches for each Reading First school, as opposed to the nearest neighbor 
method which selects only the best match. Although pretest differences for 
the radius method are the largest among the matching methods, they are still 
much smaller in magnitude than test score differences for the “eligible” 
group from which they are drawn (effect size = 0.53, Table 4.2). 

• Number of years of pre-intervention data (CITS sets versus DD sets.51) 
Matching on more years of pretest data (six years versus three years) 
decreases comparability with respect to test score levels in the last baseline 
year. This is especially apparent when the radius method is used: The 
difference in baseline test score levels is 0.33 SD when matching on six years 
of pretests, compared with 0.23 when matching on three years of pretests. 
This result suggests that matching on more information may actually put a 
constraint on one’s ability to match on pretest scores right before the 
intervention begins. However, one should remember that when using a CITS 
design, the most important consideration is that the treatment and comparison 
group should have similar baseline slopes, since this is the key element of the 
design for identifying impacts. As seen in Table 4.3, baseline slopes are 
indeed very similar when matching is conducted using six years of data 
(difference = -0.01 to -0.09), which confirms that matching for the CITS 
design was successful.  

• Using demographic characteristics for matching (“radius” versus 
“radius with demographics”). Matching on demographics — in addition to 
pretest scores — does not appreciably improve the comparison group’s simi-  

                                                 
51CITS comparison sets are matched sets using six years of baseline data, while DD comparison sets are 

matched using three years of data.  
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RF Nearest NN w/out Radius w/
School Characteristic Schools Neighbor Replacement Radius Demographics

Propensity score (logit scale) -1.461 -1.480 -1.498 -1.480 -1.688
(-0.02) (-0.04) (-0.02) (-0.07)

Baseline reading test scores

Predicted score in last baseline year 52.75 53.50 53.05 55.07 55.00
(0.11) (0.04) (0.33) X (0.32) X

Baseline trend (6 years) 1.24 1.14 1.16 1.21 1.23
(-0.09) (-0.07) (-0.03) (-0.01)

Demographic characteristics (last baseline year)

Urban schools (%) 37.68 42.03 40.58 41.02 30.07
(0.09) (0.06) (0.07) (-0.16)

Enrollment 382.61 392.78 389.59 376.88 371.14
(0.06) (0.04) (-0.04) (-0.07)

Free/reduced-price lunch (%) 65.64 63.68 63.84 65.18 67.28
(-0.09) (-0.09) (-0.02) (0.08)

Racial/ethnic composition (%)
  White 81.35 81.85 83.23 83.31 83.78

(0.03) (0.1) (0.1) (0.13)
  Hispanic 2.50 2.15 1.98 1.94 1.57

(-0.09) (-0.14) (-0.15) (-0.25) X
  Black 15.17 14.92 13.82 13.83 13.91

(-0.02) (-0.08) (-0.08) (-0.08)
  Other 2.50 2.15 1.98 1.94 1.57

(-0.09) (-0.14) (-0.15) (-0.25) X
Number of 3rd-grade students 59.97 59.35 58.45 56.29 56.46

(-0.02) (-0.05) (-0.13) (-0.12)
Female 3rd-graders (%) 47.91 47.27 46.67 47.60 48.49

(-0.14) (-0.27) X (-0.07) (0.12)
Children in poverty in district (%) 22.00 22.68 22.69 23.18 22.69

(0.1) (0.1) (0.17) (0.1)
Pupil-teacher ratio 14.47 15.19 15.22 15.17 14.62

(0.29) X (0.3) X (0.29) X (0.06)

Number of schools 69 62 69 369 324
(continued)

Comparison Groups

Characteristics of Reading First Schools and CITS Matched Comparison Groups (for 
Impacts on Reading Scores)

Table 4.3
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larity to Reading First schools, with respect to either demographics or pretest 
scores. In this case, matching only on pretest scores is sufficient for 
achieving comparability with respect to test scores and demographic 
characteristics, even though the latter are not included in the matching 
process. However, this might not always be true. Recall that in our analysis, a 
minimum of three years of baseline data are used for matching; the patterns 
we observe might not be generalizable to situations where only one or two 
years of pretest data are available. 

In summary, the “applicant” and “nearest neighbor” groups have the greatest face 
validity, because they are most similar with respect to baseline test scores. Of the two, the 
“nearest neighbor” group is most credible, because it is also similar to the Reading First schools 
with respect to demographic characteristics. 

  

NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect size. 
Effect sizes are calculated using the school-level standard deviation based on all schools in RF-eligible districts 
in the last baseline year (including both RF schools and non-RF schools). Differences greater than 0.25 SD are 
indicated with an "X." Statistical tests of the difference between Reading First schools and comparison schools 
are not shown, because the precision of the estimated difference varies across the comparison groups. (For a 
given effect size, larger comparison groups are more likely to be deemed statistically different from RF schools.)

Table 4.3 (continued)
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RF Nearest NN w/out Radius w/
School Characteristic Schools Neighbor Replacement Radius Demographics

Propensity score (logit scale) -1.554 -1.558 -1.565 -1.560 -1.580
(-0.01) (-0.02) (-0.01) (-0.01)

Baseline reading test scores

Predicted score in last baseline year 52.75 53.14 52.72 54.38 54.34
(0.06) (-0.004) (0.23) (0.23)

Baseline trend (6 years) 1.24 1.19 1.18 1.04 1.11
(-0.04) (-0.06) (-0.17) (-0.12)

Demographic characteristics (last baseline year)

Urban schools (%) 37.68 39.13 43.48 45.21 38.73
(0.03) (0.12) (0.16) (0.02)

Enrollment 382.61 374.51 380.86 390.91 388.41
(-0.05) (-0.01) (0.05) (0.04)

Free/reduced-price lunch (%) 65.64 63.94 64.91 63.03 64.44
(-0.08) (-0.04) (-0.13) (-0.06)

Racial/ethnic composition (%)
  White 81.35 84.39 82.29 81.02 80.68

(0.16) (0.05) (-0.02) (-0.04)
  Hispanic 2.50 1.90 2.10 1.88 2.61

(-0.16) (-0.11) (-0.17) (0.03)
  Black 15.17 12.88 14.75 15.92 15.60

(-0.14) (-0.03) (0.05) (0.03)
  Other 2.50 1.90 2.10 1.88 2.61

(-0.16) (-0.11) (-0.17) (0.03)
Number of 3rd-grade students 59.97 55.45 56.26 58.59 59.98

(-0.16) (-0.13) (-0.05) (0.0002)
Female 3rd-graders (%) 47.91 47.12 47.05 47.07 47.80

(-0.17) (-0.19) (-0.18) (-0.02)
Children in poverty in district (%) 22.00 24.05 23.40 22.83 21.81

(0.29) X (0.2) (0.12) (-0.03)
Pupil-teacher ratio 14.47 14.47 14.81 15.09 14.74

(-0.001) (0.14) (0.25) X (0.11)

Number of schools 69 58 69 363 260
(continued)

Comparison Groups

Characteristics of Reading First Schools and DD Matched Comparison Groups (for 
Impacts on Reading Scores)

Table 4.4

DD and CITS Designs in Educational Evaluation
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NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect size. Effect 
sizes are calculated using the school-level standard deviation based on all schools in RF-eligible districts in the last 
baseline year (including both RF schools and non-RF schools). Differences greater than 0.25 SD are indicated with 
an "X." Statistical tests of the difference between Reading First schools and comparison schools are not shown, 
because the precision of the estimated difference varies across the comparison groups. (For a given effect size, 
larger comparison groups are more likely to be deemed statistically different from RF schools.)

Table 4.4 (continued)
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Section 5 

Estimated Impacts from the DD and CITS Designs 

In this section, we examine the estimated impact of Reading First based on the difference-in-
difference (DD) and comparative interrupted time series (CITS) designs, for each of the 
comparison groups listed in Table 4.1. To examine the robustness of our conclusions, we 
replicate the analysis across two follow-up years (first and second year of the intervention) and 
two outcomes (reading scores and math scores). Before reviewing the findings, we first describe 
the statistical models used to estimate impacts as well as the criteria used to compare the impact 
estimates and to answer our research questions. 

Statistical Models Used to Estimate Impacts 
The DD and CITS impacts are estimated using multilevel regression models to account for the 
fact that there are multiple test scores per school (one for each school year). As described 
elsewhere, it is important to account for such clustering; otherwise the standard errors of impact 
estimates will be too small (Bertrand, Duflo, and Mullainathan, 2002). 

For the DD design, we fit a multilevel model to a panel (longitudinal) dataset that 
includes the test scores and school characteristics of the Reading First schools and the relevant 
comparison group, for three pre-intervention years and two follow-up years:  

Level 1 (school years within schools): 

𝑌𝑗𝑡 = 𝛼0𝑗 + 𝛽0𝑗𝑇𝑅𝐸𝐴𝑇𝑗 + 𝛼1𝑌𝑅1𝑡 + 𝛽1𝑇𝑅𝐸𝐴𝑇𝑗 ∗ 𝑌𝑅1𝑡 +
𝛼2𝑌𝑅2𝑡 + 𝛽2𝑇𝑅𝐸𝐴𝑇𝑗 ∗ 𝑌𝑅2𝑡 + 𝜀𝑗𝑡  

 

 

Level 2 (schools): 

𝛼0𝑗 = 𝛼0 + 𝑢𝑗    
where j denotes schools and time t spans three baseline years (2002-2004) and two follow-up 
years (2005 and 2006). The variables in the model are defined as follows: 

𝒀𝒋𝒕 = Average third-grade test score (reading or math) for school j in spring 
of year t  

𝑻𝑹𝑬𝑨𝑻𝒋 = Dichotomous indicator for whether school j is a treatment school (= 1 
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if school received Reading First funds; 0 if a comparison school) 

𝒀𝑹𝟏𝒕 = Dichotomous indicator for test scores in the first intervention year (= 
1 if 2005; 0 otherwise)  

𝒀𝑹𝟐𝒕 = Dichotomous indicator for test scores in the second intervention year 
(= 1 if 2006; 0 otherwise)  

𝒖𝒋 = Between-school random variation in the baseline mean  

𝜺𝒋𝒕 = Random variation in test scores across time within schools (within-
school variation) 52 

From this model, we can obtain estimates of the following quantities of interest:  

𝛼0 = Baseline mean for the comparison schools  

𝛼0 + 𝛽0 = Baseline mean for the treatment schools  

𝛼1 = Change over time from the baseline mean for the comparison 
schools in Year 1 of the intervention 

𝛼1 + 𝛽1 = Change over time from the baseline mean for the treatment schools 
in Year 1 of the intervention 

𝛼2 = Change over time from the baseline mean for the comparison 
schools in Year 2 of the intervention 

𝛼2 + 𝛽2 = Change over time from the baseline mean for the treatment schools 
in Year 2 of the intervention 

Therefore, the estimated impact of the intervention in Year 1 — the change over time 
for treatment schools minus the change over time for comparison schools — is 𝛽1. Similarly, 
the estimated impact in Year 2 is 𝛽2. The standard error of these coefficients (which accounts 
for clustering) can be used to test whether the estimated impact in each follow-up year is 
statistically different from zero. Impact analyses with comparison sets created with replacement 
and/or one-to-many matching are weighted.53  

For the CITS design, we use the following multilevel model, which is fitted to data for 
all six baseline years and the two follow-up years:  

                                                 
52The covariance structure of this model — whereby time points are nested within schools — accounts for 

the clustering of time points within schools. 
53Analyses with the nearest neighbor comparison set (with replacement) use weights to account for the 

number of times a comparison school is selected as a match. Analyses based on the radius method use weights 
to account for variation in the matching ratio across treatment schools as well as the number of times a 
comparison school is selected as a match. 
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Level 1 (school years within schools): 

𝑌𝑗𝑡 = 𝛼0𝑗 + 𝛽0𝑗𝑇𝑅𝐸𝐴𝑇𝑗 + 𝜙0𝑗𝑅𝐸𝐿𝑌𝐸𝐴𝑅𝑡 + 𝜆0𝑅𝐸𝐿𝑌𝐸𝐴𝑅𝑡 ∗ 𝑇𝑅𝐸𝐴𝑇𝑗 +
𝛼1𝑌𝑅1𝑡 + 𝛽1𝑇𝑅𝐸𝐴𝑇𝑗 ∗ 𝑌𝑅1𝑡 + 𝛼2𝑌𝑅2𝑡 + 𝛽2𝑇𝑅𝐸𝐴𝑇𝑗 ∗ 𝑌𝑅2𝑡 + 𝜀𝑗𝑡  

 

Level 2 (schools): 

𝛼0𝑗 = 𝛼0 + 𝑢𝑗  

𝜙0𝑗 = 𝛽0 + 𝜏𝑗 

 

where j denotes schools and time t spans all six baseline years (1999-2004) and two follow-up 
years (2005 and 2006). Variables are defined as before, with the addition of the following 
variables to measure the trend in test scores and the between-school variation in the baseline 
intercept and trend: 

𝑅𝐸𝐿𝑌𝐸𝐴𝑅𝑡  = Continuous variable for time period (school year) centered at the 
last baseline year (= 0 in 2004).  

