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Abstract Researchers in the single-case design tradition
have debated the size and importance of the observed auto-
correlations in those designs. All of the past estimates of the
autocorrelation in that literature have taken the observed
autocorrelation estimates as the data to be used in the de-
bate. However, estimates of the autocorrelation are subject
to great sampling error when the design has a small number
of time points, as is typically the situation in single-case
designs. Thus, a given observed autocorrelation may greatly
over- or underestimate the corresponding population param-
eter. This article presents Bayesian estimates of the autocor-
relation that greatly reduce the role of sampling error, as
compared to past estimators. Simpler empirical Bayes esti-
mates are presented first, in order to illustrate the fundamen-
tal notions of autocorrelation sampling error and shrinkage,
followed by fully Bayesian estimates, and the difference
between the two is explained. Scripts to do the analyses
are available as supplemental materials. The analyses are
illustrated using two examples from the single-case design
literature. Bayesian estimation warrants wider use, not only
in debates about the size of autocorrelations, but also in
statistical methods that require an independent estimate of
the autocorrelation to analyze the data.
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Single-case designs (SCDs) are widely used to assess the
impact of interventions in fields as diverse as medicine,
developmental disabilities, education, and behavioral disor-
ders (Gabler, Duan, Vohra, & Kravitz, 2011; Shadish &
Sullivan, 2011). They generally take the form of a short,
interrupted time series design in which an intervention is
applied to a single case that is observed for a particular
outcome on many occasions over time. Historically,
researchers who use SCDs have relied extensively on visual
analysis to assess whether the intervention has had the de-
sired impact on the outcome. In the last two decades, how-
ever, efforts to develop and apply statistical analyses to SCD
data have increased greatly (Kratochwill & Levin, 2010;
Maggin et al., 2011; Parker, Vannest, & Davis, 2011; Parker,
Vannest, Davis, & Sauber, 2011; Shadish & Rindskopf,
2007; Shadish, Rindskopf, & Hedges, 2008). One common
attribute of these diverse statistical efforts is the need to take
into account the serial dependency among errors of observa-
tion within a case over time, commonly referred to as auto-
correlation. This dependence violates the assumption of
independence of errors that is shared by nearly all parametric
and nonparametric statistics, and it can result in biased de-
scriptive and inferential statistics, the latter typically result-
ing in an inflated Type I error rate.

SCD researchers have long been aware of this problem.
Over 30 years ago, for example, Jones, Weinrott, and
Vaught (1978) explored the effects of serial dependency on
both visual and statistical inference. Since then, many
researchers have explored methods for measuring autocor-
relation, surveyed the observed size of autocorrelations in
the SCD literature, gauged the potential impact of autocor-
relation on effect estimation, and suggested ways to mini-
mize that impact (e.g., Huitema & McKean, 1994; Manolov
& Solanas, 2008; McKnight, McKean, & Huitema, 2000).
Plaguing all of these efforts, however, have been two special
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problems in measuring autocorrelation, problems that are
particularly prevalent in SCDs. Both problems stem from
the fact that SCDs tend to be short; that is, they have
comparatively few observations within a case over time, as
compared to the traditional time series literature, in which
50-100 observations over time are common. First is the
problem of bias—that estimates of autocorrelation tend to
be negatively biased in short time series. This problem has
received the most attention in the literature. For instance,
Huitema and his colleagues have worked to develop esti-
mators that may be less sensitive to this bias (Huitema &
McKean, 1994; McKnight et al., 2000). Second is the
problem of precision—that autocorrelations from any giv-
en SCD are subject to substantial fluctuation due to
sampling error, so that the variance of observed estimates
around the point estimate is very high. The present
article addresses the issue of precision and shows that
Bayesian autocorrelation estimators may improve our un-
derstanding of the precision of any of the extant auto-
correlation estimators. Unless explicitly noted otherwise,
we use the word autocorrelation to refer to the lag-1
correlation among residuals from observations, frequently
obtained empirically by a regression of those observations
on time, treatment, and a term to represent the interaction
(Huitema & McKean, 2000).

