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A COMPARISON OF FOUR ITEM-SELECTION METHODS FOR SEVERELY 

CONSTRAINED CATS 

ABSTRACT 

 This study compares the four existing procedures handling the item selection in severely 

constrained computerized adaptive tests (CAT). These procedures include weighted deviation 

model (WDM), weighted penalty model (WPM), maximum priority index (MPI), and shadow 

test approach (STA). Severely constrained CAT refer to those adaptive tests seeking to meet a 

complex set of content constraints simultaneously, acknowledging that an item usually carries 

multiple attributes that are inclusive to each other.  In addition, two modified versions of the MPI 

procedure are introduced to deal with the situation in which the priority indices for all eligible 

items are zero. Given the item pool characteristic and the adaptive model within which this study 

is conducted, the results indicate that the shadow test approach, among all candidate methods, 

works the best in terms of measurement accuracy and constraint management, except that it 

makes the poorest use of items. All heuristic approaches do not differ significantly from each 

other in terms of measurement accuracy and constraint management at the lower bound level. 

However, the WPM method appears to perform considerably better in overall constraint 

management than both WDM and MPI methods. Regarding the two modified MPI procedures, 

the M2_MPI (i.e., the one assuming “move at its own pace” for each constraint) appears to 

perform better than the M1_MPI (i.e., the one assuming “move at the same pace” for all 

constraints) in overall constraint management. Regarding the three variations of WPM 

procedure, the WPM_fixed (1), i.e., the one adopting different weights to calculate content and 

item information penalty values, works better than other two variations. Limitations and further 

research directions are also discussed.   
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A COMPARISON OF FOUR ITEM-SELECTION METHODS FOR SEVERELY 

CONSTRAINED CATS 

INTRODUCTION 

Test specifications lay out rules for including items in a test (Swanson & Stocking, 1993). 

These rules typically consist of a series of constraints—both statistical and non-statistical—on 

item properties/attributes. Examples of statistical (i.e., psychometric) constraints might include 

target item or test information function while examples of non-statistical (i.e., non-psychometric) 

constraints include content specifications, item format, depth of knowledge, or key location (see 

van der Linden & Boekkooi-Timminga (1989) and Swanson & Stocking (1993) for an extensive 

description of possible constraints). In a standardized testing program, it is imperative that test 

forms meet the same non-statistical specifications across individual examinees and provide 

reliable ability estimates. For computerized adaptive tests (CATs), this requirement can only be 

met by forcing the item selection algorithm to combine the objective of maximizing information 

with a strategy that can impose the same set of non-statistical specifications on the items selected 

for administration (van der Linden, 2005).  

Several approaches, known as content balancing in the CAT literature, have been 

proposed to manage the non-statistical constraints while at the same time assembling a CAT that 

can measure efficiently and accurately. These approaches include Kingsbury and Zara’s (1989) 

constrained CAT (CCAT) method, the weighted deviations model (WDM; Stocking & Swanson, 

1993), the shadow-test approach (STA; van der Linden & Reese, 1998), the modified 

multinomial model (MMM; Chen & Ankenmann, 2004), the modified CCAT (MCCAT; Leung, 

Chang, & Hau, 2003), the two-phase item selection procedure for flexible content balancing 

method (Cheng, Chang, & Yi, 2007), the weighted penalty model (WPM; Shin, Chien, Way & 

Swanson, 2009), and the maximum priority index (MPI) method (Cheng & Chang, 2009). Of all 

the above named methods, the CCAT, the MCCAT, and the MMM can be viewed as stemming 

from a common methodological approach in that an item pool is partitioned into several sub-

pools by key item attributes and items are spirally selected from across sub-pools to  meet pre-

determined content specifications. In general, these methods are more appropriate for use in 

CATs in which only a single item attribute is considered in item selection, which is usually the 

one used to partition the item pool) or attributes are considered to be mutually exclusive to one 
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another. In contrast, the STA, the WDM, the WPM, and the MPI stem from different 

methodological approach that seeks to meet CAT specifications calling for items to be selected 

that meet a complex set of constraints simultaneously, acknowledging that an item usually 

carries multiple attributes that are inclusive to each other. This study is focused on these four 

methods of handling a complex set of constraints.  