𝑢𝑗  = Between-school random variation in the baseline intercept 
(centered at the last baseline year) 

𝜏𝑗 = Between-school random variation in the baseline slope54  

 
The model provides estimates of the following quantities:  

 
𝛼0 = Baseline mean (intercept) for the comparison schools in the last 

baseline year  

𝛼0 + 𝛽0 = Baseline mean (intercept) for the treatment schools in the last 
baseline year 

𝜙0 = Baseline slope for the comparison schools 

𝜙0 + 𝜆0 = Baseline slope for the treatment schools  

𝛼1 = Deviation from baseline trend for the comparison schools in Year 1 
of the intervention 

𝛼1 + 𝛽1 = Deviation from baseline trend for the treatment schools in Year 1 of 
the intervention 

                                                 
54Similar to the DD model, the covariance structure accounts for the nesting of time points (school years) 

within schools, by allowing the baseline mean and slope to vary randomly across schools. 
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𝛼2 = Deviation from baseline trend for the comparison schools in Year 2 
of the intervention 

𝛼2 + 𝛽2 = Deviation from baseline trend for the treatment schools in Year 2 of 
the intervention 

Thus, in this model, 𝛽1 represents the estimated impact in Year 1 — the deviation from 
trend for treatment schools minus the deviation from trend for comparison schools. Similarly, 
the estimated impact in Year 2 is 𝛽2. As in the DD design, one can then use the standard error of 
these coefficients to test whether the estimated impact is statistically different from zero. Impact 
analyses with comparison sets created with replacement and/or one-to-many matching are 
weighted. 

Like the regression discontinuity (RD) findings presented in Section 3, all CITS and 
DD impact estimates and standard errors presented in this section are in effect sizes. Effect sizes 
for both reading and math are based on a standard deviation of 21.06, which is the student-level 
standard deviation for scores in normal curve equivalents (NCEs).55 More detailed results from 
the impact analysis — in their original scale — can be found in Appendix D.  

Criteria for Comparing Impact Estimates: Bias and Precision 
One of the key questions in this paper is whether the CITS and DD designs can produce 
internally valid estimates of program impacts. To answer this question, we calculate the bias for 
each DD and CITS estimate, defined as the difference between the DD or CITS impact estimate 
and the RD impact estimate (the causal benchmark): 

𝐵𝐼𝐴𝑆𝑁𝑋𝐷� = 𝐼𝑁𝑋𝐷�− 𝐼𝑅𝐷�   

where 𝐼𝑅𝐷�  is the estimated impact from the RD design and 𝐼𝑁𝑋𝐷� is the estimated impact from 
the DD or CITS design.  

As seen here, the bias is assessed based on two impact estimates, each of which is 
estimated with error. Therefore, what we observe is in fact the estimated bias, which is also 
estimated with error. This error must be taken into account when interpreting the magnitude of 
the estimated bias, and, in particular, we must determine whether the confidence interval around 
each impact estimate includes zero. If it does, there is no evidence that the DD or CITS impact 
estimates are biased.  

                                                 
55We use the student-level standard deviation because Reading First aims to improve student achievement. 

In contrast, the effect sizes in Tables 4.2 to 4.4 are based on the school-level standard deviation, because these 
tables examine the success of the matching exercise, which should be gauged based on school-level outcomes, 
since schools are the unit used for matching. 
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To conduct hypothesis testing on the estimated bias, we need to determine its standard 
error. Yet obtaining the correct standard error is tricky, because the impact estimates being 
compared (𝐼𝑅𝐷�  and 𝐼𝑁𝑋𝐷�) are not independent: The treatment group is the same across impact 
estimates, and there is also overlap in the comparison groups used to estimate each impact.56 In 
order to make correct inferences about the size of the bias, the standard error of the estimated 
bias must account for this dependence. If we were to incorrectly assume that the impact 
estimates are independent, the standard error of the estimated bias would be too large, and we 
could mistakenly conclude that the estimated bias is not statistically significant, when in fact it 
is. We use nonparametric bootstrapping to obtain the right standard errors for the estimated 
bias. Bootstrapped standard errors account for the dependence between impact estimates and 
can be used to test whether the estimated bias for a given DD or CITS impact estimate is 
statistically different from zero.57 In addition, bootstrapping is also used to test whether bias 
estimates differ across different comparison group selection methods, as well as across the DD 
and CITS designs.58 

Finally, we also compare the standard error of impact estimates, as a means of gauging 
their relative precision. Precision is especially relevant for the choice of the comparison group 
selection method. As noted earlier, some matching methods produce larger comparison groups, 
and therefore the resulting impact estimates are more precise. Assuming that two methods have 
similar bias, the method whose estimates are more precise is preferred because it increases the 
likelihood of detecting policy-relevant impacts.  

Previous validation studies have opted for criteria other than bias and precision to 
compare impact estimates across designs, so it is incumbent on us to explain why we do not use 
them in our analysis. The first such criterion is the statistical significance of impact estimates — 
that is, whether inferences about program effectiveness (based on p-values) are the same across 
study designs.59 In our study, we do not use this criterion for two reasons. The first reason is 
conceptual. In a validation study, the key question is not whether the program is effective (as 

                                                 
56For example, some of the non-Reading First schools used in the RD analysis are also comparison 

schools in the DD or CITS analyses. See Appendix C for tables showing the amount of overlap between 
comparison groups.  

57Importantly, bootstrapping also accounts for uncertainty in the propensity score matching process. A 
bootstrapping approach is also used in Fortson, Verbitsky-Savitz, Kopa, and Gleason (2012). Appendix E 
provides further information on the bootstrapping process. Appendix E also presents estimates of the 
correlation between the RD and CITS/DD impact estimates, which confirms that they are indeed highly 
correlated to each other. 

58Formally, we test whether the difference in bias estimates between two methods (for example, between 
nearest neighbor matching and radius matching or between DD and CITS) is statistically different from zero. If 
not, there is no evidence that the DD and CITS designs and/or different selection methods are differentially 
biased. Standard errors for these tests are also obtained using nonparametric bootstrapping. See Appendix E for 
details. 

59This approach is used in Cook et al. (2008). 
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discussed in Section 3, the size of the impact is irrelevant), but whether impact estimates differ 
from each other. Accordingly, the relevant hypothesis test in a validation study is whether 
differences between impact estimates are statistically significant, not whether impact estimates 
themselves are statistically significant. The second reason for not using the statistical 
significance of individual impact estimates as a criterion is more technical. The impact 
estimates in our analysis differ in terms of their precision, due to differences in the study design 
and the size of the comparison group. When precision differs across two estimates, these 
estimates may exhibit different patterns of statistical significance, even when both of them are 
internally valid. In other words, bias and precision are confounded. As described earlier, we 
prefer to consider bias and precision separately, since bias is the most important consideration in 
a validation study.  

Previous studies have also used the mean squared error (MSE) as a criterion for 
comparing impact estimates.60 This metric was discussed in Section 3, in the context of 
determining the optimal radius for the radius matching method.61 We do not use the MSE as a 
criterion for comparing impact estimates in this paper because it suffers from the same problem 
as statistical significance: By definition, it combines the bias and precision of an estimated 
impact into one measure, which makes it difficult to compare the MSE of different impacts 
estimates. We argue that it is more useful to consider bias and precision separately, as outlined 
in our approach.62  

Impacts on Reading Scores 
As a visual guide for interpreting the CITS and DD impact estimates, Figures 5.1 and 5.2 plot 
the baseline and follow-up reading test scores (in NCEs) for Reading First schools and each of 
the comparison groups. As seen in these figures, the baseline slope in reading test scores for 
Reading First schools is relatively flat, meaning that test score growth was quite stable in the 
baseline period. We also see an abrupt drop in test scores in Year 2, perhaps due to a rescaling 
of reading test scores. These general patterns are also observed in the comparison groups, which 
gives credibility to these groups as valid reference points. The one exception — as already 
noted — are the “state” and “eligible” groups, whose reading test scores are substantially higher 
than those of Reading First schools and the other comparison groups (Figure 5.1). From these 
figures, we can also see that Reading First did not appreciably affect reading achievement — 

                                                 
60This approach is used in Orr, Bell, and Kornfeld (2004). 
61The MSE for an impact estimate is equal to the square of the estimated bias, plus the variance of the 

impact estimate. 
62Bell and Orr (1995) also propose comparing impact estimates using a Bayesian “maximum risk 

function.” However, we do not use it in our analysis, because it requires making a decision about a “policy-
relevant” cut-off for the impact. This is difficult to determine in the case of impact on test scores.  
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test scores in Reading First schools did not improve by a greater amount in the follow-up period 
relative to the comparison schools.  

Estimated Bias 

Figures 5.3 and 5.4 present impact estimates and 95 percent confidence intervals for the 
CITS design and DD designs in the first and second year of the intervention, for each 
comparison group. These figures also include the “benchmark” RD impact estimate and its 
confidence interval, as a reference point.  

In general, we see that all impact estimates (including the RD benchmark) hover around 
zero and that there is no discernible pattern of bias. There is also substantial overlap in the 
confidence intervals for the RD impact estimate and the intervals for other estimates, which 
suggests that the DD and CITS estimates are not statistically different from the causal 
benchmark. As noted earlier, however, the impact estimates are correlated, and so, strictly 
speaking, the confidence intervals cannot be directly compared. 

Accordingly, Table 5.1 presents formal tests of whether estimated bias for each DD and 
CITS estimate is statistically significant. Recall that the estimated bias is defined as the 
difference between the DD or CITS estimate and the RD impact estimate, which here are scaled 
as an effect size. Bias estimates are small in magnitude, ranging from -0.11 to 0.04. Based on 
bootstrapped standard errors — which account for the correlation among impact estimates — 
none of these bias estimates come close to being statistically significant at the 5 percent level, 
for either study design (DD or CITS) or intervention year (Year 1 or Year 2). This confirms that 
all impact estimates are internally valid.  

Differences in Bias and Precision Across Comparison Groups 

Next, we can compare the size of the estimated bias and the precision of impact 
estimates across study designs, matching methods, and matching characteristics. Bias estimates 
for each group are presented in Table 5.1, while the standard error of each impact estimate is 
shown in Figures 5.3 and 5.4. Statistical tests for the difference in bias estimates across groups 
and designs (based on bootstrapping) can be found in Appendix E. The key findings are as 
follows: 

• DD design versus CITS design: The two study designs are very similar 
with respect to their estimated bias and precision. For a given selection 
method, the estimated bias does not statistically differ across the two study 
designs. The two designs provide similar estimates because the baseline trend 
in test scores in similar for Reading First schools and comparison schools (as  
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Bootstrap Bootstrap Bootstrap
Estimated Standard Bootstrap Lower Upper

Comparison Group Bias Error P-Value 95% CI 95% CI

CITS design- year 1
State 0.034 0.074 0.671 -0.178 0.115
Eligible 0.030 0.074 0.718 -0.169 0.121
Applicants 0.026 0.077 0.753 -0.171 0.125
Nearest neighbor -0.009 0.084 0.969 -0.155 0.175
NN w/out replacement 0.009 0.076 0.973 -0.145 0.159
Radius 0.004 0.072 0.952 -0.137 0.151
Radius w/ demographics 0.006 0.110 0.909 -0.228 0.200

CITS design - year 2
State -0.008 0.071 0.897 -0.134 0.159
Eligible -0.023 0.071 0.724 -0.115 0.173
Applicants -0.088 0.073 0.222 -0.062 0.233
Nearest neighbor -0.094 0.084 0.378 -0.106 0.238
NN w/out replacement -0.107 0.072 0.287 -0.063 0.213
Radius -0.064 0.068 0.268 -0.061 0.215
Radius w/ demographics -0.088 0.099 0.377 -0.110 0.289

DD design - year 1
State 0.045 0.070 0.544 -0.183 0.103
Eligible 0.038 0.071 0.611 -0.174 0.109
Applicants 0.039 0.073 0.613 -0.178 0.110
Nearest neighbor 0.015 0.081 1.000 -0.157 0.161
NN w/out replacement 0.017 0.074 0.968 -0.133 0.151
Radius -0.005 0.072 0.982 -0.142 0.153
Radius w/ demographics 0.030 0.078 0.972 -0.156 0.157

DD design - year 2
State 0.003 0.065 0.979 -0.128 0.128
Eligible -0.016 0.064 0.782 -0.112 0.145
Applicants -0.075 0.064 0.232 -0.054 0.198
Nearest neighbor -0.082 0.073 0.347 -0.072 0.223
NN w/out replacement -0.057 0.066 0.303 -0.063 0.194
Radius -0.069 0.064 0.291 -0.059 0.191
Radius w/ demographics -0.081 0.072 0.238 -0.058 0.224

(continued)

DD and CITS Designs in Educational Evaluation

Table 5.1

Estimated Bias (in Effect Size) for Impact on Reading Scores, by Design and 
Comparison Group
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shown in Figures 5.1 and 5.2), in which case it is less crucial to use a CITS 
design to control for preexisting trend differences. Had the baseline slope in 
test scores differed across the two groups, the two designs could have 
produced different results (with the CITS results being more credible). It is 
also important to remember that the DD design implemented in this paper is 
an especially strong example of this design, because it uses three years of 
pretest data; the two designs might have produced more divergent estimates 
had only one year of pretest data been used for the DD design. With respect 
to precision, the standard error of CITS estimates is larger than for DD 
estimates as expected, because the CITS design (correctly) incorporates 
additional uncertainty about future projections into the standard error, and 
therefore it provides a better estimate of the true precision of the impact 
estimates. However, differences in precision are small — 0.03 to 0.05 for the 
CITS design and 0.02 to 0.05 for the DD design. Our findings also show that 
the impact estimates for the CITS design are slightly less precise in Year 2 
than in Year 1, due to greater uncertainty in projections that are further out in 
time; conversely, standard errors for the DD design are the same in both 
years, because this design does not account for forecast uncertainty.63  

• Nearest neighbor versus radius matching: Estimated bias for the radius 
matching (one-to-many) is not statistically greater than for the nearest 
neighbor method, yet the radius method does yield more precise impact 
estimates. In Year 1, for example, the standard error for the radius method is 
about 50 percent of the size of the standard error for the nearest neighbor 
method. This has important implications for the minimum detectable effect 

                                                 
63See Appendix B for details on the statistical power of the two designs. 

