
Title:'When'does'provision'of'instruction'promote'learning?'

Author'names:'Hee'Seung'Lee,'Abraham'Anderson,'Shawn'Betts,'John'R.'Anderson'

Publication'date:'July,'2011'

Meetings'held'at:'Boston,'MA.'

'

Citation:''

Lee,' H.' S.,' Anderson,' A.,' Betts,' S.,' &' Anderson,' J.' R.' (2011).' When' does' provision' of' instruction'

promote'learning?'In'L.'Carlson,'C.'Hoelscher,'&'T.'Shipley'(Eds.),'Proceedings'of'the'33rd'Annual'

Conference'of'the'Cognitive'Science'Society'(pp.'3518R3523).'Austin,'TX:'Cognitive'Science'Society.'

When does Provision of Instruction Promote Learning?

Hee Seung Lee, Abraham Anderson, Shawn Betts, and John R. Anderson
{heeseung, lobo, sabetts, ja0s} @andrew.cmu.edu
Department of Psychology, Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Contradictory evidence has been reported on the effects of
discovery learning approach and the role of instructional
explanations. By manipulating the presence of instruction
(verbal explanation) and transparency of problem structures,
we investigated how effects of instructional explanations
differed depending on the transparency of problem structure.
We developed an auxiliary representational task that made
certain aspects of the problem structure more transparent.
Instruction proved irrelevant to those aspects of the problem
made transparent by the representation but facilitated learning
of those aspects that were left obscure. We suggest that the
critical role of instruction is not specifying the steps in
solving a problem, but rather making salient the features that
are critical to student’s ability to infer the steps from
examples.

Keywords: discovery learning, instruction, explanation,
transparency of problem structure, representation.

Introduction

One of the central controversies in education is how much
instructional guidance needs to be provided in a learning
environment. Even if an optimal amount of instruction is
identified in one learning environment, the effect might
differ based on the use of other instructional factors. This
study investigated how effects of instructional explanations
differed in different instructional conditions.

Debate over discovery learning and direct
instruction

Is it better to give students instructions about how to solve
problems or is it better to allow students an opportunity to
discover the knowledge for themselves? This question led to
a long debate over effects of discovery learning versus
direct instruction approach. Discovery learning approach is
based on a constructivist theory of learning (Piaget, 1970)
and it emphasizes learners’ active engagement in
constructing their own knowledge. Learners are believed to
be able to generate their own examples and explore them for
learning.

On the other hand, some researchers argue that the
discovery learning approach has continuing advocates but
without sufficient evidence (e.g., Mayer, 2004) and
instructional guidance is critical to successful learning. In
discovery learning students in effect have to generate their
own worked examples by discovering solutions and making
sense of their own solution steps. This can be at a
disadvantage to providing instruction in that it can be costly
both of time and working memory (e.g, Sweller, 1988) to

generate the examples. Also, it can be at a disadvantage to
providing instruction in that the structure of the solution is
not explained. This often increases floundering thus students
may never be able to discover what they are to learn
(Ausubel, 1964).

Both positive and negative effects of discovery learning
have been reported in many different domains. Several
studies demonstrated when students invented their own
solution procedures, they showed better understanding of
the domain than those who simply followed instructed
solution procedures (e.g., Hierbert & Wearne, 1996; Kamii
& Dominick, 1998). However, Rittle-Johnson (2006)
reported an opposite finding. She found students who were
directly taught a correct procedure showed better procedural
transfer than those who were told to think of a new way to
solve the problem without instruction.

In the science domain, Klahr and Nigam (2004) showed
direct instruction on control of variable strategy (CVS) led
to better learning outcome and in turn subsequent transfer.
However, Dean and Kuhn (2006) demonstrated direct
instruction was neither necessary nor sufficient and instead
practice appeared more important for enhancing students’
scientific inquiry skill. The benefits of direct instruction
quickly disappeared without a long term engagement.
Consistent with this finding, Brunstein, Betts, and Anderson
(2009) also reported that discovery learning was more
effective than direct instruction only when combined with
high levels of practice in the domain of Algebra learning.