These four methods have some similarities and differences. For example, the STA is a 

mathematical programming method whereas the other three are heuristic methods. The STA, 

employs a constrained sequential optimization approach that treats test specifications as 

constraints that must be imposed on the item selection. As such, the STA can guarantee perfect 

adherence to test specifications as long as the solutions are feasible. The other three methods, 

however, treat test specifications as objectives, in which specifications are formulated as 

constraints and treated as goal values. The tests are assembled to be optimal with respect to these 

goal values.  As long as the tests are optimal, it is not a problem that the some bounds are 

violated. This explains why, for the WDM, the WPM, and the MPI, feasible solutions can be 

ensured but with less certainty that test specifications can be met (Cheng & Chang, 2009; Robin 

et al., 2005; van der Linden, 2005). The STA selects an item for administration by solving a 

sequence of simultaneous optimization problems, thus being computationally intensive and 

potentially requiring a trade-off between the search speed and optimality of its solution or even 

infeasible solutions. With the increasing computer power and availability of extremely powerful 

commercial solvers, such as CPLEX 12.1 (IBM ILOG), however, this may not be a problem. In 

comparison, the three heuristic methods use a sequential heuristic search method by selecting the 

next item that can minimize the weighted sum of deviations from the target value (i.e., the 

WDM), minimize the weighted values (i.e., the WPM), or maximize the priority index (i.e., the 

MPI), thus always ensuring a feasible solution. Unlike the STA, the applications of MPI, the 

WPM and the WDM require input (from content experts) about weights and potentially a 

considerable amount of time to adjust the heuristic. For example, it may be time consuming to 

find the best weights, in order for the tests to achieve the best trade-off among constraints as well 

as the best trade-off between measurement quality and constraint management.  

Several studies (Cheng & Chang, 2009; Moyer, Galindo, & Dodd, 2012; Robin et al., 

2005; Shin, Chien, & Way, 2012; van der Linden, 2005) have been conducted to compare the 

performance of some of the methods discussed above. However, these studies are not conclusive 
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with respect to which procedure performs better. Moreover, none of the studies have focused on 

these four methods at the same time. As such, this study is undertaken to compare the 

effectiveness of these four approaches in handling item selection in a severely constrained CAT, 

i.e., a CAT with a complex set of constraints.   

BRIEF INTRODUCTIONS TO FOUR DIFFERENT ITEM SELECTION METHODS 

Below are brief descriptions of how each method works. For detailed information, the 

reader is referred to the original papers. 

Maximum Priority Index (MPI) 

The MPI requires that a priority index, PI, be calculated for each eligible item j in the 

item pool at each item selection step. Items with larger priority index values are deemed more 

desirable for administration. A two-phase item selection framework (Cheng et al., 2007) is 

proposed to implement the MPI method in the presence of flexible content balancing, i.e., 

constraints are specified in the form of both lower and upper bounds.  


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where jI represents item Fisher information of item j at the provisional ability estimate, and kw

represents the weight assigned to constraint k. jkc represents the constraint relevancy matrix with 

1 indicating an item has constraint k and is zero otherwise. The relevancy index matrix is usually 

identified before hand by content experts. kf  represents the scaled “quota left” (Cheng & Chang, 

2009) of constraint k.  In the first phase which is focused on meeting the lower bound 

requirements, kf  is calculated by 
k
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 . Once all lower bounds, lk, are met, then the test 

moves to the second phase with focus on meeting the upper bound, uk , requirements and kf  is 

calculated by replacing kl with ku  in the second phase. kx indicates the number of items carrying 

constraint k that have been administered. In the first phase of item selection, when constraint k 

reaches its lower bound, fk is set to zero which results in a priority index value of zero. This 
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treatment serves the purpose of setting those “fulfilled” constraints to be “dormant thus waiting 

for other content areas to catch up.  