NOTES: The estimated bias is equal to the estimated impact based on the relevant comparison group minus the 
estimated impact from the RD design, using the actual data.  The standard error, p-value, and confidence 
intervals for the bias are obtained using bias estimates from bootstrapped samples (1,000 iterations). The 
standard error is the standard deviation of bias estimates across iterations. The p-value is obtained by assuming 
that the distribution for bias is normally distributed. The confidence intervals are the 2.5th and 97.5th 
percentiles of the bias estimates across iterations. All bias estimates, standard errors, and confidence intervals 
are shown in effect size based on a standard deviation of 21.06, which is the student-level standard deviation for 
scores in NCEs. 

Table 5.1 (continued)
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Figure 5.1

Reading Test Score Trends for Reading First Schools and Prescreened Comparison Groups

RF Schools (N = 69)
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Figure 5.2

Reading Test Score Trends for Reading First Schools and 
Matched Comparison Groups
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B. Matched groups for DD design
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Figure 5.3

Estimated Impact on Reading Scores by Comparison Group, CITS Design
(N = number of comparison schools, SE = standard error, p = p-value)
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Figure 5.4

Estimated Impact on Reading Scores by Comparison Group, DD Design
(N = number of comparison schools, SE = standard error, p = p-value)
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size (MDES) and the ability to detect impacts if they exist; in Year 1, for 
example, the MDES is 0.13 for the nearest neighbor method and 0.06-0.07 
for the radius method.64 

• Matching with replacement (“nearest neighbor”) versus without 
replacement (“NN w/out replacement”): There does not appear to be any 
notable benefit to choosing schools without replacement. Matching without 
replacement does increase the sample size by a small amount, but this does 
not appreciably reduce the standard error.  

• Matching on test scores (“radius”) versus matching on test scores and 
demographics (“radius w/ demographics”): There is no empirical benefit to 
matching on demographic characteristics in addition to test scores. Bias 
estimates for these two approaches are not statistically different from each 
other, and their standard errors are also similar (ranging from 0.02 to 0.03). 
This happens because adding demographics to the matching process produces 
almost the same comparison group as matching on pretests alone.65 These 
results may be specific to our study, however. Recall that we use at least three 
years of baseline data for matching in situations where only one or two years 
of pretest data are available; also matching on demographic characteristics 
might produce a different (and more credible) comparison group. 

• Prescreened groups (“state” and “eligible”) versus matched groups: 
There is no evidence of bias for the two prescreened (unmatched) groups or 
for the matched groups. However, the matched groups have two distinct 
advantages over the prescreened groups. First, impact estimates from the 
matched groups have greater face validity, because they are more similar to 
the Reading First schools with respect to baseline test scores (whereas the two 
prescreened groups are higher achieving than the Reading First schools). 
Second, impact estimates from some matched groups are also more precise. In 
Year 1, for example, the standard error for the radius matching method is 73 
percent of the size of the standard error for the CITS impact estimate based on 
“eligible” schools, even though the latter group is larger. This happens 
because the matching process decreases the variability in test scores among 
schools in the “radius” comparison group relative to the “eligible” group.  

                                                 
64The MDES is 2.8 times the standard error of the estimated impact (in effect size). 
65Among comparison schools in the “radius” comparison group, 69 percent are also included in the 

“radius w/ demographics” group. For the math analysis (next section), the overlap between groups is 90 
percent. See Tables C.4 and C.5. 
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• “Applicants” versus matched groups: The estimated bias does not 
statistically differ for matched comparison groups compared with 
“applicants.” However, as noted earlier, radius matching (which yields a 
larger comparison group) is superior in terms of precision. In Year 1, for 
example, the standard error for the CITS impact estimate based on the radius 
method is about 56 percent of the size of the standard error for the impact 
based on applicants. 

In summary, we conclude that radius matching confers greater precision while still 
providing impact estimates that are internally valid.  

Impacts on Math Scores 
Our findings about bias — and differences in bias — also hold for math scores, so we discuss 
them only briefly in this section. The consistency of the results across reading and math lends 
strength to our conclusions. 

Figures 5.5 and 5.6 plot the trend in math test scores (in NCEs) for Reading First 
schools and the comparison groups. Similar to reading test scores, test score growth for Reading 
First schools was minimal (flat) in the baseline period. With the exception of the “state” and 
“eligible” groups — which are higher achieving — baseline test scores for Reading First 
schools are very similar to those for comparison schools (Figure 5.5).  

Figures 5.7 and 5.8 present the estimated impact on math scores for the CITS design 
and DD designs, while Table 5.2 presents statistical tests of the estimated bias for each impact 
estimate. The range of bias estimates for math (-0.12 to 0.05) is similar to the range of the 
estimated bias for reading impacts. None of the bias estimates for math are statistically 
significant.66  

Our conclusions about differences in bias (and precision) across comparison groups are 
the same for impacts on math scores as for impacts on reading. That is, we conclude that radius 
matching provides impact estimates that are both internally valid and relatively more precise. 

                                                 
66As seen in Figures 5.7 and 5.8, some of the DD and CITS impact estimates are statistically different 

from zero. However, as already discussed, we do not use the statistical significance of individual impact 
estimates as a criterion to evaluate bias, due to differences in sample size (and therefore precision) across the 
impact estimates. The more relevant hypothesis test is whether the estimated bias is statistically significant 
(based on bootstrapped standard errors) presented in Table 5.2. 
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Figure 5.5

Math Test Score Trends for Reading First Schools and Prescreened Comparison Groups
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Figure 5.6

Math Test Score Trends for Reading First Schools and 
Matched Comparison Groups
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Figure 5.7

Estimated Impact on Math Scores by Comparison Group, CITS Design
(N = number of comparison schools, SE = standard error, p = p-value)
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Figure 5.8

Estimated Impact on Math Scores by Comparison Group, DD Design
(N = number of comparison schools, SE = standard error, p = p-value)
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Bootstrap Bootstrap Bootstrap
Estimated Standard Bootstrap Lower Upper

Comparison Group Bias Error P-Value 95% CI 95% CI

CITS design - year 1
State 0.021 0.092 0.840 -0.200 0.160
Eligible 0.021 0.093 0.834 -0.201 0.162
Applicants -0.003 0.094 0.966 -0.191 0.185
Nearest neighbor -0.006 0.102 0.973 -0.187 0.200
NN w/out replacement 0.010 0.094 0.957 -0.177 0.195
Radius 0.002 0.090 0.983 -0.179 0.181
Radius w/ demographics 0.045 0.125 0.851 -0.264 0.235

CITS design - year 2
State -0.010 0.080 0.895 -0.144 0.166
Eligible -0.019 0.081 0.796 -0.138 0.182
Applicants -0.072 0.087 0.405 -0.100 0.246
Nearest neighbor -0.065 0.092 0.343 -0.091 0.277
NN w/out replacement -0.056 0.079 0.259 -0.063 0.246
Radius -0.086 0.073 0.227 -0.061 0.231
Radius w/ demographics -0.111 0.138 0.386 -0.146 0.412

DD design - year 1
State 0.025 0.088 0.797 -0.198 0.150
Eligible 0.022 0.089 0.822 -0.193 0.150
Applicants 0.001 0.088 0.999 -0.170 0.170
Nearest neighbor -0.001 0.099 0.999 -0.202 0.191
NN w/out replacement 0.000 0.094 0.991 -0.182 0.183
Radius 0.003 0.089 0.979 -0.173 0.173
Radius w/ demographics -0.012 0.091 0.919 -0.171 0.184

DD design - year 2
State -0.008 0.073 0.897 -0.133 0.153
Eligible -0.024 0.073 0.724 -0.114 0.169
Applicants -0.072 0.073 0.319 -0.066 0.219
Nearest neighbor -0.095 0.082 0.269 -0.067 0.250
NN w/out replacement -0.097 0.075 0.217 -0.055 0.237
Radius -0.091 0.069 0.179 -0.044 0.229
Radius w/ demographics -0.117 0.075 0.090 -0.027 0.274

(continued)

DD and CITS Designs in Educational Evaluation

Table 5.2

Estimated Bias (in Effect Size) for Impact on Math Scores, by Design and 
Comparison Group
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NOTES: The estimated bias is equal to the estimated impact based on the relevant comparison group 
minus the estimated impact from the RD design, using the actual data.  The standard error, p-value, and 
confidence intervals for the bias are obtained using bias estimates from bootstrapped samples (1,000 
iterations). The standard error is the standard deviation of bias estimates across iterations. The p-value is 
obtained by assuming that the distribution for bias is normally distributed. The confidence intervals are 
the 2.5th and 97.5th percentiles of the bias estimates across iterations. All bias estimates, standard errors, 
and confidence intervals are shown in effect size based on a standard deviation of 21.06, which is the 
student-level standard deviation for scores in NCEs. 

Table 5.2 (continued)
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Section 6 

Discussion 

Having reviewed the results, we can now take stock of our research questions and make 
recommendations based on the findings. 

• Can the comparative interrupted time series (CITS) and difference-in-
difference (DD) designs provide internally valid estimates of the impact 
of a school-level intervention, even when it is not possible to use a 
geographically local comparison group?  

Overall, our findings suggest that the CITS and DD designs can provide internally valid 
estimates of program impacts, even when it is not possible to restrict the comparison pool to the 
same set of districts as the treatment group. Statistical tests confirm that the estimated bias is not 
statistically significant for any of the impact estimates. These results are consistent across 
comparison groups and matching methods, across implementation years and across subject areas.  

This is an important finding, because randomized experiments at the school level are 
not always politically feasible, and regression discontinuity (RD) designs can have limited 
power when sample sizes are small (as indicated by the larger confidence intervals for this 
design in Figures 5.2 and 5.7). For example, the minimum detectable effect size (MDES) for the 
estimated impact of Reading First on reading scores in Year 1 is 0.21 based on the RD design, 
compared with 0.13 for the nearest neighbor method and 0.06-0.07 for the radius method. In 
addition, there are also challenges to using the RD design in practice — many evaluations do 
not lend themselves to using an RD design. 

It is also reassuring that the comparison group does not need to be “local” to obtain 
internally valid estimates of impacts. As noted earlier, there are situations in which it may not be 
appropriate (or possible) to restrict the comparison group to schools in the same districts as the 
treatment schools — for example, when there is spillover to other schools in the district. Where 
feasible, comparison schools should be from the same set of districts as the treatment schools, 
but this does not appear to be a necessary condition for validity. 

• How do the CITS design and the DD design compare with respect to 
bias reduction and precision? 

Empirically, our study does not provide much scope for demonstrating the advantages 
of using the CITS design (based on four+ years of pretest scores) instead of the DD design 
(based on only three or fewer years of pretest scores). We find that the CITS and DD designs 
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both produce internally valid estimates of Reading First impacts and that the estimated bias does 
not differ across the two designs. Their precision is also very similar. 

However, the internal validity of the DD design in this case may be specific to our study 
and may not generalizable to other contexts. In the first instance, the baseline slope in test scores 
is similar for Reading First schools and the comparison schools. Had the baseline growth in test 
scores been different across the two groups, the DD design would have produced biased 
estimates of impacts. (This is a realistic scenario, because when very few baseline data points 
are available, one cannot match schools on baseline trends.) Second, the DD design used in this 
paper is especially strong and perhaps atypical, because it makes use of three years of baseline 
data. As discussed earlier, having three years of data (as opposed to one or two) strengthens the 
rigor of the design, because it then becomes possible to match on multiple years of pretest 
scores and, by extension, to choose a more credible comparison group. Had fewer years of 
baseline data been used, the DD design might have produced biased results, because baseline 
slopes might have differed between Reading First schools and the comparison group. This 
question will be examined in a future paper.  

With respect to precision, the two designs produce impact estimates with similar 
standard errors. This is because our study looks at shorter-term impacts only. As explained 
earlier, standard errors from the DD design do not account for the additional uncertainty in test 
score projections in the follow-up period, while the CITS design does (correctly) account for 
such forecasting error. For this reason, CITS standard errors are larger than DD standard 
errors, and the standard error of CITS impact estimates increases for projections further out in 
time. In this study, it is only possible to estimate short-term impacts (first and second follow-
up year), and in these years there is little difference between the precision of CITS and DD 
impact estimates.  

• Can the precision of impact estimates from the CITS and DD designs be 
improved without compromising causal validity, through the choice of 
matching method (and thus the resulting sample sizes)? 

Based on our findings, it is indeed possible to improve the precision of impact estimates 
without undermining their causal validity. Overall, we conclude that when pretest scores are 
available for matching, all matching methods produce internally valid impact estimates. This 
corroborates the findings of prior validation studies. Therefore, one can choose the selection 
method that will maximize precision.  

The most effective means of increasing the precision of DD or CITS impact estimates is 
to use radius (one-to-many) matching. In the context of Reading First, for example, standard 
errors from this method are half that of other methods, because it produces a larger comparison 
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group. By extension, the MDES based on radius matching will be half that of the MDES for 
other methods.  