Worked examples and instructional explanations

In contrast to contradictory evidence with respect to direct
instruction, there is strong evidence that learning is
facilitated by the provision of worked examples (e.g.,
Carroll, 1994; Tuovinen & Sweller, 1999). Worked
examples are believed to help students focus on relevant
solution steps by reducing search activity that is irrelevant
for problem schema acquisition. Provision of instruction and
worked examples can be seen as orthogonal factors with
discovery learning being the situation where the student has
to generate solutions without the benefit of either examples
or instruction. Even when worked examples are provided, if
underlying solution steps are not explained and/or relevant
features are not appropriately highlighted, students are left
to generate own explanations to understand worked
examples and discover relevant features for their learning.
This process is not always successful. Sstudents often show
illusion of understanding and fail to solve comprehension
problems without instructional explanations (Renkl, 2002).

However, instructional explanations can be also

3518

detrimental by preventing learners from actively making
sense of learning materials. For example, Schworm and
Renkl (2006) found that provision of instructional
explanations reduced learner’s self-explanation activities
and in turn learning outcomes. Also, when instructional
explanation was not presented in an integrated format, it can
impair learning by increasing cognitive load (split-attention
effect, Ward & Sweller, 1990).

This suggests that provision of instructional explanation
does not always guarantee a positive learning outcome (for
review, see Wittwer & Renkl, 2008). For instruction to be
helpful, it is not enough to simply specify solution steps.
More importantly, it should reveal any hidden structure in a
problem by making salient relevant features in the
examples. When instruction fails to perform this function,
students will be left in a situation analogous to discovery
learning and could well flounder. In this case, provision of
instruction will have little effect or even a detrimental
effect. At the same time, if this function can be performed
by other scaffolding means, instruction may be irrelevant.

We hypothesize that with appropriate scaffolding
discovery learning becomes, in effect, a worked example
condition where students provide their own worked
examples and the scaffolding makes transparent critical
features of the examples. To test this hypothesis, we
developed an auxiliary representation task that made certain
aspects of problem structure more transparent to learners
and investigated how effects of instruction differed
depending on the transparency of problem structure. We
expect when the representation task reveals the hidden
problem structure, provision of instruction will have little
effect. On the other hand, when obscure relationships are
not revealed, instruction will play a critical role and
facilitate learning of those aspects that were left obscure.

Experiment

We adapted the computer-based tutoring system used by
Brunstein et al. (2009). In this system, isomorphs of
algebraic expressions are represented as data-flow diagrams
with multiple boxes and arrows. The task involved selecting
a part of boxes and filling in values into an empty portion of
the box. This system allowed us to study college students
learning anew the equivalent of algebra.

Figure 1 illustrates stages of an example problem used in
the tutor. An unknown number flows from the top box into
the boxes below, the arithmetic operations are performed,
and the final result is the 29 at the bottom. The student’s
task is to determine what the unknown number is. The
diagram in Figure 1(a) is equivalent to the algebraic
expression, (5 - x) + (5 * x) = 29 while the diagram in
Figure 1(c) is equivalent to 5 + 4x = 29.

To solve these problems students can click on empty tiles
in the boxes and enter values. In the case of problem 1(c)
the unknown value can be simply determined by
“propagating” the number up from the bottom, unwinding
the arithmetic operations – placing 24 in the empty tile
above the 29 (equivalent to rewriting 5 + 4x = 29 as 4x =

24), then 6 in the tile above it (equivalent to rewriting this as
x = 6), and finally 6 in the top unknown box. However, in
cases like 1(a), where two paths converge in a result, this
simple procedure is not possible and at this point students
must transform the graph in Figure 1(a) into the form in
Figure 1(c). This step, called linearization, is the major
conceptual hurdle in this artificial curriculum.

