

ADDITIONAL COPIES
of this publication may be paocured from the superintendent of documents
government printing office
washington, i. c.
AT
15 CENTS PER COPY

CONTENTS

Page
Preface(hapter I. Foreign influences lealing to the introduction of algebra1
English influence 1
English algebra 1
II. Algebra at Harvard in 1730 3
Arithmetic motelooks 3
Algebra notebooks 3
Isaar Greenwool 4
Samuel Langion 5
James Diman 5
Introduction of the Harvard manuscripts. 6
Symbols 7
Tophes 8
Subject matter of an alvimeed nature 12
Geometric problems 13
Sources of material 15
Algebra in the Harvard course 17
III. The notetook of a Princeton student: 18
Phillp Vickers Fithian, 1770-17t2............. 18
Saunderson problems 19
IIill problems 19
William Churchill Houston, profegsor of whithemgtics- 20
IV. A mathematical notelionk from the Cniversity of Pennsyl- vañía 21
"Mathematica Compendia" 21
Robert Patterson, professor of mathepatics 22
v. Manuscript material from miscellaneous sources 25
Manuscripts hy Robert Brome 25
" Practical Mathematics" 26
Nathaniel Rowditch 27
End of the notebook custom 28
VI. Commencement theses 30
A commencement custom 30
Account of the custom of printing Latin commence- ment theses 30
Yale mathematical theses in 1718 32
Algebra theses $\ln 1718$ 33
Samuel Johnson and algebra at Yale in 1718 34
Mathematical theses at Harcard 35
Algebra theses at Harvard in 1721 37
Fluxions at Harvard , and Yale 88
Chapter VII. Mathematical theses of Harvard college
Page. 41
General acount
Algebra theses41
41
VIII. College records iml writings of professors and presidents 45
Harvard requirements 45
Hugh Jones, professor of mathematies at the collere of Williạm and Mary Hi
Thomas Clapr, president of Yale College 4
Records of Cniversity of I'ennsylvania 49
William Smith, provost of the Cniversity of l'ennsyl- vania 49
Laws and orders at Kings College (Columbia Cui- versity) in
IX. Evidences of the use of foreign textbooks i1
Scarcity of printed books i1
The Young Mathematicians diuide, Jolm Ward i1
The Elements of Algebra, N:thaniel Hammond it
A Trentise of Algehra, Thomas Simpson. in
X. The first books containing algebra published in the new world 87
A Mexicun algebra π
A Dutch algebra-Arithmetica of Cyffor-ぶunst is
L'ieter Venema T0
XI. Eighteenth century books on algebra ly Amerio:an au- thors

\qquad 614
Agebra in the work of Nicholas Pike it
The American Youth. Consider amil John Nterry. (in
Xil. Agebra and advertisements Bi
Agebra in the public press (ii
I'rivate tutors and schoolnasters iii
Solutions of algebra prohlems ' 7
Sale of algebra books 72
NIII. Summary 74
A chronological list of Amerio:in nitehra texthooks to 18:0 75
Bibliography 77
INDEX 70

PREFACE

Certain periods in the making of history hare been deficient in contemporary chronicles. This is notably true in the history of American education during the eighteenth century. Such history presents lessons to the educator of a later generation. As we follow the growth of the American people from the status of settlers in a new country to that of a distinctive nation with its own life to provide for by training and education, we are led to an understanding of the American character and civilization of our own day. This understanding is necessary for all those who are engaged in the attempt to prepare boys and girls to take their places in the present social structure.

The history of education is made up in part of accounts of various suljects which have developed into courses of study. Mathematics of some kind has always been inclided in such courses. In the American Colonies arithmetic was an important subject for practical reasons. It was needed-for trade and commerce. With sailing ressels plying between Europe and America and the only means of communication with the "homeland," navigation and all the kinds of sailing that had to be put to daily use came to be a continuation of the course in arithmetic. Astronomical observations were an importand feature in laying out a course at sea, and so astronomy is found in connection with arithmetic. Some elementary trigonometry, logarithms, and geometric constructions played a necessary part in the calculations incident to both navigation and astronomy. With this list the practical uses of mathematics in that day, are exhausted.

It is the parpose of this study to show that algebra, another branch of mathematics, entered into the American education of the eightenth century, and to show further that we must seek some other reason for its presence than a practical need for it.
The research connected with this work has been made from original sources found in many libraries. both public and private, in
the East. It would be a pleasure, if it were possible, to acknowledge in detail the cordial helpfulness that has been extended in every one of these libraries. In particular the writer is indebted to Miss Isadore G. Mudge, reference librarian of Columbia University Library, for her efforts in many directions.

To Prof. David Eugene Smith, of Columbia University, who suggested the problem, and whose interest and appreciation have been unfailing, the writer acknowledges inspiration in this study as well as in her whole professional life.

IUnter Colleye of the City of New York.

INTRODUCTION OF ALGEBRA INTO AMERICAN SCHOOLS IN THE EIGHTEENTH CENTURY

Chapter I

FOREIGN INFLUENCES LEADING TO THE INTRODUCTION OF ALGEBRA INTO AMERICAN EDUCATION

English influnce.-Education in the American Colonies for more than a century after its beginnings was an attempt at a reproduction of the education of the countries from which our forefathers came. The influence of foreign universities appears i_{n} every aspect of the school life be fore the American Revolution.

The first colleges wefe modeledentirely on the English universities, so far as the limited resources of the founders allowed. Courses of study, textbooks, and organization were for a long time almost exclusively English. - Presidents went to England to raise money to carry on the work on the liome field. College professors were either imported from England or Scotland, and in many instances returned there, as was the case with a long line of men at the College of William and Mary, or they traveled to England to obtain the education necessary to gill their positions.
Professors educated at Oxford or Cambridge or any other university must have been interested in the application of their foreign experiences on their return and would naturally have transplanted the traditions of the day, so far as it was possible, to the American institutions to which they came. At the same time they were engaged in correspondence with foreign leaders, and so all under consideration reflections of the intellectual life abroad will be apparent.

English algebra.-From the middle of the seventeenth century works on algebra were being published, and prominent teachers were presenting the subject. In 1707 Sir Isuac Newton's work on algebra and the theory of equations, the Arithmetica Universalis, appeared; and it was followed by an English translation in 1720. With the umparalleled reputation of Newton and the genius of his discoveries this work must have taken a strong hold on the algebraically minded
teacher. It seems inevitable that the first quarter of the eighteenth century should have seen some beginnings of algebra as well as fluxions in American schools and colleges.

The earliest formal piece of work in American algebra growing out of this English influence is found in a set of notebooks prepared under the direction of a mative American who went to England to continue studies begun in his undergraduate days.

Chapter II
 ALGEBRA AT HARVARD IN 1730

Arithmetic notelooh's.-The custom of keeping notebooks for sehool subjects was well-nigh universal during the eighteenth century. One of these subjects was arithmetic, and arithmetio notehooks are commonly found in tibraries and collections of Americana. They are sometimes so expuisitely prepared hy hand that they apbear to be the work of a craftsman in printing. One ' of the carliest wit these hooks is that of Robert Hale, and it beas the colophom: "The End of this Treatise of Arithmetick, begun by me Rohert Hale, Feh, 23, $1718 / 9$ \& Encled Now. \quad, 1719.0 It contains tratise's on arithmetic, logic, motaphysics, physics. arography, and geome-try:- Only occasiomally is a section on algebra numbered amomer the contents of such a book.
Alefebre notebooks. - With the comparative rarity of algehraie material, the discovery ${ }^{3}$ of a complete manuscript notehook on algebra as early as 1739 greatly miched our knowledge of that subject in America. The mamseript referred to was fommen the museum housed in the old jail in York Village, Maine. It is a manuscript on algebra by Simmel Langeton, at one time president of Harvard College; and the original of it was pepared. as later evidence will show, by Isata Greenwod, for several years professor of mathematics and natural philosophy of the same institution.
The value of this manuscript was considerably enhanced by the futher discovery, in the Manuscripts Americana at Marvard Thiressity, of another manuscript on algebra which so closely resembles the Langdon one as to leave no doubt that the two notebooks were taken from the same original. The Harvard manuscript whe writen

[^0]by James Diman, who was for a time the librarian of Harvard College. and contains the date 1730 .

The existence of two such manuscripts is a matter of great importance in the history of American mathematics. One manuscript might have been the work given to a private pupil by the professor at Harvard, but two similar manuscripts written at different times during the same professorship afford unmistakable proof that such work was being taught during the period of this' particular man.

The Langdon manuscript consists of 75 numbered pages, with 2 unnumbered pages forming a front cover and 18 unnumhered pages at the end. The latter contain no notes, except one leaf. The pages are 14.7 cms is 18.7 cm ., and the book consists of 48 leaves, three-fourths of one leaf having been cut out by the author. On the front enver appears the inscription: "Samuel Langdon's Book, July 25, 1739," and on the reverse of this leaf are the words: "Algebra by Isaac Greenwood, M. A. Began July 25, 1739." A colophon reads: "Finished writing Algebra August, 17, 1739. Algebrae Finis."

The Diman manuscript consists of 4 unnumbered pages followed by 125 numbered pages, 16 cm . by 19.3 cm . In the upper right-hand corner of the first page is the inscription: "James Diman's Book $1730 / 31$." In large writing on this same page appears the title: "Algebra or Universal Mathematics reviewed 1738 with Notes and Additions." The third page has the following note: "Books perused in y^{e} review of my Algebra made in 1738. 1. Harris Lexicon Technicum. 2. Chambers Cyclopuedia. 3. Wolfius Elementa Matheseos Univers." The work ends on page 125 simply with "Finis." The apparent difference in the lengths of the two books is due to a difference in the size and closeness of the writing and not to a difference in the amount of subject matter, the Diman manuscript having only six pages not fou ${ }^{\text {and }}$ in Langdon.
Isaac Grecnurood.-Interest always attaches to the personalities of men connected with any work, and so we shall first give some account of the three men whose names appear on these two manuscripts. Isaac Greenwood was born in Boston in 1702, and was graduated at Harvard in 1721. Three years later he received the A. M. degree. In 1727 a professorship of mathematics was created at Harvard through the benefaction of Thomas Hollis, of London. As is still and probably ever will be the custom, the college authorities sought among their own graduates a brilliant student to fill the chair. They were unanimous in their choice of Greenwood. A visit to England about this. time enabled him to qualify himself more perfectly for the expected appointment. He received it, and an entry in the "Minutes of the

College Officers" under date of 1728, February 13, reads, " Mr. Isaac (ireenwool installed profe-sor." ${ }^{-1}$
In 1729 Greenwood published anonymously a work on arithmetic. ${ }^{5}$ This was the second arithmetic to appear in the American Colonies and the first by a native American. The'college notes above referred to contain another entry, "N. B. dismissed July 13, 1738, died at Eharleston, S $^{\circ}$ Carolina ${ }^{*}$ Octo. 22, 1745." His dismissal came as the result of his having been "guilty of many acts of gross intemperance, to the dishonor of God and the great hurt and reproach of the society." There seems to have been no question about Greenwood's atilities. Both the cause of education which he was serving so well and his own career in life were the losers by his weakness of will and unfortunate appetites.
Samuel Langdon.-Samuel Langdon ${ }^{8}$ was born in Boston in 1723, entered Harvard in 1736, graduated in 1740 , and received the degree of A. M. in three years. He studied divinity for a time at the college itself, and in 1itis was licensed to preach. The University of Aberdeen conferred upon him the honorary degree of S. T,D. In 1774 Langdon became president of Harvard College, and his name appears for the first time on the Harvard commencement program for 1ii6. It must have been a satisfaction to have dedicated to him as president the first sheet of commencement theses to appear after the Declaration of Independence, for he was heart and soul in sympathy with the principles of the American Revolution. These partriotic sympathies led in the end to his forced resignation as president in 1780. He spent the remainder of his life as minister at Hampton Falls, N. H., where he died and was buried in 1797.
James Diman.-, Iames Diman ${ }^{7}$ was born in 1707 in East Hampton, ${ }^{*}$ Long Island. In 1730 he graduatcū from Harrard, and in 1733 received the degree of A; Me was appointed librarian in 1735 and served until the spring of 1737. In February of that year he was called to the pastorate of the Second, or East, Church in Salem, There his ministry continued for over 50 years. We see, therefore, that Diman took part or all of his college course during Greenwood's term of service and later was associated with him in an official capacity.
The earlier date, 1730-31, on the Diman manuscript occurred during Greenwood's first years in his professorship, and hence there is

[^1]every reason to believe that Greenwood was using this algebra material at least as early as 1730 . The other date, August, 1738 , on this same manuscript was just after Greenwood's withdrawal from the college and during Dimaris pastorate at Salem. A comparison of the two shows that the Diman manuscript contains just a small section that is not found in the Langdon one, and so Diman added little to the original in his review. Langdon's book was made about a

Symbols given in the Limen (1730) manuscript from Harvard College
year later, in July, 1739. Both manuscripts seem to be careful copies of work cone earlier at Harvard.

Introduction of the IIarvard manuscripts.-We turn now to a description and comparison of the Diman and Langdon manuscripts. ${ }^{8}$ Both algebras open with an "Introduction," which begins as follows:

1. This Sclence is called Algebra from two or three words en y^{*} Arabian Language, $w^{\text {ra }}$ may le interpreted either the Art of Restitution, \& Comparison; or \dot{y}° Art of Resolution \& Equation. It is miso known by various other Names,

The quotations given are from the earlier manuscript, that by Diman; citations from the Langdun one would be practically the same.

The first y^{t} wrote upon this Suhject, In Eurone, termed it ve $^{\text {e }}$ Rule of Restitution \& Opposition; Since, it has been called by some, the Analytick Art; by others, Specious Computation; Regula Rei et Census; y - great Art ; Modern Geometry ; Universal Mathematicks \&c. (Diman, p. 1 ; Langdon, p. 1.)
This introduction shows an interest on the part of the author of the original in the history of the subject. For this history he drew directly from John Wallis, or from some work founded on Wallis.

Symbols given in the Langdon (1730) manuscript from Harvard College
The paragraph cited shows a strong resemblance to the opening paragraph in the article on algebra in Chambers's Cyclopacdin. ${ }^{\text {º }}$
Symbols.-A page of "Algebraical Characters" follows the introduction. Attention is'chlled to the interesting features of this table of symbols; to the bar which is the only sign of aggregation

[^2]used; to the symbol for continued proportion; to those for inequality, unequal parallel lines met at one set of extremities by a vertical transversal ${ }^{11}$ to the capital S turned on its side to indicate the difference between a and $b ;{ }^{12} a^{2} x^{5}$ is explained to mèan " a invol ${ }^{d}$ to $y^{e} 2^{d} x$ to $y^{\text {e }} 5^{\text {th }}$ "power \& joined in one product," although the more common form $a a$ is found, and frequently even such forms as aaaaa, showing the difficulty in adopting the representation by the exponent. Later in the manuscripts, it is curious to find the powers of $x-y$ up to the sixth in this latter form, so that the sixth power reads rexxxx.r $6 x x x x x y-15 x x x x y y-20 x x x y y y+15 x x y y y y-6 x y y y y y+y y y y y$ (sic) and then to find the seventh, eighth, and ninth powers in the present day form. (Diman, p. 27; Langdon, p. 19.)

Topics.-The topics reproduced as they appear in the two manuscripts are set down to show the similarity bet ween them. They are paired except when the topics are identical, a blank space indicating that the topic is omitted. The first member of each pair is taken from the Diman manuscript, the second from that by Langdon.

Notation; Algebraical Caracters, Algebraical Characters: Addition of Integers; Subtraction, Substraction; ${ }^{13}$ Multiplication of Algebraic Integer, Multtplication of Algebraick Integers; Division; Algebralcal Fractions, Algebratek Fractions; Addition \& Subtraction of Fractions, Addition \& Substraction of Fractions; Multiplication of Fractions; Dlvision of Fractions; Involution of whole Quantitles : Involution of Fractlonal Quantitles, Fractional Involution: Evolution of whole Quantities; Fractional Erolution; Binomial Quantities: Involution [of binomial quantitles]: Promiscuous Examples [the examples ure found but not the heading 1; [Heading not given, but two fractions are included in the set of examples], Involution of Bluomial Fractional Quantities :

- Multinomial Quantitles; Involution [of multinomial compund quantitles]; INo heading but the statement: "Fractional Compound Quantitles are giso Involved In y° same mamer"], Fractional Compound Quantities; Evolution, Evolution of Multinomial Quantitles; Surd Quantitles; Notation [óf surds]; Reduction of Surds; Multiplication of Surds; Diviston of Surds; Addition and Subtraction of Surds, Addition and Substraction of Surds; Compound Surds: Multiplication of Binnmial Surds, - ; Division in Compound Surds, -; Equation; Reduction of Equations; Reduction by Addition; Reduction by Subtraction, Reduction by Substraction; Reluction by Multplication; Reduction by Disision; Reduction by Involution; Reduction by Evolution; Reduction by Amalogies to Equations \& e Contra; The Method of Resolving Algebraical Questons; General Rules Concerning y° Reduction of Equatlons; SImple Equations; The Solation of Adfected Quadratick-Equations, —; Mr Oughtreds method of solving adfected Quadraticks, Mr. Oughtreds method of solving adfected Quadratics; The Solution of Adfected Equationa by taking uway y^{*} Second Term. The Solution of adfected Equa-

[^3]tions by taking away the second term; The Solution of Adfected Quadratick Equations by y^{e} method of ('ompleating y^{*} Square. The Solution of Adfected

- Quadratic Equations by y^{*} Method of complenting ye square; Questions, Questions producing adfected Quadratick Equations; The Resolution of Cubic Equations, The Resolution of ('uhick Equations; Cuble Equations by Substitution. Cubick Equations by Substitution; Cuhic Equations hy Tryalls \& Depression, Culick Equations by Trvals \& depression; 'The Solution of Irregular C'ubics, The Solution of Irregular Cubleks: The Method of Converging Series, The methoi of converging Serles and Approximition: —— 1 of Simple lkots: —— II of Adfected Equations; Mr Kaphson's Theorems for Simple I'owers [not so designated, hut all the Raphson formulas are given]: Mr, Kaphson's Theorems for adfected Equations; Dr Halley's Theorens for Solving Equations of all sorts. Inr. Halley's method for solviff equatious of all sorts: Concerning the Method of resolving Geometinual lroblems algebraically, Concernitg y^{*} method of solving Geometrical Questions Algebraically.
Treatment of topics.-Many interesting passages show the spirit and subject matter of these two notebooks, and at the same time multiply the evidence bearing on their common source Some important ones will be touched upon.
The clearness of explanation throughout may be illustrated by the treatment of signs in addition and subtraction, which begins as follows:

The reason of y^{*} Operation in Algebraical Addition and Subtraction may be easily understood by considering \mathbf{y}^{\bullet} uffirmative and negative Quantities like ${ }^{(1 H}$) ${ }^{2}$ ites as y^{0} Case is in Ballancing accompts. (Diman, p. 7; Langdon, p. 5).
Involution of Binomial Quantitles. . . . Consequently lf $y^{\text {r }}$ Numeral figures of Coefficlents could be found y° whole might be performed without multiplication and this is done by y^{*} following Problem. To find y^{*} Coefficients ill Bitnominl Powers. Rule. Sultiply y° Coefficient into y° Index of y° Power and I Hivide that I'roduct by y° Number of terms, counting from y^{e} left hand, antl y° Quotlent will be y° Coefficient-or Numeral Flgure of y° next successive Quantity. (Diman, p. 27; Langdon, p. 18).

Irrathomi Qumtitles are noted thus; $\sqrt{: 2} w^{\text {en }}$ is $2 w^{\text {th }} y^{e}$ Sign of Irrationnility $\sqrt{\text { : hefore it. . . . There is also another way of marking surd Quantities }}$ Where Rents are expressed without y^{0} Radical sign by their Index, this is fommed ujon y^{e} manner of expressing l'owers, thus as $\boldsymbol{x}^{2}, x^{2}, \boldsymbol{r}^{4}$ signifies $\boldsymbol{y}^{\text {e }}$ Nquare, Cube \& Biquadratick of x : so $x \frac{1}{2}, x \frac{1}{3}, x$ will accordingly signify y^{0} Square, Cube and Blquadratick Root of $\boldsymbol{x} . \ldots$ and w^{0} at any time there is y^{*} Sign of Irrutionality prefixt to mixt 'Quantities with y^{c} sign of Inseperation (sic) over y^{m} thus: $\sqrt{:}{ }^{3} \overline{7+v: 2}$ it is called n unliersal Root. (Diman, f. 33 f ; Langlon, p. 23f.)