Another strategy for increasing precision (the sample size) is to match without 
replacement. However, in the case of Reading First, matching without replacement does not 
improve precision by a noteworthy amount. This is probably because optimal matching (that is, 
matching without replacement) is most effective for improving precision when the comparison 
pool for matching is small and when there is intense competition for comparison schools (Gu 
and Rosenbaum, 1993). When there are few schools from which to choose, and matching is 
conducted with replacement, a given comparison school will be matched to multiple treatment 
schools, so in fact there could be few “unique” schools in the comparison group. In this 
situation, matching without replacement is better, because it will yield a relatively larger 
comparison group and improve precision. In contrast, when the matching pool is large, 
competition for comparison schools is less intense, so it is less likely that a comparison school 
will serve as the “match” for multiple treatment schools when matching with replacement. In 
this situation, the sample size gains to matching without replacement are minimal (as they are in 
the case of Reading First). In our study, the pool of “eligible” comparison schools is large (419 
schools), which is probably why matching without replacement does not appreciably increase 
the sample size or improve precision. 

Another way of increasing the sample size is to use, as a comparison group, all 
“untreated” schools in the state or all schools eligible for the intervention. In our study, we find 
that estimated impacts based on these larger comparison groups are internally valid; previous 
studies have found a similar result (Fortson, Verbitsky-Savitz, Kopa, and Gleason, 2012). 
However, these larger “unmatched” groups fail an important requirement — they have much 
higher test scores at baseline, and therefore they lack “face validity” as a source of 
counterfactual outcomes for Reading First schools. This is likely to be true in most evaluations 
— schools that participate in an intervention are typically observably different than other 
schools in the state or district. Moreover, even though the sample size is smaller for the radius 
method than when using all schools in the state as a comparison group, estimates from the 
radius method are actually more precise, because the matching process reduces the 
heterogeneity in test scores in the sample. Therefore, the radius matching method is preferred — 
its results have both more face validity and greater precision.  

• Is bias reduction stronger or weaker when both pretests and baseline 
demographic characteristics are used for matching as opposed to 
pretests only? 

We find that matching on pretests and baseline demographic characteristics does not 
further reduce bias. In other words, matching on pretest scores alone is sufficient to ensure that 



78 
 

the comparison group provides the right counterfactual outcomes for Reading First schools in 
the follow-up period.  

However, we caution that this conclusion may be applicable only to school-level 
evaluations. As noted in the introduction, other studies have found that further matching on 
demographic characteristics does substantially reduce bias (Steiner, Cook, Shadish, and Clark, 
2010). In our study, pretest scores are sufficient — and demographics do not help — because 
baseline test scores are an especially powerful predictor of future test scores. This happens for 
two reasons. First, we use multiple years of baseline test scores for matching (three or six) rather 
than just one, which strengthens the extent to which baseline scores can predict scores in the 
follow-up period. Second, our analysis is conducted at the school level rather than at the student 
level. School-level test scores are more reliable (less noisy) that student-level scores, and by 
extension baseline test scores are more predictive of future test scores at the school level. The 
fact that both test scores and demographics are more reliably measured at the school level also 
increases the correlation between these two sets of measures, and therefore reduces the amount 
of additional information provided by demographics once test scores have been taken into 
account in the matching process.  

Recommendations 

Based on these findings, and assuming that pretest data are available for matching, we 
make the following recommendations: 

• Researchers should try to obtain at least four years of pretest data, so 
that a CITS design can be used to estimate impacts. The main lesson from 
our analysis is that is important to obtain as many years of pretest data as 
possible. With four or more years of test scores, one can ensure that 
treatment and comparison schools have similar baseline test scores and 
slopes, and use a CITS design to estimate impacts.67 However, if only three 
or fewer years of available pretest data are available, the slope of the baseline 
trend cannot be estimated and it is impossible to determine whether the 
treatment and comparison groups were on similar growth trajectories before 
the intervention began. By extension, impact estimates from the DD design 
might not be internally valid, and frustratingly, there would be no way to 
convincingly determine whether they are or not. In this situation, researchers 
should be very circumspect about the causal validity and interpretation of 
their findings.  

                                                 
67Of course, it may be possible to have too many years of pretest data. One should not use pretest scores 

that happened in the distant past, since these test scores are likely irrelevant for predicting future outcomes and 
may bias the prediction. 
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• Radius matching (one-to-many) should be used where feasible. We 
recommend using the radius matching method to improve precision when the 
following conditions are met: (a) the candidate pool is large or at least as big 
as the treatment group, and (b) two or more years of pretest data are 
available. We do not recommend using this method unless two years of 
pretest data are available, because this is the minimum amount of data 
needed to determine the “optimal” radius.68 If only one year of baseline test 
scores is available, then the optimal radius cannot be determined, and instead 
the radius must be selected based on ad hoc methods, which could introduce 
bias into the impact estimates. Our recommendation to use radius matching 
also assumes that there is no cost constraint on collecting follow-up test 
scores for more schools and that the “eligible” candidate pool for choosing 
comparison schools is sufficiently large to allow multiple matches for each 
treatment school. Using a radius matching approach is also a more rigorous 
approach than using all schools in the state or all eligible schools as a 
comparison group, because the radius method will produce a comparison 
group that looks more similar to the treatment group with respect to pretest 
scores and demographics, which lends added credibility to the comparison 
group as a source of counterfactual outcomes. 

• If the candidate pool is too small for radius matching, precision can be 
improved either by using “optimal” nearest neighbor matching or by 
using “applicants” as a comparison group. In some educational 
evaluations, the pool of potential comparison schools could be quite small if 
the geographical scope of the intervention is narrow. For example, if the 
intervention being evaluated is located in only one school district, the eligible 
candidate pool will be limited to schools in the district. If the candidate pool 
is small, radius matching may not be a feasible strategy, because competition 
for matches is intense and it is less likely that there will be many “good” 
matches for each treatment school. In this situation, researchers have two 
options. The first is to use nearest neighbor (one-to-one) matching to choose 
schools from the pool of candidates; the second option is to use the subgroup 
of all nonwinning “applicants” as a comparison group, assuming that 
information on application status is known. The choice between these two 
strategies depends on the number of nonwinning applicants; if it is larger 
than the number of treatment schools (successful applicants), using 

                                                 
68Recall that the optimal radius is determined by estimating the “impact” in the last baseline year (which 

should be zero). Therefore, this method requires at least two years of baseline data: The last baseline year 
which serves as the “follow-up” year, plus at least one other baseline year.  
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nonwinning applicants will provide a larger comparison group than using 
nearest neighbor matching, and therefore better precision. Conversely, if 
there are fewer nonwinning applicants than schools in the treatment group, 
the nearest neighbor strategy should be used because it will provide a larger 
comparison group. In this case, researchers should conduct matching without 
replacement (optimal matching), since it will produce a relatively larger 
comparison group than matching with replacement (and therefore more 
precise estimates). It has also been argued that when there are few “good” 
matches for the treatment group (as may happen when the pool of 
comparison candidates is relatively small), optimal matching can produce 
comparison groups that are more similar to the treatment group and therefore 
have greater face validity (Gu and Rosenbaum, 1993). 

• Matching on demographic characteristics should be conducted as a 
sensitivity test. Based on our findings, matching on demographic 
characteristics (in addition to pretest scores) does not add anything to the 
validity or precision of the impact estimates from a DD or CITS design. In 
theory, however, there are reasons both for and against matching on 
demographic characteristics. On the one hand, adding demographics to the 
matching process could increase the credibility of the matching process and 
the resulting comparison group. On the other hand, if the pool of candidate 
schools is small, it may be difficult to find schools that look similar to the 
treatment group on both pretests and demographic characteristics. In this 
situation, adding demographics to the mix could impose a constraint on one’s 
ability to match schools with respect to baseline test scores. Matching on 
pretest scores should be prioritized because they are the strongest predictor of 
future test scores. Therefore, we recommend matching on pretest scores in 
the primary analysis, and then matching on pretests and demographics as a 
sensitivity test. 

It is important to note that our findings and recommendations may be limited to studies 
whose conditions are similar to those of the Reading First evaluation, and in particular to 
school-level evaluations. Therefore, in practice, we recommend that researchers conduct their 
own “validation” exercise to choose the right comparison group method. In a “real world” 
evaluation the “true” impact of the program is not known. However, the right selection method 
can be chosen based on a different benchmark — the impact of the program in the last baseline 
year, which should be zero. The validation exercise would proceed as follows: (1) identify 
“matched” comparison schools using all baseline years except the last one, and (2) estimate 
“impacts” in the last baseline year using the resulting comparison groups(s). The right selection 
method would be the one that most reliably estimates an impact of zero (that is, the method 
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where the standard error is the smallest but where zero, which by construction is the correct 
answer, is still included in the confidence interval for the impact estimate).69 Having chosen a 
“primary” matching method, one would then conduct the matching exercise again, using the 
chosen method and all years of baseline data. After comparison schools have been selected, one 
would estimate the impact of the intervention, using a CITS design if there are at least four 
years of baseline data (and a DD design if there are not). Results based on other matching 
methods can also be presented, as a sensitivity test. 

In conclusion, our findings corroborate those of previous validation studies, showing 
that nonexperimental designs (in this case the DD and CITS design) can produce internally 
valid estimates of program impacts when pretest scores are available, regardless of the matching 
method that is used to select comparison schools. Notably, this is the first study to demonstrate 
that the CITS design can produce internally valid results. However, our paper also contributes to 
the literature by showing that (1) using a comparison group that is “local” (that is, from the 
same set of districts as the treatment schools) is not a necessary condition for obtaining causally 
valid estimates of program impacts; (2) further matching on demographic characteristics is not 
necessary in the context of the DD or CITS design; and (3) the precision of impact estimates 
(and the MDES) can be increased without compromising validity, by matching using the radius 
method rather than nearest neighbor matching. 

 

                                                 
69More formally, one could calculate the MSE for each method, based on the estimated impact in the last 

baseline year (𝜑𝐿𝐵� ) and its standard error, and then choose the method with the smallest MSE:  
𝑀𝑆𝐸�𝐿𝐵 = 𝜑𝐿𝐵�

2 + 𝑣𝑎𝑟(𝜑𝐿𝐵� ). 



 

 



 

 

 

 

 

 

Appendix A 

Specification Tests for the Regression 
Discontinuity Design 
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This appendix presents the results of the regression discontinuity (RD) specification tests 
discussed in Section 3: 

 
• “Impact” on characteristics and outcomes that should not be affected by 

Reading First: Table A.1 presents the impact of Reading First on school 
characteristics in the last baseline year. The estimated impact of Reading 
First on these variables should be zero or not statistically significant. The re-
sults shown in this table confirm that Reading First did not have an impact on 
these characteristics.  

• Functional form tests: Table A.2 presents estimated impacts (in effect size) 
on reading and math scores, based on different functional forms for the rela-
tionship between the rating variable and test scores. The type of relationship 
is indicated in the first column of these tables. The results indicate that re-
gardless of which type of model is used, estimated impacts on test scores are 
not statistically significant. 

• Test of difference in slopes: Table A.3 presents tests of the relationship be-
tween ratings and test scores (slope) on each side of the cut-off. The results 
indicate that the slopes are not statistically different, and that we can use an 
RD model that constrains the slope to be the same on either side of the cut-
off. These results also suggest that the estimated impact of Reading First 
does not differ across schools and that the impact estimates are generalizable 
to the entire sample (and not just to schools around the cut-off). 
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Predicted Value Predicted Value
at Cut-Off for at Cut-Off for Estimated
Reading First Non-RF Estimated Difference in

School Characteristic Schools Schools Difference Effect Size P-Value

Urban schools (%) 32.38 35.36 -2.99 -0.06 0.784
Reading test scores 52.45 53.48 -1.03 -0.15 0.497
Math test scores 53.44 54.79 -1.34 -0.18 0.421
Enrollment 370.28 393.08 -22.79 -0.14 0.513
Free/reduced-price lunch (%) 67.28 66.69 0.59 0.03 0.880
Racial/ethnic composition (%)
  White 82.47 85.58 -3.11 -0.16 0.500
  Hispanic 2.34 1.75 0.59 0.16 0.343
  Black 14.34 11.77 2.57 0.16 0.535
  Other 2.34 1.75 0.59 0.16 0.343
Number of 3rd-grade students 56.22 61.34 -5.12 -0.18 0.439
Female 3rd-graders (%) 47.57 47.53 0.04 0.01 0.972
Children in poverty in district (%) 22.97 23.35 -0.38 -0.05 0.821
Pupil-teacher ratio 14.51 14.22 0.28 0.12 0.595

Number of schools 69 99

DD and CITS Designs in Educational Evaluation

Table A.1

"Impact" on School Characteristics in Last Baseline Year, RD Design

NOTES: Statistical tests are of the difference between treatment schools and comparison schools. Effect 
sizes are calculated using the school-level standard deviation of the characteristics based on all schools in 
RF-eligible districts in the last baseline year (including both RF schools and non-RF schools).
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Estimated Standard Lower Upper
Model Covariates (in Addition to Treatment Indicator) Impact Error P-Value 95% CI 95% CI

Impact on Reading Scores

Year 1
Ratinga -0.026 0.075 0.725 -0.174 0.122
Rating + rating*treatment -0.041 0.082 0.615 -0.204 0.121
Rating + rating2 -0.016 0.089 0.855 -0.193 0.160
Rating + rating2 + rating*treatment + rating2*treatment 0.130 0.110 0.241 -0.088 0.347

Year 2
Ratinga 0.057 0.072 0.434 -0.086 0.199
Rating + rating*treatment 0.019 0.086 0.828 -0.150 0.187
Rating + rating2 0.025 0.096 0.798 -0.165 0.214
Rating + rating2 + rating*treatment + rating2*treatment 0.150 0.126 0.235 -0.099 0.399

Impact on Math Scores

Year 1
Ratinga -0.058 0.095 0.540 -0.246 0.129
Rating + rating*treatment -0.091 0.097 0.346 -0.282 0.099
Rating + rating2 -0.069 0.103 0.507 -0.272 0.135
Rating + rating2 + rating*treatment + rating2*treatment 0.074 0.130 0.573 -0.184 0.331

Year 2
Ratinga -0.010 0.077 0.896 -0.161 0.141
Rating + rating*treatment -0.065 0.088 0.460 -0.239 0.109
Rating + rating2 -0.081 0.097 0.402 -0.272 0.109
Rating + rating2 + rating*treatment + rating2*treatment 0.031 0.127 0.808 -0.220 0.281

NOTES: All estimates are in effect size based on on a standard deviation of 21.06, which is the student-level 
standard deviation for scores in NCEs. The model used to estimate impacts includes a treatment group indicator 
and the variables listed in column 1. The rating variable is centered at the cut-off (145) in all models. 
aModel used to obtain the causal benchmark.