(a) Selection task: Equivalent of (5 - x) + (5 * x) = 29

Instruction: “Select the rectangular box with two little,

empty boxes along with the rectangular box connected to

it because they are in a loop connecting to a common

rectangular box above.”

Discovery: “Select three rectangular boxes.”

(Arrows were not provided.)

(b) Execution task

Instruction: “The answer to this box is 4 because -1 + 5 is

4”; “The answer to this box is 5.”

(A corresponding arrow appeared for each statement.)

Discovery: “Click a box and enter a number.”

(Arrows were not provided.)

(c) Result of linearization: Equivalent of 5 + 4x = 29

Figure 1: Stages of an example problem. Depending on the
instructional conditions, different hints were provided and
examples are shown below the figures for direct instruction
and discovery condition.

3519

The linearization always involved two major subtasks:
selection and execution. First, in the selection task, students
have to select the appropriate rectangular boxes to
“linearize”. In Figure 1(a), the correct boxes are indicated
by arrows. After selecting these three boxes, clicking a
linearize button transforms the data-flow diagram into the
intermediate state in Figure 1(b). The challenge in this
selection subtask is to determine what boxes have to be
selected. Diagrams vary in structure and Figure 1 is just one
possibility. Participants have to find a loop that connects
from the top unknown value to the bottom box with empty
values and select all of the boxes in the loop except the top
box of the loop. In the example in Figure 1(a), the loop
starts from the top unknown box where two arrows diverge.
Then the loop continues all the way down to the bottom box
where the right and left branches finally rejoin. This
convergence enables summation of left and right branches.

Second, in the execution subtask, participants have to find
what values to fill in on the transformed tree. Essentially
they need to find the coefficient that multiplies the top
unknown value and the constant. In this example, the
selected boxes for linearization are simplified into the
equivalent of (4 * x) + 5. The coefficient 4 (-1x + 5x = 4x)
goes to the box next to “*” operator and the constant 5 goes
into the box next to “+” operator. After filling in these two
values, the diagram has been transformed into the linear
form in Figure 1(c) and now users can apply the simple
propagating strategy. The general characterization of the
selection and execution rules worked in the same way across
all problems.

Above we have tried to explain the solution of these
problems by reference to algebraic transformations.
Students find propagating numbers easy and intuitive and do
not seem to need any reference to algebra. One student
described this as “like doing sudoku”. On the other hand,
students find it hard to master linearization and reference to
algebra seems to make this easier to explain and understand.
By changing a representation format, from visual
representation of a data flow diagram into a symbolic
representation of an algebraic equation, the hidden structure
of the problem is revealed and the required computations
become a lot easier.

The current study used this relation between data-flow
structure and algebraic expression to manipulate the
transparency of problem structure. We did this with an
additional representation task. By having students re-
represent certain parts of the diagram into an algebraic form
or an equivalent data-flow tree, the problem structure could
become apparent or remain ambiguous. In particular, we
expected that seeing algebraic equivalents would make the
execution part of the linearization more transparent by
showing the relationship between simplifying an algebraic
expression and determining the values to be entered into the
linearized diagram. It was less clear that showing students
this representation would help them select the boxes for
linearization because there is not a simple relationship
between this selection task and simplifying algebraic

expressions. So, our specific hypothesis is that providing
algebraic expressions will make instruction less important
for the execution portion of linearization.