However, since an item’s priority index value is a product of item information and the 

weighted “quota left” for each constraint evaluated against whether an item carries a specified 

property, an undesirable side effect can result, i.e., the MPI values for all eligible items being 

zero. When this situation occurs, item selection can’t proceed as the MPI method intends, or is 

reduced to random item selection in some sense. To handle this situation, two modified 

approaches are proposed in this study. In the first approach (denoted as M1_MPI), if the situation 

occurs in which the PI value for all eligible items is zero in the first phase, then for  each 

individual constraint k in item j, kf  is assigned a value that is much lower than the minimum 

non-zero value calculated for all constraints. When the lower bounds are reached at the end of 

the first phase, then the test moves to the second phase.  

In the second approach (denoted as M2_MPI), whenever a constraint k reaches its lower 

bound, the test moves to its upper bound. This approach allows each constraint to “move at its 

own pace.” When the upper bound for a constraint is satisfied, its PI value becomes zero 

meaning no more items can be selected out of this content category. If the situation occurs in 

which the PI values for all eligible items are zero, then for  each individual constraint k in item j, 

kf  is assigned a value that is much lower than the minimum non-zero value calculated for all 

constraints.    

Weighted Deviation Model (WDM) 

The weighted deviation model (WDM) was originally developed by Stocking and 

Swanson (1993) out of the concern about possible poor-quality item pools in large-scale test 

assembly. In CAT, the WDM works through three major steps: 1) for every item not already in 

the test, the deviations from the content targets and from the target item information value are 

calculated respectively as if the items were added to the test; 2) for each item, calculating its 

weighted sum across all constraints; and 3) items with the smallest sum are selected for 

administration.  

The WDM is formulated as the follows: 
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where  N denotes the number of items in the item pool, k denotes the number of constraints, kW  

denotes the weight assigned to each constraint, kL and kU  denote the lower and upper bound for 

each k constraint respectively, kLd and kUd  denote the deficit from the lower bound and surplus 

from upper bound respectively, kLe  and kUe denote excess from lower bound and deficit from 

upper bound respectively, and d denote the “deviations” from target item information.  ఏܹ 

needs to be defined. ikg is 1 if item i has property k and 0 otherwise. ix is a binary decision 

variable: it equals 1 if ith item is included in the test and 0 otherwise. 

Weighted Penalty Model (WPM) 

The original WPM method was proposed by Segall and Davey (1995) and later was 

modified by Shin et al. (2009). This method operates through three major steps: 1) calculating a 
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penalty value to each eligible item in the item pool at each item selection level, 2) assigning each 

eligible item into different groups (referred to as “color groups” in Shin et al., 2009) based on 

how well the specified constraints are represented by the items administrated so far relative to 

the properties of items eligible for selection, and 3) selecting items with smaller penalty value for 

administration according to certain priority criteria. The overall penalty value iF  for an 

individual item is a weighted sum of penalty values calculated for content and item information.  

''' '*''* iii FwFwF   

'
iF  and ''

iF are content and item information penalty values.  The weights 'w and ''w , 

represent content constraint and item information, respectively, and can take any values in 

theory. They act as “control parameters”; the values they are assigned control the trade-off 

between the content constraint and item information. This is an advantage that WPM has over 

other methods.    

Shadow Test Approach (STA) 

The STA, originally proposed by van der Linden and Reese (1998), is based on the ideas 

developed for the application of linear programming to optimal test assembly. The key point that 

makes the STA different from other approaches is that items are not selected directly from the 

pool but from a shadow test, i.e., a full-size test assembled prior to the administration of each 

item in the adaptive test. Unlike the other heuristic approaches, the statistical information from 

the test items at the current ability estimate are viewed as the objective function to be optimized 

and all other specifications are treated as constraints within which which the optimization has to 

take place (van der Linden, 1998; van der Linden, Ariel, & Veldkamp, 2006; Veldkamp & van 

der Linden, 2000). 