DD and CITS Designs in Educational Evaluation

Table A.2

Estimated Impact on Test Scores (in Effect Size), by RD Design Model Specification
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Estimated Estimated
Slope Slope Estimated Standard 

Subject -Year RF Schools Non-RF Schools Difference Error P-Value

Reading scores
Year 1 0.043 0.000 0.042 0.086 0.625
Year 2 0.045 -0.062 0.107 0.090 0.237

Math scores
Year 1 0.062 -0.032 0.093 0.097 0.337
Year 2 0.082 -0.074 0.156 0.093 0.094

Number of schools 69 99

NOTES: Slopes are scaled in normal curve equivalents (NCEs). Rounding may cause slight 
discrepancies in calculating differences. The statistical model used to estimate slopes includes the 
treatment indicator, the rating variable centered on the cut-off of 145, and the interaction between the 
treatment indicator and the centered rating. The coefficient on the interaction term (in the "Estimated 
Difference" column) is the difference between the slopes of the RF and non-RF group.

DD and CITS Designs in Educational Evaluation

Table A.3

Relationship Between Test Scores (in NCEs) and Ratings, for Reading First and 
Non-Reading First Schools



 

 

 

 

 

 

Appendix B 

Minimum Detectable Effect Size for 
Nonexperimental Designs 
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A common way to convey a study’s statistical power is through the minimum detectable effect 
(MDE) or the minimum detectable effect size (MDES). Formally the MDE is the smallest true 
program impact that can be detected with a reasonable degree of power (in this case, 80 percent) 
for a given level of statistical significance (in this case, 5 percent for a two-tailed test). The 
MDES is the MDE scaled as an effect size — in other words, it is the MDE divided by the 
standard deviation of the outcome of interest. (In this paper, we use a standard deviation of 
21.06, which is the student-level standard deviation for scores in normal curve equivalents.) 

For samples with more than about 20 degrees of freedom, the MDES is approximately 
equal to 2.8 times the standard error of the relevant impact estimate. Once the analysis has been 
conducted, this calculation is simple because the standard error is known. For example, the 
MDES presented in this paper are based on the standard errors of the relevant impact estimates.  

In the study design phase, however, the standard error is not yet known and must be ap-
proximated based on assumptions about the properties of the data and the design that will be 
used to estimate effects. The formulas for the MDES in the study design phase are described 
below for each nonexperimental design. 

Regression Discontinuity (RD) Design 
For the RD design, the MDES is calculated as follows (Bloom, 2012): 

𝑀𝐷𝐸𝑆 (𝑅𝐷) ≈ 2.8�
1

𝑁𝑃(1−𝑃)(1−𝑅𝑇
2)

       

 
where all variables are defined as before and: 

 
𝑵 = Number of schools (treatment and comparison) 
𝑷 = The proportion of schools that are in the treatment group 
𝑹𝑻𝟐 = The proportion of variation in treatment status (T) predicted by 

the centered rating and other covariates included in the 
regression discontinuity model 

 
The collinearity between the rating variable and the outcome (𝑅𝑇2) reduces the precision 

of impact estimates (or conversely it increases the MDES). Therefore, impact estimates from an 
RD design generally have more limited power than other potential designs (including the 
difference-in-difference [DD] and comparative interrupted time series [CITS] designs). See 
Bloom (2012) for a discussion.  
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DD and CITS Designs 
 
In its simplest form, the MDES for a CITS design is calculated as follows:1 

  

𝑀𝐷𝐸𝑆(𝐶𝐼𝑇𝑆) ≈ 2.8 ∗ �1
𝑛�

1
𝑚𝑡

+ 1
𝑚𝑐
�1 + 1

𝑇
+ �𝑡𝑓−𝑡̅�

2

∑ (𝑡𝑘−𝑡̅)2𝑘
  

where: 
 

𝒎𝒕 = Number of treatment schools 
𝒎𝒄 = Number of comparison schools 
n = Number of students per school per academic year.  
𝑻 = Number of years of data in the baseline period 
𝒕𝒇 = The follow-up year of the impact (= 0 for first follow-up year, 

1 for the second, 2 for the third, etc.)  
𝒕̅ = The average value of the baseline years (where baseline years 

are scaled from -1 to –T, where T is the total number of 
baseline years) 

 
A key feature of CITS estimation is reflected in the last term of the equation: 

�𝑡𝑓−𝑡�̅
2

∑ (𝑡𝑘 − 𝑡̅)2𝑘
 

This term accounts for the fact that projections about counterfactual outcomes in the 
follow-up period (and therefore impacts) are less reliable for time periods that are further away 
in time. For this reason, the MDES for a CITS design increases as tf increases. 

In contrast, the MDES for a DD design is the following: 

𝑀𝐷𝐸𝑆(𝐷𝐷) ≈ 2.8 ∗ �1
𝑛�

1
𝑚𝑡

+ 1
𝑚𝑐
�1 + 1

𝑇
  

As seen here, the MDES for the DD design does not include a term to account for de-
creases in precision for longer-term impacts, because the DD design assumes that the reliability  

                                                 
1The formulas in this appendix are based on Bloom (1999), but they also include an additional component 

for the between-school intraclass correlation to account for the use of school random effects (which are used in 
our analysis).  
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of counterfactual projections is the same across follow-up periods. In education research, this 
assumption is likely to be incorrect, in which case the observed precision of the DD design 
overestimates its true precision.  

For this reason, the CITS design provides a better reflection of the true precision of im-
pact estimates than a DD design, especially for longer-term impacts.  



 
 

 

 



 

 

 

 

 

Appendix C 

Characteristics of Comparison Groups 
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This appendix presents supplemental results on the characteristics of schools in the difference-
in-difference (DD) and comparative interruptive time series (CITS) analyses: 

• Tables C.1 to C.3 present the characteristics of schools used to estimate im-
pacts on math scores.  

• Tables C.4 and C.5 show the amount of overlap between schools in the 
matched comparison groups used to estimate impacts, for reading and math, 
respectively.  
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RF
School Characteristic Schools State Eligible Applicants

Baseline math test scores

Predicted score in last baseline year 53.54 58.97 57.84 54.29
(0.72) X (0.57) X (0.1)

Baseline trend (6 years) 1.54 1.61 1.66 1.64
(0.05) (0.08) (0.07)

Demographic characteristics (last baseline year)

Urban schools (%) 37.68 34.26 35.80 22.22
(-0.07) (-0.04) (-0.32) X

Enrollment 382.61 409.56 400.13 362.55
(0.17) (0.11) (-0.13)

Free/reduced-price lunch (%) 65.64 53.96 57.97 70.73
(-0.56) X (-0.37) X (0.24)

Racial/ethnic composition (%)
  White 81.35 88.31 85.73 88.36

(0.37) X (0.23) (0.37) X
  Hispanic 2.50 1.60 1.68 1.35

(-0.24) (-0.22) (-0.31) X
  Black 15.17 9.16 11.54 9.70

(-0.37) X (-0.22) (-0.33) X
  Other 2.50 1.60 1.68 1.35

(-0.24) (-0.22) (-0.31) X
Number of 3rd-grade students 59.97 62.89 60.59 52.04

(0.1) (0.02) (-0.28) X
Female 3rd-graders (%) 47.91 47.48 47.56 46.69

(-0.09) (-0.08) (-0.26) X
Children in poverty in district (%) 22.00 20.66 22.45 25.75

(-0.19) (0.06) (0.54) X
Pupil-teacher ratio 14.47 15.57 15.40 14.32

(0.45) X (0.38) X (-0.06)

Number of schools 69 611 419 99

NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect 
size. Effect sizes are calculated using the school-level standard deviation based on all schools in RF-
eligible districts in the last baseline year (including both RF schools and non-RF schools). Differences 
greater than 0.25 SD are indicated with an "X." Statistical tests of the difference between Reading First 
schools and comparison schools are not shown, because the precision of the estimated difference varies 
across the comparison groups. (For a given effect size, larger comparison groups are more likely to be 
deemed statistically different from RF schools.)

Comparison Groups

Table C.1

Characteristics of Reading First Schools and Prescreened Comparison Groups 
(for Impacts on Math Scores)
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RF Nearest NN w/out Radius w/
School Characteristic Schools Neighbor Replacement Radius Demographics

Propensity score (logit scale) -1.507 -1.516 -1.520 -1.518 -1.712
(-0.01) (-0.02) (-0.01) (-0.06)

Baseline math test scores

Predicted score in last baseline year 53.54 53.91 53.41 55.63 56.27
(0.05) (-0.02) (0.28) X (0.36) X

Baseline trend (6 years) 1.54 1.47 1.58 1.57 1.57
(-0.05) (0.03) (0.02) (0.02)

Demographic characteristics (last baseline year)

Urban schools (%) 37.68 47.83 46.38 43.48 34.33
(0.21) (0.18) (0.12) (-0.07)

Enrollment 382.61 390.25 378.70 380.77 380.98
(0.05) (-0.02) (-0.01) (-0.01)

Free/reduced-price lunch (%) 65.64 63.97 64.73 65.49 68.00
(-0.08) (-0.04) (-0.01) (0.11)

Racial/ethnic composition (%)
  White 81.35 83.49 83.70 81.48 82.67

(0.11) (0.12) (0.01) (0.07)
  Hispanic 2.50 1.90 1.90 2.02 1.58

(-0.16) (-0.16) (-0.13) (-0.25)
  Black 15.17 13.74 13.48 15.51 14.89

(-0.09) (-0.1) (0.02) (-0.02)
  Other 2.50 1.90 1.90 2.02 1.58

(-0.16) (-0.16) (-0.13) (-0.25)
Number of 3rd-grade students 59.97 57.97 55.81 56.87 58.37

(-0.07) (-0.15) (-0.11) (-0.06)
Female 3rd-graders (%) 47.91 47.87 47.41 47.38 48.21

(-0.01) (-0.11) (-0.11) (0.06)
Children in poverty in district (%) 22.00 23.66 23.49 22.85 22.56

(0.24) (0.21) (0.12) (0.08)
Pupil-teacher ratio 14.47 15.13 14.97 14.96 14.41

(0.27) X (0.2) (0.2) (-0.03)

Number of schools 69 59 69 349 323

NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect size. Effect 
sizes are calculated using the school-level standard deviation based on all schools in RF-eligible districts in the last 
baseline year (including both RF schools and non-RF schools). Differences greater than 0.25 SD are indicated with 
an "X." Statistical tests of the difference between Reading First schools and comparison schools are not shown, 
because the precision of the estimated difference varies across the comparison groups. (For a given effect size, 
larger comparison groups are more likely to be deemed statistically different from RF schools.)

Comparison Groups

Characteristics of Reading First Schools and CITS Matched Comparison Groups (for 
Impacts on Math Scores)

Table C.2

DD and CITS Designs in Educational Evaluation
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RF Nearest NN w/out Radius w/
School Characteristic Schools Neighbor Replacement Radius Demographics

Propensity score (logit scale) -1.558 -1.561 -1.561 -1.565 -1.654
(-0.004) (-0.004) (-0.01) (-0.04)

Baseline math test scores

Predicted score in last baseline year 53.54 53.46 53.34 55.03 55.46
(-0.01) (-0.03) (0.2) (0.25) X

Baseline trend (6 years) 1.54 1.40 1.32 1.42 1.38
(-0.11) (-0.16) (-0.09) (-0.12)

Demographic characteristics (last baseline year)

Urban schools (%) 37.68 52.17 52.17 42.09 35.33
(0.3) X (0.3) X (0.09) (-0.05)

Enrollment 382.61 423.77 419.96 390.62 377.65
(0.26) X (0.23) (0.05) (-0.03)

Free/reduced-price lunch (%) 65.64 60.95 60.53 64.25 65.52
(-0.23) (-0.25) (-0.07) (-0.01)

Racial/ethnic composition (%)
  White 81.35 83.75 82.36 82.17 82.66

(0.13) (0.05) (0.04) (0.07)
  Hispanic 2.50 2.06 2.23 1.95 2.13

(-0.12) (-0.07) (-0.15) (-0.1)
  Black 15.17 13.28 14.45 14.94 14.31

(-0.12) (-0.04) (-0.01) (-0.05)
  Other 2.50 2.06 2.23 1.95 2.13

(-0.12) (-0.07) (-0.15) (-0.1)
Number of 3rd-grade students 59.97 66.62 65.43 58.13 58.17

(0.23) (0.19) (-0.06) (-0.06)
Female 3rd-graders (%) 47.91 46.83 46.94 47.02 48.28

(-0.23) (-0.21) (-0.19) (0.08)
Children in poverty in district (%) 22.00 21.29 21.26 22.90 22.14

(-0.1) (-0.11) (0.13) (0.02)
Pupil-teacher ratio 14.47 15.31 15.29 15.12 14.50

(0.34) X (0.33) X (0.26) X (0.01)

Number of schools 69 65 69 346 350

NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect size. 
Effect sizes are calculated using the school-level standard deviation based on all schools in RF-eligible districts in 
the last baseline year (including both RF schools and non-RF schools). Differences greater than 0.25 SD are 
indicated with an "X." Statistical tests of the difference between Reading First schools and comparison schools 
are not shown, because the precision of the estimated difference varies across the comparison groups. (For a 
given effect size, larger comparison groups are more likely to be deemed statistically different from RF schools.)