Method

Participants Fifty undergraduate students (29 male and 21
female, M = 21 years, SD = 2.2 years) at the Carnegie
Mellon University participated in the study. Participants
received $10/hour plus performance based bonus.
Design, materials, and procedures
The study consisted of two sessions, learning session and
transfer session. Each session lasted 2 hours and the transfer
session occurred 2 days after the first session. Transfer task
was identical across all experimental conditions and
experimental manipulations occurred only during the
learning session. The learning session had three different
problem sections – propagate, easier linearize, and harder
linearize problems. In the propagate problems, participants
learned to propagate numbers up or down. These problems
did not involve the use of linearize function and could be
easily solved with simple arithmetic calculations. The easier
and harder linearize problems involved the use of
linearization and these two sections differed in terms of size
of a loop. Although both sections required only single
linearization, the latter had a larger loop. That is,
participants had to select more boxes and this in turn made
computation more complicated. Each subsection had one
single demo problem (i.e., worked-example) and 30
problems. Among the 30 problems, for the only first
problem hints were always provided for each solution step
and for the rest 29 problems hints were provided on request.

A 2 x 2 between-subjects study was designed by crossing
provision of instructional explanation (direct instruction vs.
discovery) and representation task (algebraic expression vs.
data-flow tree). First, there were two instructional
conditions, direct instruction versus discovery. In the direct
instruction condition, participants were given a worked-
example with verbal explanations about each solution step.
By clicking the forward button, participants observed how a
problem was solved in a sequential way. Text explanations
appeared at the bottom of the page and provided general
characterization of an action taken in each step (e.g., why
certain boxes need to be selected, why a certain value is
filled). This instruction was also available for later problems
by clicking a hint button.

In the discovery condition, verbal explanation was not
provided although the identical step-by-step worked-
example was provided in the beginning of the learning
session. Because no characterizations of actions were
provided, participants were left to discover transformations
by themselves. In this condition, participants could also use
a hint button. However, the provided texts did not explain
underlying principles of either selection or execution task.
Instead, the hints simply provided instruction on interface
issue such as “click a box and enter a number”. Examples of
hints provided in direct instruction and discovery conditions
are shown in Figure 1.

3520

Across all conditions and all sessions, error messages
appeared whenever participants made a mistake. In the
direct instruction condition, participants could then find the
correct answer by clicking the hint button. In the discovery
condition, however, the hints only provided interface
information and thus participants had to figure out the
answer for themselves. The discovery learning condition
was not pure discovery in that a demo problem was
provided in the beginning of the learning session, hints on
interface of the tutor were available on request, and
immediate feedback was given via an error message. There
never were any explanations and these features were present
to minimize the floundering in discovering a solution. The
distinction between two instructional types should be
understood as a continuum and the most critical difference
between these two conditions was presence or absence of
verbal explanations.

Second, the type of representation task was manipulated
to manipulate the transparency of the problem structure.
Students were asked to re-represent certain parts of the data-
flow diagrams either in an algebraic expression or in a data-
flow tree. In the expression condition, participants were
asked to fill in algebraic expressions by copying numbers
and operations from a diagram to an expression. Unknown
values were already filled in as an X in the task. This task
was to help students understand the problem structure by
revealing the relation between the diagram and algebraic
expression. In the tree condition, participants were asked to
simply copy numbers and operators from a diagram to a
tree. Figure 2 shows an example of each representation task.
Students were asked to fill in empty tiles either in the
algebraic expression (a) or in the tree (b). This
representation task appeared whenever participants made an
execution error (i.e., filling in wrong values in the
linearization). In the demo problem or worked-example, the
representation task was automatically performed by the
system right after the diagram was transformed, between
selection and execution task. Only in the direct instruction
condition, the completed representation was used as part of
instruction. Verbal explanations were given by highlighting
relevant parts of the expression or tree. In the discovery
condition, neither verbal explanation nor highlighting was
provided.

For each correct solution step, participants could earn
money. To prevent people from relying on hints without
efforts to solve problems, whenever people asked for hints,
4 cents were deducted from their earned money. Also, when
a linearization error was made, 2 cents were deducted. Until
all parts were solved correctly, participants could not move
on to the next problem. Time-on-task was controlled as 2
hours for learning session therefore each participant solved
different numbers of problems. Performances varied largely
across participants and only some of the participants could
finish all three problem sections on the first day of the
study. Regardless of whether students could finish all or part
of the sessions on the first day, they were given identical
transfer test on the second part of the study.

