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Growth Model Comparison Study: Practical Implications of Alternative Models for 

Evaluating School Performance 

Pete Goldschmidt, Kilchan Choi, and J.P. Beaudoin 

 

INTRODUCTION 

The Elementary and Secondary Education Act (ESEA) has had several tangible 

effects on education and the monitoring of education. There have been both intended and 

unintended consequences. ESEA’s newer generation of federal programs, such as Race to the 

Top, and the recent ESEA flexibility guidelines, have continued to push development of 

methods to accurately and fairly monitor school (and more recently teacher) performance. 

One tangible result of the 2001 reauthorization of ESEA, titled No Child Left Behind 

(NCLB, 2002), is that there is considerable agreement that monitoring schools based on 

unconditional mean school performance or the percentage of students proficient does not 

hold schools accountable for processes for which they ought to be held accountable and tends 

to place diverse schools at a disadvantage (Novak & Fuller, 2003). Static average student 

performance measures are poor indicators of school performance and tend to reflect the input 

characteristics (i.e., student enrollment characteristics) of schools as much as they do actual 

school quality (Goldschmidt, Roschewski, Choi, Auty, Hebbler, Blank, & Williams, 2005; 

Choi, Goldschmidt, & Yamashiro, 2005; Meyer, 1996; Goldstein & Spiegelhalter, 1996) and 

capture factors outside of school control more than actual processes facilitated by schools 

(Hanushek & Raymond, 2003;  Baker, Goldschmidt, Martinez, & Swigert, 2002; Meyer, 

1996). This has prompted many to pursue incorporating growth models into accountability 

systems. There may be some debate as to what constitutes the optimal psychometric 

characteristics for assessments to be used in systems desiring to use growth models (Briggs 

& Weeks, 2009; Yen, 1986; Goldschmidt, Choi, Martinez, & Novack, 2010), but states are 

unlikely to step outside of their assessment development cycle for the sole purpose of basing 

accountability on student growth. 

 The purpose of this study is to compare several different growth models and examine 

empirical characteristics of each. This study differs from previous research comparing 

various models for accountability purposes in that the focus is broader —  it is based on large 

scale assessment results from four states (Delaware, Hawaii, North Carolina, and Wisconsin) 
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across two cohorts of students (each with three consecutive years of assessment results), and 

explicitly considers model results with respect to elementary and middle schools. Previous 

research has addressed statistical issues, and compared the effects of model specification 

(particularly with respect to student background characteristics) in some detail, and was often 

based on limited or simulated data (Tekwe, Carter, Ma, Algina, Lucas, Roth, Ariet, Fisher, & 

Resnick, 2004; Ballou, Sanders, & Wright, 2004; McCaffrey, Sass, Lockwood, & Mihaly, 

2009; McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004; Wright, 2010; ; Lockwood 

& McCaffrey, 2007; Wright, 2008).  

These previous studies have provided significant guidance for the model selection 

and specifications we considered and examined in this study. We note that simulated data is 

optimal for identifying and testing specific aspects of models, but state standardized 

assessment results provide an opportunity for authentic evaluation of model performance and 

the variability that states may face in adopting a particular model. This applied study is well 

suited to address empirically whether certain models are more likely than others to provide 

accurate, fair, unbiased, precise, and consistent results
1
. This study addresses the following 

research questions regarding the performance of the different growth models:    

1. Overall, does the model matter? 

2. Do different models lead to different inferences about schools? 

3. How accurately do models classify schools into performance categories? 

4. Are models consistent in classifying schools from one year to the next? 

5. How are models influenced by school intake characteristics (percent ELL, 

FRL, etc.)? 

6. Do models perform similarly for elementary and middle schools? 

7. Do models behave similarly across states? 

 

We also note five additional considerations related to this analysis. One, we are not 

advocating using a single measure to evaluate school performance. Two, selection of which 

growth model to use needs to be driven by purpose and careful consideration of the 

                                                 
1
 We cannot strictly identify bias as these results are not based on simulation studies where a “true” model result 

can be compared to alternatives. Given we use existing data from multiple states, we examine deviations from 

results that appear to be consistent across models and/or context to determine inconsistencies, which could be 

loosely considered as bias. 
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underlying inferences that are desired (and are valid) from the results, i.e., driven by a theory 

of action (Marion, 2010). Three, one must recognize the extent to which transparency and 

complexity involve reasonable tradeoffs. Four, we make no attempt to rescale, improve the 

scale, or account for potential unaccounted for equating error. And five, the growth models 

that we compare are evaluated under the assumption that the model results are the basis for 

monitoring schools — that is, we do not examine the marginal impact of models under the 

Growth Model Pilot principles, nor any other current requirement related to NCLB. We 

reiterate that this is not a study of how these models might perform under the current ESEA 

guidelines, rather how these models might perform under an unconditional system. The role 

of growth models within an accountability system is not the focus of this analysis, rather how 

the models compare. How growth ought to be valued or incorporated into an accountability 

system is important and is discussed in A Practitioner’s Guide to Growth Models (Ho and 

Castellano, in press) and is not the focus of this study. We do, however, provide some 

considerations that relate to incorporating growth model results into a broader accountability 

system. 

While some states such as Tennessee (Sanders, Saxton, & Horn, 1997) and districts 

such as Chicago (Bryk, Deabster, Easton, Luppescu, & Thum, 1998) have used longitudinal 

models for accountability purposes for some time, interest in accountability models based on 

growth has increased nationally as a result of NCLB legislation and research demonstrating 

that cross-sectional accountability models provide weak indicators of school performance 

(Choi, Goldschmidt, & Yamashiro, 2005). The combined timing of states adopting the 

common core state standards, the assessment consortia
2
 moving forward, the likely 

reauthorization of ESEA, and the ESEA flexibility program has resulted in further 

considerations of which model might be most appropriate to monitor school performance. 

The underlying question is whether there exists an optimal model that can consistently 

identify schools as performing well, or performing poorly. While the literature suggests that 

multiple measures ought to be considered, policymakers are interested in how well a single 

model can use student assessment results to hold schools accountable for facilitating 

                                                 
2
 There are two major consortia developing assessment systems for use in 2014-2015 that will assess the 

common core state standards in English language arts and mathematics, the Partnership for the Assessment of 

Readiness for College and Careers (PARCC) and the Smarter Balanced Assessment Consortium. See 

http://parcconline.org/ for PARCC and http://www.k12.wa.us/smarter/ for Smarter Balanced. 

http://parcconline.org/
http://www.k12.wa.us/smarter/
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learning. Specifically, there is increased interest in using growth models for school 

accountability. This study is unprecedented in that it presents results from a comparison of 

several models using data from four states and focuses on the practical implications of model 

choice. 

 

THEORETICAL FRAMEWORK 

Relevant criteria that must be established are the intended use and audience of the 

accountability model. We assume that the primary impetus for using growth models is to 

correctly identify the spectrum of school effectiveness in order to accurately monitor schools 

for rewards or sanctions, to ensure that all students have equal opportunities to succeed
3
, and 

to ensure that schools are not disadvantaged by factors beyond their control. This focus is 

somewhat different from a system that provides information on which schools attain the 

highest achievement levels without consideration of potential confounding factors – which is 

what a parent is generally most interested in (Willms & Raudenbush, 1989). Hence, our 

concern is to first provide policymakers with results that afford valid inference related to 

school performance
4
. In practice, this relates to considering how status and growth combined 

might be used to form a comprehensive picture of school performance and provide desired 

motivations for performance — that is, depending on the values of the policymakers. Hence, 

considering what achievement status, or change in status, implies and how it relates to 

effectiveness and growth must be considered within both a value and technical framework to 

develop an accountability system. 

Previous research has demonstrated that simply using school means (Aitkin & 

Longford, 1986) or year-to-year analyses of school performance (Linn & Haug, 2002) cause 

invalid generalizations about school quality. Moving away from school means and cross-

sectional analyses toward longitudinal panel models
5
 is the first step in generating potentially 

                                                 
3
 Growth models can, of course, serve other purposes. For example, they can monitor growth in specific student 

outcomes such as vocabulary, provide predictions of future performance, and evaluate programs based on 

student progress. 
4
 Ultimately this information is suitable for parents and other stakeholders as well, but may require some 

communication as schools that are known to be “good” schools are often good only because they benefit from 

the enrollment characteristics of their students, and not due to school processes. 
5
 Longitudinal models encompass several different sets of analyses. However, germane to school accountability 

are two varieties: panel models focusing on individual student achievement over time or school improvement, 

focusing on changes in performance of cohorts over time (e.g., 3
rd

 graders in 2010 vs 3
rd

 graders in 2011). 
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valid results. However, examining year-to-year changes in student achievement may not 

resolve problems with potential confounding factors (Campbell & Stanley, 1963) and present 

additional methodological problems, such as spurious negative correlations between initial 

status and achievement growth (Rogosa, 1995) at the individual student level. Further, the 

instability of year-to-year results at the school level (Linn & Haug, 2002) is also problematic 

in disentangling measurement error, changes in student composition, and school effects.   

While the literature suggests that different models can provide very similar results, 

there is little systematic study of how models compare, not only against each other, but also 

in different contexts and over time. Models differ in purpose, approach, and assumptions. 

One basic difference is whether one assumes a fixed or random effects model. There is both a 

philosophical and a statistical rationale for each approach. Philosophically, if policymakers 

assume that schools are a random subset of a universe of schools, then a random effects 

model would be appropriate; however, if policymakers assume that the set of schools about 

which they intend to make inference represents all the schools of the relevant population, a 

fixed effects model would be appropriate
6
. This debate is similar to (and related to) the 

debate about including confidence intervals around school effects (whether based on status or 

growth
7
). Both fixed and random effects models produce school estimates with standard 

errors and could generate confidence intervals.  

An important aspect that underlies using growth models is policymakers’ conception 

of growth. Achievement growth can be considered in terms of greater depth and/or breadth of 

knowledge and ideally standards and assessments would be designed to explicitly consider 

student learning progression within a content area (Herman, Heritage, & Goldschmidt, 2011). 

If growth is defined as more mastery of skills, then this implies a model that uses gains or 

growth over time, whereas if growth is defined “next content topic,” then this implies a 

covariate adjustment, or ANCOVA model. 

Another key element for considering the use and interpretation of results based on 

growth models is that the outcome must have constant meaning over time (Raudenbush, 

2001). Hence, the scale is important in drawing conclusions from individual growth curves 

                                                 
6
 It is likely that policymakers do not consider either of these assumptions, but rather a model is developed that 

carries assumptions that may be philosophically opposed to policymakers’ views.  
7
 This is not a focus of this paper, but the use of confidence intervals for growth is more nuanced than the use of 

confidence intervals around status. Confidence intervals should be considered when using growth models, 

especially projection models (Goldschmidt & Choi, 2007). 
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(Yen, 1986). Theoretically, the optimal metric to use when examining change is a vertically 

equated Item Response Theory (IRT)-based scale score that is on an interval scale and is 

comparable across grades (Hambleton & Swaminathan, 1987). Such scores represent content 

mastery on a continuum and may be used to measure absolute academic progress over time, 

and would be considered the metric of choice for an accountability model based on growth. 

However, different scaling methods affect results (Briggs & Weeks, 2011), and there is some 

concern that vertical equating using IRT does not guarantee an equal interval scale (Ballou, 

2009). Also, equating is generally designed to compare contiguous grade pairs (Yen, 1986), 

and scales may be less meaningful as the grade span increases. Prior results indicate that 

inferences based on model results depend upon the metric used (Seltzer, Frank, & Bryk, 

1994). Assessment and scaling procedures can impact inferences at the teacher and school 

level as well (Lockwood, McCaffrey, Hamilton, Stecher, Le, & Martinez, 2007; Briggs & 

Weeks, 2011). At the school level, scaling techniques result in correlations of school effects 

ranging from .53 to .99 (Briggs & Weeks, 2011) but appear to be generally high. The 

percentage of schools identified in performance categories is unaffected (Briggs & Weeks, 

2011), but the impact of scale on different school types is not known. Previous research also 

indicates that the metric may be less important for relative decisions and inferences about 

schools based on growth models, and more robust to missing student information, but are 

influenced by whether the assessment is a norm referenced test (NRT) or a standards based 

test (SBT) Goldschmidt, Choi, Martinez, & Novack, 2010).  
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DATA 

The data for these analyses were compiled from four participating states: Delaware, 

Hawaii, North Carolina, and Wisconsin. Two of the states were relatively large (more than 

500,000 students), and two fairly small (less than 200,000 students). The analyses use public 

elementary and middle school data. The dataset includes four years of data, and we focus the 

analyses on two elementary and two middle school cohorts (see Figure 1). In this way we 

based results for schools on students who potentially attended three years (although the 

impact of missing student data is addressed in the analysis). The total number of schools
8
 in 

the analysis is 2,645
9
. The schools per state are identified in Table 1. It should be noted that 

the total number of schools in each state in the analysis may exceed the total number of 

 

  Grade             

Year 3 4 5  6 7 8 

2007 C1
* 

      C3     

2008 C2 C1     C4 C3   

2009   C2 C1     C4 C3 

2010     C2       C4 

* C1 refers to the 2009 elementary school cohort; C2 refers to the 2010 elementary school cohort; C3 refers to 

the 2009 middle school cohort; and C4 refers to the 2010 middle school cohort. 
Figure 1: Data Structure 

 

schools that a state has in any given year because the total number includes all schools that 

may have existed in any one year (2007 through 2010). 

                                                 
8
 We use the term schools to mean elementary and middle schools, or schools that contain grades 5 and 8. 

Students may change schools over the three year span; the student’s current performance is attributed to school 

of record in the last year of a particular analysis (e.g., if the model examines gains from 2007 to 2008, the 2008 

school is the school of record). 
9
 One state (S3) was not able to provide middle school results for cohort 3. Also, we were unable to obtain 

SEMs (standard errors of measurement) from state S4, precluding us from estimating the true score gain model 

for that state. We used the last of the banked (students were allowed to retest up to three times for AYP 

purposes) set of scores from state S4 (allowing us to examine whether this policy relates to model performance). 
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Table 1:   

Number of Schools in the Sample 

per State  

State
* 

Frequency 
Valid 

Percent 
S1 279 10.5 

S2 177 6.7 

S3 252 9.5 

S4 1,937 73.2 

Total 2,645 100.0 
*
 States are randomly assigned a number 

 

In order to create some bounds on the extent of the analysis, we focus on a subset of 

student characteristics that have been shown to be related to school outcomes in prior 

research (Choi et al., 2005) and are generally the subject of debate in terms of whether school 

systems provide egalitarian results for all students, and whether these characteristics ought to 

be included in accountability models (Ballou, Sanders, & Wright, 2004). We restrict the 

analysis to minority status; ED (Economically Disadvantaged); ELL (English Language 

Learner); SWD (Students With Disabilities); and mobility. We do not control for variability 

in each state’s classification process. We also consider school type (elementary and middle) 

and school size
10

. 

                                                 
10

 As noted, the focus of this evaluation is on between-model variation in results. Preliminary analyses indicated 

that including or excluding student background at the individual or the school aggregate level generally did not 

substantively change school results (as much as between model results). 
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Table 2a:             

Descriptive Statistics of  School Demographics          

  State S1 State S2 State S3 State S4 

 Mean
*
 N S.D. Mean N S.D. Mean N S.D. Mean N S.D. 

SWD 18.92 266 13.00 23.12 152 25.91 12.14 252 8.91 9.24 1854 8.52 

ED  60.90 266 26.09 54.50 152 24.71 52.49 252 23.50 51.92 1854 24.86 

ELL 8.99 266 12.79 3.55 152 7.12 8.96 252 10.63 9.32 1854 11.32 

Minority 55.54 266 32.86 54.48 152 25.28 85.09 252 15.20 45.21 1854 30.11 

C09same_schl 07_09
2
 64.06 270 25.75 41.81 166 34.63 15.91 168 15.75 80.57 1825 26.51 

C09same_schl 08_09 81.30 270 21.44 58.26 166 37.28 73.32 252 24.96 89.97 1825 20.26 

C09same_schl 07_08 73.46 270 22.58 63.78 166 27.91 64.80 168 24.72 88.72 1825 20.04 

c10same_schl 08_10 61.34 266 24.50 47.01 152 32.99 67.65 252 26.36 79.73 1854 26.86 

c10same_schl 09_10 75.54 266 23.53 66.30 152 32.25 88.62 252 12.47 89.25 1854 20.05 

c10same_schl 08_09 70.38 266 20.67 57.44 152 29.56 73.32 252 24.96 88.67 1854 20.04 

School N 459.74 266 1395.54 123.12 152 102.15 96.92 252 97.57 89.23 1854 65.55 

* Means are in percent except school N; and 2) C09same_schl 07_09 through c10same_schl 08_09 refer to student stability  

(e.g., the 64.06 value for state 1 for C09same_schl 07_09 from 2007 thru 2009 64.06 percent of students of the 09 cohort remained in the same school 

over the three year span). 
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All the mean values in Table 2a are school percents except school N which is the 

average school size in the state. We calculated mobility by examining whether students had 

the same school ID in each year. While this does not capture within year mobility, it does 

capture between year mobility (although it could be within year if it occurred before 

assessments were given). This measure of school mobility is also highly correlated with FAY 

(Full Academic Year), r = .92.  