Comparison Groups

DD and CITS Designs in Educational Evaluation

Table C.3

Characteristics of Reading First Schools and DD Matched Comparison Groups (for 
Impacts on Math Scores)



 
 

CITS CITS CITS DD DD DD
Appli- Nearest NN w/out CITS Radius w/ Nearest NN w/out DD Radius

Among schools in the following State Eligible cants Neighbor Repl. Radius Demo. Neighbor repl. Radius w/ Demo.
comparison groups… (N) (611) (419) (99) (62) (69) (369) (324) (58) (69) (363) (260)

State (611) 100% 69% 16% 10% 11% 60% 53% 9% 11% 59% 43%
Eligible (419) 100% 100% 24% 15% 16% 88% 77% 14% 16% 87% 62%
Applicants (99) 100% 100% 100% 17% 20% 91% 85% 21% 24% 94% 71%
CITS - Nearest neighbor (62) 100% 100% 27% 100% 94% 100% 84% 19% 23% 97% 71%
CITS - NN w/out replacement (69) 100% 100% 29% 84% 100% 97% 84% 22% 23% 94% 74%
CITS - Radius (369) 100% 100% 24% 17% 18% 100% 82% 15% 18% 94% 68%
CITS - Radius, w/ demographics (324) 100% 100% 26% 16% 18% 94% 100% 15% 18% 91% 72%
DD - Nearest neighbor (58) 100% 100% 36% 21% 26% 93% 81% 100% 91% 100% 76%
DD - NN w/out replacement (69) 100% 100% 35% 20% 23% 94% 83% 77% 100% 100% 75%
DD - Radius (363) 100% 100% 26% 17% 18% 95% 81% 16% 19% 100% 69%
DD - Radius, w/ demographics (260) 100% 100% 27% 17% 20% 97% 90% 17% 20% 96% 100%

… Percentage that are also in …

NOTES: Value in (Row X, Column Y) = Percentage of schools in the comparison group in Row X that are also part of the comparison group in Column Y. 
(N) = Sample size of comparison group

DD and CITS Designs in Educational Evaluation

Table C.4

Overlap Between Comparison Groups (for Impacts on Reading)
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CITS CITS CITS DD DD DD
Appli- Nearest NN w/out CITS Radius w/ Nearest NN w/out DD Radius w/

Among schools in the following State Eligible cants Neighbor Repl. Radius Demo. Neighbor Repl. Radius Demo.
comparison groups… (N) (611) (419) (99) (59) (69) (349) (323) (65) (69) (346) (350)

State (611) 100% 69% 16% 10% 11% 57% 53% 11% 11% 57% 57%
Eligible (419) 100% 100% 24% 14% 16% 83% 77% 16% 16% 83% 84%
Applicants (99) 100% 100% 100% 19% 22% 92% 83% 16% 17% 92% 94%
CITS - Nearest neighbor (59) 100% 100% 32% 100% 93% 100% 85% 24% 27% 98% 93%
CITS - NN w/out replacement (69) 100% 100% 32% 80% 100% 99% 83% 25% 28% 99% 93%
CITS - Radius (349) 100% 100% 26% 17% 19% 100% 82% 18% 19% 95% 91%
CITS - Radius, w/ demographics (323) 100% 100% 25% 15% 18% 89% 100% 17% 18% 87% 93%
DD - Nearest neighbor (65) 100% 100% 25% 22% 26% 98% 85% 100% 92% 100% 94%
DD - NN w/out replacement (69) 100% 100% 25% 23% 28% 99% 83% 87% 100% 100% 96%
DD - Radius (346) 100% 100% 26% 17% 20% 96% 82% 19% 20% 100% 91%
DD - Radius, w/ demographics (350) 100% 100% 27% 16% 18% 91% 86% 17% 19% 90% 100%

NOTES: Value in (Row X, Column Y) = Percentage of schools in the comparison group in Row X that are also part of the comparison group in Column Y.
(N) = Sample size of comparison group

… Percentage that are also in …

Overlap Between Comparison Groups (for Impacts on Math)

Table C.5

DD and CITS Designs in Educational Evaluation
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Appendix D 

CITS and DD Impact Estimates 
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This appendix presents coefficient estimates from comparative interruptive time series (CITS) 
and difference-in-difference (DD) impact models used to estimate impacts on test scores, for 
each relevant comparison group. In these tables, estimates are shown in their original metric, 
rather than effect sizes. Tables D.1 and D.2 present estimates from the models used to estimate 
impacts on reading scores, while Tables D.3 and D.4 present estimates from the analysis of 
math scores.  
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Estimated
RF Comparison Difference Standard

Comparison Group Schools Schools or Impact Error P-Value

Baseline trend
State 1.244 1.256 -0.012 0.142 0.931
Eligible 1.244 1.285 -0.041 0.151 0.787
Applicants 1.244 1.234 0.010 0.195 0.961
Nearest neighbor 1.244 1.137 0.106 0.210 0.613
Nearest neighbor w/out replacement 1.244 1.161 0.082 0.205 0.688
Radius 1.244 1.207 0.037 0.127 0.773
Radius w/ demographics 1.244 1.226 0.018 0.137 0.897

Predicted score in last baseline year
State 52.745 57.692 -4.947 0.771 0.000
Eligible 52.745 56.513 -3.767 0.792 0.000
Applicants 52.745 53.070 -0.324 0.843 0.701
Nearest neighbor 52.745 53.500 -0.754 0.981 0.443
Nearest neighbor w/out replacement 52.745 53.048 -0.303 0.975 0.756
Radius 52.745 55.075 -2.329 0.682 0.001
Radius w/ demographics 52.745 55.001 -2.256 0.714 0.002

Deviation from baseline trend - year 1
State -0.580 -0.744 0.164 0.681 0.810
Eligible -0.580 -0.650 0.069 0.721 0.923
Applicants -0.580 -0.581 0.000 0.938 1.000
Nearest neighbor -0.580 0.162 -0.742 1.006 0.461
Nearest neighbor w/out replacement -0.580 -0.220 -0.360 0.972 0.711
Radius -0.580 -0.099 -0.482 0.524 0.358
Radius w/ demographics -0.580 -0.142 -0.439 0.542 0.419

Deviation from baseline trend - year 2
State -4.549 -5.579 1.030 0.760 0.175
Eligible -4.549 -5.255 0.706 0.804 0.380
Applicants -4.549 -3.884 -0.665 1.046 0.525
Nearest neighbor -4.549 -3.756 -0.793 1.122 0.480
Nearest neighbor w/out replacement -4.549 -3.476 -1.073 1.084 0.322
Radius -4.549 -4.386 -0.163 0.585 0.781
Radius w/ demographics -4.549 -3.884 -0.665 0.605 0.272

NOTE: Impacts and standard errors are expressed in normal curve equivalents (NCEs).

Model Estimates for Impact on Reading Scores by Comparison Group, CITS 
Design

Table D.1

DD and CITS Designs in Educational Evaluation
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Estimated
RF Comparison Difference or Standard

Comparison Group Schools Schools Impact Error P-Value

Baseline mean
State 56.413 51.222 5.190 0.750 0.000
Eligible 55.213 51.222 3.991 0.769 0.000
Applicants 51.796 51.222 0.573 0.813 0.482
Nearest neighbor 51.819 51.222 0.596 0.979 0.544
Nearest neighbor w/out replacement 51.321 51.222 0.099 0.942 0.916
Radius 53.115 51.222 1.893 0.619 0.002
Radius w/ demographics 53.078 51.222 1.856 0.660 0.005

Deviation from baseline mean - year 1
State 2.186 1.792 0.395 0.617 0.523
Eligible 2.186 1.934 0.252 0.658 0.701
Applicants 2.186 1.928 0.259 0.845 0.760
Nearest neighbor 2.186 2.436 -0.250 0.958 0.795
Nearest neighbor w/out replacement 2.186 2.383 -0.197 0.885 0.824
Radius 2.186 2.839 -0.652 0.483 0.177
Radius w/ demographics 2.186 2.112 0.074 0.564 0.895

Deviation from baseline mean - year 2
State -0.538 -1.787 1.249 0.617 0.043
Eligible -0.538 -1.386 0.848 0.658 0.197
Applicants -0.538 -0.141 -0.397 0.845 0.639
Nearest neighbor -0.538 0.000 -0.538 0.958 0.575
Nearest neighbor w/out replacement -0.538 -0.529 -0.010 0.885 0.991
Radius -0.538 -0.276 -0.262 0.483 0.588
Radius w/ demographics -0.538 -0.013 -0.525 0.564 0.352

Model Estimates for Impact on Reading Scores by Comparison Group, DD Design

NOTE: Impacts and standard errors are expressed in normal curve equivalents (NCEs).

DD and CITS Designs in Educational Evaluation

Table D.2
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Estimated
RF Comparison Difference Standard

Comparison Group Schools Schools or Impact Error P-Value

Baseline trend
State 1.544 1.608 -0.063 0.161 0.693
Eligible 1.544 1.656 -0.112 0.171 0.513
Applicants 1.544 1.643 -0.099 0.212 0.641
Nearest neighbor 1.544 1.472 0.072 0.237 0.762
NN w/out replacement 1.544 1.582 -0.038 0.225 0.865
Radius 1.544 1.571 -0.027 0.144 0.850
Radius w/ demographics 1.544 1.571 -0.027 0.152 0.860

Predicted score in last baseline year
State 53.541 58.970 -5.430 0.841 0.000
Eligible 53.541 57.835 -4.294 0.865 0.000
Applicants 53.541 54.289 -0.748 0.917 0.416
Nearest neighbor 53.541 53.915 -0.374 1.049 0.722
NN w/out replacement 53.541 53.411 0.129 1.018 0.899
Radius 53.541 55.629 -2.089 0.718 0.004
Radius w/ demographics 53.541 56.267 -2.727 0.756 0.000

Deviation from baseline trend - year 1
State -1.654 -0.859 -0.795 0.749 0.289
Eligible -1.654 -0.878 -0.776 0.793 0.328
Applicants -1.654 -0.370 -1.284 1.018 0.207
Nearest neighbor -1.654 -0.306 -1.348 1.042 0.196
NN w/out replacement -1.654 -0.636 -1.019 1.007 0.312
Radius -1.654 -0.461 -1.194 0.564 0.034
Radius w/ demographics -1.654 -1.384 -0.271 0.585 0.644

Deviation from baseline trend - year 2
State -4.178 -3.766 -0.412 0.836 0.622
Eligible -4.178 -3.559 -0.619 0.885 0.484
Applicants -4.178 -2.457 -1.721 1.136 0.130
Nearest neighbor -4.178 -2.598 -1.580 1.162 0.175
NN w/out replacement -4.178 -2.782 -1.396 1.124 0.214
Radius -4.178 -2.160 -2.018 0.630 0.001
Radius w/ demographics -4.178 -1.620 -2.558 0.653 0.000

NOTE: Impacts and standard errors are expressed in normal curve equivalents (NCEs).

Model Estimates for Impact on Math Scores by Comparison Group, CITS 
Design

Table D.3

DD and CITS Designs in Educational Evaluation
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Estimated
RF Comparison Difference Standard

Comparison Group Schools Schools or Impact Error P-Value

Baseline mean
State 51.744 57.322 -5.578 0.821 0.000
Eligible 51.744 56.157 -4.413 0.843 0.000
Applicants 51.744 52.674 -0.930 0.886 0.296
Nearest neighbor 51.744 51.924 -0.180 0.973 0.854
NN w/out replacement 51.744 51.836 -0.092 0.948 0.923
Radius 51.744 53.336 -1.592 0.658 0.016
Radius w/ demographics 51.744 53.736 -1.992 0.690 0.004

Deviation from baseline mean - year 1
State 1.686 2.396 -0.710 0.691 0.304
Eligible 1.686 2.456 -0.770 0.732 0.293
Applicants 1.686 2.888 -1.201 0.922 0.193
Nearest neighbor 1.686 2.937 -1.251 0.906 0.168
NN w/out replacement 1.686 2.906 -1.220 0.898 0.175
Radius 1.686 2.855 -1.169 0.530 0.028
Radius w/ demographics 1.686 3.167 -1.481 0.532 0.005

Deviation from baseline mean - year 2
State 0.707 1.097 -0.390 0.691 0.572
Eligible 0.707 1.431 -0.724 0.732 0.323
Applicants 0.707 2.444 -1.737 0.922 0.060
Nearest neighbor 0.707 2.917 -2.210 0.906 0.015
NN w/out replacement 0.707 2.956 -2.249 0.898 0.013
Radius 0.707 2.829 -2.122 0.530 0.000
Radius w/ demographics 0.707 3.384 -2.677 0.532 0.000

NOTE: Impacts and standard errors are expressed in normal curve equivalents (NCEs).

DD and CITS Designs in Educational Evaluation

Table D.4

Model Estimates for Impact on Math Scores by Comparison Group, 
DD Design
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This appendix describes the nonparametric bootstrapping conducted as part of the hypothe-
sis testing for differences between impact estimates. The appendix also provides additional 
test results that are discussed in the paper. 