(a) Algebraic Expression

(b) Data-flow Tree

Figure 2: Examples of the representation task. Students
were asked to fill in the empty portion of either an algebraic
expression (a) or a tree (b) with numbers and operators.
Given are the forms of the task before and after completion.

On the second day session, identical transfer problems
were given across all conditions. No worked examples and
hints were provided. Like the first day session, an error
message appeared when an error was made. There was only
one problem type, multiple linearize problems, and this
required multiple uses of linearization to solve the problem.
On the first day, all problems involved only one single use
of linearization. This made it a good bit more difficult to
decide what boxes to select and what numbers to combine
for a particular linearization. There were a total of 40
problems and participants solved problems for 2 hours.

At the end of the study, participants were given a
questionnaire for demographic information and background
in mathematics learning. Also, students were asked to
verbally explain difficulties they had during the task and
rules or strategies they used for selection and execution task.

Results

Out of 50, three participants felt lost and wanted to give up
in the middle of the study. These participants were one from
instruction-tree, one from discovery-expression, and one
from discovery-tree and were excluded from the data
analysis. Performance during the learning session varied in
terms of problem solving speed, number of solved problems
and use of hints. Especially, students in the discovery-tree
condition solved the fewest problems. Therefore, we
focused on the performance of transfer test. In this way, we
can understand what 2 hours of practice under different
instructional conditions mean for performance in a constant
condition-transfer task. Please note that all participants were
exposed to identical transfer conditions (no demo problem
and no hints) regardless of the instructional conditions.

On the transfer test, there were again large individual
differences. Some participants could finish all 40 problems
within 2 hours, but some could solve just less than 10
problems. Like the pattern observed in the learning session,
the discovery-tree condition had particular difficulty and
could solve about 7 problems less than the other conditions.
Due to the observed individual differences in terms of the
number of solved problems, only the first 12 problems out

3521

of 40 problems were chosen for analysis and the data from
two participants who solved less than 12 problems were
excluded from the analysis. One was removed from
instruction-expression and the other was removed from
discovery-expression condition. As a result, data from 45
participants were analyzed: 12 from instruction-expression,
11 from instruction-tree, 10 from discovery-expression, and
12 from discovery-tree condition.

Most of the errors participants made were from one of
two categories. First type of the error was selection error
and this error occurred when participants selected wrong
combination of boxes for linearization. The second type of
error was execution errors. Execution errors occurred when
students filled in wrong values into a box. This could occur
when students did not understand the rules to fill in boxes
after linearization or made a computation error. Analyses of
covariance were performed using SAT math score reported
by participants. To avoid undue effects of extreme values,
numbers of selection errors and execution errors greater
than 20 were recoded as 20. Although the data
transformation did not change the overall pattern of the
reported results, the recoded values tended to be from the
discovery-expression condition.

Table 1(a) shows adjusted mean number of selection
errors (SE in parentheses) on the first 12 problems of the
transfer test. Regardless of the type of representation task,
students who received direct instruction made significantly
fewer selection errors than those from discovery condition,
F(1, 40) = 8.14, p = .007. There was no overall effect of
representation, F(1, 40) = 0.92. It is clear that the expression
representation did not help the instruction subjects as the
instruction-expression condition has slightly more errors
than instruction-tree. On the other hand, there was some
advantage in the discovery condition for expression
representation, but the instruction-by-representation
interaction was not significant, F(1, 40) = 1.58.

Execution errors in Table 1(b) show an opposite pattern
from the one observed in selection errors. Regardless of
instruction type, students who represented diagram in an
algebraic expression made significantly fewer execution
errors than those who did in a tree, F(1, 40) = 7.85, p = .008.
There was no overall effect of instruction F(1, 40) = 0.31.
For this measure, it is clear that instruction offered no
further benefit to participants who saw the expression
representation since the instruction-expression participants
made more errors than the discovery-expression
participants. On the other hand, participants who had the
tree representation seem somewhat helped by instruction,
but again the instruction-by-representation interaction was
not significant, F(1, 40) = 2.02.