 We also utilized the two step cluster analysis feature of PASW™ (SPSS, 2001) to 

generate clusters of similar schools across states in order to examine the impact school 

characteristics have on model performance and allowing for the comparison of like schools 

across states. This process resulted in schools being classified into one of five clusters. The 

clusters are based on the two years of student background information (as presented in Table 

2b) as well as mobility and school size. A summary of the classifications is presented in 

Table 3. The clusters were generated using the entire dataset. The classifications we present 

here are not intended to align with any single state’s definitions and are classified to compare 

like schools across states. 

 The distinguishing features of school classifications are as follows: 

 Disadvantaged I generally consists of a high proportion of ED, ELL, and Minority 

students;   

 Disadvantaged II also tends to have a high proportion of ED and Minority 

students, but have fewer ELL students; 

 Large schools are larger than average, but tend to be fairly average with respect to 

ED, ELL, and Minority student enrollment; 

 Mobile schools tend to have both above average mobility and also above average 

proportions of SWD; and, 

 Advantaged schools tend to have a below average percent of both ED and ELL 

students. 
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Table 2b: 

Percent of Schools Within Each Category 

  State  

 

S1  S2  S3  S4  Total 

Disadvantaged I:  15% 3% 10% 12% 11% 

Disadvantaged II:  31% 27% 41% 19% 22% 

Large:  14% 13% 15% 4% 6% 

Mobile\SWD:  7% 23% 14% 4% 6% 

Advantaged:  33% 34% 20% 62% 54% 

Total N: 259 143 168 1,792  2,362  

 

Table 3 summarizes the characteristics of schools for each cluster. 

Table 3:      

Student Characteristics Defining Clusters
*,**

    

Characteristic 
Disadvantaged I: 

ED/ELL/Minority Large 

Disadvantaged 

II: 

ED/Minority Mobile\SWD 
Stable 

Advantaged 

      

SWD_09 10.33 10.54 13.07 20.17 9.47 

ED_09 74.51 37.70 73.25 54.81 35.40 

LEP_09 28.94 4.80 5.52 4.28 4.67 

same_schl08_09 89.83 87.17 86.78 11.02 94.77 

same_schl07_08 86.92 27.88 82.66 67.81 92.65 

School size 09 74.74 714.16 69.86 49.11 107.39 

minority_10 78.58 41.11 79.63 62.16 30.49 

SWD_10 10.24 11.01 13.16 23.41 9.58 

ED_10 78.77 40.64 75.83 58.23 39.33 

LEP_10 32.28 5.46 6.31 4.97 5.80 

c10same_schl09_10 89.20 87.61 84.58 48.78 94.49 

c10same_schl08_09 86.25 48.90 83.60 35.51 92.94 

  
*
 Table values are percent, except school size which is number of students. 

  
**

Green cells indicate that they influence the description of the clusters. 
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Brief Summary of Each State’s Assessments 

Because each state’s assessment is unique, it necessarily confounds results related to 

state context and assessment effects. As noted, scale and assessment type impact school 

effect estimates. We are able to address this to some extent by using similar schools across 

states, which reduces the impact of context, and allows for inferences related to assessments 

based on differences in estimated effects by model within school category (e.g., 

Disadvantaged I and Large) by state. States S1, S2, and S4 are on a vertical scale, while state 

S3 is not on a vertical scale. In general each state with a vertical scale applied a different 

procedure that results in different scales (e.g., the state S1 scale has a broad span, while the 

state S4 scale is very narrow). However, this alone cannot isolate differences in assessments 

as several other critical elements impact score meaning (e.g., standards adopted, test 

blueprints, and standard setting processes). Moreover, there is mounting evidence that 

suggests that instability in scores is related to design effects and equating error (Phillips, 

Doorey, Forgione, , & Monfils, 2011). The extent to which these factors contribute to 

instability in school effect estimates is also unique to each state. These analyses do not 

include information about equating error, which implies that some of the inconsistencies 

observed in model performance may be linked to these additional sources of error. 

 

Data Quality 

The data quality approach for this study was comprised of five components. Each 

component was sequentially dependent and required minor variations to address the four data 

sets (DE, HI, NC, and WI) used in the student data file structure. The components were to 

 normalize the raw files using common data elements; 

 establish longitudinal structures via the unique student identifier (USI), unique 

school identifier (USchID), and unique district identifier (UDI); 

 develop stored structured query language (SQL) procedures that created subject-

specific, multi-year tables;  

 screen data ranges within each element; and, 

 produce descriptive data for each state. 
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MODELS AND METHODS 

There are limitless modeling options related to monitoring school performance and 

we by no means capture all of them. However, we used as guidance the recent Council of 

Chief State School Officers’ (CCSSO) brochure on growth models and the typology 

presented therein (CCSSO, 2010). Hence, we included a gain model (including simple gain 

and fixed effects); a covariate adjustment model (fixed and random effects); a measurement 

model (random effects); a layered model (mixed effects); a quantile regression model 

(student growth percentile as described by Betebenner, 2009); and a growth to standard 

model. Preliminary analyses indicated that, in general, the within model effect of 

specifications that included or excluded student background was substantially less than the 

differences within model by school level (elementary and middle) or subject (math and 

language arts), and substantially less than differences between models. Some of the growth 

models we utilize in this study would also be considered value added models.  

A common approach for value added models is to assume that current student 

achievement, yt, is a function of previous achievement, yt-1, and that by including prior 

achievement, much of the cumulative process of school is incorporated (Hanushek, 1986; 

Ballou, Sanders, & Wright, 2004). Current achievement is also assumed to be a function of 

individual and contextual elements. 

However, there is general interest across different specifications. As noted, each 

model type results in a different inference about schools. For example a gain score model 

holds schools accountable based on student gains in performance, whereas a covariate 

adjustment model holds schools accountable based on where students are currently, 

accounting for where they were on a prior occasion. Value added models generally take the 

latter approach, but may include multiple prior test scores, which has the benefit of producing 

more precise estimates as well as reducing bias. 

More complex models include the layered model (Sanders, Saxton, & Horn, 1997), a 

mixed effects model that layers gains over years using all available assessment data. Another 

complex approach uses quantile regression. This latter model focuses on normative changes 

in performance over time. 

As noted, an important concern is whether models produce biased results. Several of 

the above models use the term random, fixed, or mixed to describe effects. A fixed effects 
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model requires fewer assumptions, but is less efficient if random effects model assumptions 

are tenable. Empirically, results indicate more flexibility in practice than in theory (; 

Lockwood & McCaffrey, 2007; Ballou, Sanders, & Wright, 2004). Results also suggest that 

the bias due to specifying a random effects model is significantly reduced given specific 

conditions of the data such as multiple prior assessments, and greater variability within 

schools (Lockwood & McCaffrey, 2007) and specification decisions when prior assessment 

results contain measurement error (Wright, 2008). A fixed effects model generally takes the 

form: 

i = ( + j) + eit, where eit ~IID(0,
2
)    (1) 

whereas a random effects model takes the form: 

i =  + (j + eit), where eit ~IID(0,
2
)    (2) 

Here, i = Yit – Yi(t-1)  represents the gain in assessment Y for student i from  

Yt-1 to Yt. The school effects, j, are part of the intercept in the fixed effects model and part 

of the error term in a random effects model (McCaffrey et al., 2004). The key marginal 

assumption that random effects models assume is that residual school effect is uncorrelated 

with individual error eit. As noted, in practice, random effects models generally converge 

with fixed effects estimates (Raudenbush, 2004). Random-effects models infer school effects 

from the school-level residuals in the model, while fixed effects models introduce a specific 

term for each school and directly estimate the school effects through the coefficients 

associated with those terms. This is particularly the case when multiple prior assessments are 

used as predictors and the assessments contain measurement error (Wright, 2008). In a fixed 

effects model, a school’s score, (j), represents the difference between school j’s effect and a 

reference school or the grand mean in the sample. A benefit of a fixed effects model is that 

the specific elements of what might contribute to success need not be specified and is 

captured by the school indicator variables. We estimate a fixed effects gain model as part of 

the analysis. A disadvantage of the fixed school effects model is that time invariant variables 

cannot be included in the model and it is less precise if, in fact, random effect assumptions 

tenable. 

The goal of this evaluation is to determine the potential latitude states might have in 

choosing a growth model for school accountability. We note again that the key determinant 

for selecting a model is its intended purpose and the extent to which results provide for valid 
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inferences of the type desired by policymakers. That is, it is consistent within a theory of 

action that underlies the accountability system. Below, we present a brief description of the 

models and highlight the underlying differences among them.  

We present findings on 10 models that are estimated separately for each state. Generating a 

typology of models depends on the audience. We use CCSSO’s Achievement Growth and 

Accountability brochure (CCSSO, 2011) to provide a framework that allows us to coherently 

place models into context.  

Categorical models use change in student performance category placement from year to 

year as the growth indicator. 

Gain Score models are based on the difference between a student’s earlier score and a later 

score. Gains can provide a simple estimate of change, but may have low reliability. 

Regression models can provide the most precise measure of growth. The assumptions of the 

model must match the associated policies. Calculations are complex and a vertical scale is 

generally required. 

Value-added models are a complex type of regression model that take into account student 

or school characteristics. Added Value is defined as producing more than typical or expected 

growth given specific characteristics of the student or school. 

Normative models compare changes in student performance to that of a norm group in 

order to determine whether the change is typical or abnormally high or low. A vertical scale 

is not required. The model does not directly address whether the observed growth is 

adequate to reach a defined standard
11

. 

 

 

Although the focus of this analysis is on comparing growth models, we include status 

as a transparent comparison for growth model results. Aligning the accountability policy 

requires an understanding of what would constitute valid inferences about a school based on 

that school’s score on the model. A status model assumes that a student’s performance is 

solely a function of current school processes and is not impacted (confounded) by additional 

factors that contribute to a student’s score (Goldschmidt, Choi, Boscardin, Yamashiro, 

Martinez, & Auty, 2006). Status based on the original test metric is preferred to using percent 

proficient as too much information is lost by categorizing scores – not to mention potential 

misclassification errors, and loss of information due to aggregation (Thum, 2003; Choi et al., 

2005). 

                                                 
11

 All of these model types can form the basis for determining whether a student is likely to reach some specific 

future performance standard.  
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We consider each growth model in turn. Much of the information related to model 

properties was developed focusing on teacher effects, but, in general, the properties 

established generalize to estimating school effects as well
12

. Table 4 presents the relationship 

between the CCSSO growth model typology and the models we examined in this study. We 

expand on the CCSSO typology by presenting two ways to consider each model type: one is 

the model’s intent, or inferential intent; and two, is the general way the model would be 

estimated
13

. For example, a status (one point in time) model tends to be categorical (i.e., it 

uses the percent of students in a specific category such as proficient and above). Another 

model might be a simple gain model that affords the inference of the change in performance 

from one assessment occasion to another and is estimated by calculating a gain score (i.e., the 

simple difference between the current score and the previous score) for each student. A true 

score gain model has the same intent of a simple gain model, but is estimated using a (mixed 

effects) regression model. 

In the following section we describe each of the models and model specifications in 

greater detail. 

                                                 
12

 There are important differences in terms of inferences and what effects may mean – even based on the same 

models. Also, there are some potential simplifications and complications as well. For example, teacher effect 

models often use mixed effects across classified models, while a school model could conceivably have a strict 

nesting structure. Estimated school effects are necessarily comprised of the effects of teachers, administrators, 

and other educators and staff in aggregate, and we are not concerned with its make-up or within school 

distribution. Teacher effects however may be confounded to some extent by general school effects. This issue is 

not the focus of our study, but it is important to note that, like models, it will mean different things when used 

for school or teacher accountability. 
13

 VAM models are often estimated using ordinary least squares regression, but are different in that the focus of 

a VAM model will be on the unique contribution of schools to student performance, estimated either with a 

fixed parameter estimate or a random effect. 
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Table 4. Match in Intent (I) or Estimation (E) between Models in Study and Growth Model Typology  

Model in Study  

Growth Model Typology 

Categorical Gain Regression Value Added Normative 

Simple Gain  GAIN   I  E    

Fixed Effects Gain  FEG   I  E  

True Score Gain  TSG   I E   

Covariate Adjusted 

with School Fixed Effects  
CAFE    I E  

Covariate Adjusted  

with School Random 

Effects  

CARE    I E  

Simple Panel Growth  PANEL    I  E   

Layered Model  LM     I  E  

Student Growth Percentile 

(Quantile Regression)  
SGP      I  E 

Growth to Standards  GTS   I  E    
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Simple Gain (Gain
14

): We use a simple gain model as gains are a direct measure of student 

growth, transparent, and scores are low inference, in that the average gain for a school is 

easily interpreted. A simple gain is calculated for each student and averages are calculated 

for schools. This approach ignores the clustering of students in schools and thus explicitly 

ignores school context (Burstein, 1980). A model that ignores the clustering of students 

within schools and simply aggregates individual student gains up to the school level 

potentially produces biased estimates of school effects (Raudenbush & Willms, 1995). This 

occurs because estimates that ignore the fact the students attend specific schools mixes 

within and between school estimates when the intraclass correlation is greater than zero 

(Aitkin & Longford, 1986). This applies to any model that is based on individual student 

scores that are aggregated up to a school. A gain is simply: 

Gaini = i = Y
s
it – Y

s
i(t-1)      (3) 

where Y
s
it is the assessment outcome for student i in subject s at time t. The inference is that 

a school’s performance is based on average gains in its students’ performance. Score 

meaning, in its simplest form, relates to a notion that students have more mastery of a given 

content. As noted, in order for gains to be meaningfully interpreted, assessment scores need 

to be on a vertical scale. However, in some cases researchers have normalized scores (z-

scores) within grade levels under the assumption that performance standards are vertically 

moderated thus allowing for consistent meaning across grades at various anchor points. Such 

an approach moves away from a strictly absolute conception of growth to one that considers 

growth relative to standards. Simple gain score models do not account for differences in 

starting points and potentially suffer from the “growth to nowhere” criticism that concerns 

some policymakers.  

 

Fixed effects Gain (FEG): A closely related model is a fixed effects gain model. This 

approach uses the calculated gain, i, as the outcome, but explicitly includes an indicator for 

each school in the system. This indicator captures the school effect.  

 

 There are some concerns with accountability based on gains because gains may not 

be sufficiently reliable, although there is some debate about this (Rogosa & Willett, 1983) 

                                                 
14

 The term in parentheses is the abbreviated name we use interchangeably with a model’s full descriptive name. 
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and concerns about the spurious negative correlations between i and Yt-1 because Yt-1 is 

generally not an error free measure. 

 

True Score Gain (TSG): One specific approach to avoid the spurious negative correlation 

between i and Yt-1 is to utilize a true score gain model that uses both Yit-1 and Yit on the left 

hand side of the equation to estimate gains directly, thus avoiding any spurious relationship 

between gains and pre-test scores. We present this model in somewhat more detail because it 

conceptually provides a good framework for evaluating schools, but it has received less 

attention in the literature (Goldschmidt et al., 2005). 

This model uses data from the current year t and a prior year t-1, and we explicitly 

model true student gains. The model is based on previous work by Bryk, Thum, Easton, & 

Luppescu (1998) and Choi (2007). At level one
15

:  

  Atij = tij1ij + tij2ij + etij    (4) 

Here, for student i, with school j, at time t, the assessment scale score is denoted as 

Atij. Time in this instance refers to the pre-test, t = 0, and the post-test t = 1. Eq. 4 estimates 

two parameters, student’s initial status for the pre-test (1ij) and gain on the post-test (2ij). 

Given this parameterization,  is coded as 1, and  = 0,1 for the pre- and post-test, 

respectively. The error, etij, is assumed to be N~ (0,2
). 