There are seven methods of "Reduction of Equations." The seventh, "Reduction of Analogies to Equations \& é Contra," is illustrated by Ex. 1:
Reduce $y^{\text {t }}$ Analogy $x: 4: 2 x, 4 \times 4=16, x \times 2 x=2 x x,{ }_{2}^{2 x x}=\frac{16}{2}=8$ per, $16 ; 6$ Euclid, $\boldsymbol{x} x=8$ (Dimin, p. fis ; Langdon, p. 31).
Under "The Method of Resolving Algebraical Questions" we find:

This part of Algebra is wholly arbitrary \& everyone is left to himself to pursue his own particular Genius and way of thinking, which is so far from being a Defect y^{t}.it is one of y^{*} Chief Excellencies of this Science, which may from hence not unjustly be called a sublime way of Reasoning. (DAman, p. 62; Lang don, p. 33).

Eight rules precede the set of questions under "Simple Equations," and these are accompanied by illustrative examples, employing letters throughout. The method employed in the questions can best be understood by examining one of them. This one bears the same number in the two manuscripts.

Introduction to cubic equations in the Piman (1730) manuscript from Harvard College
Quest. 25. 1 am a Brazen Lyon, my two Eyes, my Mouth \& y° Sole of my light foot, are so many several Pipes, which fill a Cistern, \mathbf{y}° Right Eye In 2 Days, y^{0} Left in 3, \& y^{*} Sole of my foot in 4, but my Mouth can fill it in 6 hours, tell me in \mathbf{w}^{t}. time all these together, my mouth, my Eyes and my foot will fill y Cistern. (Diman, p. 77; Langdon, p. 41.)
The unknown x is taken for the number of hours sought, and $\frac{x}{a}, \frac{x}{b}, \frac{x}{c}, \frac{x}{d}$ for the part of the cistern filled by the respective pipes. From these fractional values an equation is formed and a general
 numerical substitutions are made. This is the usual procedure in the solution of the questions. Diman gives 26 such problems to be solved, while Langdon gives 30. Twenty-troo problems are alike in the two works. The problems are mixed in their nature, Diman fatoring somewhat the more mechanical kind and Langdon the more practical-practical for the day in which they arose, if not for theirs nor for ours. They include age, merchants trating for linen and pepper, umbers multiplied, divided, and operated upon in a variety of ways, the vintner, the man who found poor persons at his door ready to receive alms, clocks, the shepherd in time of war, cisterns, noblemen traveling for pleasure, the gentleman who hired a servant, a general setting his army in square array, two persons discoursing ahout their moncy, and partnership.
"Adfected Quadratick Equations" are considered under three forms, and "Fach of these Forms may be Resolv'd 3 several ways." The first of the methods shown is:

Mr. Oughtreds ${ }^{14}$ Methow of Solving Quadraticks . . . Rule. Multiply s^{0} absolute Number by four \& add thereunto y^{n} Square of y^{n} Differential Quantits, y^{n} Square Root of \mathfrak{y}^{n} minus x^{n} Differential Quantity heing divided by two, is y^{e} Guantity Sousht. (Itiman, p. is: lamgion. p. fial.

The second method is "The Solution of Adfected Equations by taking away $y^{\text {e }}$ Second Term." (Diman, p. 81; Langdon, p. 46.) In this method $y-1 / 2 d$ is substityted in the equation $r^{2}+r d x=m$; whence $y^{2}-y d+1 / 2 d^{2}=r^{2}$ and $y^{2}=m+1 / 4 d^{2}$ or $y=\sqrt{m+1 / 4 d^{2}}$.
The labor involved in removing one term is admissible only from the standpoint of the interest inherent in a different manner of solution.
The third of the three methods given for the treatment of the quadratic equation is "The Solution of Adfected Quadratick Equations by y^{c} method of compleating y^{c} Square." This method is the familiar one known by the same titde at the present time. A set of 25 problems follows these three methods, and the two manuscripts agree in the problems and in the order of them with a single exception. It is of especial interest to note that, in connection with the solution of question 7 of this set, the Langdon manuscript (p. 49) gives an imaginary number in the result. This is the only approach to an imaginary in either of the manuseripts, and indicates scholarship on the part of the author of the notes as well as ability on the part of his pupil.

Subject matter of an advanced nature.-Up to this point the subject matter has been largely that of the latter-day secondary schools, although the spirit of the texts is in many respects more mature. The next topie is usually included to-day in a college course in algebra and shows that work of a.high order was being done at

Introduction to cublc equations in the Langdon (1730) manuscript from Harvard College
Harvard in 1730. It begins with "The Resolution of Cubic Equations."

The first method employed in the solution of these equations is that of Substitution. (Diman, p. 94 ; Langdon, p. 54.) An outline of the problem solved in modern form reads as follows:

Given $x^{2}+120 x^{3}-300 x=371.4544$. Let $a=b+c$.
Then $(b+c)^{2}+120(b+c)^{2}-300(b+c)=371.15414$

- Or $1^{2}+3 b^{2} c+3 h r^{2}+r^{2}+120 h^{2}+230 b c+120 c^{2}-3001-300 c=371454$
$\dot{9} 71451 \dot{4} b=100$
Substituting in all terms antaining b almne,
$u^{2}+120 b^{2}-3001=2170000$
$3714,5-2170000=15.1541$ st Invidend
Substituting for b in all terms which enitain r with some other iftter or unmber $3 t^{2}+3 b+2401+120=55120$
Then $1544544 \div 5 \% 120=20=c$
Substituting values of b and c in all the terms containing c,
$3 u^{3} c+3 u c^{3}+c^{3}+2!0 b c+120 c^{2}-: 300 c=12: 0011100$
1544544-1250000=2945.14 2nd Divilend
Then make b equal the former $b+c$ or 120
Substituting for b in the terms containing c.
$3 u^{2}+3 b+240 b+120-300=\tau, 2150$ $20.5544+72180=1$, a new 0
Substituting for $b \& c$ again in the terms containing c, $3 b^{2} c+3 b c^{3}+c^{2}+2.10 b c+120 c^{2}-30016=29 / 544$ 29454-2945多 $=0$ Hence $x=124$.
The second method of solving cubic equations is by "Tryalls and Depression," and this is virtually an application of the remainder theorem. With the third method, "The Method of Converging Series," the more difficult handling of these equations appears. As defined in the book,
The Method of Converging Series is an Approximation, or orderly approach nearer \& nearer y° Truth y° more one works on ad Intinitum, by $w^{\text {ch }}$ means any Equation w ${ }^{t}$ soever elther Quadratick, Cubic, Biquadratick, Nursold \&e may tar answer'd to any degree of exactness. (Diman, p. 102 ; Langdon, p. 60).
ifter some further general remarks on this method, there follows "Mir Raphson's ${ }^{15}$ Theorems for Simple Powers." The theorem for " y^{\bullet} Biquadratick" is applied to extract " y^{e} Biquadrate of 90 ." In addition, there are "Mr Raphson's Theorems for adfected Equations. (Diman, p. 108; Langdon, p. 62.) The biquadratic equation aaaa4aaa=13894 is solved." The last section of this part of the work is devoted to "Dr Halley's ${ }^{\text {10 }}$ Theorems for Solving Equations of all sorts." (Diman, p. 110; Langdon, p. 6t.) They are theorems for obtaining approximate roots of numerical higher equations.
Geometric problems.-The book closes with a section "Concerning the Method of resolving Geometrical Problems Algebraically," a section which shows how completely geometry was under the sway of algebra during the eighteenth century. In the opening paragraph, the author writes:
But in Geometrical Problems is tho't sufficient to note only such Particulars as ure necessary to lend y° Geometritian to some known Theorem, whereby

[^4]y^{*} solution may be made. And to faclitate this I must advise y° Student always in Geometrical affairs, to consider y^{n} unknown Quantity as really known. Then Commaring y° several Quantities in y° Problem, note how they are related either directly or by Conserguence of any of Euclid \&e Demonstrations, (Diman, p. 114; Langdon, p. (6.).
Twenty-four problems of a geometric nature follow.' Diman uses * Latin throughout this set, while Langdon continues to use the

- English language. The problems are the same and are numbered alike in the two manusoripts. No statement of the problem in words precedes the solution, except in one instance. The diagram in each case is clearly marked. and the data given by reference to the dia-

Geometric problems solved by means of algebra in the Diman (1730) manuscript from Hurvard College
gram. The problem shown would read, "Given the triangle $A B C$, with the altitude $C D$ upon the base $A B$. Let a circle with center $\rightarrow D$ and radius $D \cdot L$ cut $C D$ in E, and a circle with center D and radius $D C$ cut $D B$ in $F .{ }^{" 17}$ Given $C E$ and $F B$ equal to a and b respectively and $A C: B C:: a: d$. Required the value of $C D$ in.terms of a, b, and $d . \quad A C$ is represente \AA by y and $C D$ by x, and the problen is solved by applications of the Pythagorean theorem and the given data.
${ }^{17}$ Langdon uses a triangle in which $C D$ equals $D B$, and bence $F B$ is incorrect.

There are scattered throughout the exercises many facts from Euclid, both definitely referred to and implied. We can not doubt that the pupils who studied this algelna, writing out these manuscripts as textbooks, had already taken a good course in geometry.
Sources of material.-The sources from which Greenwood drew his material can not, of comrse be known with any assurance. Certain striking resemblances to texts of the day which appear to be

Geometric problems solved by means of algebra in the Langdon manuseript from Harvard College
more than mere coincidences may be indicated and indeed some of these have been referred to in the description of the manuscripts. Hints are given by the writers. As already noted, Diman states that he used in his review Harris, Wolfius, and Chambers's Cyclopadia. Langdon at the end of the manuscript, on the inside of the last cover leaf, states that "The Diameter of a Circle being supposed, the Circumference is expressed by the following figuresvide Chamb. Dict.," and then gives the ratio of the circumference
of a circle to the diameter correct to 32 decimal places but without using any symbol for the ratio.
The bodies of the manuscripts furnish clues to further soffres of material, for in them appear the names of Raphson, Oughtred, and Dr. Halley. In all probability Greenwood had access to the original works ot these algebraists and may have brought copies of them back from England. In addition to these names, we lind "Such Demonstrations as may be found in approved. Authors such as Euclid, Apollolius, Archimedes." (Diman, p. 62; Langdon, p. 33.) 0

A reference to Chambers has already been made, showing that this eyclopedia may have been drawn on for the history of algebra. The meaning of universal root is given in practically the same words as those used in Chambers, viz " $\overline{\sqrt{3}: 7+\sqrt{: 2}}$ which latt is called an universal root." Vnder the topic "Reduction of Surds" two rather unusual terms heteroyencul and homogrneal, are employed, which seem to have heen taken from this source.

It is easy to believe that Greenwood drew some inspiration, if not actual subject matter, for the section on "Geometrical Problems"

- from Raphson's translation ${ }^{18}$ of Sir Isalac Newton's. Irithmetica Universalis. A comparison of certain introductory matter to the geometrical exercises found in the two works follows:

In the firstrPace, therefore, the calculus may bonssisted by the Addition and - Subtraction of Lines, so that from the Values of the I'arts you may flad the Values of the whole, or from the Value of the whole and one of the Parts, you may obtain the value of the other lart. ${ }^{10}$

1. The Calculus may be assisted by y^{n} Addition and Sultraction of Lines, so y^{t} from y^{*} values of y^{*} Purts y° value of the whole, or from y^{*} value of y° whole and one of y° Parts, y° Value of y° other Part may he obtafned. (Dimain, p. 114 f : Langdon, p. 66 f .)

The other two parts show the same similarities.
One of the successful and well-known teachers of mathematics of the seventeenth century was an Englishman by the name of John Kersey ($1616-1677$). He was the author of an algebra which was entitled: The Elements of that Mathematical Art commonly called Alyebra. The first edition appeared in 1673, and it was followed by other editions. On its publication, this work became a standard authority.
An indication that Kersey's algebra was used by Greenwood in preparing his algebra notes was given by a reference in one of the tiwo manuscripts. In stating the rule for the coefficients in the ex-
${ }^{18}$ Unircral Arithmetich Translated frotn the Latin by the late Mr. Raphson and revlsed and corrected by Mr. Cunn, London, 1720.
${ }^{20}$ Ibld., p. 89 f.
pansion of a binomial, Langdon (p. 19) says : "This is done by $\mathrm{y}^{\text {e }}$ following rule, givey by \mathbf{S}^{r}. Isaac Newton, see p. 139." Kersey's algebra is without doubt the authority referred to. Page 139 of that work consists of "A Table of Powers produced from the Binomial Root a+e." Further, the order of the chapters and the subheadings under them are in practically every detail those given by Kersey, and the manuscripts agree with this algebra in every one of the symbols nsed. " All of the 28 problems under "Simple Equations" in Kersey are found either in Dimun or Langlon.
(ireenwood was eclectic in his teaching, gleaning here and there the material lest suited for the instruction of his students. Evidence of his wide acquaintance with writers of books on mathematics and of his wisdom in the choice of subject mat ter are shown by this comparison of his work with some of the authors of the day.
Atyebra in the Ilareard consti.-The 1 wo mannsripts meler discussion bear a close resmblance to each other, 'sut they differ enough to indicate that the individualities of the stulents themselves phayed a part in the final productions. They are both unquestionably hased on a set of notes prepared by Professor (ireenwool to nse in a course at Ifarvard. Had he lived out his professional life, it is altogether -probable that we should have had from hie pen the first printed work (ill algelba written by a native Amoican.

Chapter III

THE NOTEBȮOK OF A PRINCETON STUDENT ${ }^{1}$,

Philipaticlers Fithian.-The journal and letters of Philip Vickers Fithian ${ }^{2}$ have been drawn upon extensively for pictures of life in Virginia during the time that he spent there as tutor in the home of Colonel Carter at Nomini Hall. It is not generally known, however, that among the papers ${ }^{3}$ relating to Fithian there is to be found a collection of problems which gives an insight into the work in algebra that was being tunght in the College of New Jersey (now Princeton University) while he was a student there.

Philip Fithian was a student at the College of New Jersey from 1770-1772, studied theology 17r2-73, and taught in Virginia for the year 1773-it. In July, 1ī6, he enlisted as a cliaplain in the American Revolution and served under Washington during the battles of Long Island and Harlem ILeights. He died near Fort Washing: ton, October 8, 1776, in his twenty-eighth year.

- Fithian kept a careful diary up to the time of his entrance to college and again after he graduated, especially during his stay in Yirginia. It is unfortunate that there is no trace of a journal kept during the years that he spent in college. Some incidental refer(nces throw light on the studies that he was pursuing. That he was familiar with several branches of mathematies is showr by, the following extract from his Miscellany:

A Declamation on the Dificulty of Composition: the second in the Junior Winter pronounced at Nasswlu Hall. Jaubury 10th Anne 1771 . . . And when all is done, I think it full as hard to hecome a compleat Master of the first of those divisions that is to he ahle to make a proper and concise Introduction to a Suibect as to hecome a compleat l'roticiont in Algebra and Fluctions: . . . as oll Euclid tehs us in his 16: pron: Lib, 3 is sufficiently evident.

[^5]It is apparent from this speech that algebra, Euclid, and fluxions were a part of the course in matrematics at the College of New Jersey during the period from 1770 to $1 \pi 72$.
Fithian's papers do not show any subject matter of these branches of mathematics except a set of problems in algebra, but such a set implies an excellent foundation along other mathematical lines. There are 99 problems altogether. The first 48 are headed "Problems of Saunderson," and problems 49 through 99 are indicated as rouing from Hill.
Saunderson problems.-The Saunderson problems are taken from a work entitled: Select Parts of Professor Saunderson's Elements of Algebra. ${ }^{4}$ This work is an abstract of a long treatise on algebra by Xicholas Saunderson, the blind mathematician. The problems in the Fithian notebook'are found on pages 121-149 of the Saunderson work, under the heading, "The solution of some problems producing simple equations." They resemble the usual problems of the day, problems relating to numbers, age, a fish, distribution of money, debtors, hiring a servant who was to forfeit money the Wilys that he did not work, couriers, shepherds in time of war, and so forth.
litl problems.-The second group of problems is drawn from a work by ohn Hill which ran through many editions, although it is a curious collection of mathematical topics under the title: "Irithmetick, both in the theory, and practice . . . with the addition of several algebraical guestions. The like not extant." ${ }^{\circ} \mathrm{De}$ Morgan" says concerning the 1745 edition of this arithmetic:
This is the seventh edition of a work of much celehrity. It seems to have
owed its fame pgrtly to a recommendation by Humphrey Ditton, prefixed to
the first edition (about 1712), praising it in the strongest terms. Perhups at
this time the only things which would catch the eye are the tables of loga-
rithms at the end, und the powers of 2 up to the 144th, very useful for laying
up grains of corn on the squares of a chess-board, ruining people by horse-shoe
largains, ant other approved problems.

Hill gives, on pages 365-382, ninety-nine "Problems or Questions in Algebra," with neither explanations nor solutions. Fithian's set begins at the forty-ninth and continues to the end, problem by problem agreeing with the like-numbered one in Hill. Most of these problems lead to quadratic equations. Other general features of them inclade radicals, proportion, fractions, and equations of the quadratic form. Hence it is obvious that we have in Fithian's notebtok a good set of exercises under the two topics. "Simple and Quadratic Equations."

[^6]Willium C'hurchill Ilouston.-Fithian studied mathematies under William Churchill Houston. Houston received his early education in North Carolina at Alexanders Academy. He was appointed a teacher in the Princeton Grammar School just as soon as he had matriculated and retained his position during most of his college course.
In 1768 Houston wis appointed senior tutor, and that same year he graduated with the highest honors. In 1771 he received the A. M. degree. Sow, in 1768, John Witherspoon became president of the College of New Jersey. Under his leadership the curriculum was enlarged by the introduction of new courses in Hebrew, French. and mathematics. It was at this time that the professorship of mathematics and natural philosophy, "as most immediately requisite." was estallished, and Mr. Inouston was the first man to occupy the chair. His rork went on from 1761 until the outbreak of the American Revolution when, owing to the abandonment in the autumn of $17 \pi 6$ of work at the college, it was iliscontinued. He was a member of the Continental Congress, clerk of the supreme court of New Jersey, and delegate to the Constitutional Convention of 1787 and to Annapolis. By the winter of $17-8$ Houston was back again in his oll position, which he held until 1783.

The scholarship and character of this mathematics professor must have made a deep impression on his students, with whom he came into daily and close contact. And this is the man under whom Fithian did the problems which have been preserved with his journal and letters.

[^7]
Chapter IV

A MATHEMATICAL NOTEBOOK FROM THE UNIVERSITY OF PENNSYLVANIA

"Mathematica Compendia."-Mathematics held an important place in the curriculum of the University of Pennsylvania during the eighteenth century, as is shown elsewhere, and the existence of a manuscript notebook which belonged to a student at the college emphasizes the strength of this position. This notebook consists of two volumes and bears on its first page the words: "Mathematica Compendia: or A Short System of Mathematical Literature as it is taught by Robert Patterson A. M. Mrofessor of Mnthematics in The University of Philadelphia, Angt 26,1788 . Sami'. Miller." ${ }^{1}$
The first volume of this work contains 170 pages, 33 cms by 19.2 cm . It begins with "Algebra" under the date "Augt. 26, 1788." This is followed by "Practical Geometry," "Trigonometry, begun September, lï88," five-place" Logarithims." "Oblique Spheric Trigonometry," "Mensuration of plame figures" including "A rea of ellipsis." " Mensuration of solids." and "Sterengraphic Projection of the sphere." The second volume contains 10 pages of the same dimensions as the first. The subjectstreated 菑re"Conic Sections," "Surreying." " Navigation," and "Spheric Geometry." Fluxions are used to find the length of a curve, but there is no formal presentation of the subject.
Out of 170 pages of the first volume of this compendium, $i 1$ treat of algebra. The topics in the words of the text are as follows:
Definitions, Praxls on the Signs. Addition. Subtraction, Mumplication, Distsion, Involution, Evolutign. Furmation \& Resoluthon of Equations, Method of resolvinf Questions that contain two Equations and two unknown quantities. Quadratic Equations, Method uf resolving questions that contain three Equations and three unknown guantities, Resolution of Adfected Equations he the unlversal method of Converging Series, The manner of resolving Equations where the unknown quantity is to sederal powers in both Equations. The method of resolving questions which contain four Equations \& four unknown quantities, and Promiscuous Questions,
Throughout the text, rules are, given, and these are followed by examples. Under equations, "Simple, Quadratic \& Adfected" are defined in detail. Fractional and radical equations are found in

[^8]the questions which follow these definitions, hut no explanation is offered of the special treatment which nist be accorded them. Eighteen questions exemplify simple equations. The treatment of the prohlems is made unnecessarily hard by the insistence on the use of letters in the first statement of the equation and its later working out, with the substitution of the numbers given in the problem at the end. There are many purely literal equations among the sets of problems. No attempt is made to place the problems of a geometric nature in a special section.