More on precision: Population parameters, sample
statistics, and sampling error

Sampling error is the discrepancy between a population
parameter and the sample realizations of that parameter that
may be observed in any given data set. The autocorrelation is
as subject to sampling error as any other observed statistic,
and sampling error leads to a wider range of observed auto-
correlations than many researchers may realize. For example,
Parker et al. (2005) measured the observed autocorrelation in
77 published SCDs and reported that the middle 80 % of the
distribution ranged from about » = —.33 to about » = .77,
depending on how the autocorrelation was measured. They
concluded that autocorrelation exists in large amounts and
may be quite problematic for statistical analysis. Yet much
of'this observed range was likely due to sampling error. With &
cases (time series), each with a population autocorrelation,
the asymptotic variance of the estimated autocorrelation is
approximately

v;z(l—pf)/(t;—3), (1)

where p is the autocorrelation of the jth case (j=1... k) and ¢ is
the number of time points in the jth case (Anderson, 1971).
Suppose that the population autocorrelation is actually p=.222.
Then a range of » =—.33 to about » =.77 for the middle 80 % of
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the observations is the variability we would expect by chance if
the set of SCDs averaged 8.15 observations. We used 80 %
probability intervals to match what Parker et al. (2005) had
done, but it would be more common to use 95 % probability
intervals, which we will do in the next few examples. With an
SCD that has 20 time points, we would expect that the auto-
correlation in the observed data might vary by chance from
—26 < r; < .66 (the 95 % probability interval). With only ten
time points, which is not at all uncommon in the SCD literature,
the range would be —.53 <r; < .93. Even with as many as 35
time points, which is more than most SCDs have, the range
would still be —.14 <r; < .54. Clearly the range of autocorrela-
tions described by Parker et al. (2005) might be due substan-
tially to chance.

Hence, the autocorrelation computed for any given SCD
is a very imprecise estimate of the population autocorrela-
tion that produced the data—even if it were an unbiased
estimate. Fortunately, when autocorrelations are computed
from multiple SCDs within a study, we can use that larger
set of information to obtain better autocorrelation estimates
in two ways. The first is to use random effects meta-analytic
methods to estimate the population parameter(s) and then to
use the value(s) in the pertinent statistical analyses. We have
used that option in other research, not reported here (Hedges,
Pustejovsky, & Shadish, 2012), but it has a problem: Unless
the variance component measuring the heterogeneity of the
observed autocorrelations is zero, using the meta-analytic
mean incorrectly implies that all cases within a study have
exactly the same autocorrelation, which may not be the case if
homogeneity is rejected.

Hence, the present article proposes a second option,
using Bayesian statistics to obtain empirical Bayes or fully
Bayesian estimates of the autocorrelation. We start by pre-
senting the simpler, empirical Bayes estimates, which show
how Bayesian statistics can take advantage of information
about the autocorrelation from all of the cases in a study to
reduce the role of sampling error in estimates of the auto-
correlation for any single case. When the computed estimate
of the heterogeneity of the autocorrelation is zero, empirical
Bayes estimates shrink the individual estimates for each
case to a single common mean, because all of the apparent
variability in individual estimates is due to sampling error.
When heterogeneity is greater than zero, estimates are not
shrunk as much, and if heterogeneity is truly very large,
estimates may not be shrunk at all. Empirical Bayes esti-
mates are simple to compute with the SPSS and R code that
we provide in the online supplemental materials.

However, empirical Bayes methods assume that the het-
erogeneity of the autocorrelation is measured perfectly,
whether or not it happens to be zero. Fully Bayesian meth-
ods treat the heterogeneity not as a single parameter repre-
sented by a point estimate, but as itself having a distribution
in the population. The result is not a point estimate of the
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autocorrelation, but rather a posterior distribution that shows
how estimates of the autocorrelation within a study vary,
depending on uncertainty about heterogeneity. Although
fully Bayesian methods are more difficult to compute for
many applied researchers because they require the use of
programs such as WinBUGS or the hblm module of SPlus
(code for the latter is also available in the online supplemental
materials), the effort is worthwhile, given the power that fully
Bayesian methods have to illuminate problems of autocorre-
lation in SCDs.

