
A Meta-Analysis of the Autocorrelation in Single Case Designs

> Jonathan Boyajian UC Merced

Society of Multivariate Experimental Psychology Student Pre-Conference October 13th, 2011 Norman, OK

Background – Single Case Designs

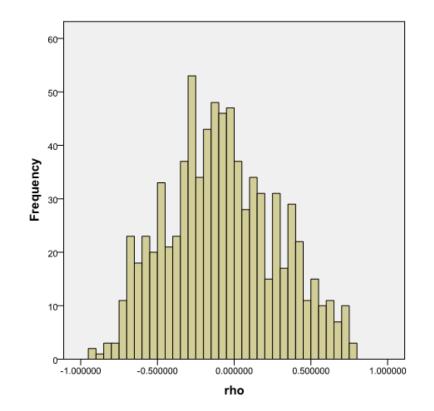
- Experimental Design
 - Repeated measurements on the same experimental unit over time

Background – Single Case Designs

- Regression techniques can be used to analyze
 SCD data in addition to visual analysis
- One problem
 - Observations are nested within the same participant
 - Violates assumption that errors are independently and identically distributed
 - Errors may be serially correlated (i.e. autocorrelated)

Background - Autocorrelation

- Autocorrelation (AC) is typically assessed using a lag-1 AC coefficient
 - correlation between the regression residuals and the same residuals shifted ahead by one unit of time


$$r_{1} = \frac{\sum_{t=2}^{N} (e_{t})(e_{t-1})}{\sum_{t=1}^{N} e_{t}^{2}}$$

- Where
 - *e_t* = the residual at time *t*
 - N = number of observations in time series

Huitema & McKean (1991)

Background - Autocorrelation

- How prevalent is AC?
 - Some debate
- Shadish and Sullivan (in press)
 - Analyzed 799 SCDs
 - Average AC = -.044, p < .01</p>
 - Range = -.931 .786
 - Significant Heterogeneity
 - (Q = 4306.18, p < .001, $l^2 = 81\%$)

Study Purpose

- To get a more accurate estimate of the AC by modeling the hierarchical nature of the data
 - Cases nested within participants nested within studies nested within journals
- To find factors that explain the betweenstudy variability found in observed autocorrelation estimates

- 799 SCDs from Shadish and Sullivan (in press)
 - SCD data extracted using UnGraph
 - 19 moderator variables coded for each case
 - Time between observations estimated
- Data fit using regression models
 - Treatment, Trend, and Interaction terms
- AC estimates computed with residuals.
 - r₁ estimator
- AC estimates analyzed using multi-level meta-analytic models
 - Random Effects
 - Mixed Effects

Simple regression model

• $y = \beta_0 + \beta_1 time + \beta_2 treatment + \beta_3 time * treatment$

For a subset of 352 SCDs

- Longest SCDs (22 observations or more) to avoid perfect fit
- Higher order trend and interaction terms added to regression model
- Take into account potential non-linearity
- For example:
 - Model 2
 - $y = \beta_0 + \beta_1 time + \beta_2 treatment + \beta_3 time * treatment + \beta_4 time^2 + \beta_5 time^2 * treatment$

Full multi-level model:

•
$$\rho_{ijklm} = \gamma_{oo} + \zeta_{oj} + \zeta_{ok} + \zeta_{ol} + \zeta_{om} + \varepsilon_{ijklm}$$

- Where
 - γ_{oo} = grand mean
 - $\zeta \sim N(o, \tau^2)$, j = case, k = participant, l = study, m = journal
 - ε = residual error

SAS code – 2 level model

```
Proc mixed method=ml covtest data=temp;
class ids pid sid jid;
model rho= / ddfm=satterth s cl;
random int / subject=ids;
repeated /group=ids;
parms / parmsdata=betvar
eqcons = 2 to 800;
run;
```

SAS code – 5 level model

```
Proc mixed method=ml covtest data=temp;
class ids pid sid jid;
model rho= / ddfm=satterth s cl;
random int / subject=jid;
random int / subject=sid(jid);
random int / subject=pid(sid jid);
random int / subject=ids(pid sid jid);
repeated /group=ids;
parms / parmsdata=betvar
 eqcons = 5 to 803;
run;
```