The most advanced work is that under the topic "The Resolution of Adfected ${ }^{\circ}$ Equations by the universal method of Converging Series." The solution of the ninety-fourth question illustrates this method and shows also the kind of work in algebra thyt was being undertaken in the University of Pennsylvania in 1788. Professor Patterson, who compiled the material for this notebook, must have believed in problems more than in. mechanical work. This section on algebra, covering 71 pages, contains 110 problems. The solutions of many of them are very long, unnecessarily so invome instances. But it is significant that so much space should have been devoted to the application of the engebra to problems rather than to tedious work in operations.

Robert Pritterson. - This account would he incomplete without some record of the man who worked out such a good course in mathematics for his students. Robert Patterson ${ }^{2}$ was a Scotchman, although he was born in Ireland in 1743. Robert early showed promise of his mathematical ability. When he had completed his first formal schooling, he gave evidence of his adventurous and ambitious spirit by setting sail for the New World. He came to the Colomies with the firm intention of beoming a schoolmaster and soon succeeded in impressing his qualifications on the proper authorities in Buckingham, near Philadelphia. He later removed to Philadelphia and offered instruction to navigators in methods of calculating longitude from lunar observations, and related matters.

During the American Revolution, Patterson devoted himself to the cause of liberty, and acted for some time as military instructor. He entered the University of Pennsylvania in $1: 79$, receiving an appointment fist as professor and later as vice provost, and remained there for 35 years. The college honored him with the degree of LL.D. in 1816. After holding various offices in the American Philosophical Society, Patterson became its president in 1819, which office he filled until his death in 1824.

Professor Patterson was a great teacher, but he scems to have written little for publication. In 1818 there appenred a work en-

[^9]titled: "A Treatise of Practical Arithmetic, intended for the use of Schools; in tro parts." The "Explanatory Notes" of Part I have some interest in comnection with algebra. Patterson edited American

Solution of a cubic equation from the notebook of a Liviversity of Pennsylvania Ntudent in 1788. Doctor Pell introduced the "method of registering. the steps"
shown here
editions of several English works on arithmetic, natural and experimental philosophy and astronomy, and in some cases added an ap-
pendix to the. edited work. ${ }^{3}$ Besides the Mathematica Compendia, he prepared a work on navigation for the use of his students which is also extant in notebook form. The title-page of this book carries the superscription: " Note-book of Samuel Hayes. Philadelphia, - 7789. Navigation by Robert Patterson, A. M."4

If Robert Patterson had lived in a day when paper and printing were relatively inexpensive. he would have published both the "Ma-

- thematica Compendia" and the "Xavigation." The chatacter of these works called for their publication. In his long years of service as professor in the Cniversity of Pennsylvania, he might have accomplished greater things by the ust of textbooks than by the more tedious dictation of lectures.

[^10]

MANUSCRIPT MATERIAL FROM MISCELLANEOUS SOURCES

Manuscripts by Robert Brooke.-Another set of notebooks which were probally prepared, at least in part, under the direction of Professor Patterson is that dy Rolert Brooke. Ile is given as a nongraduate of the University of Pennsylvania, presumably of the class of $1 \%!3 .{ }^{1}$
The first ${ }^{2}$ of these looks bears the superseription. "Robert Brooke, His Book-March 10, 1is3. Arithmetick." It contains 180 pages 20.5 cill. by 33 cm ., covering the sulject of arithmetic in a complete fashion. A second book, dated 1792, is on "Practical Geometry." While Brooke was given to dating his work rather freely, he failed to set cown any indication of the time at which he began to prepare the material on algebra. This part of the notebook consists of 41 pages. 19 cm . by 33 cm ., and has a complete set of algebra topics. They bear a resemblance to the Mathematica Compendia by Robert Patterson, and the work was probably done under him, although this is a briefer course. The topies are as follows:
Definitions. Praxis on the Signs. Addition, Sultraction, Multipliention, Divisiun, Involution, Minomials, Multhomials, Bxolution, Fractions, Simple Equations, Equations with Two Cuknowns, Quadratic Equations, Adfected Equatlons.
The survival of earlier symbols and forms may be noted in this work. The signs for inequality are the Oughtred symbols found in the Harvard manuscripts, but in the opposite order, and hence they resemble the present-day symbols.
Still unother undated book contains no name, but is unmistakably in the handwriting of Robert Brooke. It consists of 36 pages and deals with the "Application of Algebra to the Invention of Theorems." These applications are made to-
Arithmetic Progression, Geametric Progression. Annulties, Compound Interest, Extractlon of square Ront, Mensuration of Superficies, Mensuration of Solids. and Spherle Trigonometry.

[^11]Other notebooks by the same man are devoted to: "Applications of Plain Trigonometry to Astronomy," "Spheric Geometry," "Applications of Astronomy,", " Dialing," and "Fluxions."
There is sufficient resemblance between the notebook on algebra by Robert Brooke and one by Andrew Porter, jr.. to warrant the indusion of the Porter book at this point. The latter was "Andrew Porter jun.r.'s Book 1702." ${ }^{3}$ Thirty-nine pages, 19 cm . by 31 cm ., show. a fair knowledge of elementary algebra and constitute an abbreviated edition of the algebra work by Brooke. The order of topics agrees with this same book as far as "Quadratic Equations." Only the heading for that topic appears, and the work stops there. Symbols and forms and, in some cases, exercises are the same.
"Prarticul Mathematics."-Brief mention will now be made of such other notebooks contathing algebraic material as have been found during a careful search in many libraries of the East. The number of these books extant does not compare with the number containing arithmetic, and yet a bit of algebraic material crops up in the most unlooked for places. A set of five volumes beautifully printed by hand, by one Thomas Sullivan, in 1796, is entitled "Practical Mathematics." * Virtually every topic of interest in applied mathematics at that time is included in these volumes, as well as some purely theoretical work. A collection of algebraic problems in such a series could not prove to be other than an unexpected treasure. Algebra is used here for its applications under the heading: "The Application of Algebra to the Solution of Problems." These 24 problems are drawn from geometry, but are not of a really useful nature.
In a good piece of work on trigonometry by one Joseph King, which contains the date 1740, although ir another hand than that of King, familiarity with the use of letters in algebraice expressions is shown. The proportion $x: y:: y: z$ appears, followed by "Then $x z=y^{2}$ and $\sqrt{x} z=y$." Ten principles of trigonometry are given, and the tenth one reads: "By Algebra or Analytical Investigation."

Somewhat more extended is the algebra in "William Winthrop's Book, began June 6. $1769, "$ " and carried over into the year 1700 . This book has 20 problems and a fêw statements, such as "The Sum and Difference of any two Numbers multiply'd to-gether produces the Difference of their squares." Later in the book there are several pages on algebra in Latin.

Some of these notebooks give us side lights on the attitudes of the college boys who were compelled to prepare them. One ${ }^{7}$ such book

[^12]which starts: "Bought Jan. 3, 1786, Doctor Webber Philomatle. ${ }^{\text {8 }}$ Sumuel'Haven's Book, Cambridge University," ends with a telling comment by Haven on the well-known quotation from Pope, as follows:

> A litule learning is a dangerous thing Drink deep, or taste not the perian Spring For shallow Aranghts intoxicate the brain Lut drinking largely sobers us again.
S. Is. I hand rather be intoxicated than drink deeply of maflematical learning. The Aithor.
The author had not drunk deeply of algebra, becanse only 17 out of 167 pages refer to that subject; and only definitions, axioms, and the four fundamental operations are covered.
A later student at Harvard ine 1794 left even a briefer record ${ }^{\wedge}$ of his work in algelra. This student was Joseph McKean, who was afterwarels professor of rhetoric and oratory at this same college.
Airthenicl Bouditch.-A notehook ${ }^{\text {10 }}$ by Nathaniel Bowditch ${ }^{11}$ should be mentioned on account of its intrinsic interest rather than hecause of its bearing on the mathematical education of his day.

When Bowditch was about 14 years of age he heard a rague account of a method of working out proilems by letters instead of figures: he succeeded in borrowing the book, and was so much interested and excited lyy this, his first glance at algebra, that he could. not get the least sleep during the whole of the next night. ${ }^{12}$ Bowditch transcribed an immense number of mathematical papers from the printed Tremsurtions of the Royal Society of London and many other scientific works in order that he might have this material in his personal possession, but his book on algebra gives no evidence of luing so transeribed.
This notebook has the title: " N ATII ${ }^{\mathrm{e}} \mathrm{x}$ BOWDITCH his Book Aug. $23^{d} 1788$. He began to learn algebra on the 1st of August, lisi." The contents are the usual ones from "Addition of A1gebra" through "Solution of high adfected Equations." - The pecmliar character of this notelook of 114 pages is that through 80 pages of it the catechism method is used. And this seems to indicate that Bowditch worked out a textboek of his own, using the subjert matter of other works. Indeed. 'he refers to "Mr. Ward" in

[^13]several places, to "Cocker" and to "James de Billy's'algebra." Elsewhere in his mathematical material he refers also to "Dilworth," and Dilworth did employ this method.
: This is such a late survival of an earlier method that one illustration of it is cited. \wedge

Dialogue 1.
Between Philomathes \& Tyrannaculus concerning addition, Substraction, Multiplfcation \& Division of ulgebra.
P. as you understand Vulgar fractions \& know the Slans \& characters (Ne) you say the very frst thing that I shew you will be addition.
T. how is addition in algebra performed.

1. the same as common addition provided the slgns be both affirmative or loth negative us you will soon tind by the four following cuses.
T. I understand all but the fifth for I cannot at present concelve that +4 " added to -42 can be equal to nothing. I should think rather that substructIng them they would be equal to nothing.
P. that is your mistake for their difference is 84 hecause the Negative sign mukes soid the affirmative.
T. I ask parilon but I do not rightly apprehend it.
P. I think you are a little Dull now. Io you not remember that I told you that this Sign (-) signifles a want or Deticiency so many times less than nothing us the figures after it express.
T. Yes I do.
I. Observe then suppose you stond Indebted to a person 542 and had no effects of any sort to pay the delt there it is plain you would be 42 t tmes worse than nothing that is have 42 times less than a reni promerty of your own. Now if a friend should give jou $£ 42$ to pay of the debt and you do so still it is plain you would have Nothing in hand to begin the world again with consequentys then +42 added to $-42=*$ or Nothing.
T. I am very thankful Philomathes for so plain a demonstration.
Δ generous portion of the notebook is devoted to problems of all possible varieties. The one quoted is in rhyme, and so the book illustrates the old rhyming arithmetics as well as the dialogue method.
Problem 114th. four Virtuous Damsels would be folned for life -
Come Batchelors Come now and chuse a wife
Phoebe is young. Stella has charm-but hold
Astrea has Virtue-old Aurllea Gold
Proportion Geometril their fortupes clalm Phoebe has least Aurllea, a Rlch Dame Their fortunes sum does in the margin Stand Take Beauty VIrtue youth or house and land Divide each fortune by Just twenty-four And youl thelr ages Easily Exploré.
End of the notebook custom.-This custom of keeping manuscript mathematical books does not seem to have died ont until well into the nineteenth century. "Conic Sections. For the use of students - in Union College by William Allen, A. M. Prof. Math. et. Nat. Phil. in. U. College Schenectady state of New York. Transcribed by and for John S. Mabon, Jan. 1st, 1805," contains 60 pages on advanced
algebra. ${ }^{13}$ "Ebenezer Gay's Property. Algebra $1807-08$ " is a student notebogk which extends through cubic equations. ${ }^{14}$ A notebook which records only the date when it was finished reads on its title page: "End of Algebra 4 February 1813 Elisha Fuller Merrimack AD 1813." ${ }^{15}$ Fuller's work is excellent and is carried through the - solution of cubic and higher degree equations.

By the year 1814 several reprints of English algebras had appeared, and in that year an algebra by an American author was published. ${ }^{18}$ Textbooks were in the hands of students, and the unirersal custom of student textbook making had practically died out. Notebooks were kept, as a student might keep a book to-day, for work supplementary in its nature, or to meet the whims of a particular professor.

[^14]
Chapter VI

COMMENCEMENT THESES

A commencement custom.-Commencement theses constitute ofiginal source material of quite another nature from that of student, notebooks. I thesis has come to mean generally a completed essay or dissertation presented by a candidate for a degwee. Another meaning, in less common use, attaches to it, however. This meanind makes a thesis to be a statement of a proposition which is to be estambished hy arqument, implying that objections may be raised and answered. It is with this latter significance that the commencement theses ${ }^{1}$ of Ilarvard, Vale. Rhorle lstand College, and the College of New Jersey during the eighteenth century will be considered.

Several accounts of these early commencements have come down to us. The carliest one relates to the custom at IIarvard in the seventeeth censury, and is found in two references from the Matmalia, by Cotton Mather. It is as follows:

When the commencement arriver, . . . they that, were to proceed Rachelors, held their Act publickly in Cambridgc? whither the Jagistrates and Mimistres, mul other Genflemen then came, to put Respect upon their lixarises: And these Exerctses were hesides an Oration usually made by the president, Orations both Salutatory and Valedictorlm, male hy some or other of the Commencers, . . But the main Exerowes were Disputations upon Questions, wherein the Rexpondents first made their Theses.

It the Commencoment, it has leen the Amual custom for the Batcherdors to publish a Sheet of Theses, pro virili Defendemelaf, upon nll or most of the Liheralt, Arts; among which they do, with n particular character, distinguish thuse that are to be the subjects of the Publick Disputations then before them; and those Thescs they dedicate as handsomely as they can, to the lersons of Quality, hut espechaly the Governour of the I'rovince, whose l'atronage the ('olledge would he recommended unto."

[^15]These commencement theses were printed in the form of broadsides." The programs start with it dedication, the last part of which is a variation on the statement:

Theses haser jam in Ldeem wlitas, quas, Itor farente, Iro Vibus defendere, conabuit ur Juvenes in Artibus Initinti, tnm submisse, quam lrumillime. (These theses now brought forth to light, which with the favor of God, young men who lave jucen admitted to the art will try to defend as humbly and modestly as pussible).

7bris PIITS/C E ${ }^{\text {(Comph methíumi. }}$
${ }^{1}$ PHTSIC A or Ars Natury wigis, invenizandi,

: Fimatron ef natu a Pisucipuan.

- ia ur fpacium bes noa dasur Loras.

- Molye in Imp-ivi mbervo infpreft, proparioasalia*.

 10 Calot per rtenfurifam pailisulasuin minampion Agitationem I ariritionan. phedacirest.
it Seotratio ent prodedio rei er Prncipus pizezi Restibor per

${ }_{21}$ Titir inotua frab igne fobterian.J
14 Elevitio Vapoinan or Ratefatititre.,
If Dater Tiaplanatily My siticiaza,
 is Seratile at ger coacu filonvon, Nerverum.

as Imatar Infegtorom Metamotphoset
${ }_{2} 3^{3}$ Abimt iatíontils putel agere Inorganice.

is Omna Corporsczleftio nun ferimnt in Maffa pima contrata

 (wealventen
Pradialtems

 6is Antectit \mathbb{D}_{2} atio (alutatozian.
 CUTE NSIS, Die Dwinsspamirie NDCCXYILS

Theses from the commencement program of Vale College in 1718 , Elght of the theses rolate to algebra

Then follows a list of the candidates for the baghelor's degree. The theses are next set down and are classified under "Technologicae," "Logicae," "Grammaticne," "Rhetoricae," "Mathematicae," and "Physicae," usually a hundred or more on one sheet. As time goes on other classifications are included. Heginning with 1751, "Theses Metaphysicae," "Ethicue," and "Theologicae" are found. Not until 1778 do "Theses Politicae" appear, and still later "'Theses Geographicac," Historicae" and "Astronomicae "enter.

[^16]These theses more than any extant material show the content and character of undergraduate studies during the early years in whtch they were printed. It is admissible in this work, however, to enlarge only upon the course in mathematics implied in them, at the same time laying emphasis upon the early appearance of algebraje truths and their subsequent inclusion in most of the commencement programs.

Fale mathematical theses in'1718.-The two broadsides which have been chosen for discussion are the earliest ones from Yale and Harvard which contain algebra theses. The broadside for Yale of 1718 is also the earliest one from Yale extant. ${ }^{4}$ The English translations of the Latin theses on mathematics are introduced at this point.

M"NHEMATICAL THESES, YALE, 1718

1. Malnematics is a set of rules for computing quantity.
2. Discrete quantity is the bbject of arithmetic, continuous, however, of geometry.
3. Unity is a part of number.
4. Ciphers to the left of a whole number have no value, but they decrease the value of a decimal fraction.
5. Multiplication by a decimal fraction division increases it.
6. Algebra is the doctine in which by comparing knowi quantities with unknown, difficult questions of arithmetic and geometry are easily resolved.
7. The fundamental parts of algebra are numeration and equation.
8. Algebraic number gives neither greatest nor least.
9. Subtracting a negative from an affirmative increuses quantity.
10. The product of two negative quantities produces an affirmative.
11. When quantities In both the dividend and divisor are the sume, the quostient is unity.
12. An algebraic fraction is multiplied by taking out a factor of the denomi-

- nator.

13. What is involved by involution is resolved by evolution.
14. In a proportion, the product of the extremes is equal to the product of the mpans.
15. An equation is solfed by transferfing all known' quantitles to one side of the equat p_{p}.
16. Primary logarithms are formed by the repeated extraction of the square root.
17. Secondary logarithfins are produced by the addition and subtraction of primary logarithms.
18. All rectilinear triangles contain two right angles.
19. Given the base and altitude, the angle at the base can not be found by the use of a line ofesines.
20. Sines of angles are proportlonal to the opposite sides.
21. Trigonometrlc problems can be solved most accurately by the use of logarithms. .

[^17]22. A circle can be measured in the same manner as a right-angled triangle.
3. The area of a sector can be found without knowing the area of the whole citrcle.
24. Surface is width and length without depth.

25 . The surface of a sphere is four times the area of its largest circle.
26. The declination of a star is its distance from the equator, the latitude its distance from the ecliptic.
27. The right ascension of a star is its meridion distanee from the beginning of the Ram [rernal equinox] numbered by degrees on the quator, the longitude on the ecliptic. \therefore
28. The amount of time from midday to midday is not always the same.
29. The angle at the base of a horizontal sundial must agree with the elevation of the pole.
30. The solar pole must be elevated in agreement with the complement of the latitude of the locality.
L. Let us now examine in some detail these mathematical theses. They include two general [1, 2], four arithmetic [3, 4, 5, 11], eight ,algebraic $[6,7,8,9,10,12,13,15]$, seveñ geometric $[14,18,19,22,23$, $24,25]$, two logarithmic [16, 17], two trigonometric [20,21], and five astronomical [26, 27, 28, 29, 30] statements. Here, then, we have in the year 1718 algebra and trigonometry in the college course at Yale along with arithmetic, plane and solid geometry, and astronomy, the last three of which had been looked upon for centuries as essential parts of a liberal education.
The theses show a wide divergence in degree of difficulty. The fourth thesis, with its statement concerning the placing of ciphers to the left of significant figures in whole numbers and decimals, is probably known to every first-year grammar-school child to-day, while the twenty-fifth, which gives the area of the surface of a -sphere, is known only at the end of a high-school course or during the first year in college.