This formulation is a basic growth model formulation which could include a time 

varying covariate (Raudenbush & Bryk, 2002). There are two concerns: one, the within-

student error is assumed uncorrelated with other potential explanatory variables, which may 

not be a tenable assumption; and two, there may not be enough degrees of freedom available 

to estimate the random effects of interest. In order to model true initial status (pre-test) and 

true gain, as well as to begin to consider potential remedies, eq. 4 is reparameterized by 

scaling both sides of the equation by the inverse of SEMs, i.e., 1/Stij:  

A
*

tij = 
*

tij1ij + 
*

tij2ij + e
*

tij    (6) 

                                                 
15

 The growth model is based on the multilevel model framework presented in Raudenbush and Bryk (2002) 

where test occasions are nested within students, who are nested within teachers. Hence, level one is the within 

student model over time, level two is the between student model, and level three is the between teacher model. 

Education researchers often generate the error structure of the models by considering the “levels” or structure of 

the data. Given that this model is based on prior work by education researchers, we adopt this nomenclature for 

this model. 
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Thus e
*

ijt now becomes N ~ (0,1), and 1ij and 2ij now estimate a student’s true initial 

status and true gain, respectively (Bryk et al., 1998). By using a true score gain model at 

level one and including all achievement measures on the left-hand side of eq. 6, there is no 

spurious correlation between pre-tests and the error as could be the case in a standard pre-test 

as covariate model (Bryk et  al., 1998). At level two, student covariates can be incorporated 

to account for between-student differences in true initial status and true gains. Hence at level 

two: 

1ij = 10j + Xij11j + r1ij,    (7a) 

2ij = 20j + Xij21j + r2ij.    (7b) 

where Xij represents a vector of time invariant student covariates, such as gender, language, 

and economic status. With this specification, the student’s achievement gain, as measured by 

2ij, is allowed to vary randomly from student to student. The between-school model is: 

10j = 100 + u10j,      (8a) 

20j =200 + u20j.      (8b) 

This true score gain model developed by Bryk et al. (1998) is included in the set of 

models we consider. The interpretation of this model receives extensive treatment in Bryk et 

al. (1998), and we focus on the estimated true gain component as the indicator of school 

performance. In this way we can directly compare results of the true score gain model to a 

simple gain model and a fixed effects gain model.  

While this model addresses measurement error in the pre-test, an extended form of 

this model attempts to mimic fixed effects estimates and further reduce bias. This has been 

accomplished in Goldschmidt, Tseng, & Goldhaber (2010) using specific centering strategies 

that can reproduce fixed effects estimates (Allison, 2009) while retaining advantages of 

random effects models. That is, through person specific centering (group mean centering – 

where at level 1, group refers to student) it is possible to include time invariant student 

covariates, account for the intraclass correlations, generate correct standard errors, and 

estimate cross level interactions (i.e., teacher by COVx interactions) that are not possible in 

the fixed effects framework. 

  

Growth to Standard (GTS): We also examine another model based on gains, but one that 

explicitly eliminates the “growth to nowhere” concern. We estimate a growth to standard 
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model that is similar to one of the state’s Growth Model Pilot Study models. However, we 

apply the model not on the margin, rather as the single criteria by which schools are 

monitored. A student’s score, Y, in year t is compared to the proficient score, Yp, in year t+2 

and a required gain is calculated based on the difference between the student’s actual year t 

score and the required year t+2 score. The year t to t+1 required gain is:  

Gain* = (Yp(t+2) - Yt)/2     (9) 

A school’s score is the percent of students where actual gain ≥ Gain*. In year t+1, Gain* is 

reevaluated and adjusted up or down depending on the progress made between year t and 

t+1. This model explicitly addresses inferences on whether a student gained enough. Likely, 

school rankings based on this model will be correlated to status models as the results depend 

entirely on whether the current year score is sufficient to pass the set threshold
16

. The 

difference between this model and the general AYP model is that each student has an 

individual threshold. 

 

Covariate Adjusted Model with School Fixed Effects (CAFE) or with School Random Effects 

(CARE): Fitzmaurice, Laird, &Ware (2004) argue that the choice between analysis of gain 

scores versus a covariate adjusted model depends on the research question. A covariate 

adjusted model tests how students differ on the post-test given that students started with the 

same pre-test score. Gain scores test how groups of students differ in gains, on average. We 

use both a fixed and a random effects covariate adjustment, or ANCOVA model. There are 

several key distinctions between ANCOVA models and gain models. One is that ANCOVA 

models are quite similar to gain models in that the model in eq. 1 can be thought of as 

I = Y
s
it – Y

s
i(t-1)       (10) 

where  =1. If we simply move the prior year score to the right hand side of the equation 

then: 

 Y
s
it = Y

s
i(t-1) + (fixed effects or random effects, covariates, and error)  (11) 

which has the benefit of allowing , the relationship between the prior assessment and the 

outcome, to be estimated empirically. The fixed and random effects models are presented in 

eqs. 12 and 13. 

                                                 
16

 Students who are proficient but whose gain would put them below the proficient performance level (i.e., a 

negative gain) are not counted as proficient in the current year. 
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Yit = (j + i) + Yit-1 + eit , where eit ~IID(0,
2
)   (12) 

And a random effects model takes the form: 

Yit =  + Yit-1 + (i + eit) , where eit ~IID(0,
2
)   (13) 

The ANCOVA model presented in eq. 13 likely produces biased results if the covariate is 

measured with error (McCaffrey et al., 2004). Using multiple prior assessments as predictors 

ameliorates much of the bias in estimates (Wright, 2008) and may be preferable (Ballou, 

Sanders, & Wright, 2004; Wright, 2008). For this reason we specified a fixed effects 

ANCOVA model with multiple prior assessments, including assessment in cross subjects 

(e.g., the mathematics model included both prior mathematics assessments and prior English 

Language Arts [ELA] assessments). We included two prior mathematics and two prior ELA 

assessments, along with a full set of control variables (student background). We use a “full 

model,” one that includes multiple years of prior scores and student background, only in 

some instances as the correlation of school effect estimates between the fixed effects model 

results including and excluding student covariates are highly correlated >.97 in these 

datasets. 

One advantage of the ANCOVA model is that it is more robust to usage with either 

vertical or non-vertical scales. An important, but subtle, distinction is that ANCOVA models 

do not provide results in terms of growth, rather they address current student performance 

explicitly accounting for differing initial performance.   

 

Student Growth Percentiles (SGP): The notion of relative performance given prior 

performance is taken a step further in the SGP model. The SGP model does not address 

absolute growth in performance. However, it broadens the notion of robustness to scale by 

focusing on normative position based on student percentile ranks. The SGP model is fully 

detailed in Betebenner (2009). The SGP uses quantile regression to measure a student’s 

progress from one year to the next in comparison with his or her academic peers with similar 

test score histories. For example, if a student’s SGP score is 75 in fifth-grade mathematics, he 

grew as much or more than 75 percent of his academic peers with similar score histories. 

Thus, the SGP measure is interpreted in a normative sense. One cannot conclude that two 

students, each of whom obtained an SGP score of 75 but who had different prior year test 

scores, grew by the same absolute amount. All students with SGP scores of 75 experienced 
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more growth than their peers with similar prior scores. In this way, the SGP model addresses 

normative changes in performance and is generally readily interpretable. 

The SGP model proposed by Betebenner (2009) is estimated using quantile 

regression, which was introduced by Koenker and Bassett (1978). A quantile is a particular 

percentile point in a distribution. While typical Ordinary Least Square (OLS) regression 

models estimate the conditional mean of the response variable Y for each value of a covariate 

X, quantile regression extends the regression model to conditional quantiles of the response 

variable. For example, a quantile regression for the 75
th

 percentile shows the score at the 75
th

 

percentile of Y for each value of X. The SGP model handles non-linearities in the 

relationships among the ranks quite well through the use of quantile regression models. 

A student’s growth percentile as a measure of student progress from one year to the next 

is calculated by estimating the conditional density associated with a student’s score at time t 

(i.e., current year) using student’s prior scores at times 1, 2, …, t-1 (i.e., prior years) as the 

conditioning variables (covariates). In other words, a student’s current year score is situated 

normatively as a student’s growth percentile by taking the student’s past student performance 

into account. Hence, it is possible to model how the dependent variable responds to changes 

in covariates across the distribution (Hao & Naiman, 2007). Moreover, estimates using 

traditional regression models are sensitive to outliers or skewed distributions, whereas 

quantile regression model estimates are not. 

The quantile regression allows more flexibly in modeling achievement growth across the 

student score distribution because the achievement growth coefficient ( in the traditional 

fixed effects model) can vary by quantile. Quantile regression proceeds in exactly the same 

way as does an ordinary least squares minimization problem except in order to obtain 

estimates, the conditional quantile function in eq. 14 is minimized (Koenker, 2005). 

min
pyi - xi    

The resulting minimization problem, when j(x,) is specified as a linear function of 

parameters, can be readily solved with specific routines in R (R Development Core Team, 

2009) and SAS
TM

. 

To obtain teacher-level, grade-level, and school-level SGP estimates, estimates of 

student-level growth percentile scores are aggregated to higher units (i.e., teacher, grade, and 

school). One of the key advantages of SGP is that after SGP is estimated at the student level, 
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it is quite simple to combine them into higher level aggregates. To summarize teacher- and/or 

school-level SGP as a single number, the median of the SGP distribution for the teacher, 

grade, or school is usually used. The median represents the growth of a “typical” student in a 

given teacher’s class or a given school. 

Advantages of the SGP approach include its robustness to scale requirements and that 

the normative interpretation of student growth from one year to next is very understandable 

to a broad array of stakeholders. Also, it is easy to aggregate obtained student growth 

percentiles to higher units (e.g., teachers and schools). As previously noted, school effects 

estimated as simple aggregates provide a combined within and between-school effect 

estimate. 

One disadvantage is that SGP models require a substantial amount of data in order to 

generate sufficient coverage across the percentiles. At the state level this should not be an 

issue. Also, SGP models generally include only contiguous prior test score histories. We 

estimate the SGP with all contiguously available, same subject assessment results. 

 

Layered Model (LM): One method that is robust to missing data is an approach that is based 

on a mixed effects regression model. An example of a layered model is the model used in 

Tennessee, the Tennessee Value-Added Assessment System (TVASS). The “layered” model 

simultaneously models scores for multiple years in multiple subjects. Later years of teacher 

or school effects build upon estimated effects from earlier years (thus “layering” effects onto 

one another). This model has been applied in several states and districts. Covariates such as 

student background variables are typically not included. 

This model is robust to missing data as it can include a variable number of non-

contiguous prior test scores and explicitly uses assessment results across multiple subjects. 

The advantage to this is that it includes as much information as possible about each student. 

This approach has been demonstrated to effectively reduce bias (Wright, 2008) and 

substantively reduce the need for student background information (Ballou et al., 2004). This 

mixed effects approach layers gains over years and includes indicators for schools (or 

teachers for teacher level models). For a school effect: 

Yijklsn= ijkls + eijklsn      (15) 
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where Y represents an assessment for student n in subject s in year k and grade l. 

And the student attended school j, which is in school system i. The fixed mean for all 

students in the combination of subjects, grades, years, schools, and system is ijkls; 

eijklsn is the random deviation for student n from the mean, ijkls. (Sanders, Saxton & 

Horn, 1997). The complexity arises in the covariance structure of eijklsn, which, given the 

general use of five years of data (in TVASS) results in 120 elements. The layered model we 

employ uses the same structure but is limited to a maximum of three years and two subjects. 

This is likely a sub-optimal form of the layered model, but allows us to compare how the 

various models compare using three years of student data. 

 Two major advantages of the LM is its robustness to missing data and the inclusion of 

the maximum amount of student data available. A disadvantage is that, in essence, the 

layered model is based on the student’s gain in adjacent years/grades. Thus, it requires 

appropriately scaled scores. If vertically scaled scores are not available, it is recommended to 

convert them to NCE (noral curve equivalent) scores based on a statewide distribution. 

  

Simple Panel Growth (Panel): The final model we consider is a simple longitudinal 

mixed effects model. Multilevel growth models monitor school performance by taking 

into consideration the nature of the data and by attempting to mitigate the effects of potential 

confounding factors (PCF). The effects of PCFs in non-randomized, cross-sectional designs 

(Campbell & Stanley, 1963) and limitations of pre-post designs (Bryk & Wesiburg, 1977; 

Raudenbush & Bryk, 1987; Raudenbush, 2001) in making inferences about school effects 

(i.e., change in student outcomes due to a hypothesized cause) leads many to consider the 

advantages of examining growth trajectories to make inferences about change (Rogosa, 

Brandt, & Zimowski, 1982; Willet, Singer, & Martin, 1998; Raudenbush & Bryk, 2002). Our 

model utilizes three years of data, but is able to include students whether they have one, two, 

or three assessments. These models theoretically require a vertical scale in order to maintain 

interpretable meaning, but can be estimated using normalized scores so long as the focus is 

on comparisons of schools rather than inferences about absolute growth. The notion is that 

assessment results are a function of time and the growth is directly estimated: 

Y tij =tij + ti1ij + etij     (16)  



 

26 

 

where, Ytij is the assessment score at time t of student i, who attends school j. In eq. 16, tijti 

is student i’s performance when T=0 (allowing tijti to be interpreted as student i’s initial 

status); ti is the estimated effect per time interval, or assessment occasion, that is, 

achievement growth. Specifically, the model we utilized is displayed in eq. 17. Similar to the 

layered model, the school effect is the deviation of school k’s trajectory U10j from the average 

trajectory 100. 

 Y tij = + 00GRADEtij +r0ij+riijGRADE +U00j+U10jGRADEtij + etij (17) 

It is common to code T in a manner that allows for specific interpretation of the intercept and 

growth. In this case Grade (T in eq. 16) is coded such that it equals 0 in grade 5
17

 (for 

elementary school students) and in grade 8 (for middle school students). Other specifications 

are possible (e.g., centering a school’s performance on the average grade Goldschmidt, Choi, 

Martinez, & Novack, 2010). The interpretation is that a school’s performance is based on the 

school’s growth evaluated in 5
th

 and 8
th

 grades. This approach ignores status performance, 

though that could be included either conjunctively or in a compensatory manner. Similar to 

the LM, one advantage of the Panel model is that it is robust to missing data, but like the LM, 

it requires a vertical scale for meaningful interpretation of growth, although relative 

comparisons among schools are still possible without a vertical scale. 

 

Methods 

 The analyses include multiple comparisons that are intended to provide policymakers 

some guidance in choosing among the many potential model choices. As noted above, 

several studies have examined the relationships of some models and model specifications, 

but this evaluation differs in that we attempt to address practical consequences surrounding 

model choice. We emphasize again that the first consideration is the purpose of the model 

and the desired inferences about schools. As we outlined in the model section above, some 

models explicitly compare schools on gains or growth, others consider deviations from gains, 

while others consider current performance accounting for past performance, or current 

ranking considering prior rankings. In order to address the practical implications of choosing 

a model, we investigate the following questions: 

                                                 
17

 Grade 3 would equal -1 in grade 4 and -2 in grade 3. 
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1. Overall, does the model matter? 

2. Do different models lead to different inferences about schools? 

3. How accurately do models classify schools into performance categories? 

4. Are models consistent in classifying schools from one year to the next? 

5. How are models influenced by school intake characteristics? 

6. Do models perform similarly for elementary and middle schools? 

7. Do models behave similarly across states? 

 

We examine a range of models that create indicators of school performance and 

evaluate how results overlap or differ and how, sometimes, disparate results can be 

combined. As noted we are guided by much of the previous research on estimating school 

and teacher effects using some variation of a growth model. There are a plethora of models to 

examine and many provide substantively similar results (Tekwe et al., 2004), or differences 

can be systematically accounted for (Choi, Seltzer, Herman, & Yamashiro, 2005; Ballou, 

Sanders, & Wright, 2004). Previous work on model specification and teacher effects 

indicates that teacher effects are fairly robust to specification (Lockwood & McCaffrey, 

2007; McCaffrey et al., 2004), and these results likely hold for school effects as well. 

Empirical results between different modeling approaches (i.e., fixed effects, random effects, 

and layered models) at the school-level indicate that value added estimates
18

 are highly 

correlated among approaches (Tekwe et al., 2004). 

We begin by presenting static school descriptive information, related student 

background characteristics, and school size. This serves two purposes: one, to provide 

context; and two, to present some basic information that highlights differences and 

similarities among the states represented in the analysis. Beyond school descriptive statistics, 

variance decomposition is a straightforward way to summarize the proportion of variation in 

student outcomes that is attributable to schools
19

 – which also provides an indication of how 

homogeneous students are within schools. It is important to bear in mind that only that 

                                                 
18

 Here we refer to value added as a subset of growth models that generate school effects based on either a 

random effect (deviation from average) or a fixed effect that directly estimates a school effect as a fixed 

parameter on a school indicator variable. 
19

 Here we focus on within and between-school variation in student outcomes. Within school variation in 

student performance could be further decomposed (e.g., within and between teachers). 
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portion of the total variation attributable to schools will be amenable to policies addressing 

between-school differences in outcomes
20

. 