Results

Unconditional model results

	2-Level	3-Level	4-Level	5-Level
	Model	Model	Model	Model
Fixed Effects				
Intercept	028*	041*	036	045
Random				
Effects				
Cases	.101***	.031***	.031***	.031***
Participants	-	.074***	2e-4	2e-4
Studies	-	-	.073***	.071***
Journals	-	-	-	.004
-2Loglikelihood	723.0	598.1	415.3	415.2

Note: N = 799. *p < .05. ***p < .001.

Results

Conditional model results

5-Level Model					
Random Effects					
Cases	.026***				
Participants	.002				
Studies	.047***				
Journals	.002				

Note: Satterthwaite degrees of freedom used; rounded to nearest interger.

 $\dagger p < .10. \ *p < .05. \ **p < .01. \ ***p < .001.$

5-Level Model					
Fixed Effects					
DV ID	F(1,732) = 0.43				
SCD Design	F(4,88) = 1.13				
DV Direction	F(1,578) = 1.32				
DV Metric	F(7,336) = 1.33				
Participant has Autism	F(1,45) = 0.07				
Educational Study	F(1,92) = 0.00				
Ceiling/Floor Effects	F(2,751) = 0.07				
Ease of Coding Time	F(4,86) = 0.55				
Who Coded DV	F(3,109) = 0.57				
DV Content	F(3,173) = 0.23				
Number of Sessions	$F(1,309) = 44.44^{***}$				
Average Time between Sessions	F(1,149) = 1.09				
DV Changeability	$F(1,742) = 3.01^{\dagger}$				
Participant Age	F(3,193) = 3.45*				
Participant is a Student	F(1,157) = 2.62				
Participant has Develop. Disord	F(1,172) = 10.23 * *				
Participant has Clin. Diagnosis	F(1,174) = 0.14				
Location of Study	F(6,105) = 1.47				
Acceptable Level of IRR	$F(4,429) = 2.35^{\dagger}$				

Results

Results from investigating non-linearity

Model	Parameters	${ au_{0j}}^2$	-2Loglikelihood
Model 1	3	.110	286.8
Model 3	7	.081	196.7
Model 10	21	.060	105.9

Note: N = 352.

Discussion

- Estimating the AC
 - Average AC not significantly different from zero after modeling the full data structure.

Discussion

Reducing heterogeneity

- Modeling the full data structure reduces betweencase heterogeneity substantially (from .101 to .031)
- Adding moderator variables further reduces between-case heterogeneity (from .031 to .026)
- Adding moderator variables also reduces betweenstudy heterogeneity (from .071 to .047)
- Modeling non-linearity reduces between-case heterogeneity substantially (from .110 to .060)

Discussion

- Significant moderators
 - Number of sessions
 - Positive relationship with AC
 - Short time series are negatively biased
 - Participant age
 - Adults associated with lowest levels of AC
 - Teens associated with highest levels of AC
 - Developmental disorder
 - Those with developmental disorders associated with lower levels of AC

Conclusions

- The nesting of meta-analytic data should be modeled when possible
- Autocorrelation may only be an issue in SCDs with specific characteristics
- A non-trivial amount of non-linearity is likely present in SCD data

Limitations and Future Directions

- Non-linearity findings may not be generalizable to short time series
- No correction used for multiple covariate significance tests
- Additional case- and study-level moderators should be investigated to help explain remaining heterogeneity

Thank you:

- University of California Educational Evaluation Center (UCEC)
 - For funding the project
- Will Shadish, Jack Vevea, & Kristynn Sullivan
 - For support with the project
- SMEP
 - For the presentation opportunity

References

- Huitema, B. E., & McKean, J. W. (1991). Autocorrelation estimation and inference with small samples. *Pyschological Bulletin*, 110 (2), 291-304.
- Shadish, W.R., & Sullivan, K.J. (in press). Characteristics of single case designs used to assess Intervention effects in 2008. *Behavior Research Methods*.