The statements in geomefry show that demonstrations were included in that branch of mathematics, and not merely geometric constructions with no accompanying proofs such as form a part of many of the student notebooks of the eighteenth century. . The defense of the thesis that "all rectilinear triangles contain two right angles" involves a geometric demonstration, as do most of the other geometric statements in this set. Logarithms might have been taught mechanically, but the law of siǹes must have been developed in connection with a course in trigonometry, even if it was a limited one. Declination, right ascension, latitude, longitude, and gnomon are all terms that imply familiarity with mathematical and not merely descriptive astronomy.
Algebra theses in 1718.-The algebra theses on this 1718 program possess peculiar interest, and emphasis must be laid on their presence among commencement theses as early as that year. This is, as far as research so far conducted shows, the first direct evidence of the
teaching of algebra in the American Colonies. By 1718 a class of boys had studied this subject one or two or three years, and these students were now ready to argue for the truth of certain algebraic relations.
On this particular program the number of algebraic truths is greater than that of any other mathematical subject. Algebra appears in the sixth statement in all its power when it takes the form of a magic wand waved over abstrtise questions of arithmetic and geometry. A modern dictum, that the equation is the central topic of algebra, occurs in the seventh thesis. In number eight is given one of the distinguishing characteristics of the subject, the extension of the number system to include positive and negative quantities without limit. The other statements lead to the conclusion that only the initial steps had been taken at this early date. But any beginning at all was a hopeful sign that the tutor of mathematics at Yale had the courage to break away from the accepted curriculum and to introduce the subject which had developed so rapidly in the preceding century.

- Samuel Johnson "and Algehra.-At this time Samuel .Iohnson ($1696-1752$), who was later called to be the first.president of King's College (later Columbia College and at present Columbia Cniversity), was the sole tutor at Yale College." He had been sole tutor for two years since his appointment in the fall of 1716, and his name appears among the graduates of 1714 as "Samuel Johnson, Mr. Tutor," on the Yale program of 1718. Certain notebooks and printed books ${ }^{6}$ contribute to our knowledge of the lines of work that he was following as tutor.

One notebook in Johnson's handwriting carries the words: "F Libris Samel Johnsoni Anno Dom. 1717." It contains the following scheme of mathematical subjects, which he doubtless gave to his pupils:

Arithmatic is the Art of Numbering heth of Integers \& Fractions. Appenduges hereunto are 1. Decimal Fractions. 2. Logarithms. 3. The Extraction of lioots. 4. Algehra.

Geometry is the Art of measuring hereto helong the Treatises 1 . of Trigunometry Plain \& Spherical 2. Geodesia of Surfaces. 3. Stereometry of Solids.

In another place in this same notebook, there occurs this list:
"Mathematicks, Arithmatic, Geometry, Algebra, Trigonometry, of Numbering \& Measuring."

Sęveral very detailed outlines of the parts of mathematics are written on the first blank pages of a copy of Sturm's Mathesis Juvenilis ${ }^{7}$ Which has on its last page, "Libris Samuelis Johnsoni. Col.

[^18]legii Yalensis Nov. Port. Anno Dom. 1718." This work must have yielderl material for Johnson's classrom use. It is quite certain that his pupils had no textlooks, but it is to be hoped that no one of them wrote concerning him what he wrote while he was a student at Yale. This frank confession is found in a notebook dated 1514:
Ho when I was at Colledg I was taught nothing hut to be a fonceited Coxcomblikie those that tathat me. Indeal we hat no Bowks is sur Ignorance made us think we neelled nome so that we dug everything atmost out of our own brains as a certain Gent of those times, used to say was lis way.
In September. 1ヶ18. Daniel Brown, a classmate and close friend of Johnson, was chosen junior tutor at Yale, and together they carried on the work of instruction until the following year. On the first. blank page of a copy of Euclids Elements ${ }^{*}$ is found the following interesting indication of the ownership of the book:

> Daniel Brown's Book Decr 251717
> Samuel Johnson's Berk 1718 bought of Mr. Brown

Most of the propositions in Book II of the Elements have marginal not in Brown's handwriting, giving a complete algebraic treatment of them. At the time that Brown owned this book, he was rector of the Hopkins Grammar School, of New Haven.
Nothing can be said definitely about the bearing of this algebraic material on the course of study in either the grammar school or lale. Both Johnson and Brown were excellent scholars and students. They were also successful teachers, and enthusiastic study led, in Johnson's case, to a reaction in his classroom which took at. least one form, that of the first presentation of algebra at Yale College.
Mathematical thestrs at Ilarrard.-The carliest of the extant theses of Ilirvard College which include any mathematics were printed in 1653 and cover "Arithmeticae" and "Gaometricae." On the set of theses for 1708 , we find ones which read: "Arithmetica et Geometrin tantum sunt artes pure Mathematicae" (Arithmetic and geometry are pure mathematical arts), and "Astronomin est Scientia Mathemaitica mixta" (Astronomy is a combination of science and mathematics). Conic sections enter in 1711 with the statement: " Nullus Excentricitatis Gradus Circulum producit, Indefinito grado Paraboln producitur" (So degree of eccentricity produces a circle, but a parabola is produced by an indefinite degree of tecentricity). In 1719 two statements show that fluxions had gotten a foothold: one is to the effect that "Fluxio est Augmentationis vel Diminutionis

[^19]
quantitatum fluentium Velocitas" (1 fluxion is the velocity of an increasing or diminishing flowing quantity), and the other that "Fluxio ex quantitate Guente Invenitur" (A fluxion is found from a flowing quantity). The theses of this same year include one on the fourth subject of the quadrivium, denoting that music was still being taught as a branch of mathematics. The proposition to be argued is: "Dias et Trias harmonica sunt fundamenta contrapuncti musici" (Harmonic diads and triads are the foundation of musical counterpoint.)

The first set of extant Harvard theses to contain algebra is that of $1: 21$. The theses in this hroadside are classilied and arranged in the same order as those of Gale in 1718. Most of the mathematical theses are general in their nature, with few detailed facts from the various subjects. These cover about the same range as those on the Yale paper already discussed. They are presented in two divisions, "Mathematica Pura," and "Mathematica Mixta." Under the former there are two general statements and three subdivisions, viz, "Arithmetica" " (ieometria," and "Algebra"; under the latter are found "Astronomia" and "Musica."
Alyeliru, thexes at IIareard in 13:21.-The English translations of the statements relating to algebra are as follows:
4. Any "̈uantity has to the considered from two viewnoints. viz. wither as a number or as a magnitude; the one is the olject of arithmetic, the other of geometry, and both of algelora.
12. Algebra is the art of reasoning with unknown quantiles in order to define their relations to known quantities.
13. Arithmetic proceeds from given to reguired quantitles; algebra, however, from quantitles sought to thuse siven.
14. Multiplication of concrete ["concretarum" means here "that which is grown together "] quantities is when some quantity involves the multhplicand in such a relation as the multiplier [involves] unity.
15. In diviston the difidend involdes the quatient in the sume relation as the divisor [involves] unity.
16. The moments of any generated quantity are equal to the moments of all the generators with the exponents of their powers and their coeffictents in continued multipilcation.
These theses give no indication of the ameunt of subject matter that was being undertaken in algebra. The inclusion of number 16 shows that algebra and fluxions were closely associated. A greater degree of maturity in the student or in his familiarity with the subject was needed to handle these truths than would be needed to prove, for instance, that the product of two negative quantities is an affirmative quantity. A power of generalization on the basis of algebraic facts was required to defend such theses as are here included.
Attention has already been called to one graduate of this class of 1721, "Isaacus Greenwood," as his name appears on the program.

Whatever his later study, Greenwood must have gotten a start on algebra in his college course that awakened a love for the subject. This interest he passed on to his students when he became the professor of mathematics at Harrard College.

The recurrence of certain theses on the commencement program of the same college and of the different colleges has an element of interest. A favorite one which oecurs, with slight variations in wording, at Yale in 1720. Harvard in 1731, Brown in 1773, and Harvard again in 1780 , is the following: " Duo numeri hiquadrati summatim sumpti numerum quadratum constituere non possunt." (Two biquadratic numbers taken at random can not constitute a square, Yale, 1720.4). ${ }^{\circ}$
The ci ${ }^{\prime}$ " of presenting theess at commencement time continued in force. Will the principal colleges until well into the nineteenth century. A careful examination of the theses of Harvard, Yale, Rhode Island College, and the College of Sew Jersey shows that algebra appears among them at frequent intervals until the custom passed away, Its omission is apparently due to a greater emphasis along another line in that year.

At Yale, from 1739 for several years, conic sections and higher plane curves were stressed with such theses as: "Cycloidis area triplex est ejus circuli generantis" (the area of a cycloid is three times that of the generating circle, Yale, 17:39, (i), and "Parallelogramma omnia, circa datae ellipseos vel hyperbolac diametros phaevis conjugaceas deseripta, sunt inter se aequalia." (All parallelograms described on conjugate diameters of ellipses or hyperbolas are equal, Fale, 1740, 17.)

Begining at an earlier date, 1735, ILarvard parallels this Yale record. From that year through 1750, a prominent place is given to statements concerning conic sections, cycloids, semicycloids. cissoids, spirals, and other higher plane curves. One instance of this is the thesis: "Conchoides, Cissoides et Curva Logarithmica habent unum Asymptoton." (Conchoids, cissoids, and logarithmic curves have one asymptote, Harvard, 1746, 2t.)

Flurions.-Then 1551 shows a radical change and a very interesting one. Fluxions occupy a leading place among the mathematical commencement theses to the exclusion of practically all the mathematical topics that had hitherto appeared, and this subject did not recede from its prominent position at Harvard during the eighteenth century. The fact that all problems in fluxions require a familiarity with the handling of algebraic expressions and operations should not be lost sight of at any time.

[^20]At Yale, fluxions appeared in 1758 , and during 25 years thereafter only a few sets of these lack problems in this subject. Some stu-

* Mathematlcal theses from the commencement program of Harvard College in 1751, the first year in which fluxions were prominent
dent defended the following truth: "Quatenus Algebra arithmeticae, eatenus doctrina Fluxionum algebrae antecellit" (As far as algebra
is superior to arithmetic, so far is the dentrine of fluxions superior to algebra, Yale, 1782,16), a thesis which required a knowledge of all three branches of mathematics.
This discussion may well conclude with a pronouncement which the changes in psychological fashions have in no way disturbed. It is as follows: "Mathesis studium disciplinam mentis optimam praebet." (The study of mathematics provides the best mental discipline, Harvard, 180s, 30.)

Chapter VII
 MATHEMATICAL THESES OF HARVARD COLLEGE

In quite a different rategriy from the enmmencement theses discussed in an earlice chapter are the poblems presented to the department of mathematics at IIarvard College hy the members of the junior and senior classes. There are 406 sets of these problems extant. ${ }^{1}$ the earliest one dated 1782 and the latest $1839 . .^{2}$ Many of them show the signatures of men well known in later years in various walks of life. Some provide information of conclitions at Harvard which no Tonger exist. Sll give to an unusual degree a picture of the work in mathematies done by the st udents whose names they bear.

Each set of problems is worked on one side of a sheet of heavy linen paper with borly enough to make it resemble a light-weight cardboard. The sheets are of slightly varying sizes, 18 by 14 inches, 19.5 by 15 inches, 23.5 by 18 inches, heing the measurements of a few chosen at random. The work is done by hand in ink, and at times the workmanship is exquisite. Many of the trigonometry problems ire accompanied by beantiful illustrations in color:

There are 79 sets of problems from 1 ig2 to 1800 . The majority of these sets are devoted to calculations of eclipses or to plans of buildings. A graduate of 1796 took for his mathematical thesis: "I North East View of the House of Samuel Wrbber, A. A. S., ${ }^{3}$ and of the Court House in Cambridge, by an actual Survey." Of the 79 sets, however, 13 are rlesignated "Algebraic Problems" or "Aleebraical Solutions of Problems" or "Application of Algehra to the Geometrical Solution of Problems," while 3 are simply "Mathematical l'roblems." Algebra problems continued to occupy a prominent place among those in pure mathematics for many years.

Algcbra theses.-The heading "Algebraic Problems" appears for the first time in 1786 , and in this set of exercises are found four problems, a simple one in geometry, two in surveying, and one in trigonometry. In the following year four students presented mathematical theses, three of which are entitled "Mathematical Problems

[^21]and their Solutions," and the fourth is again "Algebraic Problems." This last set of 1787 will be discussed as an illustration of this type of work. Simmel Willard, whose signature is affixed to this mathematical thesis, grarluated in that year, and so this group of four exercises is probally representative of his course in mathematies at Itarrard. It is in many respects the work that would be

expected from a good secondary school pupil of the present day. The treatment of the algebra problem is that which, as pointed out in connection with the notebooks from Harvard and the University of Pennsylvanit, was accorded problems so universally in the eighteenth century. Here a and e are used for the unknown quantities, a usage occurring in Ward's Young Mathematician's Guide.* The next problem, "To find the Cube root of any proposed quan-

4
"Algebraical solutions of problems" from the thesis presented by Luther" Richardson to the mathematics department of Harvard College in. 1709
tity," might have been copied from that same work. ${ }^{\text {s }}$ The third - problem employs six-place logarithms, but shows no use of interpolation. It combines a knowledge of geometric facts with certain trigonometric relations. The fourth problem is the real applied work and shows the use of the law of sines. In the original the diagram is colored with excellent taste.
Evidence drawn from the commencement theses goes to show that this work by Samuel Wirlard does not cover all of the mathematical instruction at Harvard in 1787, for the theses of that year include a number of statements concerning fluxions. It mayy represent the required work, while the more difficult courses were open only tor exceptional students. -

Other sets of algebraic proms show such differences as would arise from the need of the professor of mathematics to vary his subject matter and from the inclinations of the individual pupils. Francis Cabot. Lowell, on October 30, 1792, presented two prolymus which shöw a love for long mechanical operations. In one the in te of the unknown is given in a number containing 38 digits. In the other, the equation $45 . r^{4}-1800 \cdot x^{3}+21504 . x^{2}-32.4000=32.4000$ is brought to a successful solution by a method of approximation, but there is a great deal of ,tedious work before that end is attained. The persistence of the Oughtred symbols for inequality is shown by thȩir use in a paper of 1793 . Work of an involved nature and even of an advanced character is that on the paper of Luther Richardson in 1799 .

Such direct evidence as the foregoing mathematical theses is worth more in an account of the mathematics in American colleges during the eighteenth century than all the statements about that subject in catalogue or college president's report. It warrants the conclusion that algebra had obtained an established place in the culviculum, which place it has filled from that time until the present day.

[^22]

Algebra in manuscripts and printed works.- P.eferences to algebra in the manuscript and printed works of college presidents and professors, is well as in regulations and laws governing courses of study, constitute another link in the chain of evidence showing the recognition granted to the subject during the eighteenth century..
Ilarvard rquirements.-The carliest latis for Harvard College were prepared in 1642 by President-Dunster and included the study

- of mathematics but with no mention of specific branches. ${ }^{1}$ These laws governed the Harvard curriculum with no material changes during the seventeenth century. In the early part of the eighteenth century a professorship in mathematics was established by Thomas Hohlis. The first definite requirement of algebra at Harvard is inclifled in the principles on which the chair was founded. These principles are set down thus:
Hules and Orders relating to a Professor of the Mathematies, of Natural \& Experimental lhilosophy in Harrard College in Cambridge in New Enghand, appointed by Mr. Thomas Hollis of London Merchant.

1. That the Professor be a Master of Arts and well acquainted with the sereral parts of the Mathematics \& Experimental Phillosophy.
2. that his Province be to $\mathrm{I}_{\mathrm{y} \text { struct }}$ the Students th a System of Natural I'flosophy \& a course of Experimentul.in which to be comprehended. Pneumaticks, Hydrostaticks. Mechanicks. Staticks. Optleks, \&e in the Elements of Geometry to-gether with theadoctrine of Proportions the Principles of Algrebra (sic) Conle Sections, plain \& Spefical (sid) Trigmhometry with the general principles of Mensuration, Plain \& Solids, In the Principles of Astronomy \& liemetry, viz, the Doctrine of the simeres the use of the Globes, the motions of the Heavenly Rodies according to the different Fiynotheses of Ptolomy (sle) Tyeho Brahe \& Conernleus with the gemeral I'rinciples of Dialing the Divtsion of the World into its varlous Kingdoms with the use of the Maps, \&s. ${ }^{2}$
The secondrule is the only which bears directly on the subject in hand. It shows that the principles of algebfer were accepted as a necessary part of the instruction in mathematics as early as the date on this paper, 1726. Isaac Greenwood, the first man who was

[^23]called upon to live up to this fine set of rules, may have had something to do with formulating them. He was one of five men to respond to a call from Mr. Hollis to furnish plans for his projected chair of mathematics. ${ }^{3}$ The two Harvarl notebooks on algebra already set forth attest the success of Greenwood in fulfilling the requirement to teach algebra.

These rules guided the professor of mathematics at Harvard for many years. Not untir 1787 are there any more specific directions adopted for his control. A committee appointed to revise the course of instruction voted on August 16,1788 with respect to the sopho-mores-
that at eleven belock on Fritay they atteid the I'rofessor of Mathematios to be instructed in Algebra, and'to be carried forward th uther bramelies of the Mathematics if the time allow.
And again on October 16, 1788, that future Hollis professors of mathematics were to carry the classes forward by prixate lectures, in Algebra as far as through affected quadratic equations and infinite series.
Algebra, then, receives specific mention in all the laws and regulations formulated at Harvard in the eighteenth century.
Hugh Jones at William and Mary.-The Colloge of William and Mary, ${ }^{6}$ the second oldest college in the Cinited itates, was founded in 1693 at Williamsburg. Va., and the charter provided at the outset for a president and six professors. 'The published records until recently ņmed the Rev. Hygh , Jones as the first professor of mathematics. An earlier name in the faculty of the college is that of Mr . Le .Fevre, as shown by the following extracts from the letters of Governor Spotswood, of Virginia: ${ }^{7}$
$\dot{\text { Vikginar }}$ July 2s. 1711. :
To Mr. Blathwayt:
Sik: I have not had the honor of any from you since my last, but laving seen a Letter that you writt to Collo. Diggs in hehalf of Mr. Le Fevre, I very gladly embraced the Opportunity of doing hon'r to your Recommendation by getting the Governor of the College to receive him as a Mathematick professur. . .

Virginia, Mal/ 8th, juta.
To the B'p or London:
. . . I gave your Lord'p an account of Mr. Le Ferre's admission into the College upon your Lord'p's recommendation, and am now to acquaint you that after a Tryal of threequarters of a year he appeared so negligent in all the

[^24]post of duty mal guilty of some other aery great irregularities, that the Governors of the College could no longer bear with him, and were obliged to remove him from his Office, . . .

Howerer unworthy the gentleman was. Mr. Le Fevre was the first professor of mathematies in an American college.

Inother letter ${ }^{8}$ from Governor Spotswood settles definitely the fact that the Rev. Hugh Jones was established at William and Mary in 1717 , some 10 years before Hollis had created a professorship of mathematics at Harvard. The part of the letter referring to Jongs is as follows:

JtN: 1:3, 1717.
To the mishop or Londos:
. . . and I doult not y'r Lord'p is already informed that Mr. Jones is adt mitted into the College according to y'r Lo'p's Recommendation:

- Jones was an Englishman of university training and kept very closely in touch with his native land. His connection with Williatn and Mary as professor of mathematics was a brief one, for he left the Colonies for England in 1720 . On his return to America he devoted himself exclusively to the ministry. In 1724 Jones published in London a most interesting history in whose making he had participated, entifled The Present State of Virginia. This is the work which holds interest for the student of the history of mathematics as well as the student of colonial history. Referring to the Virginians, Jones says in this work:
They are more inclinable to read Men by Business and Conrersation, than to dive juto Hooks, and are for the most part only desirous of learning what is absolutely necessary, in the shortest and best Method.