Calculation of Bootstrapped Standard Errors, P-Values and  
Confidence Intervals 
The following iteration of steps was repeated 1,000 times:  

• Randomly sample 69 schools (with replacement) from the treatment group 
(Reading First schools).  

• Randomly sample 611 schools (with replacement) from the pool of all non-
Reading First schools in the midwestern state, stratifying by eligibility and 
application status so as to sample 419 schools form the “eligible” pool and 99 
schools from the “applicant” pool.1 

• For the 69 sampled Reading First schools, use propensity score matching to 
select comparison schools from the sampled “eligible” pool of 419 schools, 
based on each matching method (nearest neighbor, optimal, radius).  

• Estimate the relevant impact estimates using the sampled/matched schools 
(regression discontinuity [RD] design estimate, comparative interrupted time 
series [CITS] estimates, difference-in-difference [DD] estimates). 

• Calculate each pair-wise difference between each of the point estimates. 

• Store these differences. 

The result is a dataset that contains 1,000 estimates for each pair-wise difference in impacts. 
Based on this dataset, we calculate the standard error, confidence intervals, and p-value for each 
estimated difference between impact estimates: 

• The standard error for the difference between two impact estimates is simply 
the standard deviation of this difference across the 1,000 iterations.  

• The confidence intervals are the 2.5th and 97.5th percentiles of the difference 
based on the 1,000 iterations.  

                                                 
1In other words, at each iteration we hold constant the amount of overlap between schools in the state, 

schools in eligible districts, and schools that applied for Reading First funds.  
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• The p-value is calculated based on the T-value for the difference (calculated 
using the bootstrapped standard error) and assuming a standard normal dis-
tribution.  

We set the number of iterations at 1,000 because this number is sufficient to reach stability in 
the standard errors of bias estimates and to achieve normality of bias estimates.2 

Additional Results 
• Tables E.1 to E.4 present p-values for the estimated difference between 

the DD and CITS impact estimates, in each year of implementation and 
for each outcome (reading, math). Mathematically, testing whether there is 
a statistically significant difference between any two nonexperimental esti-
mates in this table is equivalent to testing whether the estimated bias (relative 
to the RD design) for these two estimates differs by a statistically significant 
amount.3 When comparing the CITS and DD designs, we compare only 
impact estimates for a given type of comparison group (for example, the 
nearest neighbor method), to ensure that the two designs are being com-
pared on a more equal basis. 

• Tables E.5 and E.6 show the estimated correlation between impact esti-
mates across the 1,000 iterations, for each implementation year and by 
outcome. Correlations range from 0.086 to 0.989; hence the importance 
of accounting for the dependence between impact estimates using boot-
strapping. The bootstrapped standard errors for the estimated bias are up 
to 23 percent smaller than the standard errors that would have been ob-
tained if we had assumed that the impact estimates were independent.4 

                                                 
2Standard errors based on 1,000 iterations are very similar to standard errors based on 500 iterations. The 

distribution of bias estimates is also normally distributed, based on various formal tests of whether the 
distribution differs from normality (Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-
Darling). 

3Let IRD be the estimated impact from the RD design, INX1 the first nonexperimental impact estimate, and 
INX2 the second nonexperimental impact estimate INX1. The difference in the bias for the two NX impact 
estimates is = (IRD –  INX1) – (IRD –  INX2) =  INX1 – INX2. 

4The standard error assuming independence is simply equal to the square root of (estimated variance for 
the RD impact estimate + estimated variance for the DD or CITS impact estimate). 



 

CITS CITS CITS CITS CITS CITS CITS DD DD DD DD DD DD DD
(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

0.004 0.008 0.043 0.025 0.031 0.029 -0.011 -- -- -- -- -- --
(0.497) (0.796) (0.517) (0.382) (0.200) (0.824) (0.461)

0.003 0.039 0.020 0.026 0.024 -- -0.009 -- -- -- -- --
(0.924) (0.577) (0.452) (0.259) (0.866) (0.565)

0.035 0.017 0.023 0.021 -- -- -0.012 -- -- -- --
(0.647) (0.567) (0.445) (0.896) (0.511)

-0.018 -0.012 -0.014 -- -- -- -0.023 -- -- --
(0.985) (0.982) (0.868) (0.961)

0.006 0.004 -- -- -- -- -0.008 -- --
(0.957) (0.864) (0.993)

-0.002 -- -- -- -- -- 0.008 --
(0.841) (0.819)

-- -- -- -- -- -- -0.024
(0.911)

0.007 0.006 0.031 0.028 0.050 0.015
(0.268) (0.809) (0.364) (0.167) (0.055) (0.308)

0.000 0.024 0.021 0.043 0.008
(0.968) (0.448) (0.243) (0.102) (0.396)

0.024 0.022 0.043 0.009
(0.486) (0.315) (0.239) (0.459)

-0.003 0.019 -0.015
(0.934) (0.968) (0.961)

0.022 -0.013
(0.876) (0.904)

-0.035
(0.978)

(continued)

DD (2) - Eligible

Study Design - 
Comparison Set
CITS (1) - State

CITS (2) - Eligible

CITS (3) - Applicants

CITS (4) - Nearest 
neighbor
CITS (5) - NN w/out 
replacement
CITS (6) - Radius

CITS (7) - Radius w/ 
demographics

DD (7) - Radius w/ 
demographics

DD (1) - State

Difference Between CITS and DD Impact Estimates for Reading, Year 1

Table E.1

DD and CITS Designs in Educational Evaluation

DD (6) - Radius

DD (5) - NN w/out 
replacement

DD (4) - Nearest 
neighbor 

DD (3) - Applicants
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-- = Not applicable because both the study design and the comparison group selection method are different.

NOTES: The value in the first row of each cell is the estimated difference (in effect size) between impact estimates based on the actual data. The 
difference in (Row X, Column Y)  is equal to the estimated impact based on the comparison group in (Row X) minus the estimated impact based 
on the group in (Column Y). Effect sizes are calculated using a standard deviation of 21.06, which is the student-level standard deviation for 
scores in NCEs.  The value in the second row of each cell is the p-value for the difference between impact estimates, based on bootstrapped 
samples (1,000 iterations). 

Table E.1 (continued)
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CITS CITS CITS CITS CITS CITS CITS DD DD DD DD DD DD DD
(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

0.015 0.081 0.087 0.100 0.057 0.080 -0.010 -- -- -- -- -- --
(0.032) (0.004) (0.302) (0.146) (0.097) (0.319) (0.623)

0.065 0.071 0.084 0.041 0.065 -- -0.007 -- -- -- -- --
(0.018) (0.439) (0.271) (0.214) (0.429) (0.748)

0.006 0.019 -0.024 0.000 -- -- -0.013 -- -- -- --
(0.832) (0.820) (0.770) (0.983) (0.637)

0.013 -0.030 -0.006 -- -- -- -0.012 -- -- --
(0.955) (0.988) (0.889) (0.930)

-0.043 -0.019 -- -- -- -- -0.051 -- --
(0.965) (0.900) (0.859)

0.024 -- -- -- -- -- 0.005 --
(0.880) (0.791)

-- -- -- -- -- -- -0.007
(0.974)

0.019 0.078 0.085 0.060 0.072 0.084
(0.001) (0.000) (0.086) (0.022) (0.000) (0.030)

0.059 0.066 0.041 0.053 0.065
(0.004) (0.216) (0.097) (0.007) (0.094)

0.007 -0.018 -0.006 0.006
(0.863) (0.828) (0.745) (0.846)

-0.025 -0.013 -0.001
(0.996) (0.977) (0.757)

0.012 0.024
(0.964) (0.730)

0.012
(0.668)

(continued)

DD (4) - Nearest 
neighbor 

Study Design - 
Comparison Set
CITS (1) - State

CITS (2) - Eligible

CITS (3) - Applicants

CITS (4) - Nearest 
neighbor
CITS (5) - NN w/out 
replacement
CITS (6) - Radius

DD (7) - Radius w/ 
demographics

DD (6) - Radius

DD (5) - NN w/out 
replacement

DD and CITS Designs in Educational Evaluation

Table E.2

Difference Between CITS and DD Impact Estimates for Reading, Year 2

CITS (7) - Radius w/ 
demographics
DD (1) - State

DD (2) - Eligible

DD (3) - Applicants
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-- = Not applicable because both the study design and the comparison group selection method are different.

NOTES: The value in the first row of each cell is the estimated difference (in effect size) between impact estimates based on the actual data. The 
difference in (Row X, Column Y)  is equal to the estimated impact based on the comparison group in (Row X) minus the estimated impact based 
on the group in (Column Y). Effect sizes are calculated using a standard deviation of 21.06, which is the student-level standard deviation for 
scores in NCEs.  The value in the second row of each cell is the p-value for the difference between impact estimates, based on bootstrapped 
samples (1,000 iterations). 

Table E.2 (continued)
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CITS CITS CITS CITS CITS CITS CITS DD DD DD DD DD DD DD
(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

-0.001 0.023 0.026 0.011 0.019 -0.025 -0.004 -- -- -- -- -- --
(0.911) (0.441) (0.700) (0.545) (0.458) (0.957) (0.808)

0.024 0.027 0.012 0.020 -0.024 -- 0.000 -- -- -- -- --
(0.402) (0.689) (0.530) (0.438) (0.965) (0.976)

0.003 -0.013 -0.004 -0.048 -- -- -0.004 -- -- -- --
(0.993) (0.983) (0.957) (0.777) (0.854)

-0.016 -0.007 -0.051 -- -- -- -0.005 -- -- --
(0.968) (0.975) (0.796) (0.959)

0.008 -0.036 -- -- -- -- 0.010 -- --
(0.925) (0.771) (0.930)

-0.044 -- -- -- -- -- -0.001 --
(0.784) (0.986)

-- -- -- -- -- -- 0.057
(0.725)

0.003 0.023 0.026 0.024 0.022 0.037
(0.665) (0.382) (0.608) (0.466) (0.140) (0.262)

0.020 0.023 0.021 0.019 0.034
(0.428) (0.656) (0.519) (0.180) (0.303)

0.002 0.001 -0.002 0.013
(1.000) (0.978) (0.935) (0.808)

-0.001 -0.004 0.011
(0.974) (0.955) (0.857)

-0.002 0.012
(0.966) (0.842)

0.015
(0.805)

(continued)

DD (4) - Nearest 
neighbor 

Study Design - 
Comparison Set
CITS (1) - State

CITS (2) - Eligible

CITS (3) - Applicants

CITS (4) - Nearest 
neighbor
CITS (5) - NN w/out 
replacement
CITS (6) - Radius

DD (7) - Radius w/ 
demographics

DD (6) - Radius

DD (5) - NN w/out 
replacement

Difference Between CITS and DD Impact Estimates for Math, Year 1

DD and CITS Designs in Educational Evaluation

Table E.3

CITS (7) - Radius w/ 
demographics
DD (1) - State

DD (2) - Eligible

DD (3) - Applicants
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-- = Not applicable because both the study design and the comparison group selection method are different.

NOTES: The value in the first row of each cell is the estimated difference (in effect size) between impact estimates based on the actual data. The 
difference in (Row X, Column Y)  is equal to the estimated impact based on the comparison group in (Row X) minus the estimated impact based 
on the group in (Column Y). Effect sizes are calculated using a standard deviation of 21.06, which is the student-level standard deviation for 
scores in NCEs.  The value in the second row of each cell is the p-value for the difference between impact estimates, based on bootstrapped 
samples (1,000 iterations). 

Table E.3 (continued)

120 



 

  

CITS CITS CITS CITS CITS CITS CITS DD DD DD DD DD DD DD
(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

0.010 0.062 0.055 0.047 0.076 0.102 -0.001 -- -- -- -- -- --
(0.278) (0.066) (0.286) (0.133) (0.076) (0.394) (0.961)

0.052 0.046 0.037 0.066 0.092 -- 0.005 -- -- -- -- --
(0.108) (0.358) (0.195) (0.126) (0.440) (0.855)

-0.007 -0.015 0.014 0.040 -- -- 0.001 -- -- -- --
(0.848) (0.790) (0.772) (0.719) (0.987)

-0.009 0.021 0.046 -- -- -- 0.030 -- -- --
(0.981) (0.991) (0.816) (0.970)

0.030 0.055 -- -- -- -- 0.040 -- --
(0.990) (0.815) (0.942)

0.026 -- -- -- -- -- 0.005 --
(0.801) (0.864)

-- -- -- -- -- -- 0.006
(0.954)

0.016 0.064 0.086 0.088 0.082 0.109
(0.024) (0.009) (0.091) (0.015) (0.000) (0.002)

0.048 0.071 0.072 0.066 0.093
(0.047) (0.177) (0.050) (0.000) (0.008)

0.022 0.024 0.018 0.045
(0.736) (0.625) (0.480) (0.215)

0.002 -0.004 0.022
(0.954) (0.949) (0.529)

-0.006 0.020
(0.979) (0.462)

0.026
(0.362)

(continued)

DD (4) - Nearest 
neighbor 

Study Design - 
Comparison Set
CITS (1) - State

CITS (2) - Eligible

CITS (3) - Applicants

CITS (4) - Nearest 
neighbor
CITS (5) - NN w/out 
replacement
CITS (6) - Radius

DD (7) - Radius w/ 
demographics

DD (6) - Radius

DD (5) - NN w/out 
replacement

Difference Between CITS and DD Impact Estimates for Math, Year 2

DD and CITS Designs in Educational Evaluation

Table E.4

CITS (7) - Radius w/ 
demographics
DD (1) - State

DD (2) - Eligible

DD (3) - Applicants
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-- = Not applicable because both the study design and the comparison group selection method are different.