The expression representation task was intended to make
apparent how to determine the values from the pre-
linearized diagram to place in the linearized diagram. It
seems that providing such a task eliminates the need for
instruction. With the algebraic expression in hand,
participants were able to determine from the examples what
the rules were. On the other hand, the algebraic expression

Table 1: Adjusted mean number of selection errors and
execution errors (SE in parentheses) by instruction type and
representation type.

(a) Selection Instruction Discovery Average

Expression 3.06 (0.54) 3.96 (0.60) 3.51

Tree 2.90 (0.57) 5.21 (0.54) 4.05

Average 2.98 4.58

(b) Execution Instruction Discovery Average

Expression 4.12 (1.73) 2.58 (1.90) 3.35

Tree 6.67 (1.82) 10.19 (1.72) 8.43

Average 5.95 6.39

provided little insight into how to select the boxes for
linearization and here instruction was critical.

In both error measures, there was the suggestion that
participants who had access to neither the algebraic
expression or instruction had particular difficulty, although
in neither case was the interaction significant. Looking at
total errors participants made 7.18 in the instruction-
expression condition, 6.54 in the discovery-expression
condition, 9.57 in the instruction-tree condition, and 15.40
in the discovery-tree condition. There was no significant
difference among the first three error totals, F(2, 29) = 0.35,
while the discovery-tree condition was significantly worse
than each of the other conditions. When there was nothing
to reveal hidden problem structure (neither expression
representation nor verbal instruction), students had
particular difficulty. Many participants in this condition
approached the solution by trying numbers randomly and
this strategy particularly increased the number of execution
errors.

Conclusions

To summarize the results, there were two major findings.
First, direct instruction (verbal explanation) helped students
find rules for selection as shown in fewer selection errors
for students who were provided with instruction than those
who were left to discover selection rules for themselves.
Representation task did not have a significant affect on this
aspect of problem solution. Second, only type of
representation task (expression rather than tree
representation) affected student’s success in finding rules
for execution. Regardless of instruction type, students who
re-represented a diagram into an algebraic expression
showed fewer execution errors than those who copied a
diagram into a tree.

The most striking outcome of the experiment was the
equivalent performance of instruction and discovery
students with respect to calculation in the execution task
given a representation that revealed the intermediate steps in
performing the representation. When an algebraic
expression was provided, structure of the problem appeared
to become transparent and the instruction (verbal
explanation) seemed irrelevant. Students were able to find
rules for execution using algebraic expressions and this led

3522

to better learning outcome. This finding is also interesting
in that symbolic representation is able to help understanding
of visual representation. It is well known that many teachers
use visual representation to help students understand
mathematical symbolic notations. When learners are capable
of symbolic reasoning like college level students in our
study, symbolic representation also can be used to help
understanding of other representations. This is consistent
with the idea of “power of symbols” (Arcavi, 1994).

In contrast to performance in the execution task, verbal
explanation played an important role in finding rules for
selection task. Without instruction, there was nothing to
uncover the obscure rules for selecting boxes for
linearization. Without verbal explanation, it was hard to
notice the existence of loop (from the unknown top value,
two paths converge at the box with two empty values).
Provision of instruction seemed to highlight features that are
critical to selection task and guide students to follow the
verbal instruction and practice them. This conjecture was
consistent with verbal reports provided in the debriefing
session. When participants were asked to explain the rules
of selection and execution, only students who were given
verbal explanation used the word “loop” to describe their
selection rules. In contrast, many students from discovery
condition reported they could not really understand a rule
for selecting boxes and simply tried to select different
combinations of boxes in a trial-and-error manner.