Hatring this knowledge of their coapacities and Inclinations from sufficient Experience \mathbb{I} bave composed on Purpose some short Treatises adapted with my hest Judgment to a Course of Edacation for the Gentlemen of the Plantations; consisting in a short English Arammar; an Accidence to ©hristianty; an Accidence to the Mathematicks, especially to Arithmetick in alf its Parts and Applications, Al!gelora, Gometry, surveling of Land, and Worigatini.
These are the most useful Brandes of Learning for them, and such as they willingly and readily master, if taught in a plain and short Method, truly applicible to their Genius: which I have endeavoured to do, for the use of them, and all others of their Temper and Parts. ${ }^{20}$
It will be noted that algebra is to be found among these treatises which Jones states that he composed. Since he holds "from sufficient Experience" that the people of Virginia are capable of mastering this and other branches of mathematics, "if taught in a plain and short Method," he must have reached that opinion by actual experience in teaching the subjects equmerated to them. And

[^25]so it is fairly obvious that algelara was included in the curriculum of the College of William and Mary before the year 1722.
The treatise on grammar ${ }^{11}$ isextantand a copy of it is in the British Museum. The "Accidence to the Mathematicks" does not appear to have heen preserved in like manner, but the British Museum dnes possess a manuscript on mathematios by Hugh Jones. ${ }^{12}$ entitled: "Reasons and uses of the Genrgian Calendar and of Octave Computation or Natural Arithmetic." The date of it is evidently 1752, as "this year 1752 " occurs in the text. The first part of this work is concerned with a calendar composed of 13 seasons of lunations of 28 days, one day for the Nativity anda hissextile every fourth year for public prayer. The second parts starts with a dissertation on the disadvantages of numbering ly 10 and proposes substituting 8 as a radix. It:gives a complete numeration table and lays down rules for the reduction of decades to octares and other matters. It also points out methods for dividing weights and measures on this basis, so making a universal standard. ${ }^{18}$

Thomas Clap at Yali.-We turn nest to the third college established in the Colonies. The keen interest of the president of a college in any subject when that college was little more than a collegiate school was certain to have a strong influence on the place which that subject "ocenpied in the curriculum. Thmmas Clap brought such an interest in mathematics to Yale when he became rector or president in 1739. Four years later, he published a catalngue of the college library ${ }^{14}$ which he had prepared himself. In the preface to this catalogue, he recommends a plan of studies for the college course, as follows:

In the First year to st udy principally the Tongues, Arithmetic, and Algebra; the Second. Logic. Rhetorlc, and Geometry: the Thiri. Mathematics and Natural Philosophy; and the Fourth, Ethles and DIvinity.
Mathematics is found in three years of this plan, with algebra in the first year.

That Clap carried out a still more ambitious plan of mathematical instruction than he had advocated is shown in the history of Yale which he wrote in 1766. Referring to the undergraduate students, he says:
They are divided into four classes: according to the respective years in which they are admitted. At theiradmission they are able well to construe and parse Tully's. Orgtions. Virgil and the Greek Testament ; and understand the Rules of common Arithmetick. In the first vear. they learn Hebrew, and princlpally-

[^26]pursue the Study of the Languages, and make a-Beglnning in Loglek, and some Parts of the Mathematicks. In the second vear, they study the Languages: but principally recite Logick, Rhetorick, Oratory, Geography and natural l'hilosophy. And some of them make pood lroficiency in Trigonometry and Algebra. In the third year, they still pursue the Study of Nitural Phnosophy, and most Branches of the Mathematicks; many of them well understand Surreving. Navigation and the Calculation of the Ectipses: and some of them are ansiderable Proficients in Comic Sections and Fluxtons. In the fourth year they principally study and recite Metuphysicks, Ethicks and Divinity. ${ }^{\text {as }}$
The printed statement of a projected plan or of a completed one may always be taken with some reservations, but the commencement theses during Clap's presidency of Y ale give added confidence in the acceptance of this one at its face value.

In 1753, during Clap's administration, the "Linonian Society" was founded. At one time it was the custom to have a curious question brought in at each meeting. From the records ${ }^{10}$ of this society is tiken one specimen which relates to algelra :

Dec. Sith A D 1770, 2. How do you sulie (questions, when the unknown ruantity has several buwers in one Egnat inn alnd only the first Power in the wher Equation.
The recording of the question and its answer means that algebrat engaged the interest of eighteenth century Yale boys.
"Tniversity of Pennsyleumir.-The first page of the records of the institution now known as the University of Pennsylvanta shows that algebra is included among the subjects intended to be taught. The seventh page contains this entry, showing the fulfillment of the intention:

Mr. Theophilus Grew having offered himself as a Master In the Academy to teach Writhg. Aritḷmetick, Mercolis Amunts, Algebru, Astronomy, Navigation, and all other Branches of the Mathematicks, it is ordered that he be received . . . his Sprvice to commence on the seventh day of January next. July 27, 1750. ${ }^{17}$
In 1753 Provost William Smith published a work entitled "A General Idea of the College of Mirania, with an account of the College and Academy of Philadelphia " [University of Pennsylvania]. His belief in mathematics in general is indicated in the preface to this work, where he sets forth the plan of studies covering five classes. He states further that he is now endeavoring to realize these plans in the seminary over which he has the honor to preside, and so re know that he was actually working out his own fruitful ideas. The portions relating to mathematics are found in the first two classes and read:

[^27]The First Class of the college . . . In the aftemown they learn arithmetic, vulgar and decimal, merchant's arcounts, sume parts of algehra, and some of the first bowks of Euclid.
The seremal class. The next year is spent in this class: the master of which
 teaches the rematimer of the first six bowk of Euclit, to-zether with the eleventh and twelfth, and atso the elements of genmetry, astrunomy, chronoligy. navigation. and other most useful branches of the mathematios.'

The plan here suggested was formulated at the reguest of the trustees. It was adopted in 1750 and continued in use while simith was provost and as far as records show, until the early part of the next century. It influenced the later curricula of all the American colleges. The prominence given to algehra in the mathematical scheme is indicated by the inclusion of that subjert in t wo years of the college course.

Columbin Cnirresity.-Samuel Johnson bronght from his experience at Yale sufficient interest in mathematics to canse him to give to that snbject a place in the plans which he, to a large extent. formulated for King's College [Columbia Tniversity]. The lirst professorship established was that of mathematice.'" The laws and orders which were adopted in June, 17 ini placed "Mathematics and the Mathematical and Experimental Plilosophy in all the spereral branches of it " in the second and third years of the course. In 1885 the plan of ducation included "Algehra as far as quadratic equations" for the freshman class and the "higher branches of Agehra" for the sophomore class. In 1789 the professor of mathematies and natural philosophy was authorized to give as the algelrat course. "Algebra as far as Cubic Equations" to the freshman class and "the higher parts of Algebra" with "the application of Algebra to Geometry" to the junior class. This was an alvance in the subject matter in algebra which continued in force until the end of the centiry. ${ }^{\text {20 }}$
Evidence goes to show then that from the very early years of the eighteenth century until its close, algebra is mentioned by professor and president alike and is included in plans proposed and plans adopted for the curricula of the colleges of this period.

[^28]
Chapter IX
 EVIDENCES OF THE USE OF FOREIGN TEXTBOOKS

Scurcity of printrd boolis.-In the twenticth century, when inexpensive books are pocmable in literatme and scienceralike. it is difficult to realize the almost total lack of printed classroom subject matter churing practically the whole extent of the eighteenth century. Authorship of texts had not ret become a trade. and the cost of printing and paper made the publication of works for pupils in schools well-nigh an impossibility. Books were in the hands of professors and tutors, and their contents, as alrearlyoninted out, were passed on in the form of lectures taken down almost verbatim by the members of a class. But some books were imported from abroad in sufficient numbers to permit of putting them into the hands of the students themselies.

Such foreign textbooks as were used in American schools of the colonial period and for some years thereafter by the students were books by Engrlish authors, published in England. In the first quartor of the ninetenth century French and German authors began to exert an influence, and reprints or translations of works from England. Frame, and Germany were published in Imerica for use in American colleges.

The Voung Muthematirimis Giuidr. We shall speak first of the English texts. Among the most popular hat not the most worthy was "The Young Mathematician's Guide. Being a Plain and Easie Introduction to the Mathematicks" hy John Ward. This seems to have had a use out of all proportion to its merits, and direct evidence of the position held by Ward's book is extensive.

In intimate record of the use of this work is found in the commonplace book of Eleazer May. ${ }^{1}$ of the class of 1752 . Yale. A long list of this st udent's readings is given on the seventh page of his book. This list is headed:

An Memorandum of the Dooks red in my freshmanship riz: A. D. 1740.
In my Sonflimore Ship siz. A. D. 1750

- reelted. Waris Mathematick.
'i" Elenzer May's Notebonks." Interesting minnuseripts of the middle and last guarter of the elghteenth century now in the unlversity-library. Yale Alumni Weckly, Ianuary $10,1023, \mathrm{p} .501 \mathrm{f}$. Some additional material, as the result of a personal study is noted.

In another place young May copied a quotation from Ward that had struck his fancy. It was:

Of time it is not an Easy thing to give a true Divinition of time for according to the philosophick Poet

> Time of itself is nothing but from thought Recieves its rise hy labouring fancy wrought from things considered whilst wee think on some as present some as past or yet to come no thought can think on time that stll confest but thinks on things in motlon or at rest:

Ward's Mathema: ${ }^{2}$
A graduate of Harvard, class of 17th. Dr. E. 1 . Holyoke, salys in a letter to Prof. Benjamin Peirce that Ward's Mathematics and Euclid's Geometry were used, during his college course. Without referring to any other authority. Peirce states that:

In the early part of this presidency (that of President Edward Holyoke, Which began in 1737) and prohably for many gears before, the texthows were the following . . . Ward's Mathematic's . . . Euchd's Geometry.'
As late as 1794 a Harvard student notebook ${ }^{4}$ contains the name of Ward in connection with hooks to be consulted on mathematical subjects. Catalogues of libraries of gentlemen of this period show that
Ward's book was one of those on Ward's book was one of those on mathematies to be generally acyuired." Samuel Johnson prepared. "I Catalogue of my Library with the vallue of each Book Aug. 15, $1206,{ }^{\circ}$ o This eatalogue included "Mr. Ward's Young Mathematician," which he may have been using while he was a tutor at Yale. In 17 ti3 there was published a larok with the title: "An Introluction to the Study of Philosophy, Exhibit ing a General View of all the Arts and Sciences. By a Gentleman Educated at Yale-College." This gentlenan was Samuel Johnson, and he gives the advice (p. 28) : "On Mathematies, read
Ward's Young Mathematician's Ward's Young Mathematician's Guide, . . ."
A 1764 "Catalogue of Books belonging to the Public English School of Friends at Philadelphia" has one copy of Ward's Mathematician's Guide. In 1778 a "Catalngue of Books granted the Col lege [Harvard] from the sequestered Libraries" ${ }^{7}$ contains Ward's Mathematics. In the libraries of universities and in libraries connected with organizations of various sorts are to be found to-ttay from one to four copies of this popular old work.
\therefore The curriculum of the colleges at certain times was stated in terms of the texts used rather than in terms of subjects. In 1756, in con-

[^29]nection with the plan of studies prepared for the trustees of the College of Philadelphia, Provost Simith recommended certain books to be read "for improving youth in various branches." He suggested "Maclaurin's dlrebra" (London. 1748) and "Ward's Mathematics" for the mathematies in the first year. ${ }^{8}$
At Yale in 1778 . President Stiles on assuming the executive office gave as the mathematical part of the program of studies then in force:

> Freshman Class-Wamal's Arithmetic
> Sulhomore ('lass-Hammond's Algehra'
> Ward's Mathematics
> Tuniur C'lass-Warl's Trigonometry"

Since the Toung $1 /$ athematician's Guide was considered worthy of a place in American schools for so long a time, it may be worth a brief presentation. ${ }^{18}$ This work on "Mathematicks" is in five parts. "I Arithmetick, II Algelma. II The Elements of Geometry, IV Conick Sections, V The Arithmetick of Infinites," and to these sections is added an "Appendix of Practical Gauging."
The book was put out with a recommendation that might well have started it upon a successful carcer. This recommendation reads:

Vom Cencful Perisal of this Book, we think it a good Introuluction tor the thestractel Eurts of Mathematickx, and as sud we recommend it tw the Studious and Industrious Reader.
I. Itaphisun. A. M. \& R. S. S.
H. Ditton. ${ }^{11}$ Muster of the New

Mathematical School in Clirist's Hosplital.
Samuel Cunn, whe revised and corrected Raphson's translation of the Arithmetica L'niersulis by Sir Isaac Newton, expressed his appreciation in a poem, "To the Ingenious Mr. John Ward Epon His Most Useful Piece, the Young Mathematician's Guide," which is printed at the back of the book.
Part II is entitled:
Algehra, or Arithmetick in Species; wherein the Method of Raising and Resolving Equatlons is rendered easie: and Illustrated with a Variety of Examples, and Numerical Questhens. Also the whole Business of Interest,and Annultlex, \&c. perform'd by the I'en, and a small Table, with several new Improvements.
The algebra covers pages 143 to 277 , or 134 pages, and so ranks as to space occupied about on a footing with the arithmetic of the book. The table of contents gives the topics treated as follows:
Fhe Method of Noting down Quantitles, and Tracing of the Steps used in bringing them to an .Equation; The Six I'rincigul Rulew of Agebraick Arith-

[^30]metick in whole Quantities: Of Agebraick Practons, or Broken Quantities; Of Surds, or Irrational Quantities; Concerning the Nature of Aquations, and how to prepare them for a Solution. Ne: Of Irroportional Quantities, hoth Arithmetical mid Geometrial Contimed: Also of Musical Iropertion; Of Iroportional Quantities Itisjunct, hoth Simple. Inplicate; and Triphicate; And how to turn Equations into Analoges, ise: Of Substitution; Amd Resolving Quand ratick Equations: Of Analysis, or the Methot of Resolving Problems, Exemplified bl Forty Numerial Questions: The. Sulution of all Kind of Alfected Equations in Numbers: of simple Interest, amb Amuities in all their varins
 of I urchasing Frechold Estates.

There is nothing of an original nature to which attention need be called in the subject matter of this algebra. Rules and solutions of problems follow one another in a presentation that strikes the reader of today as tedions. No exercises are added in any topic for the sake of the student. The application of algebra to the solution of geometric problems is fomel in the section ondeometry.

Terthook:s entitled Ilyel,im.-The lirst textbook designated algebra that was used in any American college seems to have heen The Elements of Alyebra, hy Nathaniel Hammond. ${ }^{12}$ In the list of studies given ly President Stiles. of Yule, in 17is, ${ }^{14}$ it will he noted that Hammonds algehra occurs in the sophennore sear. ${ }^{14}$

Harvard in 1 its received from the seguestered libraries, in addition to Wards Mathematies already referred to, Hammond's algehra. These broks were put at the disposal of the professor of mather maties, but no record remains to show that Hammond wan phaced in the pupils' lrands."

In the laws of Rhode Island College [Brown University] for 1is3, Hammond's algebra was reguired in the third year, and in the laws for 1793 the same requirement appears in the second year. Memoranda collected liy a descendant from the papers of Solomon Drowne. of the class of 1773, give the only knowledge of the curriculum before 1783 .'5 These papers show that Drowne hegan Hill's arithmetic in October.. 1ial, and LIammond's algebra in December of the same year. with Euclid: Elements and trigonometry in February, 17 Te. From this information it appears that the first printed laws of Brown set down requirements in algebra which had ulready been in operation for over 10 years.

[^31]We open a real algebra when we turn to an examination of Hammond, eren though the scope of it is limited as measured by presentday standards. In the preface the author states the prerequisite for the student of his book and his confidence in its pedagogical principles. 1 good sketch of the history of algehra follows this preface.
Ifter the first 75 pages, which are given orec to the presentation of the four fundamental operations. involution, evolution, and strd quantities, there is not a page (except for a very occasional digression to introduce a neetled process) in the whole extent of 328 pages which does not contain a problem, or some steps in the working out of a problem. In this way Hammond takes up simple equations. equations with tifo or three unknowns. quadratic and adfected equations, and gives explanations for thatir solution in the greatest detail. Some 109 problems arr solved, making the progress from the solution of the simplest equation to the solution of cobir and hifqualratic equations hy the method of converging series. There is the almost irreducible minimum of rules and the maximum of illustrative material which must have made an appeal to pupil and teacher alike. It is curious that a man who could write a work as good as this one should have been so prejudied as to make no mention of exponents until page 314. therely perpettating in the many shools in which it was used the long form of writing powers of a base.
If this whole book was covered in the colleges which required it, the pupils ham as good a course in the solution of equations as they rould get to-day in a seconlary school, plus some of the course in college algebra.
A nother gook algebra that was, without doulit, in the hands of teachers as soon as it appenred is entitled A. Treutixe of Alyebra. ${ }^{16}$ Its author was Thomas Simpson. ${ }^{17}$ a man of undoulted genius. The first mention of this work as a textbook occurs in a pamphlet pubhished in 1094 and containing the charter and the daws of the Collage of New .Jersey. ${ }^{18}$
In addition to the usual list of topics, this work onvers the following: Resolution of equations of several dimensions. Sir Isaac Xewtons method of divisors, Cardan's cubir and higher equations, Descartes's diquadratic equations. converging serjes, indeterminate problems. investigation of sums of powers, figurate numbers. interest and annuities, plane trigonometry. and application of algebra to the stlution of geometrical problems.
 und noplied in many useful and intrivesting inquirics, and in the resolution of a grcat ralety of problime of ifferent kinilx ... IADtlun. $17+\mathrm{F}$.

7 Smith, History. 1. 4:77.
${ }^{18}$ John Maclean, History of the College of Neve terscy, p. 307.

- In the editions of this work after the first one the treatment is a peculiar one. Rules with illustrations are given, and in a foonnote arrangement "demonstrations." These demonstrations are complete explanations of the rules.
An American reprint of simpson's algebra from the eighth London edition came from a Philadelphia press in 1809 and a second one in 1821. The change from the use of imported books to the use of books printed at home was only a question of time. It involved the establishment of printing presses and the demand on the part of a sufficient number of influential persons that these presses be put to work on textbooks.

Chapter X

THE FIRST BOOKS CONTAINING ALGEBRA PUBLISHED IN THE NEW WORLD

I Merrican algebra.-In very widely separated sections appeared 'the first works printed on the American Continent and contanining alyebra. As early as 1556 there was published in Mexico a book entitled The Sumario Compendioso. ${ }^{1}$ The most interestin fenture of this work consists of six pages devoted to algelra.
Under the title "Arte Mayor," the author gives a number of examples generally involving quadratic equations, of which the following are types:

1-Find a square from which if $150 / 4$ is subtracted the result is its own root.
Hule: Let the number be cosa (x). The square of half a cosa is: equal to $1 / 4$ if a zenso $\left(x^{2}\right)$. Adding 15 and $3 / 4$ to $1 / 4$ makes 16 , of whith the root is 4 , and this plus $1 / 2$ is the root of the required number.

Proof: Square the square root of 16 , plus half a cosa, which is four and a hatf, giving 20 and $1 / 4$, which is the square number required. From $20 \frac{1}{4}$ suhtract 15 and $3 / 4$ and you have 4 and $1 / 2$, which is the root of the number itself.
$2-A$ man takes passage in a ship und asks the master what he has to pay, The master says that it will not be any more than for the others. The passenger on agnin asking how much it would be, the master replies: "It" will be the number of pesos which, multiplied by itself and added to the number, will give 1260." Required to know how much the master asked.
Rule: Let the cost he a cosa of pesos. Then half of a cosa squared makes $1 / 4$ of a zenso, and this added to 1260 makes 1260 and a quarter, the root of whith less ${ }^{1 / 2}$ of a cosa is the number wequired. Reduce 1260 and $1 / 4$ to fourths; this is equal to 5041 divided by 4 ; the root of which is 71 halves; subtract from it half of a cosa and there remains 70 halses, which is equal to 35 pesos, tuid this is what was asked for the passuge.
l'roof: Multiply 35 by itself and you have 1295 ; rdding to It 35 , you have 12(i), the required number.
Far removed in time and language as well as place was the next book to be printed on the Western Hemisphere, which benrs in part of its contents on the subject of algebra. This was a Dutch textbook of 1730 , published in New York City, and it was preceded in the American Colonies by only two published works on mathematics, both of which were arithmetics. .
'For a complete account and facsimile, see David Eugene Smlth, The Sumario Compondioso of Brother Juan, Diez, Boston, 1921.

A Dutch alysbru.-It is natural that arithmetic should have been the first mathematical subject to appear in print in the Λ merican Colonies. It is, on the contrary, surprising that algebra should occupe over one-third of the space in the third book on arithnetic published in this country when nearly 60 years were to elapse before the appearance of another book containing thy atgehat. Some tion titles" of publications in Pemusylvania before 1785 show many almanacs, but few works on mathematics, and none containing algebra. A complete libliography ${ }^{3}$ of all American books up to - 17 ge reveals, among those on matlrmatics, only three which include algehra in their contents. One of the three is this Dutch textbook, and while the extert of its influence was probably very limited, it has interest as the earliest and, for a long period, the only work on algebra printed here.