In order to address these questions we generate several school effects for each school. 

First, students are divided into cohorts (as displayed in Figure 1). That is, there is a 2007-

2009 cohort and a 2008-2010 cohort. Analyses are conducted separately for each cohort. 

Each cohort’s results are further divided by subject (mathematics and reading) and level 

(elementary and middle) and school effects are estimated separately by subject and level. 

Auxiliary models considered several specification options within each model related to 

covariates that included combinations of prior test scores and student background 

characteristics. This generated approximately 60 estimates per school — which, while 

informative, does not substantively add to the analyses presented here. 

 Models are estimated for each state separately. Because some states have vertical 

scales and some do not, all scores are normalized for those models that theoretically require a 

vertical scale
21

; specifically, these are the gain and Panel models. 

 In order to conduct a general test for model effects (discussed in more detail below), 

we generate normalized school effect estimates that allow for comparisons across states. 

These are estimated as: 

  *jkmcsg = (jkmcsg - ..kmsg) /SDkmsg,    (18) 

where jkmcsg is the school effect for school j in state k estimated with model m for cohort c in 

subject s in school level g; ..kmsg is the estimated mean effect for state k estimated with 

model m in subject s in school level g; and SDkmsg is the standard deviation of ..kmsg. We use 

this effect size primarily to estimate a fixed effects model that simultaneously tests for state, 

model, subject, cohort, and joint effects. We estimate the model in eq. 18 separately for 

elementary and middle schools. We use estimated precision (squared) as the regression 

weights as is typical if we conceptualize this specific analysis as a quasi meta-analysis. In 

this case we estimate: 

 *jkmcsg = ukmcs + 

(statek) + 


1m(modelm) + 2(cohortc) + 3(subjects) +   

                                                 
20

 Of course some policies aimed at schools may also decrease within school variability and improve overall 

performance. 
21

 This is an example of preliminary analyses we conducted that examined the impact on estimated school 

effects when estimating gains on actual scale scores and on normalized scores. Again, this effect was 

considerably less relevant than the ones we present here and is consistent with previous research Goldschmidt, 

Choi, Martinez, & Novack, 2010). 
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
L
(school clusterl) + ejkmcsg    (18b) 

The F-test for 1ms tests whether the model significantly impacts a school’s estimate, 

while the test of 2 tests whether the school effect is consistent from one year to the next (i.e., 

does a school’s estimate differ from one cohort to another, ceteris paribus). Similarly, 3 tests 

for subject effects (i.e., does a school’s effect differ when estimated using math or language 

arts, ceteris paribus). A series of indicator variables are used as fixed state effects,, and are 

included to capture unobserved state circumstances; since assessments are unique to states,  

captures both unobserved state characteristics and variation among states in the psychometric 

properties of the assessments. Including school cluster, l, provides some standardization 

among states in school characteristics (recall that clusters are not nested within state and are 

fully crossed with state). The test of s tests whether school effects systematically differ by 

cluster. We also expand eq. 18 to include model, by state, cohort, subject, and school cluster 

interactions. Interactions (or joint effects) are important to examine whether there are 

differential effects of the models by the covariates included above
22

. The joint test of the 

interaction terms of model and cluster tests whether the model results differ by cluster or 

conversely whether cluster results differ by model. If the null hypothesis (of no effect) can be 

rejected, then this implies that models behave differently among the clusters.  

The bulk of the analysis consists of the growth model comparisons. The goal of these 

comparisons is to examine the effect of various models on inferences about school 

performance, specifically focusing on issues related to precision, reliability, stability, and 

bias. Two cohorts consisting of three years of panel data are used to examine the relationship 

among various school accountability models. As noted, we conduct comparisons separately 

for elementary (grades 3-5) and middle schools (grades 6-8) and separately for mathematics 

and ELA. High schools are excluded as they do not include contiguous state test results. 

 Estimated precision is one of the key statistics of school estimates as it allows us to 

determine how accurately we can evaluate a school’s performance. We use the estimated 

standard error (SE) of the estimate for each model and school to examine various facets of 

precision. We note that the magnitude of the SEs vary by test metric and model, and hence 

simply comparing the magnitude does not provide a good judge of model precision. Instead 

                                                 
22

 This also changes the interpretation of the main effects, as they pertain to the left-out category of the 

interacted variable. 
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we evaluate precision by examining how well models classify schools into performance 

bands. 

 Reliability is directly linked to precision and is often incorrectly used interchangeably 

with precision. Reliability estimates intend to provide some information related to the ability 

of the model to detect differences in true school performance. However, there has been some 

debate related to the role of reliability, particularly when models are based on growth and the 

intended use is school accountability (Rogosa, 2002). This is consistent with other cautions 

about interpreting reliability when considering growth (Raudenbush & Bryk, 2002). We 

consider reliability in terms of the shared variance in consecutive years of school effect 

estimates per model. This conception is based on a regression of the year2 estimate on the 

year1 estimate from which R
2
 provides an estimate of common variance, and can be 

interpreted as an estimate of reliability. Empirical results lend credence to the notion that 

reliability in the context of growth is not necessarily a good indicator of model performance 

because this is often confused with the model’s ability to “accurately” measure growth. As 

Rogosa (2002) points out, reliability is neither a necessary nor a sufficient condition to 

guarantee actuate indicators or performance. 

 We also examine stability, by placing schools into performance quintiles in each of 

the two years and checking how many schools remain in the same quintile. This measure is 

imprecise because it confounds true stability with true school movement, but is a common 

analysis undertaken to evaluate the stability of teacher effect estimates (see Koedel & Betts, 

2007, for example). 

 We also compare correspondence in performance band classifications across models. 

Comparing how models classify schools in performance quintiles is substantively more 

relevant since this is generally what state accountability systems intend to accomplish with 

school estimates (e.g., A-F school grades and school categories such as average, above 

average). 

 Bias is best addressed through simulations as this is the only way to know exactly 

what constitutes truth and what constitutes bias. Since we are using actual student data, we 

examine this concept indirectly by examining the influence of student background 

characteristics on school effect estimates and by comparing results among models. While a 

simulation study isolates a particular facet and allows a specific test to determine whether 
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that facet is adequately reproduced or accounted for, these analyses have no such control. 

Comparing any two models would not unequivocally identify the correct model and the 

incorrect model. Given there is no true model, in a strict sense this is not identifying bias, 

rather whether among models there is consistency in results. That is, are models 

unequivocally interchangeable, ignoring that alternative theories of action can and should 

lead to differences in how schools are classified?   

Specifically, we conduct the following analyses to address each of the research 

questions posed above. 

Overall, does the model matter? As described above, we model all normalized school 

effects simultaneously along with fixed effects for model, state, cohort, subject, and school 

level (as well as the interactions of model and the state, cohort, subject, and school level 

variables). 

Do different models lead to different inferences about schools? States often make 

inferences about schools by placing them in performance categories. We divided the schools 

into five equally sized groups (quintiles) based on their growth scores and examined how 

well the models placed schools into those categories. Based on the size of the interval and on 

the standard deviation of the school effect, we estimated how likely a school is to fall within 

the interval. Additionally we correlate model results.  

How accurately do models classify schools into performance categories? Schools are 

placed into performance quintiles. Comparing how models classify schools in performance 

quintiles is substantively more relevant since this is generally what state accountability 

systems intend to accomplish with school estimates (e.g., A-F school grades and school 

categories such as average, above average). 

Are models consistent in classifying schools from one year to the next? We can look 

at both the shared variation in school estimates using the prior year school effect estimate as 

an independent variable and the current year as the dependent variable (i.e., R
2)

. We estimate 

stability using the correlation between the prior year estimate and the current year estimate. 

These two methods are essentially the same since the square root of R
2 

is r. 

How are models influenced by school intake characteristics? We use Ordinary Least 

Squares regression of normalized school effects on aggregate school inputs: Students with 

Disabilities (SWD%); Minorities (Minority%); Economic Disadvantage (ED%); School 



 

32 

 

Stability (Stability%); School Size (School N). We evaluate whether intake characteristics 

have linear and/or non-linear effects. 

jkmcg = u + 1(SWD%) + 2(Minority%) + 3(ED%) + 4(Stability%) + 5(School N) 

+ 6(SWD%)
2
 + 7(Minority%)

2
 + 8(ED%)

2
 + 9(Stability%)

2
 + 10(School N)

 2
 

+ejkmcg 

Do models perform similarly for elementary and middle schools? Using the methods 

described above we compare how models produce results for elementary schools and 

compare them to how they produce results for middle schools. For example, we may observe 

that the estimated stability (year-to-year correlation of school effects) for a particular model 

is .6 for elementary schools, but may be .5 for middle schools. We subjectively compare 

results across models and school level to see whether we can identify specific areas where 

policymakers might need to use caution in applying a model. Again, the omnibus test for 

whether the school level matters is addressed in question one with the fixed effects model on 

standardized school effect estimates. 

 Do models behave similarly across states? Similar to the previous question, the 

overall test for this is conducted with the fixed effects model on normalized school effects. 

But we use the other analyses outlined above to examine more subjectively whether models 

behave equally across states (which, as noted, confounds potentially several state unique 

contextual elements). 

The analyses outlined above can take many levels of disaggregation (i.e., model A 

can be compared to model B, overall, or by school level, by cohort, by subject, and by state 

— or any combination of these). Many additional analyses are possible, and while potentially 

interesting, would tend to obfuscate the general results.  
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RESULTS 

We present results systematically, addressing each of the research questions noted 

above utilizing specific elements of the comparisons noted above. We attempt to report 

results as concisely as possible and place many of the detailed tables into Appendix 3. 

While not strictly addressing how models compare, considering how states differ in 

the structure of school performance provides evidence for the notion that states are 

demonstratively different. Table 2 provides descriptive information for each state, and the 

classification process of finding similar schools across states also reveals that states differ 

substantively in terms of the enrollment characteristics of the schools. One aspect to consider 

up front is the ICC (intraclass correlation), or the proportion of variation in student 

achievement that is attributable to schools
23

. The ICC is also a measure of how homogeneous 

students are within a school on a particular outcome. Table 5 below summarizes the results 

by state, subject, and grade level. Previous research indicates that ICCs tend to range from 

about .1 to around .3 (Raudenbush & Bryk, 2002). The results in Table 5 generally 

corroborate those findings. There are some instances of more extreme values. For example, 

in state S2, there are some cohort/subject/school levels where the ICC is approximately .4, 

implying a fair amount of homogeneity among students within schools. On the other 

extreme, state S3 demonstrates considerable within-school heterogeneity. This provides 

further reason to classify schools on a common metric in order to reduce confounding among 

state specific factors. The ICC is important because it provides an upper-bound as to what 

proportion of student achievement could be accounted for by variation in school processes. 

 

                                                 
23

 Assuming a random effect model, the ICC is j/(j + ij
2
). See Raudenbush and Bryk (2002) where j is the 

variance of the school random effects and ij
2
 is the variance of student level (generally measurement) error. 
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Variation in Student Performance attributable to schools - grade 5

Math ELA Math ELA Math ELA Math ELA Math ELA Math ELA Math ELA Math ELA

2007 0.22 0.16 0.21 0.19 0.07 0.10 0.20 0.16

2008 0.22 0.19 0.21 0.17 0.20 0.20 0.19 0.18 0.05 0.11 0.07 0.10 0.20 0.17 0.19 0.18

2009 0.16 0.14 0.19 0.17 0.21 0.27 0.22 0.21 0.05 0.12 0.05 0.11 0.21 0.18 0.20 0.18

2010 0.16 0.15 0.19 0.23 0.05 0.11 0.21 0.18

Variation in Student Performance attributable to schools - grade 8

Math ELA Math ELA Math ELA Math ELA Math ELA Math ELA Math ELA Math ELA

2007 0.29 0.24 0.29 0.21 n/a n/a 0.11 0.17

2008 0.30 0.22 0.30 0.25 0.28 0.32 0.28 0.30 n/a n/a 0.04 0.10 0.22 0.17 0.22 0.17

2009 0.24 0.21 0.27 0.23 0.32 0.43 0.30 0.34 n/a n/a 0.04 0.08 0.22 0.17 0.19 0.17

2010 0.19 0.17 0.37 0.40 0.02 0.08 0.22 0.17

1) C09 = the 2009 cohort.  2) C10 = the 2010 cohort.

C10 C09 C10C09
1

C10
2

C09 C10 C09

S1 S2 S3 S4

C09
1

C10
2

C09 C10 C09 C10 C09 C10

Table 5:

S1 S2 S3 S4
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Overall, does the model matter? 

We examine this question by using the estimated standardized school effect size 

estimates in a quasi-meta-analytic model described above (eq. 18). The results are 

summarized in Table 6. A detailed elaboration of results is displayed in Appendix 3. 

 

Table 6. Overall Impact of Model on School Effect Estimates 
Type III Tests of Fixed Effects 

 Elementary School  Middle School 

Source Num df  F Sig.  Num df  F Sig. 

Intercept 1  0.71 0.40  1  0.45 0.50 

Model 10  47.24 0.00  7  13.17 0.00 

State 3  0.37 0.77  3  0.80 0.49 

model * state 29  22.39 0.00  20  2.94 0.00 

Subject 1  0.35 0.56  1  0.11 0.73 

Cohort 1  0.67 0.41  1  0.00 0.98 

model * subject 10  60.38 0.00  7  7.02 0.00 

model * cohort 10  62.06 0.00  7  2.77 0.01 

Compared to Schools in Advantaged Category: 

Disadvantaged I 1  0.04 0.84  1  1.53 0.22 

Large 1  0.01 0.92  1  0.43 0.51 

Disadvantaged II 1  0.03 0.87  1  6.75 0.01 

Mobile 1  8.30 0.00  1  5.59 0.02 

model * Disadv I 10  4.04 0.00  7  0.88 0.52 

model * Large 10  17.72 0.00  7  12.56 0.00 

model * Disadv II 10  14.02 0.00  7  15.11 0.00 

model * Mobile 10  42.68 0.00   7  90.55 0.00 

Note:  Numerator = Advantaged. df elementary = 84,783; middle 54, 102 

AIC: Elementary School, Null model 526983, Full Model 456748; Middle School Null model 235233, Full Model,  

233107. 

 



 

36 

 

The results in Table 6 imply that school effect estimates do, in fact, vary by model in 

elementary school (p <.01) and in middle school (p < .01). Moreover, the results imply that 

estimated school effects vary jointly with model and state, which means that different models 

generate school effects differently in each state. The interaction effects related to model by 

subject and model by cohort imply that individual school effect estimates vary by model and 

subject and cohort. The results in Table 6 also indicate that similar schools within a cluster 

will be rated differently by different models. 

 Overall, the results in Table 6 confirm that there will be differences in school effect 

estimates and that these differences depend on both school context and the model used to 

estimate the effect. While we rejected the null hypothesis that models are statistically equal, 

we next disaggregate results more carefully to determine whether these differences relate to 

practical differences that policymakers ought to take into account when selecting a growth 

model. 

 

Do different models lead to different inferences about schools? 