NOTES: The value in the first row of each cell is the estimated difference (in effect size) between impact estimates based on the actual data. The 
difference in (Row X, Column Y)  is equal to the estimated impact based on the comparison group in (Row X) minus the estimated impact based 
on the group in (Column Y). Effect sizes are calculated using a standard deviation of 21.06, which is the student-level standard deviation for 
scores in NCEs.  The value in the second row of each cell is the p-value for the difference between impact estimates, based on bootstrapped 
samples (1,000 iterations). 

Table E.4 (continued)
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Study Design - Comparison Group CITS (1) CITS (2) CITS (3) CITS (4) CITS (5) CITS (6) CITS (7) DD (1) DD (2) DD (3) DD (4) DD (4) DD (5) DD (6)
0.262 0.258 0.253 0.222 0.289 0.344 0.086 0.355 0.346 0.324 0.237 0.307 0.322 0.247
0.341 0.349 0.368 0.235 0.338 0.388 0.180 0.431 0.440 0.473 0.343 0.422 0.458 0.334
1.000 0.982 0.799 0.430 0.575 0.714 0.276 0.896 -- -- -- -- -- --
1.000 0.989 0.870 0.412 0.564 0.641 0.379 0.896

1.000 0.818 0.420 0.572 0.723 0.284 -- 0.894 -- -- -- -- --
1.000 0.881 0.409 0.564 0.640 0.379 0.893

1.000 0.344 0.477 0.611 0.211 -- -- 0.907 -- -- -- --
1.000 0.358 0.504 0.587 0.357 0.879

1.000 0.774 0.625 0.182 -- -- -- 0.316 -- -- --
1.000 0.750 0.653 0.234 0.313

1.000 0.734 0.244 -- -- -- -- 0.488 -- --
1.000 0.694 0.281 0.526

1.000 0.296 -- -- -- -- -- 0.754 --
1.000 0.320 0.752

1.000 -- -- -- -- -- -- 0.254
1.000 0.286

1.000 0.983 0.815 0.504 0.635 0.806 0.564
1.000 0.989 0.886 0.644 0.752 0.880 0.616

1.000 0.829 0.496 0.632 0.816 0.570
1.000 0.893 0.644 0.755 0.891 0.617

1.000 0.410 0.552 0.709 0.462
1.000 0.585 0.702 0.800 0.567

1.000 0.762 0.613 0.352
1.000 0.824 0.705 0.468

1.000 0.725 0.439
1.000 0.800 0.518

1.000 0.557
1.000 0.603

1.000
1.000

(continued)

CITS (3) - Applicants

CITS (4) - Nearest neighbor

CITS (5) - NN w/out replacement

CITS (6) - Radius

DD (2) - Eligible

CITS (7) - Radius w/ demographics

DD (1) - State

DD (3) - Applicants

DD (4) - Nearest neighbor 

DD (5) - NN w/out replacement

DD (6) - Radius

DD (7) - Radius w/ demographics

CITS (2) - Eligible

DD and CITS Designs in Educational Evaluation

Table E.5

Correlations Between Impact Estimates for Reading (Year 1 and Year 2)

RDD

CITS (1) - State
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Table E.5 (continued) 

               NOTES: Values in the table are the correlation between impact estimates, across bootstrapped samples (1,000 iterations). The first row in each cell is 
the correlation for impacts in Year 1, and the second row is the correlation for impacts in in Year 2. 
-- = Not applicable because both the study design and the comparison group selection method are different. 
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Study Design - Comparison Group CITS (1) CITS (2) CITS (3) CITS (4) CITS (5) CITS (6) CITS (7) DD (1) DD (2) DD (3) DD (4) DD (4) DD (5) DD (6)
0.246 0.239 0.265 0.219 0.252 0.304 0.130 0.340 0.333 0.371 0.202 0.263 0.321 0.309
0.216 0.219 0.204 0.244 0.316 0.369 0.165 0.335 0.337 0.360 0.261 0.332 0.418 0.351
1.000 0.980 0.792 0.473 0.614 0.754 0.267 0.884 -- -- -- -- -- --
1.000 0.981 0.829 0.355 0.489 0.559 0.194 0.851

1.000 0.813 0.475 0.621 0.760 0.265 -- 0.883 -- -- -- -- --
1.000 0.846 0.356 0.494 0.569 0.204 0.852

1.000 0.374 0.489 0.618 0.211 -- -- 0.885 -- -- -- --
1.000 0.296 0.410 0.473 0.176 0.845

1.000 0.777 0.641 0.192 -- -- -- 0.345 -- -- --
1.000 0.744 0.630 0.165 0.288

1.000 0.732 0.193 -- -- -- -- 0.551 -- --
1.000 0.671 0.158 0.492

1.000 0.275 -- -- -- -- -- 0.844 --
1.000 0.276 0.767

1.000 -- -- -- -- -- -- 0.275
1.000 0.284

1.000 0.983 0.801 0.609 0.729 0.893 0.752
1.000 0.981 0.832 0.522 0.678 0.868 0.635

1.000 0.816 0.603 0.731 0.899 0.757
1.000 0.841 0.524 0.686 0.877 0.640

1.000 0.491 0.617 0.751 0.609
1.000 0.458 0.597 0.753 0.565

1.000 0.791 0.658 0.484
1.000 0.786 0.616 0.406

1.000 0.780 0.596
1.000 0.763 0.527

1.000 0.769
1.000 0.672

1.000
1.000

(continued)

CITS (3) - Applicants

CITS (4) - Nearest neighbor

CITS (5) - NN w/out replacement

CITS (6) - Radius

DD (2) - Eligible

CITS (7) - Radius w/ demographics

DD (1) - State

DD (3) - Applicants

DD (4) - Nearest neighbor 

DD (5) - NN w/out replacement

DD (6) - Radius

DD (7) - Radius w/ demographics

CITS (2) - Eligible

DD and CITS Designs in Educational Evaluation

Table E.6

Correlations Between Impact Estimates for Math (Year 1 and Year 2)

RDD

CITS (1) - State
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-- = Not applicable because both the study design and the comparison group selection method are different.

NOTES: Values in the table are the correlation between impact estimates, across bootstrapped samples (1,000 iterations). The first row in each cell is the 
correlation for impacts in Year 1, and the second row is the correlation for impacts in in Year 2.

Table E.6 (continued)
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Propensity-Score Matching Versus Direct Matching 
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All matched comparison groups presented in this paper were selected based on the propensity 
score — a unidimensional index of the overall “similarity” between schools on a range of 
characteristics. The propensity score is a useful metric when the goal is to match on many 
different measures or many different time points. However, when there are only a handful of 
matching characteristics, another option is to match schools on each characteristic directly, 
rather than matching them based on a propensity score. The results of this latter approach are 
presented in this appendix as a sensitivity analysis, for impacts on reading test scores.  

For this supplemental analysis, we focus on the radius matching method (rather than 
nearest neighbor matching) for two reasons. First, the radius method provides larger sample 
sizes and so is better suited for detecting bias (relative to the regression discontinuity [RD] 
design). Second, when matching on two or more characteristics (as in the comparative inter-
rupted time series [CITS] design), nearest neighbor matching is not possible, because it is near-
impossible to find a match that is “nearest” on all matching characteristics.1 “Direct” radius 
matching was conducted as follows: 

• For the CITS design, direct matching was conducted based on two key 
characteristics: (a) the baseline trend in test scores and (b) test scores in 
the last baseline year. For each school, we first estimated the baseline 
slope and predicted score in the last baseline year, based on six years of 
baseline test scores.2 Each treatment school was then matched to all eligi-
ble comparison schools that fell within radius x of its baseline mean and 
radius y of its baseline intercept. The optimal radius used for both the slope 
and last baseline year was 0.25 SD; these optimal radii were determined us-
ing the mean squared error (MSE)-based approach described in the paper.  

• For the DD design, direct matching is much simpler because it is based on 
only one characteristic: the average baseline test score for the three years 
preceding the start of Reading First. To conduct direct matching, we first 
estimated the baseline mean for each school, and then each treatment 
school was matched to all eligible comparison schools within radius z of 
its baseline mean. The optimal radius used was 0.19 SD, which was de-
termined using the MSE method. 

Overall, we find that direct radius matching produces very similar results to simply matching 
based on the propensity score. Specifically: 
                                                 

1Radius matching was conducted with replacement. Analyses are weighted to account for the fact that 
some comparison schools are chosen more than once and to account for varying numbers of matched compari-
son schools per treatment schools. 

2These values were obtained by fitting a linear trend to six years of baseline test scores. 
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• Table F.1 presents the characteristics of schools in the “radius” and “radius 

direct” comparison sets. The results show that the latter comparison sets are 
similar to the Reading First schools; they differ by no more than 0.25 SD on 
test scores and demographic characteristics. 

• Table F.2 shows the amount of overlap between the comparison schools se-
lected using propensity-based radius matching and direct radius matching. 
There is substantial overlap between the two methods, especially among sets 
used in the DD analysis (based on three years of baseline test scores). 

• Figure F.1 plots the third-grade test scores of schools in the comparison set 
created using “direct” radius matching. For reference, the test scores of 
schools in the comparison set created using propensity-based radius match-
ing are also shown. Both sets have a similar baseline trend as the Reading 
First schools. 

• Figures F.2 and F.3 show the estimated impact of Reading First based on the 
“radius direct” comparison set, for the CITS and DD designs, respectively. 
As a reference point, the RD impact estimate (the benchmark) and the pro-
pensity-based radius estimates are also shown. As seen here, the propensity-
based and direct radius matching methods produce similar findings. 
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RF Radius Radius
School Characteristic Schools Radius Direct Radius Direct

Baseline reading test scores

Predicted score in last baseline year 52.75 55.07 54.27 51.22 51.22
(0.33) X (0.22) (-0.22) (-0.22)

Baseline trend (6 years) 1.24 1.21 1.24 1.04 1.11
(-0.03) (0) (-0.17) (-0.12)

Demographic characteristics (last baseline year)

Urban schools (%) 37.68 41.02 44.18 45.21 44.68
(0.07) (0.14) (0.16) (0.15)

Enrollment 382.61 376.88 393.62 390.91 391.29
(-0.04) (0.07) (0.05) (0.05)

Free/reduced-price lunch (%) 65.64 65.18 66.28 63.03 64.91
(-0.022) (0.03) (-0.13) (-0.04)

Racial/ethnic composition (%)
  White 81.35 83.31 80.33 81.02 80.45

(0.1) (-0.05) (-0.02) (-0.05)
  Hispanic 2.50 1.94 2.58 1.88 2.34

(-0.15) (0.02) (-0.17) (-0.04)
  Black 15.17 13.83 16.07 15.92 16.06

(-0.08) (0.06) (0.05) (0.05)
  Other 2.50 1.94 2.58 1.88 2.34

(-0.15) (0.02) (-0.17) (-0.04)
Number of 3rd-grade students 59.97 56.29 58.99 58.59 59.08

(-0.13) (-0.03) (-0.05) (-0.03)
Female 3rd-graders (%) 47.91 47.60 47.20 47.07 47.57

(-0.07) (-0.15) (-0.18) (-0.07)
Children in poverty in district (%) 22.00 23.18 22.98 22.83 22.56

(0.17) (0.14) (0.12) (0.08)
Pupil-teacher ratio 14.47 15.17 * 14.83 15.09 14.91

(0.29) X (0.15) (0.25) X (0.18)

Number of schools 69 369 270 363 297

CITS Design DD Design

NOTES: Values shown in parentheses are the difference between RF and comparison schools in effect 
size. Effect sizes are calculated using the school-level standard deviation based on all schools in RF-
eligible districts in the last baseline year (including both RF schools and non-RF schools). Differences 
greater than 0.25 SD are indicated with an "X." Statistical tests of the difference between Reading First 
schools and comparison schools are not shown, because the precision of the estimated difference varies 
across the comparison groups. (For a given effect size, larger comparison groups are more likely to be 
deemed statistically different from RF schools.)

Table F.1

Characteristics of Reading First Schools and Comparison Groups Created Using 
Propensity-Based vs. Direct Radius Matching
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CITS DD
CITS Radius DD Radius

Among schools in the following Radius Direct Radius Direct
comparison groups… (N) (369) (270) (363) (297)

CITS - Radius (369) 100% 70% 94% 77%
CITS - Radius direct (270) 96% 100% 99% 85%
DD - Radius (363) 95% 73% 100% 79%
DD - Radius direct (297) 95% 77% 97% 100%

Overlap Between Comparison Groups Created Using Propensity-
Based Radius Matching vs. Direct Radius Matching, for Impacts 

on Reading

… Percentage that are also in …

NOTES: Value in (Row X, Column Y) = Percentage of schools in the comparison 
group in Row X that are also part of the comparison group in Column Y.
(N) = Sample size of comparison group.

Table F.2

DD and CITS Designs in Educational Evaluation
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Figure F.1

Reading Test Score Trends for Reading First Schools and Comparison 
Groups Created Using Propensity-Based Radius Matching vs. Direct Radius 

Matching
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Figure F.2

Estimated Impact on Reading Scores, CITS Design
Based on Propensity-Based Radius Matching vs. Direct Radius Matching 

(N = number of comparison schools, SE = standard error, p = p-value) 
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Figure F.3

Estimated Impact on Reading Scores, DD Design
Based on Propensity-Based Radius Matching vs. Direct Radius Matching

(N = number of comparison schools, SE = standard error, p = p-value) 
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