While not significant, the discovery-expression students
showed the fewest execution errors. Their success depended
on two features. First they were provided enough guidance
that they did not suffer undue floundering in discovering the
solutions. Second, the presence of the expression made it
possible to infer the correct rules from their solutions.
Thus, instruction is irrelevant if the principles of solved
examples (worked or discovered) are transparent. On the
other hand, when the structure is not transparent instruction
serves in effect to annotate the examples with the features
critical to their solution. On this view, students learn from
solved examples and not instruction; instruction or auxiliary
representations can make transparent critical aspects of
these examples.

It should be possible to achieve the same equivalence of
instruction and discovery students with respect to selection
task by using a representation of the intermediate steps in
selection. If relevant hidden steps were revealed by the
tutoring system (e.g., visual loop highlighter so that students
can actually identify the existence of a loop), it is expected
that instruction would prove unnecessary for this aspect of
the task as well. On this view, the major limitation of guided
discovery is that students cannot always determine hidden
structure. However, we should note in closing that this
analysis does not imply any superiority for discovery
learning, nor indeed were we able to find any statistically
significant advantages.

Acknowledgments

The research was supported by IES grant R305A100109.

References

Arcavi, A. (1994). Symbol sense: Informal sense-making in
formal mathematics. For the Learning of Mathematics,
14, 24-35.

Ausubel, D. P. (1964). Some psychological and educational
limitations of learning by discovery. The Arithmetic
Teacher, 11, 290–302.

Brunstein, A., Betts, S., & Anderson, J. R. (2009). Practice
enables successful learning under minimal guidance.
Journal of Educational Psychology, 101, 790-802.

Carroll, W. M. (1994). Using worked examples as an
instructional support in the Algebra classroom. Journal of
Educational Psychology, 86, 360-367.

Dean, D., & Kuhn, D. (2006). Direct instruction vs.
discovery: The long view. Science Education, 91, 384-
397.

Hiebert, J., & Wearne, D. (1996). Instruction,
understanding, and skill in multidigit addition and
subtraction. Cognition and Instruction, 14, 251-283.

Kamii, C., & Dominick, A. (1998). The harmful effects of
algorithms in Grades 1–4. In L. J. Morrow & M. J.
Kenney (Eds.), The teaching and learning of algorithms
in school mathematics: 1998 yearbook (pp. 130–140).
Reston, VA: National Council of Teachers of
Mathematics.

Klahr, D., & Nigam, M. (2004). The equivalence of learning
paths in early science instruction: Effects of direct
instruction and discovery learning. Psychological Science,
15, 661–667.

Mayer, R. E. (2004). Should there be a three-strikes rule
against pure discovery learning? The case for guided
methods of instruction. The American psychologist, 59,
14-19.

Piaget, J. (1970). Genetic epistemology. New York:
Columbia University Press.

Renkl, A. (2002). Worked-out examples: Instructional
explanations support learning by self-explanations.
Learning and Instruction, 12, 529-556.

Rittle-Johnson, B. (2006). Promoting transfer: The effects
of direct instruction and self-explanation. Child
Development, 77, 1–15.

Schworm, S., & Renkl, A. (2006). Computer-supported
example-based learning: when instructional explanations
reduce self-explanations. Computers & Education, 46,
426-445.

Sweller, J. (1988). Cognitive load during problem solving.
Cognitive Science, 12, 257-285.

Tuovinen, J. E., & Sweller, J. (1999). Comparison of
cognitive load associated with discovery learning and
worked examples. Journal of Educational Psychology,
91, 334-341.

Ward, M., & Sweller, J. (1990). Structuring effective
worked examples. Cognition and Instruction, 7, 1-39.

Wittwer J., & Renkl, A. (2008). Why instructional
explanations often do not work: A framework for
understanding the effectiveness of instructional
explanations. Educational Psychologist, 43, 49-64.

3523