 We examine this question by looking at the between model correlations of estimated 

school effects and by calculating how often models place schools into the same performance 

category. Tables 7 through 10 present the unconditional relationships among models. In order 

to capture the variability across states, we present both the observed maximum and minimum 

correlations of school effect estimates. Consistent with expectations, results based on status 

are fairly highly correlated with models also basing inferences on current or conditioned 

current performance. For example, the results in Table 7 indicate that the estimated 

correlation between schools’ performance estimated by a status model and schools’ 

performance, GTS can be virtually perfectly correlated and very highly correlated with the 

CAFE model. On the other hand, status provides a different picture than simple GAIN (or 

FEG) models, which would be expected. 
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Table 7:

Correlations
1
 among models - Elementary ELA 

 Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min

Status 1.00 1.00 0.23 -0.50 0.24 -0.42 0.93 0.71 0.71 0.13 0.62 0.29 0.64 -0.53 0.60 0.37 0.63 -0.40 1.00 0.27

Gain 1.00 1.00 0.96 0.88 0.30 -0.55 0.90 -0.30 0.79 0.14 0.64 -0.26 0.79 -0.16 0.86 0.38 0.42 -0.49

FEG 1.00 1.00 0.30 -0.31 0.87 -0.13 0.76 0.35 0.64 -0.02 0.79 -0.01 0.87 0.38 0.35 -0.39

CAFE 1.00 1.00 0.75 0.19 0.65 0.34 0.76 -0.56 0.72 0.43 0.94 -0.35 0.94 0.84

TSG 1.00 1.00 0.90 0.64 0.70 0.57 0.84 0.75 0.78 -0.14 0.70 0.15

CARE 1.00 1.00 0.84 -0.07 0.83 0.65 0.83 0.25 0.62 0.30

Panel 1.00 1.00 0.76 0.23 0.60 -0.11 0.66 -0.53

SGP 1.00 1.00 0.80 0.04 0.59 0.35

LM 1.00 1.00 0.85 -0.42

GTS 1.00 1.00

1)  Represent the correlations among school effect estimates

Panel SGP LM GTSStatus Gain FEG CAFE TSG CARE

Table 8:

Correlations
1
 among models - Elementary Math 

 Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min

Status 1.00 1.00 0.35 -0.40 0.32 -0.49 0.88 0.75 0.69 0.06 0.52 0.30 0.54 0.01 0.57 0.32 0.64 -0.18 1.00 0.33

Gain 1.00 1.00 1.00 0.85 0.28 -0.46 0.95 0.01 0.88 0.29 0.66 0.10 0.84 0.16 0.94 0.52 0.32 -0.41

FEG 1.00 1.00 0.28 -0.36 0.91 0.05 0.88 0.37 0.62 0.12 0.84 0.18 0.94 0.54 0.32 -0.49

CAFE 1.00 1.00 0.63 0.03 0.61 0.35 0.63 0.07 0.51 0.33 0.67 -0.22 0.95 0.79

TSG 1.00 1.00 0.87 0.71 0.69 0.51 0.88 0.73 0.73 0.32 0.68 0.01

CARE 1.00 1.00 0.81 0.59 0.91 0.74 0.93 0.46 0.52 0.31

Panel 1.00 1.00 0.80 0.56 0.67 0.25 0.57 0.05

SGP 1.00 1.00 0.89 0.43 0.55 0.42

LM 1.00 1.00 0.64 -0.18

GTS 1.00 1.00

1)  Represent the correlations among school effect estimates

Panel SGP LM GTSStatus Gain FEG CAFE TSG CARE



 

38 

 

 
 

 
  

Table 9:

Correlations
1
 among models - Middle School ELA 

 Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min

Status 1.00 1.00 0.23 -0.50 0.31 -0.62 0.94 0.25 0.53 -0.10 0.53 0.02 0.28 -0.35 0.59 0.07 0.51 -0.27 1.00 0.27

Gain 1.00 1.00 0.96 0.69 0.49 -0.62 0.67 -0.08 0.60 0.29 0.48 0.18 0.78 -0.01 0.53 0.16 0.42 -0.49

FEG 1.00 1.00 0.43 -0.73 0.71 -0.21 0.64 0.30 0.44 0.00 0.78 0.03 0.76 0.40 0.41 -0.58

CAFE 1.00 1.00 0.67 -0.11 0.59 0.16 0.90 -0.37 0.76 0.41 0.98 -0.61 0.97 0.83

TSG 1.00 1.00 0.91 0.60 0.80 0.60 0.75 0.43 0.69 0.03 0.60 -0.09

CARE 1.00 1.00 0.73 -0.01 0.73 0.48 0.75 0.39 0.53 0.02

Panel 1.00 1.00 0.82 0.23 0.91 0.00 0.85 -0.35

SGP 1.00 1.00 0.76 0.11 0.71 0.33

LM 1.00 1.00 0.87 -0.29

GTS 1.00 1.00

1)  Represent the correlations among school effect estimates

CARE Panel SGP LM GTSStatus Gain FEG CAFE TSG

Table 10:

Correlations
1
 among models - Middle School Math 

 Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min

Status 1.00 1.00 0.35 -0.40 0.54 -0.50 0.87 0.26 0.22 -0.06 0.42 0.12 0.38 0.00 0.66 0.22 0.41 -0.22 1.00 0.33

Gain 1.00 1.00 0.94 0.76 0.51 -0.54 0.65 0.33 0.73 0.33 0.50 0.14 0.80 0.14 0.60 -0.02 0.32 -0.41

FEG 1.00 1.00 0.51 -0.58 0.71 0.36 0.77 0.40 0.51 0.02 0.81 0.00 0.79 0.31 0.36 -0.50

CAFE 1.00 1.00 0.62 -0.03 0.57 0.18 0.76 0.02 0.73 0.48 0.97 -0.39 0.97 0.70

TSG 1.00 1.00 0.93 0.76 0.83 0.46 0.82 0.47 0.66 0.28 0.55 -0.09

CARE 1.00 1.00 0.89 0.49 0.87 0.53 0.92 0.50 0.47 0.13

Panel 1.00 1.00 0.85 0.53 0.78 0.24 0.67 0.00

SGP 1.00 1.00 0.84 0.29 0.62 0.33

LM 1.00 1.00 0.87 -0.22

GTS 1.00 1.00

1)  Represent the correlations among school effect estimates

Status Gain FEG CAFE TSG CARE Panel SGP LM GTS
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Mixed effects models and conditional growth models tend to be fairly highly correlated as 

well. In general the potential for different models to provide relatively similar results is high, 

as evidenced by the maximum correlations presented. 

 Overall, the patterns are relatively consistent across subject and school level. The 

patterns presented in Tables 7 through 10 vary by state, which further demonstrates that 

models do not unequivocally perform well under all circumstances. This variability is 

summarized by comparing the maximum and minimum correlations. 

 Perhaps a more informative and practical approach is to examine how the different 

models classify schools. Correlations imply a linear relationship between models (and some, 

like the SGP may produce estimates that are not linear with respect to another model’s school 

effect estimates, for example). We next turn to using performance quintiles. This division is 

somewhat arbitrary, but consistent with much of the literature attempting to place schools in 

performance bands. Table 11 consists of several parts that consider selected model 

comparisons using mathematics (reading does not substantively alter interpretations). In 

Table 11, Exact refers to the percent of time two models place schools into the same 

performance band (quintile). So in Panel A, which focuses on gain models, a simple gain 

model and percent proficient model would place schools in the same performance band 26% 

of the time. These two models would be off by one performance category about 32% percent 

of the time. Hence, percent proficient and a simple gain model would place schools within 

one performance band about 58% of the time. In 22% of cases, the classifications would be 

off by two bands, and 6% of the time, the two models would place the schools on opposite 

extremes (best and worst). The results in Table 11 indicate that simple gains and fixed effects 

gains (FEG) produce very similar placements (as expected), but simple gains and growth to 

target (GTS) do not. Panel B focuses on conditional change models. The CARE and SGP 

models have highly correlated results, while the CAFE model tends to classify schools 

consistently with the others, but the classifications occur at a somewhat lower rate. Panel C 

focuses on growth models. All of the models tend to classify schools similarly except for the 

growth to standard (GTS) model which behaves more like a status model.  

 

 



 

40 

 

 

 

Table 11. Comparisons of Classification into Mathematics Quintiles 

  

  

 

Panel A 
Status (% prof) 

compared to 
Fixed Effects Gain 

compared to 

 GAIN GAIN TSG GTS 

  ES MS ES MS ES MS 

Exact 26% 94% 74% 49% 36% 26% 28% 

within 1 32% 5% 20% 28% 44% 33% 30% 

Exact +1 58% 99% 94% 77% 80% 58% 57% 

within 2 22% 1% 5% 13% 12% 22% 21% 

Extremes 6% 0% 0% 2% 3% 6% 8% 

 

Panel B 
Student Growth Percentile 

compared to 
Layered Model 

compared to 

 CARE CAFE SGP CAFE 

 ES MS ES MS ES MS ES MS 

Exact 55% 49% 33% 37% 52% 48% 26% 29% 

within 1 40% 43% 37% 35% 38% 36% 36% 31% 

Exact +1 95% 91% 70% 72% 90% 84% 62% 60% 

within 2 4% 8% 20% 17% 7% 11% 22% 21% 

Extremes 0% 0% 2% 2% 0% 1% 4% 5% 

 

         

Panel C 
Simple Panel Growth 

compared to 

 LM SGP GTS TSG 

 ES MS ES MS ES MS ES MS 

Exact 38% 36% 47% 41% 26% 20% 40% 38% 

within 1 39% 39% 40% 41% 35% 35% 37% 38% 

Exact +1 76% 75% 87% 82% 61% 56% 77% 77% 

within 2 18% 17% 11% 13% 23% 22% 18% 15% 

Extremes 1% 2% 0% 1% 4% 6% 1% 1% 

 

Overall, models from which similar inferences can be made are more likely to place 

schools into similar performance bands than models that differ fundamentally, which is most 

readily apparent when comparing gains and percent proficient. The fundamental basis differs, 

and not surprisingly, they rate schools very differently. Although models place schools into 

different performance quintiles, there is a reasonable amount of consistency, and except for 
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status, none of the models demonstrates extreme variations in school ratings. That is, it is 

unlikely that one model would rate a school as a top performer (Grade of A), while another 

model would rate the same school as a poor or very poor performer (Grade of D or F). 

Variations among school ratings by model generally follow expectations. Simple Gain 

produces results that are somewhat different from other growth models, except for Gain and 

FEG models, which are virtually identical. Conditional status models SGP and CARE, both 

of which are current performance based on previous performance, perform similarly. Panel 

model results are consistent with SGP, LM, and TSG implying that as more data are used to 

estimate effects, results tend to converge. 

 

How accurately do models classify schools into performance categories? 

 The previous section examined how similarly models placed schools into 

performance bands. We believe this is an important element to focus on and leads us to 

further examine how accurately models place schools into those bands. This depends on 

precision. The results in Tables 12a and 12b indicate that there is considerable variation 

among states and models in terms of how well they place schools into performance bands. 

Part of the variability has to do with the models and being able to differentiate schools based 

on the underlying attribute (e.g., status, gains, and growth) and partly it relates to properties 

of the schools in terms of the ICC and size. For example, the SGP model generally performs 

quite well with accuracy nearing 100% (denoted as 100% in the table due to rounding); it 

should be noted that we would expect the SGP model to place schools into performance 

bands with high accuracy since the bands are based on quintiles — which is somewhat 

tautological for the SGP model. Still, in states with smaller average school size, the SGP is 

only 60% likely to place a school in the correct band. Simple Gain models tend to perform 

poorly and the TSG model appears to rely on vertical scales that are well suited for this type 

of model. Also, it is clear that the layered model (LM) does not perform well here and this is 

likely, at least partially, due to the limited amount of data we used to estimate a model that is 

designed to incorporate substantially more data. Clearly, however, Tables 12a and 12b again 

imply that models behave very differently in different states and wholesale adoption does not 

guarantee success. 
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Table 12a. Proportion of Estimates Likely to Fall into Performance Correct Band
*
 

*Accuracy (High to Low) is color coded within cells on a scale ranging from “Red” (Low) to “Green” (High)  

 

  

 Elementary School Middle School 

 ELA Math ELA Math 

 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 

Status 

60 54 57 60 58 38 55 60 60 54 57 60 58 38 55 60 

45 43 44 39 48 51 29 39 45 43 44 39 48 51 29 39 

40 15 27 30 45 26 23 28 40 15 27 30 45 26 23 28 

31 12 34 30 35 20 18 27 31 12 34 30 35 20 18 27 

42 19 53 45 48 26 59 32 42 19 53 45 48 26 59 32 

GAIN 

64 66 48 54 61 63 57 56 64 66 48 54 61 63 57 56 

25 20 22 18 24 31 16 30 25 20 22 18 24 31 16 30 

27 20 18 15 31 25 14 26 27 20 18 15 31 25 14 26 

36 22 24 18 39 26 15 31 36 22 24 18 39 26 15 31 

56 53 51 54 55 59 65 57 56 53 51 54 55 59 65 57 

FEG 

63 70 48 55 57 69 42 54 61 70 60 61 64 71 36 59 

20 20 18 21 20 26 15 25 27 21 12 25 19 16 17 12 

20 23 16 17 22 23 18 22 29 13 11 20 27 10 17 12 

27 22 22 20 42 24 18 27 45 18 16 25 39 23 12 14 

53 56 54 54 54 59 61 56 65 68 57 57 65 72 25 59 

TSG 

98 99 78 

 

99 100 81 

 

100 75 95 

 

89 90 78 

 

70 65 47 78 76 41 49 31 44 46 48 31 

50 62 39 72 58 31 44 47 39 48 57 20 

52 49 63 66 77 30 50 57 29 76 80 33 

94 95 94 100 100 78 84 74 94 100 85 72 

CAFE 

65 87 64 65 63 72 61 65 66 73 87 81 67 62 75 82 

49 47 39 48 51 52 33 49 46 67 42 51 54 62 27 51 

50 48 37 44 48 46 26 47 46 46 40 41 45 55 20 44 

39 35 42 44 41 43 25 49 36 49 30 42 40 59 23 47 

58 69 61 62 59 66 62 63 60 85 88 63 59 75 75 67 

CARE 

49 55 38 44 52 56 42 53 48 39 39 41 52 45 39 54 

13 23 16 19 18 24 14 29 12 20 17 18 15 16 14 26 

10 27 12 16 12 22 14 27 9 12 11 16 11 20 6 22 

14 22 18 19 16 29 12 31 11 19 12 18 22 26 14 32 

40 56 50 44 51 54 40 51 33 42 40 47 52 43 37 54 

PANEL 

100 97 85 62 100 100 81 76 100 91 64 53 100 78 92 71 

69 47 39 30 72 51 37 41 49 70 46 23 68 38 25 32 

67 49 37 28 59 69 35 34 41 48 38 23 47 72 29 35 

46 50 49 35 52 57 33 38 46 71 41 21 51 79 38 38 

90 100 86 74 99 98 73 77 91 90 64 53 91 63 87 78 

LM 

28 68 46 41 34 58 40 50 61 67 57 37 57 60 28 51 

5 36 19 15 10 15 12 28 18 60 28 13 17 48 13 26 

3 40 17 13 8 15 14 24 12 25 25 10 19 28 50 21 

5 33 18 15 11 17 14 30 23 33 33 13 19 38 35 28 

17 63 48 40 42 48 30 51 55 30 56 37 46 32 48 54 

SGP 

100 100 100 99 100 100 99 100 100 100 100 100 100 100 100 100 

77 82 80 77 89 90 69 90 77 92 75 76 90 79 60 91 

82 83 69 74 79 85 73 86 61 82 66 68 73 73 71 85 

61 83 74 78 83 87 73 87 82 79 80 74 91 90 69 91 

99 100 100 98 100 100 99 99 100 97 97 100 100 99 100 100 

GTS 

100 100 100 100 100 100 96 100 100 100 100 100 100 100 96 100 

95 94 76 85 96 97 69 84 95 94 76 85 96 97 69 84 

88 81 71 77 92 86 65 75 88 81 71 77 92 86 65 75 

84 73 72 75 83 81 69 73 84 73 72 75 83 81 69 73 

91 92 95 92 96 97 94 77 91 92 95 92 96 97 94 77 
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Table 12b. Proportion of Estimates Likely to Fall into Performance Correct Band* 