The title of the book is: Arithmutica of Cyffer-Konst, Als Mede Ecn kort ontwerp wan de Alyebra.4 The names which appear on the title-page are the names of three men who, as we shall see, were kindred spirits in their independence of authority.

The name of John Peter Zenger is inseparable from the history of the freedom of the press. He was the second pirinter of New York, and his newspaper was the instrument by means of which ative protest was made against the tyramy of the royal governors, which eventuated in the American Revolution. The trial of Zenger is significant in all history, and the outcome of it was that liberty of the press which grave peopme in this country the right to freely criticize the conduct of public officials. Zenger's press was established in 1726, and his newspaper had its beginning in 1733. The Venema, book appeared between these two dates.

Jacob Goelet, appears in a minor way as breaking away from the authority of the church. He is referred ${ }^{5}$ to asempessing himself in opposition to a stand taken by the ecclesiastical body in several instances. One of these was connected with the licensing of privateschool teachers. ${ }^{\circ}$ It any rate, he succeeded in having printed this textbook in Dutch by a man who, as will appear later, was under the \rangle ban of the local church leaders.

[^32]Pieter Venema was repeating history by making trouble in the church. In a Yetter ${ }^{7}$ from the Rev. Gaulterus DuBois to the Rev. Classis, of Amsterdam, May 14, 1741, we find this complaint:

"Arithmetic or the art of ciphering, according to the coins, measures and weights of New York, together with a short Treatise on algebra drawn up by Pieter Venema, master in mathematles and the art of witting. New York, printed for Jacob Goelet, near the Old Sllp, by J. Peter Zenger, 1730." The title page of the first book containing algebra that was printed in the American Colonles.

Inasmuch as the Rev. Consistory of New York several years ago exhorted their ministers to be on their guard, and oppose, the artful misleadings of one

[^33]Pieter Venema, a crafty freethinker of Groeningen, who hat previousty heen a Reader and School-master just nutside that city, I, therefore. determinedly set myself against him. L'uder God's blessing my efforts acomplished much good, although some still adhere to him. Among these is une Jacoh Guelet. who with his conventicles, endenvors to do all: iossible harm to our church.

We therefore see that Venema came from a city in Hollind which offered university privileges, autl in which he had been a schoolteacher.

More definite evidence that Venema was a schoolmaster is given in the dedication to a work of his published in Holland in 1714. ${ }^{8}$ In this dedication, which is signed Pieter Venema, appears the statement:
Is de Gunst van t Ed. Mog. geweest dat ik eenige daren lierwaarts in tid Ed. Mog. niet min vermaarde stad Groningen, mijn bedieninse als Sclowl-Mepster heble wargenomen. (Through your fawor 1 hatl the chance of serving as a schoolmaster at Groningen for several years.)

Farther on he states that he had the honor of enjoying for several years the teachings of "Heer J. Berneulli."?

The high regard in which he was held hy the mathematicians of his own country and time is shown by an inscription to him in the work ${ }^{10}$ already referred to. This inscription contains such phrases as:
. . . the talent which God has granted you.
. . . we need no teacher, the book is it zulde in itself. We thank you, Vonems, we thank you. brave teacher, give us more of sour knowledge! You have wom so much distincton at (ironingen that it is impussible that sumbend be forgotten.

Venema must have been known during the eighteenth century and the early part of the nineteenth century, hecanse he is cited repeatedly in collections of problems solved and published by Dutch mathematicians and societies of that period. ${ }^{11}$

Venema's reasons for writing the book under consideration appear in the "Konst Lievende Leser." He says:

Because I realized that there was here no ciphering book in the Low Suth concerning trade or merchandise, and for the sake of the teaching of inquiring youth and of all lovers of the teaching of arithmetle. I have undertaken to make a clear and suceinct riphering bow upn that excellent seience which flourishes in this city and country. To this are adden the eloments of abrebm.

[^34]Whereliy that which is not understomel in arithmetic ran the demonstrated by the

 in this bouk, he cin make use of my simple Algehria or Stel-konst published its the yar 1714, in my mative city, (iroeningen, ${ }^{12}$
The hook consists of 120 pagrs, of whirh iis are devoted to arithmetic and 45 to algebra.
The siction devoted to arithmetic starts with addition tables. leading to the multiphes of mumbers me to b b 9. This is followed by addition, subtraction. multiplication. division, tables of weights and measmes, the operations with money, rale of three, reduction of fractions to lowest terms. to common denominators operations with fract trms. inserse rule of three, mile of five, compomed rule, conjunct rule rule of partnership. partnership with time. and alligation.
The second section bears the heading. "Algebra ofte Stel-konst," that is. "Algelmat one ant of place." The reason for the use of the Stel-kenst is stated ms;

This sefuce is called by the worl sted-knst beratise lhat means, for the mbluwh, place r. If, \therefore the last three or more letfers of the alphatwe amb for the knowir, the letters $11, b, r$. d, and so forth.
The contents of the algehra text are as follows: Signs of nperation. areneal notions. aximens, addition, subtraction, multiplicalion. including product of $a+b$ by $a+b, ~ "-b$ by $a-b$, and $a+b$ b $a-b$, divisions. reduction of fractions, to lowest terms and to a common denominator. addition. sulataction. multiplication and division of fractions. solution. of simple equations and simultaneous equations in two manowns. and problems.
The signs of operation are not given until the section on algehat is reached. They are the ustal signs for addition, subtraction, and equality and a - which "hetekent tot" (denotes an empty space). Susigu is giver for multiplication, hut an explanation is made for Ifthers following each other without signs. The sign for equality is printed with unusually long paralle lines.
The procedure with each topic is. to state the, general rule, work ont an illustration of it, and prove the conrectness of the result ly. momerical anhstitutions. Sits of examples arompany all rules. Amonr the features of the book are some which would not now lof formend.
One of these is the form for the division of a fraction. The divisom. "̈r - peede the dividend $\frac{a}{c}$. and the two are separated by an exaggerated \times. Another feature is the repetition of a letter for the serond power. and a large figure to the right of the base

[^35]is the representation of higher powers; thus a^{3} is written $a j^{13}$ The lowest common multiple of several expressions is found by a

Divisinn of fractions from Venema. The word for fraction is " broken" : for numerator, " numberer"; and for denominator, " namer."
method which is associated to-day with finding the lowest common multiple of small numbers.
${ }^{4} \mathrm{~Tb}$ ls form of the exponent may have been due to the convenlence of the printer, since Venema uses the present-day form in his earller algebra. [P. Venema, 1714, loc. eit., p. 74], except for the second power. However, such a form of the exponent may have been known to him. It is found In Plerre Herigone, Cursus Mathematicur, nora brevi et clara, etc. Vol. II, section on algebra, p. 4, and conslstently thronghout the entire work, Parig, 1644.

The book ends with 24 problems, and the familiar age problem is among them. It takes the form of a curious son who asked his father his age:

The father answered, your age with the second part, the third part, and the fourth part of itself increared by $241 / 2$ years f is equal to minel. I am as much wer 40 years as you are under 40 . How old was the son? Ans. 18 years.
Two unknown quantities are used in the solution. Other problems lead to indeterminate equations. One reads:

Three women hought apples, the first 100 , the serond 110 , and the third 120. They sold, ench a different numbre, the first day, at the same price, and the remaimler the seromd das, also at a uniform price. In countiug their moner. they frum that they had equal amonts. How many aples were sold. on each day?

The unknowns x, y, z, respectively, are assumed for the number of apples sold the first day, r and w, respect ively, for the price on the two days. By the conditions of the problem $y=r+\frac{10 w}{\pi-c}$ and $z=r+\frac{20 \pi}{n}$ are obtained. With the usual ingenuity in such problems, $\because r, r$, and x are taken so as to give one set of values for x, y, and z.

As simple, as all this work seems, there is good stuff in it. The question arises as to the schools in which it was used, for there must have been a definite reason for printing it with the arithmetic. It is to be noted in the preface by the author that he looked upon algehra as necessary to the clearing up of (loult ful points in arithmetic. But he, as a practical schoolmaster, must have known that the book was needed for instruction. Did Veneme himself have a private school, and did he suceed, so early in the history of printing, in this country, in putting into print the material that he needed: It seems to be a safe ronjecture to put him at the head of such a school, and the algehra of at least one secondary school of that period was not inworthy.

Chapter XI

EIGHTEENTH CENTURY BOOKS ON ALGERRA BY AMERICAN AUTIIORS

 an American and containing a section on algehra was the seond book covering that- subject to be published in what is now the I nited States. It appeated in liss at Xewhoryort. Mass., a town which seems ofl the heaten track of erfocations, as is trme of some oh her towns in which mathematio books were pablished. This book was
 anthor was Noola- Bike, S. M., a gradnate ol Harvarl Colle en in 1766.

This work was prohahly the ontgrowth of the anthore parcial
 Pike (17t:3-1819) to take charge of the publir school in that town. Later l'ike opened an eveniner showl and also at priver whol for young ladies. In lisk it is known that he was a teacher of the grammar school, and in that same year he advertised the publicafion of his book.

The adoption of Pike's arithmetic as a collecriate texthook in IFardard, Yale, and Dintmonth seems to have heen immediate. It hat been brought to the attention of men prominent in publir life hefore its publication. hecanse like had submitted the mannsoript to them. Letters of commembation from the profesors of mathematios and philosophy at Harvard and Dartmonth. from the presidents of Hardard, Vale, and Dartmonth, and fom Benjamin West were printed in the trook.

The value that Pikes arithmetir holds for this present work is due to the inclusion in it of a sertion on algehra. In the prefare to the first edition Pike epolits this material to the proper sontre by saying:

[^36]The short introkluction to algehra, which is subjoined, was abstracted prinripally from Bonnyoustle, and that of Conic Sections, from Emerson's works.
The section on algebra is designated "An Introductioh to Algebra. Designed for the use of academies," and covers only 39 out of 512 pages in the whole work. This material would be negligible were not its presence significant of some demand which led its antho to inrlude it: The usual start with definitions is made. The six operations follow, with all examples ander them completely worked out. "sir latac Newton's Rule for mising a himomial or residual quantity (1) any power whatever" is stated. / Infinite series, arithmetical and gemetrical proportion, simple and quadratic equations, all receive lirief treat ment. Only 18 problems are given, 1:2 under simple and ${ }^{6}$ under quadratic equations. The section concludes with a " Recalitulation of the principles of Arithmetic \&Algebra" under 9 so-malled axioms.
Pike's arithmetic was the first work written by an American to hate any extended use in the Conited states. It must be regarded also as the first printed work on algehra, written by an American, , hat was placed in the hamds of students in colleges and academies. Another quarter of a century was to clapse after the first appearance of Pike's look liffore a book on alobelra ${ }^{3}$ alone and bearing that title was to he compiled ly an American professor and published for the use of stulents in his classes and elsewhere.

The Amrican. Youth,-Another work containing algebm and published in the eighteenth century deserved more popularity than extant evidence shots it to have attained. Its authors followed the elustom, quite common in these early years, of using a general title. The book appared as The 1 moricum 'outh.4 The authors, Consider and John siterry, wre apparently outside of university circles and engaged entirely in work with private pupils. They must have felt justified in going to the expense of publication, but it took courage on their part to put a book like this on the market in 1790.
Volume 1 is divided into books. moch as geometry volumes are divided. IBook II of this rohume extends from page 241 to page 387, the end of the volume. All of the subject matter in an elementary algelbra of the present day is covered, with the omission of involved exercises in factoring and fractions. The more advanced topics are quoted:

Infinite Series, ISinomial Theorem. Proportion or Analogy Algebraically considered, Arithmetical, Geometrical. Harmonical Proportion. Genesis or Formation of Equations in Gencral, Concerning the Transfommation of Equations

[^37]and Exterminating their Intermediate Terms, Resolution of Equations by Divisors, Finding the Roots of Numerical Equations In General, by the Method of Approximations, Concerning unlimited Problems and Diophantine Problems.

It is an ambitious course in algebra set forth in this text at a time when students in some colleges were still dependent on taking mathematical notes from lectures and setting them down in notebooks. Perhaps its influence was more widespread than historical testimony shows. It any rate, copies of the book are to be found rather generally in the libraries of New England.

The findings of these two chapters lead to the conclusion that only three books containing algebra appeared in print in the Ameriain Colonies and the young American Republic during the eighteenth century. In each one of these books, it is treated in a section along with sections on other mathematical subjects.

Chapter XII
 ALGEBRA AND ADVERTISEMENTS ${ }^{1}$

Algebra in the public press.-Perhaps the most unlikely source of information bearing on the teaching of algebra in the American Colonies during the eighteenth century would seem to be the files of early newspapers. And yet a number of advertisements relating to different phases of the subject are to be found among those dealing with the dates of the sailing of vessels and of the arrival of the post from Philadelphia, Boston, or New York, with runaway servants or waves for sale, with the importation of good Cheshire cheese, or with lotteries for wharf, church, and college.
Prirate tutoris and schoolmasterx.-One form of advertisement which indicates educational activity is that in which a private tutor or the master of a school offers subjects to be taught. The earliest advertisement of this nature and reflating to mathematics, located is the following:

Boston Neur-Letter, Mch. 21, 1709. Opposite to the Mitre Tavers in Fifthsreet next to Scarlet's Wharff, Boston, are Taught. Writing. Arlthmetick in all its purts; And also Geometry, Trigonometry, Plain and Sphaerical Surveying. Dialling, Gauging, Navigation, Astronomy; The Projection of the Sphaere, and the use of Mathematical Instruments: By Owen Harris. Who Teaches at as easie Rates, and as speedy as may be.
Isaac Greenwaod, before he became the first professor of mathematies at Harvard College, used the newspaper as a means of obtain- : ing pupils, as shown in these extracts:

Boston-Necs Letter. Jan. 12, 1727. An Experimental Course of Mechanical lhilosimhy, wherein the Principles of that Noble silence, with the discoveries

[^38](Phlladelphia) American Weekly Mercury, Dec. 22, 17 19-Ian. 1, 1746.
(I'hlladelphial Pennsylvania Gazette, Oct. 1, 1728-Dec. 31, 1754.
Vígínia Gazette. Jan. 1, 1767-Dec. 81, 1776.
of the incomparable sir Isatic Newton therein are demonst rated by above Three Hundred Curious anl Iseful Experiments. arompanied with Experimental Lecture therem in as ersy Language as possible: . . To be lerformed hy

 Fhilusuphy which was inteded to hase hern recapitulated this summer is defermat thll the Fitl . . In the ment! Time, it athy Gentrmeth are de.
 incomparable Method of Flusions, or Lhe Differential calculus, w-hether with
 Elements of Euclid and Apollonius (sie) ; ore any l'irt of Specuhtion |ehangeat to Sperulative in next issurl or Irational Mathematioks, commonly taught in the Collegt's or Schools in Eurupe: Attemhence will be given he the Author of sadid Course at Mrs. Lelknafis at the Cpper bad of Quecn Strett. Lastom. Where, also, to suth as are instructed ith the Mathematial sedeners, the Irim riples of Sir lsata Newtom, and the Momern Discoveries in Astronomy athd I'bilosoplay will he explained amd demonstrated in a condise amb easy manter,

Ihid. Tuly 13. 1722. To he tioght lyy Mr. Cirernworl . . . The I'rimejplew of Algehrit . . (Adertivement pratially a remetion of the above. Ra. perated duly 30.)

These are the first adrertisements located on algebra which. as we have seen, (ireenwood also included in the course at Harvard. About 15 months after his installation as professor. he advertised the publiation of a work on arithmetic, as follows:
[Boston] Werk!! Wras-lefter, May 24. 1729. Just Published Arithmetic:
 \& Commerce. By Isithe (ireenwood. A. II. Hollisian I'rofessor of the Mathematicks, and Ilailasophy. To be Sold by Thomas Hanoock at the Bible d Three ('rowns near the 'lown Derk, Hoston. (leqeated Jume i, 12. $)^{2}$
-1
After Greenwood's dismissal from Iarvard, he again turned to private teaching and used his former means of informing the publir:

- Boston Werkl! Neus-Lectfr, Nov. 9, 1738. Such as are desirous of lenrnin: any Part of Practical or Theoretical Mathematicks may be tanght hy 1same Greetwoml, A, M. . . . (Repheaterl Nos. 16; 2t).

Ibid., Mch. 30, 1739. Such as are desirous of learning amy l'arts of the Mathematles whether Theoretical as hae demonstmatia Euclid, Apmonius (sic),
 veying, Gauging. Algehra, Fluxions. 太u: Likewis. noy of the Branches of

For 13 years from February 23, 1723, Nathan Prince was tutor of mathenatics at Harvard. He also was rlismissed from the college but carried on his teaching activities privately as shown in:
Boston Weehily News-Lettes, Mch. 3, 1743. These may inform. the Publick. that Nathan Prlace Fellow of Harvard College proposes, on suitable Encourage-

[^39]
ALGEBRA AND ADVERTISEMENTS

 A-frolomis
 Litueral Rules of Furtifiation and finumply ([epmeited Mch. 10, 17.)
These alsertinments from former tearhers of mathematics at
 alyebra in the comber of staly at hat college from the early part of the feighteronh rentury : and also show attempts at including it in private sehool work.
Sow York (ity papers canty arlvertimments on algehpar almost as earty at the Boston paper tited. The first one runs:

In 17:32. Mexamber Malenhm was made the mater of a publie school to teach Latin, Cornk, and mathematirs in the (ity of Kow York.

 culumin was giwn to an ammunerment of Mr. Maleolmes selowi, of which the following is olle sedtions

Malcolm wrote amb puldished a buok on arithmetio in the preface to which he says:

 Arithmetick.
 lis arhool.
Other extracts from New Sork C"ty panern are ats follows:

Roblert Leeth, Scham-Master, from Lumbon, . . . in Wall-Street temeses Latin is Crosk As at the Acablegnies in England as well as Readiug, Writhe \& Arithmetick. Vukar and Derimal. . . . and Agehral. also Loghrithmieal und lnstrumental Arithmetick. Geometry and Trigenometry: (hepeated tive times at intervats.)

[^40]New-York Evening Post. Aug. 25, 1746. Arithmetic: Vulgar, Decimal and Algebrace (changed to Algeliar in issue of June i5, 1747). . . carefully and exactly taught by Joseph Blancherd \therefore. (This adsertisement ran weekly through Nov. 9, 1747.)

Ibid., May 8, 1749. Writhg, Arithmetick, Vulgar, Inecimab. Duo-derimat, the Rules of Practice . . . the Elements of Euclid and Aloelora, with thelt applications to Praction Geometry. Ganghe. Survesfing. Conick Sections
 (Ran through sipt. 18, 1749.)

Hid., Oct. 7. 17:1. A Young Man lately arrived from Enghad proposes to teach Writing, Arithmetick, Mer-hants Accompts mul the most usefol Lramelies of the Mathematicks, viz., Akelora, (iemmetry, Trikummerrs, Nivization, Astronomy, Surveving of Land. the l'se of Mathemation lastrments, se. in ib publick mammer . . . (Ran through Dee. 30, 1751.)

Philadelphia was another educational center during the eighteenth century. The Pemasijequia Ciazote in a pospertus of October 1 , 1728 , covering a page, amounced its policy in words which inchade the following:

- . Crontainity umone mang thousand other Things, such as the follow-

 - shons, feometrs. or the Dontrine of extemben of combinmus Quantits.

The first adrertisement on algebrat located in this paper is one ly Theophilus (irew, who kept himself before the public in this way for many years. It reads:
 Sign of the Bible is taught the Arts Mathematient, viz. Arithmetick in all its Barts, Geometry, (ete.) acororing to the most aprowid methons by Theophilus Grew. He also teaches Algolira, or the Amalytion Art, wh the haws and Properties of Motion, a thing absolutely necessary to a rizht understimbin: of the Mollern I'hllosophy:

Variations on the above are found in issues of Derember 96 , 1734; May 9-June 19, 1735; October 26 -Nowmber 9. 1733; Augnt 9. 1733. In some of them Grew appears also as an importer of silks and other goonls. On May 14, 1541 , his name is alssociated witli that of James Bonston, at the Free School of Kent Comity, in Chester Town, on Chester River. On Scptember:2, 1742, he oproed a school in lhiladelphia and continued to advertise on October $1+$ November 25, 1742: March 17, 1743: September 17,-1744.