Empirical Bayes estimates

Studies that use SCD methods typically include more than one
SCD (Shadish & Sullivan, 2011). If one has observed auto-
correlations from both a given SCD within a study and a larger
set of SCDs from the same study that are considered ex-
changeable with that given SCD, the empirical Bayes (EB)
estimate is an optimal composite based on data from both
sources. The exchangeability assumption implies that the
researcher has no prior reason to assume that the autocorrela-
tion for one case within a study should be larger or smaller
than that of any other case for reasons other than sampling
error or systematic differences due to the measured covariates.
This seems plausible in the SCD literature. In most SCD
studies, the researcher is investigating the effects of a common
treatment on a set of cases selected to be similar in such study-
relevant characteristics as diagnosis, age, gender, or disability,
and the researcher is measuring those effects on the same
outcome over time. However, this assumption may not hold,
and sometimes Bayesian estimates can shed light on that
occurrence, as we will show in one example.

Here we use the usual Yule-Walker estimate of autocor-
relation, uncorrected for bias due to small sample size or the
number of parameters used to estimate the residuals on
which the autocorrelation is computed. We have not used
the bias-corrected versions of the autocorrelation and its
variance, for two reasons. First, for purposes of demonstrat-
ing a Bayesian approach to this problem, any one of the
autocorrelation estimators will do. For instance, given the
equations that we present, a statistical necessity is that the
within-study estimates will shrink toward a common mean,
depending solely on how much sampling error is present, no
matter which autocorrelation estimator is used. This need
not be demonstrated with, say, a simulation, though we must
be clear that the Bayesian estimates in this article clarify
only the precision of the estimate, not its bias. Second, the
focus of the present study is not on reducing bias in the
autocorrelation, but on demonstrating how the Bayesian
approach is capable of dealing with sampling error in the
measurement of autocorrelations in a way that the usual
frequentist statistics cannot do.

Assume that one has & cases, each consisting of ; data points,
each case producing an observed autocorrelation 7; (=1 ... k).
Then, the EB estimate ﬁ; of the jth autocorrelation can be defined
as a weighted sum of information from two sources:

(1=%)p- (2)

in which equation p. is the random-effects meta-analytic average
autocorrelation from the full set of SCDs, and J\; is the reliability
of the estimate of a case’s autocorrelation 7;:

Var( p. 7
3y Yarle) 3)

a Var(rj) _TJrvj'

P =+

Here, 7 is the variance of the estimated autocorrelations
across studies, and v; is the error variance of the sample
statistic defined in Eq. 1.

This definition of reliability is essentially the same as that
used in classical test theory: the ratio of true score variance to
observed score variance. Hence, the EB estimate of autocorre-
lation in Eq. 2 is a weighted composite of the observed auto-
correlation from the given SCD of interest and the average
autocorrelation from the population from which the set of
studies for the given SCD is drawn, where the weight is the
reliability of the respective autocorrelations. In the context of
SCDs, we would typically expect the reliability of the autocor-
relation from a given SCD to be quite low due to sampling
error. We would also expect that the reliability of the average of
the set of autocorrelations would be higher—sometimes con-
siderably higher—with the reliability of that average increas-
ing monotonically with the number of the SCDs and time
points that contribute to the average. Hence, the observed
estimate from any given SCD will move closer to the average
autocorrelation, reflecting the greater reliability of the latter.
Consequently, these EB estimates are often referred to as
shrunken estimates, because each EB estimate shrinks toward
the mean. Unlike the meta-analytic average, the EB estimates
can be unique to each SCD. That is, where the meta-analytic
approach might substitute a single number (the average) for
each of k autocorrelations, the EB approach frequently yields &
distinct autocorrelations, and when it does not do so, this is
because a single population parameter is the most plausible
estimate for the underlying autocorrelation.

A subsidiary issue is that the asymptotic variance in Eq. 1
may be biased, which could affect the degree of shrinkage. For
instance, if the variance in Eq. 1 underestimates the true
variance, the reliability of the sample autocorrelation in
Eq. 3 may be overestimated, and Eq. 2 may then yield an
estimate that is not shrunken as much as would be the case if a
more accurate variance estimate were available. If the variance
is overestimated, the opposite will happen. Unfortunately, no
widely accepted alternative estimate of the variance currently
exists. How much any such shrinkage may be affected will be
a useful topic for further investigation.
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Computations

To obtain the EB estimates, one first needs to estimate the
autocorrelation for each SCD. In the examples, we will use a
standard estimate of lag-1 autocorrelation:

=t )

where y, is the residual of the observation at time #, and y;;
is the residual at time #;, ; (Huitema & McKean, 1994). The
remaining information to compute the EB estimates of these
autocorrelations is obtained by computing a meta-analysis
on the autocorrelations (Shadish & Haddock, 2009). The

random-effects average effect size p. is estimated as

where w; =1 / vj* and v; = 7+ v;. The last variable was

already computed as Eq. 1, and

7= max{ E)Q_ (k= 1)]/e, (6)
where
k k k
3w |37 /3] 0
i=1 =1 j=1
and

0="w(-7)" (s)

The results are inserted into Egs. 2 and 3 to obtain an EB
estimate for each SCD (SPSS and R scripts to do these
computations are available as supplemental materials).

Examples

We illustrate these methods with two examples that illus-
trate conditions under which EB estimates work with
differential effectiveness. Schutte, Malouff, and Brown
(2008) used a multiple-baseline design to study the effi-
cacy of an emotion-focused therapy in 13 adults suffering
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from prolonged fatigue. The number of time points
ranged from six to 15 over cases. The authors included
all of the raw data in a table in the publication. We
created residuals for each SCD from a regression of the
outcome on time, treatment, and an interaction term. The
rationale for these predictors was that a primary regres-
sion analysis of such data would include these terms as
predictors, and those terms would account for some
portion of the autocorrelation. The question at issue
would then be the size of any remaining (residual) auto-
correlation once those terms were modeled.

Because the number of time points in each SCD in the
Schutte et al. (2008) data was small, the autocorrelation from
any given SCD was likely to be measured with great sampling
error. However, considerably more information about the
autocorrelation was available from the set of 13 SCDs in the
Schutte et al. data, so we would expect that the EB estimates
would shrink toward the overall meta-analytic mean from the
13 studies. This was indeed the case. The raw autocorrelations
computed by Eq. 4 ranged from r; = —.671 to + .354 (see
Table 1). A meta-analytic homogeneity test indicated
that these autocorrelations differed by no more than we would
expect by chance (Q = 9.37, df = 12, p = .67),and 7 = 0,

Table 1 Autocorrelations using different estimators

Schutte et al. (2008) t 7 rEB FHLMEB
Case 1 12 —-.398 -172 -172
Case 2 15 354 -172 -172
Case 3 9 —.083 -172 -172
Case 4 9 —.149 -172 -172
Case 5 15 —.064 -172 —172
Case 6 12 —-.556 -.172 -172
Case 7 12 —.343 -.172 -172
Case 8 10 204 -172 -172
Case 9 9 —.124 -172 -172
Case 10 9 -331 -172 -172
Case 11 15 —.165 -172 -172
Case 12 6 —.671 -172 -172
Case 13 12 —-.101 -172 -172
Summary statistics for 7: p. = —.1718, 7 =.000, ¢ = 108.823,
0=937
Dyer et al. (1984) 4 7 FEB FHLMEB
Case 1 47 —.184 —.152 —151
Case 2 47 -.202 —.165 —.164
Case 3 47 .380 284 281
Case 4 47 -216 -.176 —175
Summary statistics for 7: p. = —.0525, 7=.0682, ¢ = 141.622,
0 =12.65«

t; is the number of time points, 7; is the usual autocorrelation, 7z is the
empirical Bayes estimate of 7, and 7145 is the HLM empirical Bayes
estimate of 7. “ p < .05
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so that Eq. 2 reduced to the meta-analytic random-effects mean.
Consequently, all estimates shrank to that mean, rgg = —.172.
The large variability and extreme values of the autocorrelation
in the Schutte et al. data had been entirely due to sampling
error.