 State 1 State 2 State 3 State 4 

 Elementary Middle Elementary Middle Elementary Middle Elementary Middle 

 ELA MATH ELA MATH ELA MATH ELA MATH ELA MATH ELA MATH ELA MATH ELA MATH 

Status 

60 58 60 58 54 38 54 38 57 55 57 55 60 60 60 0 

45 48 45 48 43 51 43 51 44 29 44 29 39 39 39 39 

40 45 40 45 15 26 15 26 27 23 27 23 30 28 30 28 

31 35 31 35 12 20 12 20 34 18 34 18 30 27 30 27 

42 48 42 48 19 26 19 26 53 59 53 59 45 32 45 32 

GAIN  

64 61 64 61 66 63 66 63 48 57 48 57 54 56 54 56 

25 24 25 24 20 31 20 31 22 16 22 16 18 30 18 30 

27 31 27 31 20 25 20 25 18 14 18 14 15 26 15 26 

36 39 36 39 22 26 22 26 24 15 24 15 18 31 18 31 

56 55 56 55 53 59 53 59 51 65 51 65 54 57 54 57 

FEG 

63 57 61 64 70 69 70 71 48 42 60 36 55 54 61 59 

20 20 27 19 20 26 21 16 18 15 12 17 21 25 25 12 

20 22 29 27 23 23 13 10 16 18 11 17 17 22 20 12 

27 42 45 39 22 24 18 23 22 18 16 12 20 27 25 14 

53 54 65 65 56 59 68 72 54 61 57 25 54 56 57 59 

TSG  

98 99 100 89 99 100 75 90 78 81 95 78     

70 78 49 46 65 76 31 48 47 41 44 31     

50 72 44 48 62 58 47 57 39 31 39 20     

52 66 50 76 49 77 57 80 63 30 29 33     

94 100 84 100 95 100 74 85 94 78 94 72     

CAFE  

65 63 66 67 87 72 73 62 64 61 87 75 65 65 81 82 

49 51 46 54 47 52 67 62 39 33 42 27 48 49 51 51 

50 48 46 45 48 46 46 55 37 26 40 20 44 47 41 44 

39 41 36 40 35 43 49 59 42 25 30 23 44 49 42 47 

58 59 60 59 69 66 85 75 61 62 88 75 62 63 63 67 

CARE 

49 52 48 52 55 56 39 45 38 42 39 39 44 53 41 54 

13 18 12 15 23 24 20 16 16 14 17 14 19 29 18 26 

10 12 9 11 27 22 12 20 12 14 11 6 16 27 16 22 

14 16 11 22 22 29 19 26 18 12 12 14 19 31 18 32 

40 51 33 52 56 54 42 43 50 40 40 37 44 51 47 54 

PANEL  

100 100 100 100 97 100 91 78 85 81 64 92 62 76 53 71 

69 72 49 68 47 51 70 38 39 37 46 25 30 41 23 32 

67 59 41 47 49 69 48 72 37 35 38 29 28 34 23 35 

46 52 46 51 50 57 71 79 49 33 41 38 35 38 21 38 

90 99 91 91 100 98 90 63 86 73 64 87 74 77 53 78 

LM  

28 34 61 57 68 58 67 60 46 40 57 28 41 50 37 51 

5 10 18 17 36 15 60 48 19 12 28 13 15 28 13 26 

3 8 12 19 40 15 25 28 17 14 25 50 13 24 10 21 

5 11 23 19 33 17 33 38 18 14 33 35 15 30 13 28 

17 42 55 46 63 48 30 32 48 30 56 48 40 51 37 54 

SGP 

100 100 100 100 100 100 100 100 100 99 100 100 99 100 100 100 

77 89 77 90 82 90 92 79 80 69 75 60 77 90 76 91 

82 79 61 73 83 85 82 73 69 73 66 71 74 86 68 85 

61 83 82 91 83 87 79 90 74 73 80 69 78 87 74 91 

99 100 100 100 100 100 97 99 100 99 97 100 98 99 100 100 

GTS  

100 100 100 100 100 100 100 100 100 96 100 96 100 100 100 100 

95 96 95 96 94 97 94 97 76 69 76 69 85 84 85 84 

88 92 88 92 81 86 81 86 71 65 71 65 77 75 77 75 

84 83 84 83 73 81 73 81 72 69 72 69 75 73 75 73 

91 96 91 96 92 97 92 97 95 94 95 94 92 77 92 77 

 *Accuracy (High to Low) is color coded within cells on a scale ranging from “Red” (Low) to “Green” (High)  
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Overall, the results in Tables 12a and 12b are consistent with previous results we 

report — models vary in how well they place schools into the performance bands. The SGP 

model appears to be the standard, but that result is somewhat tautological since performance 

bands are based on quintiles. The forgoing analysis highlights an important issue: inference 

about school performance is very much dependent upon how performance bands are defined 

and any model’s ability to consistently place schools into defined bands. Figure 2 provides a 

sense of the performance that is required for a school to be placed into a performance band. 

The GTS model has fairly linear equally spaced bands and it is clear from Figure 2 how 

performance varies among states. This linearity may be a desirable property for some 

policymakers.  

 

 

 Figure 2: Performance Bands: Growth to Standard Model by State (Mathematics) 
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In contrast, Figure 3 presents the performance bands for the CARE model. It is 

important to note that all of the states converge on the middle performance band, as the 

estimated effect at the median is 0
24

. However, the bands are somewhat non-linear in both 

directions toward the extremes (toward very good and very poor performers). 

 

 

Figure 3: Performance Bands: Covariate Adjusted Random Effects Model (Mathematics) 

Again, the properties around a CARE model may be what policymakers hope to accomplish  

— good schools receive positive values and poor performing schools receive negative values. 

For schools to receive top ratings, for example, policymakers may want exponentially higher 

performance to denote those bands — it is important to reiterate that the bands are based on 

the performance quintiles based on the model estimates. 

Are models consistent in classifying schools from one year to the next? 

 We examine this question by considering our notion of reliability. The results are 

based on the shared variance of 2009 and 2010 school effect estimates. Another way to 
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conceptualize this notion is how well the 2009 school effect predicts the 2010 school effect. 

This notion is important given policymakers want to base decisions about schools on school 

effect estimates. A school’s performance in one year, all else equal, ought to be a good 

indicator of its performance the following year. The results in Table 13a imply that these 

models are moderately consistent in estimating the school effects in subsequent years. 

Consistent with previous research, simple Gains are highly volatile from year to year. 

 Overall, these models provide a fair bit of information about subsequent performance, 

but the results should be a caution and provide further justification for rating schools on 

multiple indicators.  

Table 13a     

Reliability of School Effect Estimates    

 Math Reading Math Reading 

 ES ES MS MS 

Status (pct 

proficient) 0.49 0.44 0.49 0.44 

Gain 0.06 0.08 0.06 0.08 

FEG 0.21 0.14 0.14 0.08 

CAFE 0.62 0.65 0.62 0.52 

CAFE w/SBG
*
 0.62 0.63 0.61 0.51 

TSG 0.18 0.26 0.26 0.09 

CARE 0.27 0.19 0.28 0.06 

Panel 0.37 0.37 0.19 0.21 

SGP 0.21 0.10 0.21 0.11 

LM 0.14 0.31 0.50 0.62 

GTS 0.62 0.63  0.62  0.63 
*
SBG = student background characteristics   

 Another approach to considering the consistency of school effect estimates from one 

year to the next is to consider stability, which can be estimated with the correlations between 

each year’s school estimates (Lockwood & McCaffrey, 2007). First, in Table 13b, we present 

some contextual information related to stability that indicates how the percent of students 

with a specific classification correlate from one year to the next. For example, overall, the 

percent of students who are economically disadvantaged (ED) at a school is correlated .85 

from one year to the next. Another aspect to consider, not shown in Table 13b, is that the 

correlations of the percent of students who are proficient or above from one year the next 

varies from .25 to .90 (depending on state and subject). The results in Table 13c describe the 

correlations (stability) between the estimated school effects and are simply the square-roots 
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of the reliability estimates in Table 13a. The results indicate that models that tend to be more 

closely related to end-status (CARE, CAFE, GTS) tend to be more stable. Consistent with 

expectations, simple gains are not stable, while more complex growth models (less aligned 

with status) are more stable than simple gains. In general, results are more stable for 

elementary schools than for middle schools (except for the layered model, which is more 

stable for middle schools).  

 

Table 13b  

Stability of Selected Background 

Characteristics 

 2009 

2010 ED SWD ELL 

ED .85   

SWD  .81  

ELL     .78 

 

 

Table 13c     

Stability in School Effect Estimates   

 Math Reading Math Reading 

 ES ES MS MS 

Status (pct proficient) 0.70 0.66 0.70 0.66 

Gain 0.24 0.28 0.24 0.28 

FEG 0.46 0.37 0.37 0.28 

CAFE 0.79 0.81 0.79 0.72 

CAFE w/SBG
*
 0.79 0.79 0.78 0.71 

TSG 0.42 0.51 0.51 0.30 

CARE 0.52 0.44 0.53 0.24 

Panel 0.61 0.61 0.44 0.46 

SGP 0.46 0.32 0.46 0.33 

LM 0.37 0.56 0.71 0.79 

GTS 0.79 0.79  0.79  0.79 
*
SBG = student background characteristics 
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Overall, the models show moderate consistency in classifying schools from one year to 

the next. Of course, schools are in fact changing true performance as well, so we would not 

expect results to be perfectly correlated. Simple Gain models are the least consistent and the 

True Score Gain (TSG) model provides some additional stability. This can be seen quite  

  

Figure 4:  Stability for Gain and TSG Models Compared 

 

readily in Figure 4, which plots school effects for the simple Gain model (left panel) and the 

TSG model (right panel). Taking measurement error into account substanitially improves a 

Gain model, but does so at the expense of tranparency and simplicity – however, the 

interpretation is consistent, and this may be sufficient for policymakers wishing to use gains 

as an indicator of growth. 

 Another common concern among policymakers is the impact of school size. Figure  5 

highlights the impact of school size on four models. The green schools are schools with 

estimates based on 30 students or fewer. The results indicate school effects are substantially 

less stable when schools are small using Gain and SGP models than when using CARE or 

Panel models. School effects based on the Panel model are substanitvely unaffected down to 

school sizes of 30. 
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Figure 5:  The Effect of School Size on Stability Estimates 

How are models influenced by school intake characteristics? 

We next turn to a critical aspect that provides some evidence related to bias. A model 

should afford students equal opportunity to succeed, and by extension, schools’ 

accountability ranking should not be overly influenced by school intake characteristics – that 

is, student enrollment characteristics. Table 14 summarizes results based on the model 

presented above in eq. 18 that explicitly tests whether intake characteristics are related to 

school effect estimates in a linear or non-linear fashion.  

The results indicate that there is variability in the influence of student intake 

characteristics on model results. Most notably, models most closely related to status tend to 

be most influenced by intake characteristics, and much of the stability observed with these 

models is based on the stability of school enrollment. 
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Table 14          

Effect of Student Background on School Effects               

 
Significant Effects (L=Linear; N=Non-Linear) 

 

SWD % Minority % ED % ELL % Stability % School N 

Status (% proficient) L N L N L N L N L N L N 

GAIN L L L L L  

FEG   L L L  

TSG  L L L N L 

CAFE N   L L  

CAFE 
*
 N   L L  

CARE N  L L L  

PANEL    L L  

LM    L L  

SGP  N     

GTS L N L N L L N L N L N 

 

*Fixed Effect Covariate Adjusted with Student Background Characteristics 
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 Overall, status and growth models correlated to status (e.g., GTS) are more 

susceptible to influence from intake characteristics beyond school control. Consistent with 

expectations, models that use more prior information (Panel, LM, and SGP) are least 

influenced by intake characteristics beyond school control. Simple Gain and the TSG models 

tend to be related to several intake characteristics. Models that are not simple aggregates 

(e.g., Gain, GTS, and Status) can incorporate intake characteristics explicitly, thus potentially 

reducing the effects of intake characteristics. This requires a tradeoff between statistics and 

policy. It is also important to note that models behave differently among the states, so these 

results, when disaggregated by state vary. 

 Another aspect that should be considered for practical applications of these growth 

models is the extent to which the precision is related to school size. Figure 6 plots the 

correlations of school size against the estimated standard errors for school estimates. 

 

 

 

Figure 6: Correlations Between the Standard Error and School Size 
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The results from the four states indicate that the standard errors associated with school effect 

estimates are related to school size except for Gain, Panel, GTS, and Status models.. Again, 

this points to considering the context in which the models will be applied. 

 

Do models perform similarly for elementary and middle schools? 

Overall, the models we examined in this study tend to work relatively similarly in elementary 

school and in middle school. Middle school models are sometimes less accurate and less 

stable. Growth models, in general, appear to be fairly robust to school organization. 

Continued decisions related to K-2, single grade schools, or untested grade school (e.g., 

grade 9, 10) will be necessary for attribution purposes. 

 

Do models behave similarly across states? 

This question has been addressed throughout this study. The meta-analytic model 

provided the general test of state effects and those results indicated that models perform 

differently among the states. There can be 40 point swings in reliability and large swings in 

precision as well for a model across states. Part of the difference is due to differences in 

schools among the states, and partially this is due to other factors, such as the psychometric 

properties of the test or testing rules. Ultimately, model results vary in substantively 

important ways and preclude any notion of a single model meeting all the needs (just as 

assessment cannot possibly support the myriad of inferences desired by policymakers). It is 

clear however, that models based on growth, especially when using as much data as possible, 

provide the soundest indicators of school performance. 
This notion is clearly presented in Figure 7. The top panel of Figure 7 highlights how 

a model may provide very good differentiation among schools (in this case performance 

bands) in one state, but not another. The bottom panel addresses some of the cause of the 

variability in model performance among states, by disaggregating performance plots by 

school type. Clearly, the ability of a model to distinguish school performance depends on the 

context. For example the GTS model does quite well with advantaged schools and 

substantially less well with disadvantaged schools.  

We emphasize that no model will fit all situations and models have intended uses that 

should be considered before their application. Even after (or during) model selection,  
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Figure 7:  How Models Distinguish Among Schools by State and School Type Model 

 

analyses such as those carried out here should be considered to evaluate whether models 

produce results that will be amenable for inferences in high stakes environments.  We detail all 

of the models for each state and school type in appendix four and five. 

CARE                                   GTS                                              SGP 

CARE                                   GTS                                              SGP 
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SUMMARY/DISCUSSION 

 The results of these analyses confirm that no single model can unequivocally be 

assumed to provide the best results. This is not possible for two reasons: one, different 

models address different questions about schools; and two, the empirical results indicate that 

context matters when examining models. By context we mean that the state in which the 

model will be run affects how the model may work. State affects include several pieces that 

are confounded. These include tests scales, testing procedures, student characteristics, and 

school characteristics. An accountability model should not be unduly influenced by factors 

outside of schools’ control and models clearly differ in this respect. Distinguishing between a 

school’s ability to facilitate learning and a school’s performance as a function of 

advantageous (or challenging) student enrollment characteristics is where statistical 

machinery provides its biggest benefit. Models that condition on additional information 

(student background or prior performance, for example), such as Panel, SGP, LM, and CARE 

or CAFE models with multiple prior assessments) are clearly better able to attribute student 

learning to schools. Of course the tradeoff is technical complexity and true understanding of 

the inferences afforded by model results. We briefly consider and summarize the research 

questions below. 

 We begin with whether, overall, the model matters. In addressing this question we 

first note that the models we examined were all placed into an existing typology. In general 

models within typology category allow for similar inferences, but may be estimated 

differently. But we note that this is not exclusively so. For example, covariate adjustment 

models and student growth percentile models are similar in terms of inference about schools, 

but are different in terms of how they are estimated. The layered model is estimated very 

differently than a TSG or Panel model, but the inferences are similar.  

The results in Table 6 imply that school effect estimates do, in fact, vary by model in 

elementary school (p < .01) and in middle school (p < .01). Moreover, the results imply that 

estimated school effects vary by model by state, which means that different models generate 

school effects differently in each state. The joint effects related to model by subject and 

model by cohort imply that individual school effect estimates vary by model and subject and 

cohort. The results in Table 6 also indicate that similar schools within a cluster will be rated 

differently by different models. 
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The results in Table 6 confirm that there are differences in school effect estimates and 

that these differences depend on both school context and the model used to estimate the 

effect. We rejected the null hypothesis that models are equal, statistically. Consistent with 

expectations, models within typology categories provide more similar results than models 

between categories. 

We next consider whether different models lead to different inferences about schools. 

That is, would we rate a school as an A under one model, but a C under another model? 

Again, models from which similar inferences can be made (generally models in the same 

typology classification, but also including the exceptions noted above) are more likely to 

place schools into similar performance bands than models that differ fundamentally in their 

inferential intent. This is most readily apparent when comparing gains and percent proficient.  

We also addressed how accurately models classify schools into performance 

categories. Models vary in accuracy and this depends largely on school size, test scale, and 

potentially the ICC.ICCs provide information about whether we can distinguishes differences 

in true school performance. We presented ICCs for status, but each approach (model) needs 

to examine how much variability there is between schools.  For example, we may be able to 

estimate individual student growth precisely, but if, students all demonstrated very similar 

growth rates, it would be difficult to differentiate schools based on growth.  

Whether models are consistent in classifying schools from one year to the next is an 

important question as unstable results would lead to less credibility. Most straightforward is 

the correlation between results from one year to the next as an indicator of stability. Stability 

varies by model and school level, and to a lesser extent, subject. Models that are conditional 

status models (e.g., SGP covariate adjustment models) tend to be more stable than gain based 

models (which is consistent with prior research) such as gains, true score gains (although the 

TSG model provides substantial improvement over the simple Gain model), and the LM 

model. Elementary school results tend to be more stable than middle school results. Also, 

results based on mathematics tend to be slightly more stable than results based on ELA. 

Again we note that to the extent that errors are uncounted for (e.g., sampling and equating 

error [Phillips, Doorey, Forgione, & Monfils, 2011]), this likely adds to instability. 