Grew had made himself so well known that on July 27.1750 , he began a term of service at the Academy of Plinadelphia [.University of Pennsylvania]. Thigeonnection was not jong maintained, and the last series of advertisements, from September 21-October 5, 1752, shows-him as a partner with Horace Jones in an evening-school venture. Algebra is included here, as in most of the other places in which Grew's name is found. All through these years this man was running advertisements in The American eekly Mercury,
another Philadelphia newspaper, at the same time that he was running them in the Pronswlyania Gazetto. He showed himself to be an indefatigalle advertiser, and he no doubt maintained some sort of a school from 1734 to the end of his life.
Another serie's of advertisements was run by Alexander Buller, the first one of which follows:
Pennspliminia Gazatte, Nov. 5. 1741. Writing. Arithmetic: Merchant's Accombs, Navigation. Alselna, and other parts of the mathematirs are taught by Alexambler Buller, at the Public School in Strawberry Alley . . . (Repented Sow. 12, 19, 2f:.
Buller had receised permission in Octoher, 1738. to teach mathematies. amomig other sulbjects. in the "Publick School" | Williani P'om Charter schoollo: IIe had widently been a pupil of Thomas Simpsinn. I letter dated "Philardelphia, Oct. 27, 1741," reads:
Frimy Simpon \therefore. Aif. 3 yonts aind half ago 1 got an insight into some diflicult parts of ye Mathematios Trom ther . . . thy ohe friomd AlenPaller.:

This teacher in Philadelphia carried into his profession the inspiration recwived from his study under "that strange mathematical genius," Thomas Simpson.
Other:zdvertisements of the teaching of algebra to be cited are: Promsultranic Chasitte. Aur. 13, 1757 . . are taught these Mathematick Sciences. vi\%. Arithmetick, algehm, wometry, plain and the sperichl (sic) trixomemetry, conick sections, arithmetick of infinites. . . by John Clare. (Keputed Aus. 20) and 27.)
lhid. Now. 2, 1752 . . . ure sthil taught, these Mathematical Sciences. viz., Withmetick ill all its parts, Algebra, (ieometry . . . by John Clare (Rematell Sins. ! and 16.)
Hiad, Were. S. 1748 . . . arithmetlek, vulgar and dectimap . . . ngelra, all marefulls: bught - . . by Thomas (raven. (Ad. ran through Apr. 13, 1749.)
1 irginin Gazette, May 2 , 1771. A tlergyman of the Church of England, in sober sounk Man . . . promoses to teach . . . Algebra, Geometryt Surveying, Mer hanies: . : the heverend W. S. . . Potownack, Virginin
In addition to these advertisements in which algebra is definitely named, some score different instances of the phrase "other parts of the Mathênaticks" have been found. With the long list of mathematical subjects usually preceding this phrase algebra was unlombedly covered by it. 7 .
Teachers of mathematics wanted.-The advertisements located in which the services of a teacher of mathematics are called for are only three in number. They are found in the Pennsylvania Gazette, October 9. 1740, and in the Virginia Gazette, October 15, 1767, and

[^41] the remuirement.
solutions of clydyra probleme.-(only rarely wete the ne wapipers used as the medime for the solution of problems. The Aै Weckly Joumal, Zengers paper, in the issue of July 26.1 tite. printed two questions sent in hy a correspondent berause as he salys. "There is little News at present to Entertain yotir Realers with." The solutions of these guestions were printed in the inest numbers. Angust 2. 17+2. The sucress of this fenture eguhbldened somer rader of the paper to seind in on August $2: 3$, 172.2 the following commmication:

 he who had most?

 minste lolli heeft if romenen mater ant ichler Vtin
 appear: It is quoted in part:

 pagnie $=y^{-}$

 (solution wit these simultanoms equations follows.)

This is the Venema who was the author of the Dute texthook
 paper in some other plate in 17t2.
 the printing of lists of $i m p o r t e d$ lofols phaced oin sate. The forloving algel ras are foond in surch lists: Hammonds $E / 1$ mimitr of

 Treatise on. Algelura (Virginia Gazetho, Jan 3, 1771): Newton's

 ginia (faraffe. Sept. 17.1722) : Sturminsk Elemints of the Mathe
*The data given rower the fsate of the bewspager 1 fatior lin which the laok was ad vertised for the frst time.

- muticks (Pennsyluanùn (azettc, Apr. 12, 1729) : Wards . Yóme! Muthrmaticiun's Guide (Pennsyluanip Yiazelte, May 步, 1738): Wolfius's Alyebra (Ponnsylvaniů ${ }^{\circ}$ uzatte, Aug. 4, 1its) .

We see, then, that the public press of the eighteenth seintury bears witness to activity in the teaching of algelna, amd in the sale of algelra textbooks, activity which must be interpreted in the light of a demand for this branch of, mathematics.

Chapter XIII

SUMMARY

The direct evidence in defense of the thesis that algebra was an jmpotiant part of the American education of the eighteenth cenfury may be summarized as follows: .

College of New Jersey IDrinceton [Diversity], 1770.
University of P 'masylvania, 1788.
Miscellaneous.
Commencement hexes containing alyelirnio truths:
Yale collexre. 1718-1797.
Harvard College, 12:1-1814.
College of New Jersey. 1752.
-
Rhode Instant college [Brown University I. 17:9-1811.
Inathematios theses:
Harvard College, 178f-1839.
Statements from coltregf records and writings of college mesidemts and pros-- tensors:

Hugh domes, professor of mathematics at the collage of William and Mary, 1724.
 Thomas Clap, president of Yale college, 17ti. 17 hit.
Barn Stiles, president of Yale Coblefer. 17π s.

William smith, provost of the slime college, 1753, 1754.
Mathematical runirementx in terms of trathowh:
John Ward's fie young Jrathemntician'x finite. 17an).
Nathatilel Hammond's, The Elements of Algebra, 1742.
\therefore Thomas Simpson's A Treatise of Alefhra, 1745.
sections on, pacha in tc.xtbonks from American printing press:
Peter Venema's Arithmetion of Cuffer-Konst . . . Ax. Mede Lien kart onturep ran de Algebra, 1730.
Nicolas I'ike's A Complete System of Arithmetic "th. A" Introduction "!". - Algebra: 1788.

Consider and Johsisterry's The American Youth, 1790.
Advertisements in the public press from teachers in established schools and rivals tutors:

Boston. First date. July 6, 1727.
New York CIty. First date, September 7, 1730.
Filladelphia. First date, August 15, 1734.
Algebra for its own sake. -Nowhere are there found indications that a practical need for algebra actuated the teaching of it during this period. The inclusion of this subject in the curriculum of i

4ilege of the eighteenth century，or the teaching of it as a special fubject by some enthusiastic teacher，must be accounted for on the frground that it was done for the sake of the subject itself or for the theoretical aspects of fluxions．The fascination of this kind of analysis attracted temecher and pupil alike，and the simple joy of the intellectual life that it effiorded was reward enough for its study，a reason that lies at the very heart of progress along any line of mental activity．

1730 Venemar．Pieter．
Arithmetja uf＇yffer－kinst．Volgems de Munteli Maten en bewigten． te Nitu－York，\＆ehrugkelyk Al＊Mede Een kort ontwer，van de Algebra Opicestelt dow I＇inter Vemenir．Mr．in de Mathesis en schryf－Konst．Neu－ York．Gedrucke fow Jitenh Gowlet．by sle Oude－Slip．by ．J．Peter Zenger． M゙いッツスベ。
1784 L＇ike．Nioolas．
A New and complete kistem if Arithmetic（impusell for the use of
 MICC＇LXNXVII．
Sécond edition．Eulargeil，tevised，and corrected．By Vhenezer Adams， A．I．．I＇receptor uf Leicester Academs．Woreoster．Mass．，179G．
Third editions IRevised．morected，and improved．Iy Nathaniel Lard． A．M．，Instom．1808．
17！n）Sterry，Consider and John．
The Ameridin Youth：heing a new and complete course of introductery thathematios；designed for the use of prisute students．By consider and John Nerry．v． 1 ．．．lrowhlence．Printed by 1 ．Wheeler，for the athores．1790．
17̈月思 Gourh，John
\vdots
－I＇ractimal Arithmetick．By John（inugh．Carefully revises by Thomals Telfair．Phifomath．With un Apmendix of Algebrn．Iby thifgete dV．Atkin－ soh，of［Belfast．I ubliln：l＇rinted．Wflmington：Reprinted and sold by

1801 Wehber，Samuel
Mathematios compileal from the lhest Authors and intended to be the Text－book of the churse of I＇risnte Liectures on these Sclences in the
1 the Cniversity it 1 ＇umbridge．Yuder the direction of－Samuel Webber． A．M．－A．A．S．Mollis Irofessor of Mathematies und Natural Philosphy． In 2 vols．Boston．Irinted by Thomas \＆Andrews． 1801.
Secorve idition，Cambridge．W．Hilliari， 1808.
184ns IBonnycastle，John
An Introduction to Algehra；with notes and observations designed for －the use of schools and places of public education．First American edt－ －Ilon，Philadelphia：Published by Joseph C＇rukshank， 1806.

Second American edifion．Philadelphia：Kimber and Cónrad； 1811. ［Title as above］．．．to whieh is added an appendix on the application of algelrn to geometry．First New York，form the tenth London edition．
－New York：T．Duyckinek，D．D．Smith \＆G．Long， 1818.

1800 Chevigne, L. I. M.
Mathematical Manual for the use of St Mary's College of Baltimore * containing four parts;-vi\%:-1 Ratiomal Arithmetic II Elements of Algehra III Practical Arithmetic IV Practical Algebra [L. I. M. Chevigne] Raltmore. Printed for St. Mare's College. By John West Butler. 180t.
1800 Vyse, Charles
The Tutor's Guide. By Charles Vise. Philadelphia: Juseph Irukshank. 1806 .
1807 Chevigut, I. I. M.
Mathematical Manfal for the use of colleqes and Acrademies. Volome First. [Rest of the title same an 1 Not cilition,] irinted by Joly West Butler. 1×1 T.

1800 Simjisun. Thomas
A Tratise of Algebra: wherein the Irinciples are demenstrated and applied in many useful amd interesting inguirles, and in the rexolution of a grat variety of problems of dillerent kimbs. To which is adderl, the gemetrion construction of a great momber of hinear and phane jiruhlems, with the method of resolving she same nomerically. By Thomas Simpson. F. R, S. First American, from the eighth Landon pditim. Philadelphia: Printed for Mathew ('arey ly T. \& (: I'almer. 1809.
1812 Hutton. Charles
A dourse of Mathematies in two volumes for the use of achathmies. as well as private tuithon. By c'larle Hutton, I.L. D. F. R. S. Late Professor of Mathematics in the Royal Military Acmemy. From the Fiffl and Sixth Landon Editions, Leyised and Corrected by lookert Adraln. A. M. Fellow of the American liblosuphical Society and professor of Mathematios in Queen's college, New Jersey, Nrw York, Samuel Campbell, . . . 1812.

Second edition, New York: I u blisised by Samuel r'amphell. . . . 1816.
a. Third Edition. New York: Published by Samuel Camphell, . . . 1818.

1814 Day, Jeremiah
An Introduction to Algebra, being the first part of a Course of Mathe. matics adapted to the method of instruction in the Amerlem colleges. By Jeremlah Day. New Haven: Howe \& Spalding. 1814.

Second edition. New Hayen: Howe \& Spalding, 1820.
1818 Euler, Lfonard
An Introduction to the Elements of Algehrin designed for the use of those who are nequainted only with the First Principles of Arithmetic. Selected thy Jolin Farrarl from the Algeha of Euler. Cambridge. N. -Eng. Hilliard \& Metcalf. 1818.
1818 Lacrolx, S[ilvestre] F[rancois]
Flements of Algebra, by S. F. Lacroix. Translated from the French for the use of the Students of the University at Cambridge, New England. Cambridge. N. E. : Printed By Hilliard \& Metcalf, $1818^{\boldsymbol{m}}{ }^{(}$
1819 Day, Jeremiah
An Introduction to Algebra, being the Eirst Part of a Course of Mathematics adapted to the method of instrtiction in the higher schools and academies in the United States. By Jeremlah Day, IL. D., President of Yale College, New Haven: Publlshed by Howe \& Spalding. 1810.

1820 Lacroix (\& Bęzout)

An elementry treatise on Plane and Spherical Trigonometry and on the application of Algehra to Geometry from the mathematics of Lacroix and Bezout. Translated from the French for the use of the students at the University at Cambridge, New Enghand. Cambridge. N. E.: Printed by Hilliard and Metcalf, 1820.

BIBLIOGRAPHY

This study has been made largely from original sources and printed works in the libraries of the following institutions:

American Association of Arts unt Sciences.
American Antiquarian Soclety.
Roston Athenaeum.
Boston Public Library.
Bowdoln C'ollege.
Brown University.
Bureau of Education. Washington. D. c.

Columbia Unisersity.
Essex Institute.
Jolin C'arter Irown Library.
Harvard University.
Historical Soclety of Pennsylvinia.
Library Company of Pennsylvania.
Llbrary of Congress.
Maine Historical Suclety.
Massachusetts Historical Soclety.

Newhuryport Public Library.
New York Historicul Society.
New York Public Llbrary.
New York Soclety.
Peabody Instltute.
Plimpton, George A.. Private Library.
Princeton University.
Rhode Island Historical Soclety.
Sulem Athenaeum.
Smith, David Eugene. Private Library. University of Pennsylvania.
University of Virginia:
Virginia State Library.
WatkInson Library.
William and Mary College.
Yale University.
York Village, Malne. Museum.

Further sources of material are listed below:
Amevican Philosophical Society. Transactions. Vol. II. New Serles, Phlladelphln, 1825.
Badger, H. C., Mathematical Theses of Junior and Senior Classes, 1782-1859, Cambridge, Mass., 1888.
Bowditch, N., Méranique Célexte, By the Marquis de La Place, Translated by Nathanlel Bowditch, LI. D., Vol. IV.b Memoir of the translator, by his son, Nathaniel Ingersoll Rowditch, Boston, 1839.
Bronson, W. C., The History of Brown University, 1764-1914, Providence, 1914.
Cajori, F., The Teaching and History of Mathematics in the United States, Washington, 1890.
Cajorl, F., William Oughtred. Chicago, 1916.
Chambers, F., Cyclopadia. Second edition, London, 1738.
Clap, Thomas, The Annala or History of Yalc-College in New-Haven, New Haven, 1768.
Clap, Thomas, A Catalogue of the Library of Yale-College in New-Haven, N . London, 1743.
Columbla University, A Hiatory of Columbia University, 1754-1904, New York, 1904.

De Morgan Augustus, Arithmetical Bookr, London, 1847.
Dexter, F. B., Biographical \&ketches of the Graduates of Yate College with An'

Dickson. 1. E., History of the Theorg of Vumbers. Vol. II. Washington. 1920.
Dunshee, H. W.. History of the School of the ('ollegiate Reformed Dutch Church from 163s-18.3. New York, 1883.
Ecclesiastical Rerordx of the State of New York. Albany, 1901-1916.
Fdes. H. H.. "Harvard Theses of 18R3." Transurtions of The Colonial Societiv of Masxachusetfx, Vol. V. 1S97. 1S9R. Boston, 1902.
Wans, Charles, Americon Bihtograph!!, 1639-IN.0. Chicago, 1903-1914.
Gilenn, T. A.. William C'hurchill Houstom, 17ל6-178s. Norristown, I'a.. 1903.
Hórlgone, I'ierre. ('uraus Mathemutirus, mora hreri et clara. Vol. II, Paris, 1644.
Hildeburn. C. R., A Century of Printing. The Issues of the Press in Pennsylvania, 16s5-178\%. Philadelphin, 1885.

- Jones, Hugh. The Prexent state of lirginia. Iandon. 1724.

Lane, W. (... "Farly Harvard Broadsides." Promedings of Imfrian" Aatiguarian sorietf. Worcester. 1914.
 to the commenerment of 185%. Philadelphia. 1877.
Oughtred. William, Claris Mathematices Landon. 1 R31.
Pelrce. Lengamin, I Hixfor! of Harrard'9'nirersit!!. C:ambridge, 1833.
 ('ambridere. 1sent.
Pratt, D. J.. Apmals of Puhlir Eduration in the state of Sem Fork. From 1626 to $17 夕 6$. Nimaty, 1872.
Quiner. Jostuln, The History of Hurrard lnirersit!. I:aston, 18til.
Luphson, Josésh, Unirerana Arithmetick: or. a Treatiae of Arithmetiral Com. poxition and Rexilufion. Tandon, 1720.
Sanborn, in. B., Dortor l.angdon (172.3-1797), 1904.
Smith, I. F.. "A Glimpse nt Early Colonial Alerphra" in school and society. January 5, 1918.
——Historl of Wathematies, 2 vols. Boston. 102:3-2t.
—The Sumario Comprndiosn of Brother Jurn Dirz. Boston. 1921.
Smith, H. W.. Life and Correspondence' nf the Rer. William. Smith. D. D., Philadelphin. 1879.
Smith, The Works of Willirm Smith. D. D., Late I'rovost of the College and Academy of I'hiladelphia. 1803.
Snow, L. F., The College Curriculum in the Vnited States [No place], 1007.
Spotswood, The Offeinl L,gters of Alesander Efotsirnod. Lieutenant Governor of the Colon! of Virginin, 1710-1722, Richmond, 1882.
University of Pennsylvania, Bingraphical Cafalogue of the Matriculates of the College, 17i9-1898, Philadelphin. 1894.
Wallis, John, A Trentise of Algebrn both Historical and Practical, London, 1685.
Wiltiam and Mary Quarterly. Vols. I-XXVII.
Williams, J. R., Philip Vkekers Fithian, Journal and Letters, 1767-1774. Edited by John Rugers Williams, Erinceton, The Unlversity Library, 1900.