The second example is from Dyer, Schwartz, and Luce
(1984), who trained severely handicapped students to engage
in age-appropriate and functional activities. Using a multiple-
baseline design, they implemented training in four homes
sequentially, with one baseline, one treatment, and one main-
tenance phase in each home. Ignoring the maintenance phase
data, we digitized the data from these four graphs using
procedures outlined elsewhere that have extremely high reli-
ability and validity (Shadish et al., 2009), and we again
created residuals for each SCD from a regression of the
outcome (average score per student) on time, treatment, and
an interaction term. In the Dyer et al. data, the number of data
points in each SCD was relatively large, at #; = 47, so the
information in each SCD about the autocorrelation was con-
siderably more reliable than was the case for the Schutte et al.
(2008) data, and the EB estimates showed less shrinkage.
Otherwise, the results are similar to those for the Schutte et
al. data. The raw autocorrelations for the Dyer et al. data
computed by Eq. 4 ranged from 7; = —.216 to + .380, and
they were heterogeneous (7 = .0682, QO = 12.65%); the EB
estimates of Eq. 4 ranged from rgp = —.176 to + .284, or
about 23 % shrinkage. We note one unusual aspect of
the Dyer et al. data that might affect inferences: Three
of the autocorrelation estimates were very similar, but
the fourth was quite different, and may be considered
an outlier. House 1 in that study had the discrepant
autocorrelation. Inspection of the graph for that case
suggests the possibility of a ceiling effect that was not
present in the other three cases, and this could cause
higher autocorrelation.

EB estimates can also be obtained from multilevel
models using programs that are more convenient for
some researchers than SPSS script. We did so using the
HLM computer program (Raudenbush, Bryk, Cheong,
Congdon, & du Toit, 2004). Using the v-known option
in HLM, the only inputs needed are the autocorrelations
and their conditional variances; HLM computes all of the
other information internally (i.e., Egs. 2, 3, 5, 6, and 7).
For the Schutte et al. (2008) data, the EB estimates
(ruLmep) are identical to the rgp estimates. The variance
estimate computed directly by HLM (7 = .0003) is near
zero, and probably would be exactly zero if one reduced
the default tolerance of HLM for convergence (the EM
algorithm that it uses goes to zero values slowly). So the
HLM EB estimates are shrunk completely toward the
mean. Similarly, for the Dyer et al. (1984) data, the
HLM EB estimates are again nearly identical to the rgp
estimates. Finally, we also have an R script for these

computations, although R has a much steeper learning
curve than do the other two programs. SPSS and R
syntax for this analysis are available as supplemental
materials.

Fully Bayesian estimation

Fully Bayesian methods are potentially very useful for
single-case design research, because of the small num-
ber of cases and time points in most studies. The EB
estimates first find an estimate of the true variability in
the autocorrelations among cases (7), and then use that
estimate in Eq. 3 as if it were completely accurate
when finding the shrunken estimates of the autocorre-
lations. In fact, however, 7 is itself estimated, often
with considerable uncertainty, especially in small sam-
ples; fully Bayesian methods take this uncertainty into
account. The result is that one does not get just one
shrunken estimate of the autocorrelation, as in the EB
approach, but a posterior distribution of shrunken esti-
mates that depends on the estimated distribution of 7.
We used these methods on the two example data sets.
The prior for the average autocorrelation is uninforma-
tive, and the prior for 7 is a Pareto density with form

f(z) = k/(k+1)*, where k is the square root of the

harmonic mean of the variances of the autocorrelations.
This is relatively uninformative for 7, but discounts
very large values of 7.

The resulting interpretation is considerably more nuanced
and informative, although the general tenor of the results is
unchanged. For example, with the Schutte et al. (2008) data,
the weighted average shrunken estimates ranged from —.25
to —10 instead of being fully shrunken, as were the EB
estimates. The posterior mean of the autocorrelation is
r; = =19 (§D = .1005, p = .09), and the posterior mean
of 7is .11 (SD = .09). Those with the desire to use fully
Bayesian methods can do so through software such as the
program that we used here, hblm in SPlus (DuMouchel, 1994,
1995), or WinBUGS (Lunn, Thomas, Best, & Spiegelhalter,
2000). The SPlus syntax for this analysis is available as
supplemental materials.

The nature of the fully Bayesian analysis is most easily
explained in terms of a picture. Figure 1 contains a trace plot
of the results of the analysis of the Schutte et al. (2008) data
set produced by the hblm software (DuMouchel, 1994,
1995). The bars illustrate the distribution of probabilities
about possible values of the residual standard deviation 7.
Most plausible values (those with large bars) of 7 are small,
corresponding to 7 variances less than .09, though they seem
to indicate that 7is unlikely to be zero. The lines with letters
correspond to either the overall mean (indicated by the letter
A) or individual autocorrelations from the Schutte et al. data
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Fig. 1 Trace plot for the o
Schutte et al. (2008) data, 2
showing the posterior
distribution of 7 (on the left
vertical axis) and
autocorrelation estimates
conditional on each value of 7
(on the right vertical axis). The
line labeled A is the overall
average, while B through N
represent estimates for each
individual autocorrelation