We also examined whether model results are influenced by school intake 

characteristics (e.g., percent ELL and FRL). We consider these results to be important as this 
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provides some evidence related to bias and fairness. To the extent that uncontrollable school 

input characteristics influence results, the model results need to be carefully examined. The 

results indicate that there is variability in the influence of intake on model results. Most 

notably, models most closely related to status (e.g., GTS) tend to be most influenced by 

intake characteristics, and much of the stability observed with these models is based on the 

stability of school enrollment. Given that we excluded student background in all but one 

specification, models that incorporated multiple assessment results (SGP, Panel, and LM) 

were least related to student background. These results are consistent with expectations. 

Next we examine whether models perform similarly for elementary and middle 

schools. Models appear to behave similarly in middle and elementary schools although they 

sometimes are less accurate and less stable for middle schools. This also may be a function of 

the ICC, which tends to be larger in middle schools. 

Finally, we consider whether models behave similarly across states. The models will 

perform differently across states. This result is associated with several factors. One, states 

have different assessments and how models function given the characteristics of the 

assessment cannot be completely predicted a priori. One obvious difference among states is 

the scale. One major difference is whether a state has a vertical scale. This naturally impacts 

gain-based results more than covariate adjustment model or SGP model results. Panel models 

allow perhaps the most concrete inference and are an improvement over gain models, but 

scale is important for interpretation beyond school rankings. Scaling decisions can vary 

within a vertical or non-vertical scale and these certainly may impact results as well, as has 

been previously demonstrated. States differ on testing and accountability policies. For 

example, one state allows students to retest for AYP purposes. This seems to have the effect 

of stabilizing results. States have different types of schools. We created similar school 

classifications across states
25

 and find that models work differently for different types of 

schools and that this effect varies by state.  

Simply importing a model to use for school accountability is not a good policy 

option. It is important to know the nature of the data. For example, is there a vertical scale? If 

so, then models such as the CARE, CAFE, SGP, LM, TSG, and Panel can be applied. If there 

                                                 
25

 These classifications were based on student characteristics and assume that classifications rules were the same 

across the states, which they likely are not. This further contributes to between state variability in model 

behavior. 
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is no vertical scale CARE, SGP, and Panel models might be the best options. However, 

variations in how scales are developed and how grade level assessments are equated from 

year to year are important in that unaccounted for equating error creates more ambiguity and 

potentially adds variability to results among state results. What is the ICC, that is, how much 

variability in growth or change can be attributed to schools? For example, the policy of 

allowing students multiple attempts on an assessment in each grade likely stabilizes results, 

but likely also reduces the variability between schools in growth — making it more difficult 

to attribute variation in performance to schools based on growth. Also, how do models react 

to potential ceiling or floor effects? A major concern is the types of schools a state has —  

these school characteristics and size impact how well models provide results. Again, this 

requires some preliminary examinations to ensure the results provide for tenable inferences 

about schools. Also, decisions need to be made with respect to performance bands — goals 

and the types of errors in school classifications policymakers want to avoid. Decisions related 

to stability and how to increase stability (e.g., averaging model results over time and using a 

model that includes multiple years) need to consider the tradeoff between having stable 

results and a system that is insensitive to true changes in performance.  

Ultimately, we would expect the models within categories identified by the CCSSO 

growth model typology to perform similarly. However, as we noted, the data in Table 5 show 

that models with the same inferential intent may be estimated differently and this results in 

within-category variability. Policymakers must first decide what they believe constitutes 

school performance and how schools ought to be held accountable. Given a notion of how 

growth should be conceived (and what role it may take in an accountability system) models 

can be chosen. However, this will likely need to be an iterative process that should be 

partially dependent on the empirical results, as well as how the growth model works with 

other aspects of the accountability system. 

For example, a school accountability model that aims to use both growth and status 

needs to carefully check the properties of each and how they work in conjunction to identify 

school performance. A model that uses both growth and status may unintentionally 

disadvantage schools that have either very high or very low performance; or in some cases 

the growth pieces may actually counterbalance the status element – resulting with many 
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schools being deemed average, few schools being exemplary or failing
26,

 and importantly, 

creating a system through which it is virtually impossible to move out of the average range. 

                                                 
26

 Or, for example, when using an A-F system that is being widely adopted, most schools will be a C, with few 

A’s or F’s. 
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APPENDIX 1: DATA QUALITY 

The data quality approach for this study was comprised of five components. Each component 

was sequentially dependent and required minor variations to address the four data sets (DE, 

HI, NC, and WI) used in the student data file structure. The components were to 

 normalize the raw files using common data elements; 

 establish longitudinal structures via the unique student identifier (USI), unique school 

identifier (USchID), and unique district identifier (UDI); 

 develop stored structured query language (SQL) procedures that created subject-

specific, multi-year tables;  

 screen data ranges within each element; and, 

 produce descriptive data for each state. 

 The aforementioned components were subsumed into a standardized, production 

cycle that ensured data from each state were prepared in the same manner. This approach 

eliminated the possibility of introducing unwanted variance within the targeted outputs. 

Variance introduced by the production cycle increases the likelihood of confounding any 

observed difference in the dependent (output) variables. Further, although the data quality 

procedures strive toward a zero defect (Wheeler, 1989 product, the likelihood of obtaining 

such a high standard in educational data is unlikely at this time. 

 The production cycle began with the unprocessed data being received from each state 

education agency (SEA) (WI, DE, and HI) then subsequently converted from its original file 

transfer structure into a delimited format. Data element descriptions were reviewed and 

aligned into year-specific tables. A standardized nomenclature and codification was 

developed and applied to each data element. Further elements were also repositioned within 

each table so as to be consistent from table to table and SEA to SEA. Extraneous variables 

were limited from the tables. Normalization also included the enforcement of the USI 

representing a single student with valid performance data. Duplicated students within schools 

create erroneous n-counts for the school and subpopulations. Duplicated student records that 

attribute the same performance to multiple entities can significantly influence overall results 

for units of analysis with small n-counts. To resolve duplicated records from the operational 

tables, the following decision logic was applied: 
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Process Rule 1 IF a duplicated record had no valid performance values in RDGPL 

and/or MTHPL, AND the school ID was equal, THEN only one record was selected. 

Process Rule 2 IF a duplicated record had no valid performance values in RDGPL 

and/or MTHPL, AND the school ID was not equal, THEN select the record with FAY 

= 1. 

Process Rule 3 IF a duplicated record had one set of valid performance values, THEN 

the code 9 (missing) record(s) was deleted. 

Process Rule 4 IF a duplicated record had two or more sets of valid performance 

values in RDGPL and/or MTHPL, AND the school ID was equal, THEN only one 

record was selected [EQUAL RDGSS], ELSE select record with the highest RDGSS. 

Process Rule 5 IF a duplicated record had two or more sets of valid performance 

values in RDGPL and/or MTHPL, AND the school ID was not equal, THEN select 

one record assigned to both schools only with FAY = 1, ELSE selected record with 

FAY = 1 was retained. 

Process Rule 6 IF WI USI = 11, AND no SOR could be identified, THEN all records 

were deleted (but documented in an audit spreadsheet). 

Process Rule 7 IF a duplicated record had two or more sets of valid performance 

values, AND the GRADE was not equal and other demographic data suggested two 

different student profiles, THEN USI for one student was replaced by the SYSTEM 

ID (but documented in an audit spreadsheet).  

Process Rule 8 IF a duplicated record had two or more sets of valid performance 

values, AND the GRADE was not equal and other demographic data does not suggest 

two different student profiles, THEN the USI for one student was replaced by the 

SYSTEM ID (but documented in an audit spreadsheet).  

 The aforementioned process rules were applied to each data set prior to establishing 

the required longitudinal structures for the growth model analysis. Growth models (GMs) 

have at least one common characteristic inherent to their data requirements; at least two 

measures in time are needed. For some designs, such as projection-type GMs, multiple waves 

of data are needed that are linked by a primary key (student USI) and other foreign keys 

(district UDI and school USchID).  
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 Given the population (N) for year (Yx), several assumptions must be considered. 

First, the population is underrepresented by students that do not participate in the assessment, 

but were eligible to participate. Federal regulations (34 C.F.R. §200) stipulate a threshold of 

95% participation be attained by schools and subpopulations within schools in order to 

demonstrate adequate yearly progress (AYP). The assumption that non-participants are 

randomly distributed in a given year and that no systematic exclusion, by policy or practices, 

can be detected within population must be evaluated. Second, the USI linking performance 

over time represents a single individual and that duplicated records are identified, removed, 

or recoded. Students with multiple, valid test results create minor errors in aggregated values 

(e.g., district and school); however, in aggregation units with small n-counts (e.g., Limited 

English Proficient [LEP], American Indian), the impact is magnified. Third, the population’s 

attrition rate (inability to link records) increases systematically as a function of assessment 

grade restrictions, grade configurations, student grade retention, students exiting the system 

as either dropouts or transfer-outs, and data integrity over time. Finally, there is a magnitude 

of missing data points within data elements recoded as missing, left blank, or incorrectly 

coded. These within-element integrity issues may result in spurious outputs, particularly 

when they are specific to any given year. These “missing points” across the time continuum 

create unique challenges to the precision of regression and projection-based growth models. 

 Given the aforementioned considerations, this study constructed cohort groups across 

multiple combinations of years. Groups were established and “mapped” forward by 

developing right join relationships based on the USI. The d-base used structured query 

language to organize the data tables, screen contents for duplicate records, create multi-year 

tables, and report data. Because the SQL procedure was relatively simple, they were stored as 

one application. The use of this approach allows researchers the ability to quickly select 

targeted sections of the code and rerun data to accomplish ad hoc tasks such as identifying 

when a student left the cohort or detecting when the same student may have reentered at a 

later time.  

 The final data tables created from the stored SQL procedure were then manually 

examined by a quality assurance manager. This step required a visual inspection of each data 

element to ensure the recoding procedures were applied correctly. Further, any record 

missing a USI was replaced with a system-generated ID; however, because the actual student 
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could not be identified across years, the record was preserved for only the given year. Several 

tables were rerun when coding errors were identified. The final tables were then exported 

into a format (.txt) that reduced the file size for transfer to the primary researcher. 

 The primary researcher was also provided with a descriptive report for each SEA data 

set. The analytics for the data tables explored the frequency distribution of key demographics 

such as gender, race, and socioeconomic status. This allowed the primary researcher a quick 

view of those independent variables being introduced into the growth models being tested. 

Also, potential dependent variables were also examined. The frequency distribution of 

performance levels for both reading and mathematics was produced along with a new 

“proficiency” variable. In this variable, the performance levels were coded (see RDGPROF 

and MTHPROF) into a dichotomous variable identifying students that are proficient (i.e., 

according to NCLB) or not. The distribution of proficiency was then cross-tabulated by 

selected independent variables to better understand the performance of subpopulations of 

students. 
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APPENDIX 2: DATA ELEMENTS FOR EACH STATE 

 
 

Field Name Category Description Type Length 

ID1 System 
System generated ID used in tracking data 

migration 
Text 0-6 

USI_10 Identifiers 

Anonymized unique student id number; 

can be matched across years: Year 

stamped extension 

Text 6-7 

UDI_10 Identifiers 

Anonymized unique district number; can 

be matched across years: Year stamped 

extension 

Text 2-4 

USchID_10 Identifiers 
Unique school identifier created via 

concatenation of UDI + SchID 
Text 4-9 

Gender_10 Demographics Gender; F=Female, M=Male, 9=Unknown Text 1 

Grade_10 Demographics Grade level; 3-8 Text 1 

Race_10 Demographics 

Race ethnicity code; 2=Asian/pacific 

islander, 3=Black, 4=Hispanic, 1=American 

Indian, 5=White, 9=Unknown 

Text 1 

SWD_10 Demographics 

Indicator for disability status; 0=Student 

without disability, 1=Student with 

disability 

Text 1 

ED_10 Demographics 

Indicator for economically disadvantaged 

status; 0=not economically disadvantaged, 

1=economically disadvantaged 

Text 1 

LEP_10 Demographics 
Indicator for limited English proficiency; 

0=not limited English proficient, 1=limited 
Text 1 
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RDGProf_10 Performance 
Reading proficiency status: 0=Non-proficient; 

1=Proficient; 9=NA/Missing 
Numeric 1 

MTHPL_10 Performance 
Proficiency level in the mathematics; 1=Below Basic, 

2=Basic, 3=Proficient, 4=Advanced; 9=NA/Missing 
Numeric 1 

MTHProf_10 Performance 
Mathematics proficiency status: 0=Non-proficient; 

1=Proficient; 9=NA/Missing 
Numeric 1 

RDGSS_10 Performance Scale score on the reading; 9=NA/Missing Numeric 3 

MTHSS_10 Performance Scale score on the mathematics; 9=NA/Missing Numeric 3 

RDGSEM_10 Performance 
Standard error of scale score on the reading; 

<blank>=NA/Missing 
Numeric 2 

MTHSEM_10 Performance 
Standard error of scale score on the mathematics; 

<blank>=NA/Missing 
Numeric 2 
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APPENDIX 3: DETAILED RESULTS OF OVERALL MODEL IMPACT 

Elementary School 
    Estimates of Fixed Effects

b,c 
    

Parameter Estimate Std. Error df t Sig. 

      
Intercept -0.20 0.86 84783.00 -0.23 0.82 

[model=1.00] -0.34 0.86 84783.00 -0.40 0.69 

[model=2.00] 0.64 1.01 84783.00 0.63 0.53 

[model=3.00] -0.26 1.18 84783.00 -0.22 0.83 

[model=4.00] -0.86 1.24 84783.00 -0.69 0.49 

[model=5.00] -0.78 1.25 84783.00 -0.63 0.53 

[model=6.00] -0.54 1.31 84783.00 -0.41 0.68 

[model=7.00] 0.29 2.08 84783.00 0.14 0.89 

[model=8.00] 0.56 0.87 84783.00 0.64 0.52 

[model=9.00] 0.08 0.86 84783.00 0.09 0.93 

[model=10.00] 0.23 1.82 84783.00 0.12 0.90 

[model=11.00] 0
a
 0.00 . . . 

[state=1.00] 0.27 1.30 84783.00 0.21 0.84 

[state=2.00] 0.37 1.40 84783.00 0.26 0.79 

[state=3.00] 0.71 1.12 84783.00 0.63 0.53 

[state=4.00] 0
a
 0.00 . . . 

[model=1.00] * 
[state=1.00] 

-1.38 1.30 84783.00 -1.06 0.29 

[model=1.00] * 
[state=2.00] 

-0.67 1.40 84783.00 -0.48 0.63 

[model=1.00] * 
[state=3.00] 

-0.54 1.13 84783.00 -0.48 0.63 

[model=1.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=2.00] * 
[state=1.00] 

-1.57 1.44 84783.00 -1.10 0.27 

[model=2.00] * 
[state=2.00] 

-3.06 1.54 84783.00 -1.98 0.05 

[model=2.00] * 
[state=3.00] 

-0.42 1.39 84783.00 -0.31 0.76 

[model=2.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=3.00] * 
[state=1.00] 

-0.19 1.65 84783.00 -0.12 0.91 

[model=3.00] * 
[state=2.00] 

-0.07 1.70 84783.00 -0.04 0.97 

[model=3.00] * 
[state=3.00] 

-0.39 1.44 84783.00 -0.27 0.79 

[model=3.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=4.00] * 
[state=1.00] 

-0.09 1.89 84783.00 -0.05 0.96 

[model=4.00] * 
[state=2.00] 

0.34 1.76 84783.00 0.19 0.85 

[model=4.00] * 
[state=3.00] 

0.53 1.49 84783.00 0.35 0.72 
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[model=4.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=5.00] * 
[state=1.00] 

-0.09 1.95 84783.00 -0.05 0.96 

[model=5.00] * 
[state=2.00] 

0.43 1.78 84783.00 0.24 0.81 

[model=5.00] * 
[state=3.00] 

0.53 1.49 84783.00 0.36 0.72 

[model=5.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=6.00] * 
[state=1.00] 

0.10 1.57 84783.00 0.06 0.95 

[model=6.00] * 
[state=2.00] 

0.22 1.65 84783.00 0.14 0.89 

[model=6.00] * 
[state=3.00] 

0
a
 0.00 . . . 