In CAT, the STA works by the following major procedures: 1) initialize the estimator of 

the ability parameter; 2) assemble the first shadow test that meets all constraints and optimizes 

the objective function; 3) administer an eligible item in the shadow test that can provide 

maximum information at the current ability estimate; 4) Update the parameters in the test 

assembly model; 5) assemble a new shadow test but fix items already administered; and 6) repeat 

Steps 2-5 until expected test length is reached.  
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METHODS 

Item Pool  

 This simulation study is carried out with a retired item pool from a large-scale operational 

CAT program. This item pool contains 361 items calibrated according to the three-parameter 

item response theory logistic model (3PL IRT). Descriptive statistics of this item pool are 

described below in Table 1. Figure 1 presents an overlay of item information for all items in the 

pool. It can be seen that the test is expected to provide better measurement accuracy and 

precision within ability levels ranging between -2.5 and .5 than others.  

[Insert Table 1 about here] 

[Insert Figure 1 about here] 

 Table 2 lays out the constraints, their associated weights, and their lower and upper 

bounds. The item attributes fall into five major constraint categories and each category is further 

divided into 2-5 finer areas. There are 18 constraints in total, each associated with a weight. 

Lower and upper bounds specify the number of selected items having specific attributes.  

Besides, there is one additional constraint, i.e., conflicting items, that requires selecting a certain 

item excludes the selection of other item(s).  

[Insert Table 2 about here] 

CAT Specifications 

The CAT algorithm mimics that of an operational large-scale CAT program.  The IRT 

model is the 3PL IRT logistic model. To obtain the current ability estimate before both correct 

and incorrect responses are available, the expected a posteriori (EAP) method is used with a 

normal N(0,1) prior. Once both correct and incorrect responses are obtained, the maximum 

likelihood estimation (MLE) method is used. The test length is set as 20. The initial ability is set 

as 0 for all individual simulees. The exposure control procedure (except in maximum item 

information and random item selection methods) is the 5-4-3-2-1 randomesque method (McBride 

& Martin, 1983). That is, the first item is selected out of a group of best five candidate items 

identified by the candidate item selection method, the second item is out of the a group of best 

four candidate items, so on and so forth.  
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The constrained item selection methods, i.e., STA, WDM, WPM, and MPI, are adopted 

to select the items that can meet the specifications described in Table 2.  For the MPI method, the 

modified MPI methods (i.e., M1_MPI and M2_MPI) are implemented since the trial simulation 

using the original MPI method encountered the condition that priority indices for all eligible 

items are zero. For the WPM, as the selection of the weights for content penalty and item 

information penalty can affect item selection, three versions of the WPM methods are 

implemented, i.e., 1) WPM_fixed(1) in which 'w and ''w are set unequally as 6 and 2 

respectively; 2) WPM_fixed(2) in which 'w and ''w are set equally as 5; and 3) WPM_flx in 

which 'w is set as 6 but ''w  is set as a logistic function of the item sequence number (see Figure 

2) as suggested in Shin et al. (2009).  The purpose of the third version is to focus selection on 

items that better fit the content constraints at the early stage of the test and on items that can 

provide higher item information at the later stage of test respectively. In addition, two other item 

selection methods are adopted. The first one is maximum item information (denoted as MI) in 

which at each item selection step, the item that can provide the maximum information is 

administered regardless of any constraints. The second item selection method is random item 

selection (denoted as RAND) in which an item is randomly selected for administration regardless 

of any constraints. The MI and RAND methods are included to serve as the baseline measures for 

measurement precision and exposure control. In total, nine item selection methods are considered 

in this study.  

[Insert Figure 2 about here] 

Simulation Design 

A random sample of 10,000 simulees drawn from the standard normal distribution is 

administered the CATs described above. In addition, conditional samples are used. Specifically, 

3,000 examinees with abilities conditioning at each ability point from -3 to 3 at an increment of 

.5 are considered, resulting in 39,000 (i.e., 3,000*13) examinees.  Both overall and conditional 

samples are administered the adaptive tests described above.  

Evaluation Criteria 

Two sets of statistics are computed for both overall and conditional samples. For overall 

samples, these statistics included:   
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1) Measure accuracy and precision. Overall bias, absolute bias (Abs(bias)), mean square 

error (MSE), and fidelity coefficient 
 ˆ,

r  (i.e., the correlation between estimated and 

true thetas) are computed as follows:  
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where N is the number of examinees, 


i and i are the estimated and true ability of 

the thi examinee, and 
̂

s and s are the standard deviations of the estimated and true 

abilities, respectively.   