Posterior Probability of Tau

0.005

0.013

Estimates Conditional on Tau

T
0
Conditional Mean

0.030 0.065 0.140

Tau

0.303 0.668 1.558 4.157

A=(Intercept) B=1 C=2 D=3 E=4 F=5 G=6 H=7 |=8 J=9 K=10 L=11 M=12 N=13

set (letters B through N). At each of nine values of 7, the
letters show what the shrunken estimates of the autocorre-
lation would be if that value of 7 were the true value (with
the height of the bar indicating the probability that 7 is the
true value). Small values of 7 correspond to maximal shrink-
age, so the lines converge on the left side of the plot. As 7
gets larger, the lines diverge, and on the far right approach
the observed effect sizes (corresponding to no shrinkage).
An empirical Bayes method picks the most likely value of 7
and estimates shrunken values of the autocorrelation at that
value of 7. A fully Bayesian method averages the autocor-
relations across the possible values of 7, weighting accord-
ing to how likely each value of 7 is to be correct.
(Technically, because 7 is continuously distributed, this is
an integral, but considering nine discrete values and sum-
ming, as was done here, produces a very accurate estimate.)

One additional consequence of not assuming 7 to be
known (or, equivalently, estimated with complete precision)
is that the confidence intervals for the shrunken estimates
and parameter estimates are (appropriately) wider because
of the additional uncertainty. Typically, one wants the small-
est standard errors and narrowest confidence intervals pos-
sible, but only if these are honest (e.g., in frequentist terms,
a 95 % confidence interval really covers the population
value 95 % of the time, not 80 % of the time). Fully
Bayesian intervals are honest in this sense.

The trace plot for the Dyer et al. data (see Fig. 2) reveals a
problem that was apparent previously in Table 1. Three
autocorrelations have estimates that are very similar, so
shrinking them toward a common value for the purpose of
strengthening the evidence about each is not problematic.
The fourth value, however, has an estimate that is far from
the other three, as can be seen by the divergence of the lines
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as one goes from left to right in the figure. It does not seem
reasonable to combine that value with the other three, as it
seems clearly to be an outlier. The statistical evidence is also
consistent with this judgment, as is the previous observation
that this case suffered from a ceiling effect that could have
caused the discrepant autocorrelation. In some cases that are
less extreme than this one, a ¢ distribution might be more
reasonable than a normal distribution, as this allows heavier
tails than does the normal distribution. Alternatively, one
might treat this as a case that does not meet the exchange-
ability criterion and exclude it from the Bayesian analyses.

Discussion

Bayesian estimates have one main advantage as compared
to past estimators of the autocorrelation in SCDs: They
reduce the role of sampling error in the estimates, particu-
larly when the number of cases is low, or the number of data
points within a case is small, or both. Hence, Bayesian
estimates account better for the variability in the distribution
of autocorrelations. When faced with the choice of using an
individual sample autocorrelation or the Bayesian estimate
in a statistic that requires adjustment for autocorrelation, the
latter is more likely than the individual sample autocorrela-
tions to represent the variability of the population autocor-
relations correctly. For example, Hedges et al. (2012)
developed a d statistic for SCDs, and knowledge of the
autocorrelation is necessary to compute both the denomina-
tor of that statistic and its conditional variance. In such
cases, a Bayesian estimate of the autocorrelation will, on
average, lessen the role of sampling error in autocorrela-
tions. Even for descriptive studies of autocorrelations (e.g.,
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Fig. 2 Trace plot for Dyer et al. °
(1984) data, showing the =7
posterior distribution of 7 (on
the left vertical axis) and
autocorrelation estimates
conditional on each value of 7
(on the right vertical axis). The
line labeled A is the overall
average, while B through E
represent estimates for each
individual autocorrelation

Posterior Probability of Tau

0.025

Parker et al., 2005), providing Bayesian estimates of the
autocorrelation instead of, or in addition to, the usual sample
estimates will separate issues of parameter estimation from
those of sampling error.