[model=7.00] * 
[state=1.00] 

-0.35 3.49 84783.00 -0.10 0.92 

[model=7.00] * 
[state=2.00] 

-0.43 2.58 84783.00 -0.17 0.87 

[model=7.00] * 
[state=3.00] 

-0.54 5.25 84783.00 -0.10 0.92 

[model=7.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=8.00] * 
[state=1.00] 

-0.81 1.31 84783.00 -0.61 0.54 

[model=8.00] * 
[state=2.00] 

-0.64 1.41 84783.00 -0.46 0.65 

[model=8.00] * 
[state=3.00] 

-1.04 1.16 84783.00 -0.90 0.37 

[model=8.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=9.00] * 
[state=1.00] 

-0.74 1.30 84783.00 -0.57 0.57 

[model=9.00] * 
[state=2.00] 

0.01 1.40 84783.00 0.01 0.99 

[model=9.00] * 
[state=3.00] 

-0.86 1.13 84783.00 -0.76 0.45 

[model=9.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=10.00] * 
[state=1.00] 

-0.29 2.11 84783.00 -0.14 0.89 

[model=10.00] * 
[state=2.00] 

-0.71 2.14 84783.00 -0.33 0.74 

[model=10.00] * 
[state=3.00] 

-0.39 2.75 84783.00 -0.14 0.89 

[model=10.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=11.00] * 
[state=1.00] 

0
a
 0.00 . . . 

[model=11.00] * 
[state=2.00] 

0
a
 0.00 . . . 

[model=11.00] * 
[state=3.00] 

0
a
 0.00 . . . 

[model=11.00] * 
[state=4.00] 

0
a
 0.00 . . . 

subject 0.18 0.77 84783.00 0.24 0.81 

cohort -0.06 0.76 84783.00 -0.08 0.94 

[model=1.00] * subject -0.75 0.77 84783.00 -0.98 0.32 

[model=2.00] * subject -1.29 0.89 84783.00 -1.46 0.14 
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[model=3.00] * subject -0.12 1.00 84783.00 -0.12 0.90 

[model=4.00] * subject -0.16 1.05 84783.00 -0.15 0.88 

[model=5.00] * subject -0.13 1.04 84783.00 -0.13 0.90 

[model=6.00] * subject 0.00 0.77 84783.00 0.00 1.00 

[model=7.00] * subject -0.26 1.93 84783.00 -0.14 0.89 

[model=8.00] * subject -0.44 0.77 84783.00 -0.57 0.57 

[model=9.00] * subject -0.21 0.77 84783.00 -0.28 0.78 

[model=10.00] * subject -0.16 1.43 84783.00 -0.11 0.91 

[model=11.00] * subject 0
a
 0.00 . . . 

[model=1.00] * cohort 1.03 0.76 84783.00 1.34 0.18 

[model=2.00] * cohort 0.96 0.91 84783.00 1.06 0.29 

[model=3.00] * cohort 0.14 1.06 84783.00 0.13 0.90 

[model=4.00] * cohort -0.24 1.12 84783.00 -0.21 0.83 

[model=5.00] * cohort -0.25 1.14 84783.00 -0.22 0.82 

[model=6.00] * cohort 0.21 0.77 84783.00 0.27 0.79 

[model=7.00] * cohort 0.10 2.03 84783.00 0.05 0.96 

[model=8.00] * cohort 0.52 0.77 84783.00 0.67 0.50 

[model=9.00] * cohort 0.42 0.76 84783.00 0.55 0.58 

[model=10.00] * cohort 0.07 1.48 84783.00 0.05 0.96 

[model=11.00] * cohort 0
a
 0.00 . . . 

ST_Disadv1 -0.62 1.29 84783.00 -0.48 0.63 

ST_Large -0.21 2.49 84783.00 -0.08 0.93 

ST_Disadv2 -0.72 0.98 84783.00 -0.74 0.46 

ST_Mobile -0.98 1.05 84783.00 -0.94 0.35 

[model=1.00] * 
ST_Disadv1 

0.92 1.29 84783.00 0.71 0.48 

[model=2.00] * 
ST_Disadv1 

0.53 1.59 84783.00 0.33 0.74 

[model=3.00] * 
ST_Disadv1 

0.71 2.08 84783.00 0.34 0.73 

[model=4.00] * 
ST_Disadv1 

0.90 2.22 84783.00 0.41 0.68 

[model=5.00] * 
ST_Disadv1 

0.77 2.17 84783.00 0.36 0.72 

[model=6.00] * 
ST_Disadv1 

1.11 1.30 84783.00 0.86 0.39 

[model=7.00] * 
ST_Disadv1 

0.46 4.75 84783.00 0.10 0.92 

[model=8.00] * 
ST_Disadv1 

0.99 1.30 84783.00 0.76 0.45 

[model=9.00] * 
ST_Disadv1 

1.35 1.29 84783.00 1.04 0.30 

[model=10.00] * 
ST_Disadv1 

0.34 3.11 84783.00 0.11 0.91 

[model=11.00] * 
ST_Disadv1 

0
a
 0.00 . . . 

[model=1.00] * ST_Large 1.22 2.49 84783.00 0.49 0.62 

[model=2.00] * ST_Large 0.04 3.01 84783.00 0.01 0.99 

[model=3.00] * ST_Large 0.34 2.83 84783.00 0.12 0.90 

[model=4.00] * ST_Large 0.44 2.93 84783.00 0.15 0.88 
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[model=5.00] * ST_Large 0.32 2.91 84783.00 0.11 0.91 

[model=6.00] * ST_Large -0.03 2.49 84783.00 -0.01 0.99 

[model=7.00] * ST_Large 0.18 5.08 84783.00 0.04 0.97 

[model=8.00] * ST_Large -0.17 2.49 84783.00 -0.07 0.94 

[model=9.00] * ST_Large 0.54 2.49 84783.00 0.22 0.83 

[model=10.00] * 
ST_Large 

0.06 3.80 84783.00 0.01 0.99 

[model=11.00] * 
ST_Large 

0
a
 0.00 . . . 

[model=1.00] * 
ST_Disadv2 

1.04 0.98 84783.00 1.06 0.29 

[model=2.00] * 
ST_Disadv2 

0.93 1.17 84783.00 0.79 0.43 

[model=3.00] * 
ST_Disadv2 

1.25 1.39 84783.00 0.90 0.37 

[model=4.00] * 
ST_Disadv2 

0.47 1.49 84783.00 0.32 0.75 

[model=5.00] * 
ST_Disadv2 

0.39 1.49 84783.00 0.26 0.79 

[model=6.00] * 
ST_Disadv2 

0.79 0.98 84783.00 0.80 0.42 

[model=7.00] * 
ST_Disadv2 

0.51 2.52 84783.00 0.20 0.84 

[model=8.00] * 
ST_Disadv2 

0.69 0.98 84783.00 0.70 0.48 

[model=9.00] * 
ST_Disadv2 

0.62 0.98 84783.00 0.63 0.53 

[model=10.00] * 
ST_Disadv2 

0.69 1.84 84783.00 0.37 0.71 

[model=11.00] * 
ST_Disadv2 

0
a
 0.00 . . . 

[model=1.00] * ST_Mobile -0.41 1.05 84783.00 -0.39 0.70 

[model=2.00] * ST_Mobile -1.06 1.20 84783.00 -0.88 0.38 

[model=3.00] * ST_Mobile 0.91 1.31 84783.00 0.70 0.49 

[model=4.00] * ST_Mobile 0.42 1.37 84783.00 0.31 0.76 

[model=5.00] * ST_Mobile 0.24 1.39 84783.00 0.17 0.87 

[model=6.00] * ST_Mobile 0.52 1.05 84783.00 0.50 0.62 

[model=7.00] * ST_Mobile 0.56 2.37 84783.00 0.24 0.81 

[model=8.00] * ST_Mobile -0.14 1.05 84783.00 -0.13 0.89 

[model=9.00] * ST_Mobile -0.04 1.05 84783.00 -0.04 0.97 

[model=10.00] * 
ST_Mobile 

0.30 1.94 84783.00 0.15 0.88 

[model=11.00] * 
ST_Mobile 

0
a
 0.00 . . . 

a. This parameter is set to zero because it is redundant. 
b. Dependent Variable: School_Q. 
c. Residual is weighted by FX_SEsqr. 
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Middle School 
     Estimates of Fixed Effects

b,c 
    

Parameter Estimate Std. Error df t Sig. 

      
Intercept 0.01 0.67 54102.00 0.02 0.98 

[model=3.00] -0.27 0.81 54102.00 -0.34 0.74 

[model=4.00] 0.10 0.84 54102.00 0.12 0.90 

[model=5.00] 0.08 0.85 54102.00 0.09 0.93 

[model=6.00] 0.20 1.20 54102.00 0.17 0.87 

[model=7.00] 0.15 0.97 54102.00 0.15 0.88 

[model=8.00] 0.29 0.67 54102.00 0.43 0.67 

[model=9.00] 0.10 0.67 54102.00 0.15 0.88 

[model=10.00] 0
a
 0.00 . . . 

[state=1.00] -0.06 0.86 54102.00 -0.07 0.94 

[state=2.00] -0.37 0.98 54102.00 -0.38 0.71 

[state=3.00] 0.04 1.12 54102.00 0.03 0.97 

[state=4.00] 0
a
 0.00 . . . 

[model=3.00] * 
[state=1.00] 

0.76 1.15 54102.00 0.66 0.51 

[model=3.00] * 
[state=2.00] 

0.76 1.24 54102.00 0.61 0.54 

[model=3.00] * 
[state=3.00] 

0.75 1.28 54102.00 0.59 0.56 

[model=3.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=4.00] * 
[state=1.00] 

0.63 1.28 54102.00 0.50 0.62 

[model=4.00] * 
[state=2.00] 

-0.53 1.26 54102.00 -0.42 0.68 

[model=4.00] * 
[state=3.00] 

0.56 1.31 54102.00 0.43 0.67 

[model=4.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=5.00] * 
[state=1.00] 

0.56 1.31 54102.00 0.43 0.67 

[model=5.00] * 
[state=2.00] 

-0.56 1.28 54102.00 -0.44 0.66 

[model=5.00] * 
[state=3.00] 

0.59 1.31 54102.00 0.45 0.65 

[model=5.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=6.00] * 
[state=1.00] 

-0.04 1.28 54102.00 -0.03 0.97 

[model=6.00] * 
[state=2.00] 

0.38 1.35 54102.00 0.28 0.78 

[model=6.00] * 
[state=3.00] 

0
a
 0.00 . . . 

[model=7.00] * 
[state=1.00] 

0.12 1.80 54102.00 0.07 0.95 

[model=7.00] * 
[state=2.00] 

0.30 1.74 54102.00 0.18 0.86 

[model=7.00] * 
[state=3.00] 

0.02 1.72 54102.00 0.01 0.99 

[model=7.00] * 0
a
 0.00 . . . 
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[state=4.00] 

[model=8.00] * 
[state=1.00] 

-0.09 0.87 54102.00 -0.10 0.92 

[model=8.00] * 
[state=2.00] 

0.48 0.98 54102.00 0.49 0.63 

[model=8.00] * 
[state=3.00] 

0.03 1.13 54102.00 0.03 0.98 

[model=8.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=9.00] * 
[state=1.00] 

-0.21 0.86 54102.00 -0.24 0.81 

[model=9.00] * 
[state=2.00] 

0.00 0.98 54102.00 0.00 1.00 

[model=9.00] * 
[state=3.00] 

-0.30 1.12 54102.00 -0.27 0.79 

[model=9.00] * 
[state=4.00] 

0
a
 0.00 . . . 

[model=10.00] * 
[state=1.00] 

0
a
 0.00 . . . 

[model=10.00] * 
[state=2.00] 

0
a
 0.00 . . . 

[model=10.00] * 
[state=3.00] 

0
a
 0.00 . . . 

[model=10.00] * 
[state=4.00] 

0
a
 0.00 . . . 

Subject 0.06 0.62 54102.00 0.09 0.93 

Cohort 0.08 0.63 54102.00 0.14 0.89 

[model=3.00] * subject -0.24 0.75 54102.00 -0.33 0.74 

[model=4.00] * subject -0.24 0.78 54102.00 -0.31 0.76 

[model=5.00] * subject -0.18 0.79 54102.00 -0.23 0.82 

[model=6.00] * subject 0.03 0.62 54102.00 0.05 0.96 

[model=7.00] * subject -0.06 0.94 54102.00 -0.07 0.95 

[model=8.00] * subject 0.01 0.62 54102.00 0.02 0.98 

[model=9.00] * subject -0.17 0.62 54102.00 -0.28 0.78 

[model=10.00] * subject 0
a
 0.00 . . . 

[model=3.00] * cohort 0.03 0.76 54102.00 0.04 0.97 

[model=4.00] * cohort -0.17 0.79 54102.00 -0.21 0.83 

[model=5.00] * cohort -0.21 0.80 54102.00 -0.26 0.79 

[model=6.00] * cohort -0.10 0.63 54102.00 -0.17 0.87 

[model=7.00] * cohort -0.08 0.94 54102.00 -0.09 0.93 

[model=8.00] * cohort -0.17 0.63 54102.00 -0.27 0.79 

[model=9.00] * cohort -0.01 0.63 54102.00 -0.02 0.99 

[model=10.00] * cohort 0
a
 0.00 . . . 

ST_Disadv1 -0.08 1.04 54102.00 -0.08 0.94 

ST_Large -0.38 1.54 54102.00 -0.25 0.81 

ST_Disadv2 -0.14 0.75 54102.00 -0.19 0.85 

ST_Mobile -0.64 1.15 54102.00 -0.55 0.58 

[model=3.00] * 
ST_Disadv1 

0.99 1.30 54102.00 0.76 0.45 

[model=4.00] * 
ST_Disadv1 

-1.16 1.34 54102.00 -0.86 0.39 
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[model=5.00] * 
ST_Disadv1 

-1.05 1.36 54102.00 -0.77 0.44 

[model=6.00] * 
ST_Disadv1 

-0.16 1.05 54102.00 -0.15 0.88 

[model=7.00] * 
ST_Disadv1 

-0.25 1.56 54102.00 -0.16 0.87 

[model=8.00] * 
ST_Disadv1 

-0.13 1.05 54102.00 -0.13 0.90 

[model=9.00] * 
ST_Disadv1 

-0.20 1.04 54102.00 -0.19 0.85 

[model=10.00] * 
ST_Disadv1 

0
a
 0.00 . . . 

[model=3.00] * ST_Large 0.18 1.90 54102.00 0.09 0.92 

[model=4.00] * ST_Large -0.06 1.95 54102.00 -0.03 0.97 

[model=5.00] * ST_Large -0.09 1.95 54102.00 -0.05 0.96 

[model=6.00] * ST_Large 0.00 1.54 54102.00 0.00 1.00 

[model=7.00] * ST_Large 0.18 2.54 54102.00 0.07 0.94 

[model=8.00] * ST_Large 0.05 1.54 54102.00 0.03 0.97 

[model=9.00] * ST_Large 0.63 1.54 54102.00 0.41 0.68 

[model=10.00] * 
ST_Large 

0
a
 0.00 . . . 

[model=3.00] * 
ST_Disadv2 

0.26 0.93 54102.00 0.28 0.78 

[model=4.00] * 
ST_Disadv2 

-0.94 0.96 54102.00 -0.98 0.33 

[model=5.00] * 
ST_Disadv2 

-0.92 0.98 54102.00 -0.94 0.35 

[model=6.00] * 
ST_Disadv2 

-0.40 0.75 54102.00 -0.53 0.59 

[model=7.00] * 
ST_Disadv2 

-0.35 1.13 54102.00 -0.30 0.76 

[model=8.00] * 
ST_Disadv2 

-0.42 0.75 54102.00 -0.55 0.58 

[model=9.00] * 
ST_Disadv2 

-0.07 0.75 54102.00 -0.09 0.93 

[model=10.00] * 
ST_Disadv2 

0
a
 0.00 . . . 

[model=3.00] * ST_Mobile -0.11 1.28 54102.00 -0.08 0.93 

[model=4.00] * ST_Mobile -0.11 1.33 54102.00 -0.08 0.94 

[model=5.00] * ST_Mobile 0.07 1.34 54102.00 0.05 0.96 

[model=6.00] * ST_Mobile -0.15 1.16 54102.00 -0.13 0.90 

[model=7.00] * ST_Mobile 0.29 1.82 54102.00 0.16 0.87 

[model=8.00] * ST_Mobile -0.77 1.16 54102.00 -0.66 0.51 

[model=9.00] * ST_Mobile 0.83 1.16 54102.00 0.72 0.47 

[model=10.00] * 
ST_Mobile 

0
a
 0.00 . . . 

a. This parameter is set to zero because it is redundant. 
b. Dependent Variable: School_Q. 
c. Residual is weighted by FX_SEsqr. 
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