2) Constraint violation. Several perspectives can be used to capture and shed light on the 

performance of different item selection methods with regard to constraint 

management: 1) the percentage of tests that violate the overall content management 

[denoted by v_overall(%)] which includes any test with content attribute distributions 

that fall out of the intended lower and upper bounds; 2) the average number of 

violated constraints across all examinees; and 3) the percentage of tests that violate 

the intended lower bound [denoted by v_lower(%)].  Violations of the intended lower 

bound can be treated as a less restrictive criterion than violations of the upper bound.  

It can be argued that the lower bound usually represents the minimum threshold that a 

test is expected to meet. That is, a test can be considered as valid in contents as long 

as the minimum criteria are fulfilled.  

3) Test security. The maximum item exposure rate, the number of overexposed items 

(i.e., items with exposure rate above .2), and test overlap rate, defined as the 
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percentage of items in common to the two test events of two randomly selected 

examinees, are reported for each of the four item selection methods.  

4) Item pool utilization. Two indices are computed: 1) skewness of item exposure rate 

distribution ( 2 ; Chang & Ying, 1999) and 2) the number of underexposed items 

(i.e., items that have never been administered).  







n

i
nL

nLir

1
/

2)/(2  

where ir is the observed exposure rate for the ith item, L is the test length, and n is the 

total number of items in the pool. This 2  index can measure the departure of an 

item’s actual exposure from uniform item exposure and thus quantify the efficiency 

of item pool usage. 

 

For each conditional sample, conditional bias and conditional MSE are computed. In 

addition, constraint violation is reported including the proportion of test events that violate the 

lower bounds and the proportion of test events that violate the overall content management.  

 

RESULTS 

Overall Sample 

 Table 3 reports the summary statistics for measurement quality, exposure control, and 

item usage across all nine item selection methods. In comparison to the MI method, all candidate 

item selection methods in question produce comparable yet negligible magnitudes of biases—

both average and absolute. WPM_fixed(2), STA, and M2_MPI produce errors (i.e., MSE) 

slightly closer to the MI than the remaining methods. In terms of item exposure control, WDM 

overexposes the largest number of items and is followed by STA and WPM_flex. The two 

variations of WPM methods, which calculate penalty value with constants for content and item 

information, give the smallest number of overexposed items. In general, all candidate item 

selection methods do not seem to yield significantly different number of overexposed items from 

the MI method. The reason can be attributed to the “5-4-3-2-1” exposure control method which 

basically selects the “best” item after the fourth item. Regarding item usage, WPM_fixed(1), 
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WDM, and WPM_flex appear to make better use of items than the others, and STA makes the 

poorest use of items by using less than half of items and producing the highest chi-square value.  

[Insert Table 3 about here] 

 Table 4 presents constraint violation information across all nine item selection methods 

from different perspectives. It is obvious that, among all candidate selection methods, the STA 

best controls test constraints with zero violations both at overall and lower bound levels. Among 

all heuristic methods (i.e., WDM, MPI, and WPM), the WPM methods (all three variations) 

outperform other two heuristic methods with respect to overall violation and average number of 

violations, and the WPM_fixed (1) manages the content constraints much better than other two 

variations of the WPM method by having only 1.8% percent of test events with constrait 

violations. In comparison with the WPM method, both WDM and MPI methods witness 

constraint violation at overall level for almost all test events. However, across the three heuristic-

based methods, very few test events, if any, violate lower bounds; the WDM does not yield any 

tests violating lower bounds. Two variations of WPM methods (i.e., WPM_fixed (2) and 

WPM_flex) result in some test events with the number of violations up to 7. For WDM and 

M2_MPI, the largest number of violations is up to 3. Figure 3 reports the proportions of tests 

with different numbers of constraint violations across all item selection methods.  

[Insert Table 4 about here] 

[Insert Figure 3 about here] 

Conditional Samples 

 Figures 4 and 5 portray the conditional bias and MSE across different ability levels. In 

general, all candidate item selection methods procedure produce comparable measurement 

accuracy and precision within the ability range between -2 and 1.5. This is consistent with the 

overlay of item information curves in Figure 1.  