We can gain some insight about how autocorrelations of
different levels affect bias from a simulation by Hedges et
al. (2012) of bias in the estimates of their SCD d statistic and
its variance. The simulation involved five parameters, only
three of which need concern us here. The number of cases,
m, was varied from four to 12 to capture a range of values
observed in practice. The number of observations per peri-
od, n—assumed to be equal in the baseline and treatment
periods—was varied from four to 12. Finally, they varied
the autocorrelation over all but the most extreme possible
values. For each combination of the parameters, they simu-
lated 8,000 iterations of the model. Briefly, the results con-
firmed that the bias of G (d corrected by a small sample-bias
correction) remains small, except in the case of very large
(and probably unrealistic) negative autocorrelations (e.g.,
—.9). The variance of G was estimated somewhat more
poorly, especially when n = m = 4. As the number of time
points increased, bias in the variance became minimal when
the autocorrelation was less than | + .25 and m =n = 12. The
Bayesian estimators of the autocorrelation in the present
article are low enough to suggest that the autocorrelation
may not much bias results for this d statistic itself, but for its
variance, autocorrelation could prove to be a problem at
lower sample sizes. This clearly needs more investigation.

Several variations and extensions on these methods are
possible. First, the variance estimate for the autocorrelation
(as for any other correlation) depends on the value of the
correlation itself. In substituting the observed autocorrela-
tion, we typically underestimate the variance because we
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have not yet shrunk the estimates; thus, extreme values of
correlations are not shrunk enough. One could have a two-
step procedure, in which the variances are reestimated after
the initial shrinkage, and then the estimates are recomputed.
In other words, variances from shrunken estimates are used
in the analysis, but with the original autocorrelations. This
would make the standard errors of the autocorrelations more
accurate. Another possibility is to use a Fisher’s Z transfor-
mation of the correlations, which has a variance estimate
that is not a function of the correlation. (See Hafdahl, 2009,
2010, for more on the use of Fisher’s Z in meta-analysis.)

The two examples that we have used in this article
provide some insight into the autocorrelation problem in
SCDs. High variability in values of observed autocorrela-
tions may easily be taken as indicating a problem when it
should not. For both Schutte et al. (2008) and Dyer et al.
(1984), the estimates of the average autocorrelations are
close to zero, and the extreme values observed in the indi-
vidual study autocorrelations are generally smaller with the
shrunken estimates. Though this is only evidence from two
studies, and so should not be generalized with any confi-
dence, they do show that it is very easy to think that
autocorrelation is a bigger problem with SCDs than it may
be. How big the problem genuinely may be needs empirical
investigation.

SCD researchers who are concerned about autocorrela-
tion would be well-advised to compute meta-analytic statis-
tics on the autocorrelations from the set of studies that they
are using. This typically might include the random-effects
average autocorrelation, including whether that average is
significantly different from zero, and also the significance of
a homogeneity test to tell whether the variability in autocor-
relations over studies is greater than would be expected by
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chance. When neither significance test is rejected, one could
proceed on the assumption that autocorrelation may not be a
problem in that set of studies. However, since the power of
the homogeneity test can be low in small samples, a better
approach might be to always compute either the empirical or
fully Bayesian estimates.

This study has several limitations. First, in the SPSS
script for the empirical Bayes estimates, we used a
method-of-moments estimate of the between-studies vari-
ance (72) of p., but a full or restricted maximum likelihood
estimate might be more accurate. We doubt that this would
make much difference to the general pattern of results that
we report, especially since the HLM EB estimates obtained
using an EM algorithm were nearly identical to the method-
of-moments results. Second, the estimate of the between-
studies variance (72) of p. has low precision in small sample
sizes (Shadish & Haddock, 2009), so its precision will likely
be in question in many applications to SCDs. This is partly
why the fully Bayesian estimates can be so informative,
given that they look at autocorrelation over the probable
range of 7. Third, when homogeneity of autocorrelations
was rejected, as it was for the Dyer et al. (1984) study, we
did not investigate possible sources of that heterogeneity.
We did note that House 1 in that study had a discrepant
autocorrelation, and that inspection of the graph for that case
suggested the possibility of a ceiling effect that was not
present in the other three cases, which could cause a higher
autocorrelation. Fourth, information about the autocorrela-
tions from two studies is inherently limited. A larger meta-
analytic study of autocorrelations in the SCD literature
would help clarify the conditions under which autocorrela-
tion might or might not be a problem.
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