IN DEX

Adlition, 8, 9, 21, 25, 61
Advertisement of arithmetio by isanc. Grtenwow, 68
Advertisements, algehra problems, 72: sale of algehra books. 72 : tuturs. 67-71
Ageregation, 8
Agebrat in The 1 meriodell louth, his
Algelir: in Pike's Arithmetio, fot
Imericun Vouth. Thr. GI
Analogies. 9. ist
Aphliations of alyphr:1, 25, 24. 41, im, , $0 . \overline{1}$
 4!), 68
Ariflumeticu of c'uffer-Konst, is, 59, 61
Arithmetian l'mireratio. 2. 16, 23, 25, 53
Bibliography of Pomericant toxthows to 1820, 7.5
Binomial theorem, $9,17,65$
Bowditch, Nathaniel, :27
Brooke. Robert, 25
Brown University, 31, :38, 54
lalculus, 16, 68. Ner alan Fluxions
Caterhism method, 28
Chambers Curlopedin. 4. 7. 15. 16
(iircle, 15, 16. 33
Clap, Thomas, 48 -
College of New Jersey, sor I'rinceton University
Columbin Iniversity; 34, 50
De Morgan, Augustus, 10
Difference symbol, 8
Diman, James, 4-
Dltton, Humphrey, 10, 53
Invision, 8, 21, 25, 37, 61
Dutch algebra, 58
English influences, 1
Equations, adfected, 8. 11, 21, 25, 27, $46,54,55$; blquadratic, 13,55 ; cubic, $9,10,12,50,55,65$; quadratic. $8,11,19,21,25,54,55$; radical, 21 ; simple, $8,10,19,21,25,32,61$; simultaneous, 21, 25, 61

Euclid. 15. 16, 18, 19. 50, 54
Evolution, 8. 25, 32
Expments, 8. 5\%, $8: 2$
First agebra borik in American Cono. nies, 58
First professor of mathematios in Americam, ©omies, 47
Fithian, I'hilip Vickers, 18
Fluxions, 18, 19, 21, 2f, 35, 37, 38, 40, 49, 68
Fractions, 8, 19, 21, 25, 32, 54. 61, 62
Geometry, 15, 21, 25, 32-35, 37, 41, 48, 50, 52, 68
Greenwood. Isaac, 3-6, 15-17. '37, 45, 6i7. (is
(irpenwond's arithmetic. i. fis
Halley, Edmund, ! 13 , 16
Hammond, Nathaniel, 5is, 5H, 7:
Harvard Cufversity, 3-5, 17. 30. :37. $36,38,41,45,46,52,48$
Heterogeneal, 16
Hill, John, 19, 54
History of ulgebra, 6, 7, 55,
Hollis professorship, 4, 45
Ilomogeneal, 16
Houston, William ('hurchill, 20)
Imaginary number, 11.
Inequallty, 8. 25
Involution, 8, 3, 13, :35, 3:
Johnson, Samuel, 34, 50, 52
Jones, Hugh. 46, 47 ; manuseript of. 48
Kersey, John, 16, 72
KIng's College. See Colımbia University
Langdon, Samuel, 3, 4, 5
Ie Fevre, 46, 47
IInonian Society at Yale, 49
Magnalia. 30
Manuscript, Diman, 8 ff: Langdon. 6 ff
Mathematica Compendia, 21, 25
May, Eleazer, commonplace book, 51
Mental discipline, 40
Mexican algebra, 57
Multiplication, 8. 21, 5 䛔, 37, 61

Negative numbers, $9,28,32$
Newton, Sir Isaac, 1, 16, 17, 53, 55, 72
Notebooks, algebra, 3, 18, 21, 25-28;
arithmetic, 3
i. Oughtred, William, 8. 11, 16, 25

Patterson, Robert, 21-23
Pike, Nicolas, 64
Positive numbers, 9, 28, 32
Praxis, 21, 25
Princeton University, 18, 38, 55
Problems, algebraic, d-11, 14, 17, 19, $22,28,41,44,55,57,63,72$; geometric, $9,13,14,16,29,25,26,41$, 50, 55
Pregressions, 25
Proportion, 8, 19, 32, 54, 65°
Raphson, Joseph, 9, 13, 16
Reduction, 8, 9
Remainder theorem, 13
Thode Island College. See Brown University
Rhyme, problems in, 28
Saunderson, Nicholas, 19, 72
Series, 9, 21, 46, 55, 65
Simpson, Thomas, 55, 72
'Smith, William, 49, 53
Sterry, Consider and Jo\&n, 65
Substitution, 9, 12, 22, 54
Subtraction, 8, 9, 21, 25. 61
Sumario Compendioso, 57
Summary, 74
Surds, 8, 9, 16, 19, 54
Symbols, 6, 7
Teaching of algebra, evidences. 4, 17. $18,21,25,34$
Textbooks, 29, 51, 54, 55, 57, 64, 55
Theses, algebraic, 33, 37 ; commence. ment, 30; mathematical, 41-43: translations of, 32,37
Toples in Harvard manuscripts, 8
" Tryalls and Depression," 9, 13
Unifersity of I'ennsylvania, 21, 25, 44
Veuema, Pieter, 59, 72
Wallis, John, 7
Ward's Young Mathematician'x liuide, $42,51,53,73$
Willard, Samuel, 42
William and Mary, College of, 46
Yale University, 30-32, 34, 38, 39, 48, $49,53,54$

[^0]: ${ }^{1}$ Amerian Antiquarian Society.
 ${ }^{2}$ Robert Hale was graduated from Harvard in 1721, and this probably represents the mathematical work that lie took during his preatman or kophomore yome.
 ${ }^{3}$ David Eugene Smith. "A Gilmpse at Warly Cohmini Algehre." Nohool and suctety, Jan. 5. 1018. This article fully describen the manusirlpt, and the demeriptlon herein contalned will necessarily-cover the fame ground. although it is the result of a study mate by the author.

[^1]: - Harvard Unlveraity LAbrars.
 ${ }^{5}$ See page 68 for conclusive evidence on the authorshlp of thls arlthmetic. The cops of this work in the New York Public Library contalns, In several places, "EMiaklm Willis. his Book 1733," Wills graduated from Harvard in 1735 and no doubt used the book In bls college course.
 ${ }^{4}$ See F. B. Sanborn. Dr. Langdon (772s-1797), 1004, for a full description of Langdon's life and connection with Harvard College.
 ${ }^{7}$ Account taken from t. C. Potter and C. K. Bolton. Lbrarlans of Harvard Oollege, 2667-1877, Catibridge, 1897.

[^2]: ${ }^{\bullet}$ John Wallls. A Treatise of Algebra both Histortcal and Practicat. London, 1085. ${ }^{10}$ K. Chambers, Cyclopaedia. Second edition, London, 1738.

[^3]: "These aymbols are used by William Oughtred in hls Claikn Mg (hrmaticer, p. 100, London, 1648.
 ${ }^{13}$ Thls eymbol was used first by Oughtred, loc. clt., Eu. 2, 1852.
 st Diman usen the apelling "mbitraction," while Langdon usea "subetraction." The Iatter is used throughout Greeswood's Arithmetle. For a mlileussion of the spelling of theme worda, gee Divid Eugene Snilth, History of Malhemallics, 2 volu,, Bustun, 1923-24, hereafter referred to an Smith, History, It, 96.

[^4]: ${ }^{15}$ Joseph Raphson, who published in 1000 a work entitled "Analysis nequationum urirersals," In which he modified Newton's method of anding the approximate roots of a numerleal equation. For a discusalon, see F. Cajori, ouphtrat, p. 140.
 ${ }^{16}$ kdmund Halley, the great astronomer. He: was also deeply luterested in geometry und algebra.

[^5]: ${ }^{1}$ The earlifest reference to algobra at I'rinceton is found in a get of letters written in 1750, 1751, 1752, 1753, by Joseph Shipper, a student at the college, to his father and other friends. In a letter of the 8 th of June (1750) he says: " Isahall learn llorace in a little while. . . but my time is flled upein studying Virgil, Grêek Testament, and Rhetorlc, so that I have no time hardly to look over any French, or Algebra, or any English book for my Improvement." John Maclegn. History of the College of Jifin Jerre:! I, p. 141. Pțiladelphla, 1877.
 ${ }^{2}$ Phalip Viokers F'ithian. Jourinal and Letterv 1767-1774. Edited by Jolin Rogeta Williams, Princeton, 1900.
 ${ }^{\text {a }}$ I. V. Fithlan, letters and miscellaneous papers, $\mathbf{1 7 B 0} \mathbf{- 1 7 7 6}$, MS, Princeton Íniversity lfbery.

[^6]: - Flrat edition, London, 1758 . The second edition, with which this comparison is made. nppenred In 1 亿61. 7
 "'omparison made on brais of the eleventh efition, Iondon, 1772.
 ${ }^{\bullet}$ Augustus DeMorgan, Arithimetical Books, p. 70, London, 1847.

[^7]: TArcount taken fromi Thomis Allen Gleme, llillimm churchill Mousfon, tiki-lisk, Norrintown, I'a., 1003.

[^8]: ${ }^{1}$ ['niversity of Jennayivinia library. Another notelook in this library contains no name or dute but gives evidence of beling at least as early as thilg one.

[^9]: "Account taken from Transantions of the Amrrican I'himanhbied Rocicty. Vol. II, New Serlea, Ihbladelphia, 1825. Obltunry notice of Rolert I'ntterson, W.I. I).

[^10]: ${ }^{3}$ Professor Cajori states that I'atterson wrote a small astronomy ratitleal " The Vertonian System," which was publisherl in 1sos. F. Cajori. The Teaching and Histury of Mathematics in the Cenited stites, p. G6, Washington, 1s:oo.

 - Manuseript Department, Historical Soclety of Ienasylvania.

[^11]: ${ }^{1}$ Dniversity of Pennaplranin. Biographical Catalogue of the Matriculates of the Collepe 749-189s, XIII, I'hiladelphin, 1894.
 ${ }^{1}$ This notebook and all the others by Hobert Brooke hereln described are in one package in the manuscript department. Historical Suclety of lennsylvania, hereafter referred to is Hist. Soc. I'a.

[^12]: ${ }^{9}$ Hist. Soc. Pa.

 - Manuscript Department, Library of Congress.
 ${ }^{5}$ Hist. Soc. Pa.
 - Harvard Univerpity Labrary.

 7 Americaŭ Antiquarian Soclety.

[^13]: *Samilif Webler. Tutor of mathematics nt Inarvard from 178b-178月. Later professor of mathematies nad prestdent of the unlversity. *
 *Ihston Tublle Lhirary.
 ${ }^{31}$ Roston I'ublle Library.
 ${ }^{1}$ Nathaniel Bowditch (1773-1838). Best known as the translator of Laplace's. yfranique crirate and by another work that was largely his own. The Neis American Pructical Navigator, 1802.
 Thas Memoir of the translator of the Mécanique CCleatc by hils son, Nathaniel Ingersoll Bowattch, In Vol. IV, Boston, 1839.

[^14]: ${ }^{13}$ Manuscript collection of Mr. George A. Plimpton.
 ${ }^{4}$ Ibid.
 ${ }^{16}$ Amprican Antiquarlan Soclety.
 ${ }^{16}$ Jeremlah Day, The Elcments of Algebra, New Haven, 1814.

[^15]: 1 The hest collection of commoncement theses of the various milversitios are to be found In their llirnties as follows: Inrvard, 1642-1810; Yate, 1718-1797; Brown, 1769-1811; Princepton, 1752. Only one commencement broadside could be located at Irinceton. The library jossogses, however, a manuscript volume, complled by John Rogers Willams, and containitis all the newspaper botices of commencements from 1748 to 1805 . The account for 1748 records that the candidnfes entared upon public disputations in Latln of thrses which had been distributed In printed form. Similar necounts for many years show that the same custom prevalled ut this collmg ge at the other colloges of the day.
 ${ }^{2}$ Magnalhz (1702) Book IV, 1:8, 131. Quoted In, 1lenry W. Edes " Iarvard Theses of 1563," Transactions of the Colontal Soclety of Massachusetts. Vol. VI, 1897, 1898, Boston, 1902, p. 323.

[^16]: For an excellent goneral account of these publications, see Willam.Coolldge Lane, "Early Ilarvard 1troadsides," In Procecdinys, of the american Antiquarian fiociety, Worcenter, Oct, 1914, pp. 204-304.

[^17]: - Franklin B. Dexter, Biographoal Bketches of the Graduates of Yale Coltege with Annals of the College Hitotory, October, T701-May, 1745, p. 179, New York; 1885.

[^18]: B F. B. Dexter, Btographtanl Skctches, p. 123.

 - Eamuel Johnson Collection, Columbla Uniyersity Illirary.
 ${ }^{T}$ Mathests Juvenilis: Made English from the Latin of Jo. Cbristopher Sturmlug. By : George Vaux, M. D., London, 1709,

[^19]: ${ }^{8}$ Euclialr's Etements . . . By Isaac Barrow, D. D. London, 1705, Johnson's llbrary contains also "The Elements of Euclid... Written In French by . . . de Chales. Now made English . . . Oxtord, 1704." It has on the, front page " Thomas Prince 1707 Books onitted viz. 7, 8, $9,10,13$ \& Supra. Books contained viz; 1, 2, 3, 4, 5, 6. 11, 12." Thep follows a list of omitted propositions in the same handwriting. Prince graduated from Harvard in 1707. Was thly the texthook in geometry at Harvard in the same year!

[^20]: 4 This ts one of Fermat's theorems See leonnrd Eugene Dickson, History of the Theory of Numbers, Vol I1, p. 616, Washington, 1820.

[^21]: ${ }^{1}$ IIarvard Tinlversity LIbrary.
 ${ }^{2}$ A complete list of the headings fonnd on these sets of problems is given in Hunry $\boldsymbol{C}_{\text {a }}$ Radger, "Matiflatical Theses of the Junlor and Nenlor Classes, 1782-1833.:" In Biouraphial Contributiona, No. 32, Lbrary of Harvard Universlty, Cambrldge, 1888.
 'Samuel Webber was the professor of mathematics at the time.

[^22]: ${ }^{5}$ Ibid, p. 238 (1719).

[^23]: ${ }^{1}$ Louls Franklin Snow. The Collgge Curriculum in the United Stater, p. $2 \mathrm{n}_{\mathrm{s}}$ [[no ${ }^{\circ}$ " place 1, 1907.
 ${ }^{2}$ Harvary College 1’apers, Vol. 1, 1050-170及, fam. 18, 1726, Harvarde Unaperaity Library. There are 13 rules.

[^24]: ${ }^{3}$ Josiali Quincy, The History of Harcaril Unircrsify. Vol. I. p. 3no, Boston, 1860.
 ${ }^{4}$ L. F. Snow, College Curriculum, p. 84, Quoted from Col. Bnok 8. 1. 243 .
 ${ }^{6}$ Ibid., p. 270 tr. .
 ${ }^{0}$ The researches of Dr. Lyon Gardiner Tyler, for 31 years the prealdent of William and Mary, have been most belpful in the study of that college. They ari publisised in The IViliam and Mary Quarterly.
 ${ }^{T}$ The Offial Letters of Alexander Spotwood, Leutenant Gotervor of the colonn of Viryinia, 1710-1722. Now First l'Tinted from the Manuserlpt in the Coilections of the Hirginin Historlcal Society with an Introduction and notes by R. A. Brock . . . I, pp. 103, 150, Bichmond. 1882.

[^25]: * Spotawood's Lefters, loc. cit. H. In. 2 s .
 "Many letters of his are list al lir British Muspum mialogues of manuseripte.
 .${ }^{10}$ Hugh Jones, The Present, itate of Virifinia, p. 44, London, 1724.

[^26]: ${ }^{11}$ Jones (Hugh), A. M., Minister of James Town, Virginia. An Acoldrnce to the Eing\because lish Tongue, etc., London, 1724. Given In Brillah Muspum catalogic.
 ${ }^{12}$ British Museum Additlonal Manuscript 21, 803.
 ${ }^{10}$ Account, of which the above is a résume. furalshed hy B. F. Stevens \& Brown, London, through the courtesy of Columbia Inivergity library.
 ${ }^{16}$ [Thomas Clap] 4 Catalogue of the Library of Yale-College in New-Haven, N. London, 1743.

[^27]: ${ }^{16}$ Thomas Clap, The Annale or Historn of Yalerentlege in New Harrn. I New Haven, 1766.) Appendix, p. 81:
 ${ }^{16}$ Yale University llbrary.
 ${ }^{17}$ Minutes of the Trustees of the Collegr, Academy, Charitable schools of Philadelphia, Vol. I, 1740-1708.

[^28]: ${ }^{18}$ The Works of William. Smith. D. D.. lante I'rovost of the colloge amil Aembemy of Thiladelphin. Vol. I. Part I1, p. 183, Ihiladelphin. 1803.
 the 8 th of Novemiber (12 Fi) appotnted Mr. Dantel Tradwell, a young gmitleman of a very excellent character edurafed at IIarvard Colloge, and recommended by Irofusur

 - Winthrop an eminently iftidd for that station...
 ${ }^{20}$ L. F. Snow, Colleqe Curriclitum, p, 98 ff.

[^29]: ${ }^{2}$ John Ward, Young Wathematician's $\dot{\text { Ouide, p. }} 37$.
 ${ }^{2}$ Benjamin Firlree A History of Harvard Unircrsity, 1. 2:17, C ambridge, 1833.
 ${ }^{4}$ Joseph McKean, Boston Public Library.
 5 "Libraries of Colonial Virginin Ins Nillum and Mary Quarterly. Vol. III, ply Vol. IX, p. 167, Vol. X. p. 232.

 133;
 7 Notebook In Samuel Johnson Collection, Columbin Inlversity Lhirary.
 ${ }^{7}$ Harvard College Paperb, Vol, II, 1704-1780. Harvard University Library.

[^30]: "Horace W. Sinlth, Life und Correspondence of the Rev. Winiam 太mith, p. 124 f., Philadelphla, 1878.
 ${ }^{\circ}$ I. F. Snow, Coliege Curriculum, p. 78. Quoted from Stile's Dlary, Nov. 0, 1779.
 ${ }^{13}$ Account taken from the "Third Edition, Corrected," 1710.
 "Humplirey Intton was highly regarded by Nir Isaac Newton, and exercised an infuence on the Neufonian Phllosophy. See Smith, History, I, D. 466, Boston, 1923.

[^31]: ${ }^{17}$ Nathaniel Lhammond: The Etements of Athebra in a Niow and Eastl Methow, inith their Lae and Application in the Solution of a great Variety of Arithmetical and Geometrical Quentions; By firncral and unicersal liules. To which is pretixed an Introduction, containing a Suceinct Illstory of this Sclence. By Mr. Nathantel Ilammond, of the Barik. london, 1742.
 ${ }^{19}$ Srep. 53.
 University Lilbrars) occurs " Nathaniel Hamonond. Flemonts of Algehra (usel by Sophomores $177+-1781$)."
 ${ }^{15}$ Walter C. Bronson, History of Brown Ciniversity, H6t-1914, p. 102. I'rovidence, 1914,

[^32]: ${ }^{2}$ Charles R. Illdeburn. A Century of Iranting. The Jemucs of the Press in limusul-- vanin, t68i-T88, I'hiladelphta, 1 Ns5.

 4 Only two coples have beall located. They are looth in the library of the New York Historical Nociety. The copy in the Now York State Library, Histed In Pivans, low. elt., was destroyed in the fire of March 29. 1911.
 ${ }^{5}$ Ecclesiastical Records of the Ntate of Nim Jork, Vol. IV, p. 2833, Alhany, 1901-1916.
 ${ }^{6}$ H. W. Dunshee. Histary of the 'School of the Collegiate Reformed Dutch Churh from '1689-1883, p. 38, New York, 1883.

[^33]: ${ }^{7}$ Ecclesiastical Records, loc. èit., p. 2756.

[^34]: A Pieter Venema. "Een kort en klare Ondarighilige in. de Reginaclen ran de Alycbro ofte Stelkonst." To Groningen. 1714. Other milions Atmsterdam 1730, 1756, 1768, 1783, 1784, 1803.

 - This was Jean (I), who was professor at Griningrn, 1095i1705,
 ${ }^{10} \mathrm{I}$. Venema, 1714, loc. cit. No wbifography-oontulted revealed the exlstence of this edition, but a. copy was found in the colloction of Mr. George. A. Plimpton, to whom the writer is indebted for the priviloge of examining the hook. Mr. Plmpton also has a copy of the 1756 edition.
 218 I. Vol. 11, p. 8 (Amsterdam 1793, 1795), and ofler referencen.

[^35]: ${ }^{12}$ An examination ur tho $171+$ algalma shown that the work of 1780 is an abibeviated treatment of the earller work. Lrocesses, examples, and problems of the latter are Jdentl. cal with parts of the former.

[^36]:

 proved ing Nathanitel Loml. A. M., war published In-Joston lin isns.
 H

[^37]: "Teremlah Day, Thee Elements of Alucbra, loc. cit.

 - The American Youth: being a new and complete courwe of introductory mathematica: Ifexigneal for the use of pricate atulents. Ib Consider and John Sterty, v. 1 . . ProviNetice. Printed by B. Whener, for the authors, 1790.

[^38]: ${ }^{1}$ This miudy has been made from representatise newspapers of Boston, New York, Thiladuphta, and Virginla. The papers have been pxamined systematicully from their beginnings to the dintow indicated, such datew being In several Instancer the time at which putlicution of the paper ceased. The files examined consist of the originals or facsimiles in the New York I'ublic LJbrary, New York Historical Soclety, New York Society. Historical society of I'ennsylvanda, Library Company of Pennsylranla, and Sirginia State LAbrary. The following list of newspapers Indicates the extent of the inveatigation :

 Boston NewsLetter, Apr. 24, 1704-Dec. 29, 1757.
 New-Jork Grzette, Feb. 28, 1726-Oct. 15, 1744.
 New-York Weekly Iost-Boy, Jan. 10, 1747-1lec. 18, 1752.
 New-York Weekly Journal, Oct. 5, 1733-Mar. 18. 1751.
 New-Yor'k Evening I'ont, Mec. 17, 1744-Dec, 30. 1751.

[^39]: ${ }^{2}$ The namo of Inaac Greanwood was not printed on the title page of this book. It lian leen placed there by hand in most coples to be fouth In librarios at the present time. This advertisement is conclusive evidence of the authorship of the book.

[^40]: *Panlel J. Iratt. Innala of Publir Educalion in the Stute if Vrer Vork. From liza to Fi6. J. 124 ff. Albany, 1872.

[^41]: ${ }^{5}$ Minutes of the I'ubllek School, 1712-1770, Vol. I, p. 20.
 arom Simpsonlana in the possession of I'rof. David Eugene smith.

 * A number of advertimemeuts of algebra have been located in nowspapers between 1783 and 1800 . On account, however, of the desultory nature of the search made.during these years, they will not be cited.