[Insert Figure 4 and Figure 5 about here] 

 With respect to constraint management, STA ranks the best without any violations both at 

lower bounds and overall levels. As Figure 6 indicates, like STA, WDM does not witness any 
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tests violating lower bounds. Two variations of MPI methods and WPM_fixed (1) also do a good 

job in managing the lower bound, though with trivial violations. Both WPM_fixed (2) and 

WPM_flex give significant proportions of tests violating lower bounds in particular within the 

ability range between -3 and 0. When it comes to the overall constraint management, as Figure 7 

suggests, WPM, in particular, WPM_fixed(1), outperforms two other heuristic methods, i.e., 

WDM and MPI.  

[Insert Figure 6 and Figure 7about here] 

SUMMARY AND DISCUSSION 

 This study compares the four existing procedures handling the item selection in severely 

constrained CATs. In addition, two modified versions are introduced based on the MPI 

procedure to deal with the situation in which the priority indices for all eligible items are zero. 

The shadow test approach, among all candidate methods, works the best in terms of 

measurement accuracy and constraint management, except that it makes the poorest use of items. 

All heuristic approaches do not differ significantly from each other in terms of measurement 

accuracy and constraint management at the lower bound level. However, the WPM method 

appears to perform considerably better in overall constraint management than both WDM and 

MPI methods given the item pool used in this study. Regarding the two modified MPI 

procedures, the M2_MPI (i.e., the one assuming “move at its own pace” for each constraint) 

appears to perform better than the M1_MPI (i.e., the one assuming “move at the same pace” for 

all constraints) in overall constraint management. Regarding the three variations of WPM 

procedure, the WPM_fixed (1), i.e., the one adopting different weights to calculate content and 

item information penalty values, works better than other two variations.   

 As STA is a mathematical method, it is not surprising that it performs better than 

heuristic methods, in particular, in terms of constraint management. Unlike the heuristic 

methods, which are very easy to implement, the STA needs a linear programming solver to be 

able to work. Among all three heuristic methods, the MPI is more “static” than others in that it 

does not require much fine-tuning while being implemented. Both WDM and WPM, in 

particular, WPM, requires certain level of fine-tuning to achieve the best trade-off between 

measurement quality and constraint management. The three variations of the WPM is an 
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illustration of such a fine-tuning process and the results indicate how different the results can be 

given the choices of different weights. Unlike in Shin et al. (2009), the current study indicates 

that setting the weights in WPM as a constant throughout rather than a non-constant works 

better. This fine-tuning effort is called for whenever the underlying item pool changes or certain 

CAT component such as content exposure is changed. This should be something that testing 

programs need to be aware of before implementing these heuristic procedures.  

 Clearly, item pool characteristics play a role as to how these methods work. Though 

different heuristic methods perform differently in terms of constraint management given the 

current item pool, it is anticipated that they may work comparably given certain characteristics 

underlying the item pool. This is related to the area of optimal item pool design for CAT (see He, 

2010; He & Reckase, 2011 for examples) and it can be an area that future studies can examine. 

At the same time, the exposure control procedure that the current study uses may be too loose, 

and future studies should consider adopting more stringent exposure controls. How these 

procedures work in the presence of testlets is also a topic that needs further exploration.  

 CATs are gaining wider use in the high-stakes educational achievement testing arena, in 

particular with the announcement from the Smarter Balanced Assessment Consortium that its 

tests will be administered in the form of CAT (“Smarter Balanced Assessment”, 2011). This 

initiative calls for more research in CAT topics specifically targeted for the educational testing 

arena. For real world high-stakes achievement tests, complex constraints are commonly imposed 

on the existing linear forms. It is expected that, as we transform to this new form of testing, these 

constraints, if not more, will be imposed on CATs. The results presented here not only provide 

better understanding on how each method works and how they perform relative to each other but 

also provide practical guidance into the implementation of different procedures.  
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APPENDIX 

Table 1. Descriptive Statistics of the Item Pool 

Item Statistics a b c 

Mean 0.975 -0.729 0.149 

SD 0.389 0.882 0.084 

Max 2.125 3.617 0.500 

Min 0.022 -2.730 0.007 

 

Table 2. Constraints and Associated Weights 

Constraint Category Constraint Code Weight Lower Bound Upper Bound 

I C1 10 10 10 

 C2 10 10 10 

II C3 10 6 8 

 C4 10 6 8 

 C5 10 6 8 

III C6 5 2 5 

 C7 5 5 8 

 C8 5 2 5 

 C9 5 2 5 

 C10 5 2 5 

IV C11 11 0 1 

 C12 11 0 1 

 C13 10 0 1 

 C14 10 0 1 

V C15 1 3 7 

 C16 1 3 7 

 C17 1 3 7 

 C18 1 3 7 
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Table 3. Summary statistics for measurement accuracy and precision, exposure control, and item usage for overall sample 

  WDM M1_MPI M2_MPI WPM_fixed(1) WPM_fixed(2) WPM_flex STA MI RAND 

Bias 0.019 0.018 0.012 0.022 0.022 0.023 0.023 0.016 0.029 

Abs(BIAS) 0.254 0.255 0.246 0.258 0.227 0.237 0.229 0.202 0.416 

MSE 0.113 0.112 0.104 0.116 0.087 0.099 0.088 0.071 0.367 

 ˆ,
r  0.948 0.948 0.951 0.947 0.959 0.954 0.959 0.967 0.862 

% of 

overexposed  

items 

10.80 9.14 9.14 8.59 8.86 9.70 9.97 11.36 0 

Test overlap 

rate 
32.31 35.50 34.77 35.68 36.13 32.00 37.02 36.02 5.56 

% of never 

exposed items 
37.95 37.40 43.21 14.40 47.92 31.02 54.02 64.54 0 

Chi-square 96.65 108.16 105.55 108.82 110.45 95.41 111.95 110.07 0.11 
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Table 4. Proportions of tests having different numbers of constraint violations, proportions of tests violating lower bounds only, 
proportions of tests having at least one violation, and average number of violations per test for overall sample 

No. of violations(V) WDM M1_MPI M2_MPI WPM_fixed(1) WPM_fixed(2) WPM_flex STA MI RAND 

0 0 0 0.22 98.2 75.09 66.32 100 0 0 

1 44.96 18.16 76.89 1.78 16.71 20.38 0 0 0 

2 54.75 59.07 22.44 0.02 3.06 8.21 0 0 0 

3 0.29 20.51 0.45 0 2.99 2.09 0 0 0.02 

4 0 2.14 0 0 1.4 1.79 0 0.01 0.40 

5 0 0.12 0 0 0.57 0.87 0 0.03 1.73 

6 0 0 0 0 0.16 0.28 0 0.46 5.90 

7 0 0 0 0 0.02 0.05 0 1.89 13.61 

8 0 0 0 0 0 0.01 0 5.89 21.77 

9 0 0 0 0 0 0 0 19.77 23.53 

10 0 0 0 0 0 0 0 15.84 17.41 

11 0 0 0 0 0 0 0 18.8 10.08 

12 0 0 0 0 0 0 0 16.7 3.99 

13 0 0 0 0 0 0 0 16.49 1.20 

14 0 0 0 0 0 0 0 4.11 0.30 

15 0 0 0 0 0 0 0 0.01 0.06 

V  1.55 2.07 1.23 0.02 0.41 0.57 10.79 8.80 

V_lower (%) 0 0.25 1.21 0.17 19.87 30.56 0 100 99.94 

V_overall(%) 100 100 99.78 1.8 24.91 33.68 0 100 100 
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Figure 1. An overlay of item information  
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Figure 2. Weights used to compute the item information penalty value in WPM_flex
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Figure  3. Proportions of tests with different numbers of constraint violations 
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Figure 4. Conditional bias across different ability levels 
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Figure 5. Conditional MSEs across different ability levels 
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Figure 6. Proportions of tests violating lower bound 
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Figure 7. Proportions of tests violating overall constraint management 

 

 

 


