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Preface  
 

The Third International Conference on Data Mining (EDM 2010) was held in 
Pittsburgh, PA,USA. It follows the second conference at the University of Cordoba, 
Spain, on July 1–3, 2009 and the first edition of the conference held in Montreal in 2008, 
and a series of workshops within the AAAI, AIED, EC-TEL, ICALT, ITS, and UM 
conferences. EDM2011 will be held in Eindhoven, Netherlands. 

EDM brings together researchers from computer science, education, psychology, 
psychometrics, and statistics to analyze large data sets to answer educational research 
questions. The increase in instrumented educational software and databases of student 
test scores, has created large repositories of data reflecting how students learn. The EDM 
conference focuses on computational approaches for analyzing those data to address im-
portant educational questions. The broad collection of research disciplines ensures cross 
fertilization of ideas, with the central questions of educational research serving as a 
unifying focus.  

We received a total of 54 full papers and 20 submitted posters from 21 countries. 
Paper submissions were reviewed by three or four reviewers and 23 of them were 
accepted as full papers (43% acceptance rate). All papers will appear both on the web, at 
www.educationaldatamining.org , as well as in the printed proceedings. The conference 
also included invited talks by Professor Cristina Conati , Computer Science Professor,  
Computer Science Department and Laboratory for Computational Intelligence at the 
University of British Columbia, Canada and by Professor Osmar Zaine  Ph.D., Professor, 
Department of Computing Science, University of Alberta, Canada. 

We would like to thank Carnegie Mellon University for their hosting of 
EDM2010, and thank the Pittsburgh Science of Learning Center DataShop and Carnegie 
Learning Inc for their generous sponsorship. We would like to thank the program 
committee members, local committee, web chair, the reviewers and the invited speakers 
for their enthusiastic help in putting this conference together.  
 
 
Ryan S.J.d. Baker, 
 Agathe Merceron, 
 Philip I. Pavlik Jr.  (Eds.) 

http://www.educationaldatamining.org/�
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application of community mining, and discuss some open problems pertaining to social 
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Effort-based Tutoring: An Empirical Approach to 
Intelligent Tutoring 

Ivon Arroyo1, Hasmik Mehranian2, Beverly P. Woolf1 

1 Department of Computer Science, University of Massachusetts Amherst 
2 Dept. of Mechanical and Industrial Engineering, University of Massachusetts Amherst 

Abstract. We describe pedagogical and student modeling based on past 
student interactions with a tutoring system. We model student effort with an 
integrated view of student behaviors (e.g. timing and help requests in 
addition to modeling success at solving problems). We argue that methods 
based on this integrated and empirical view of student effort at individual 
items accurately represent the real way that students use tutoring systems. 
This integrated view helps to discern factors that affect student behavior 
beyond cognition (e.g., help misuse due to meta-cognitive of affective 
flaws).  We specify parameters to the pedagogical model in detail. 

1   Introduction 

The traditional structure of intelligent tutoring systems consists of a student model 
and a pedagogical model to guide activity selection, generally based on heuristics. 
The most traditional student models are based on tracing student cognitive knowledge 
[4]. Knowledge tracing (KT) procedures encode cognitive mastery of the different 
skills being tutored. KT consists of four parameters fit to each knowledge component 
(KC), and include: initial learning, learning rate, guess and slip parameters. One 
advantage of these models is that parameters are interpretable, and being just four, 
they may also be fit from prior student data for each knowledge component in a 
domain, using expectation maximization or other techniques [5][6]. While this model 
is simple and has been used in many tutors, the main disadvantage of this method is 
that it relies on a definition of student performance in terms of number of incorrect 
attempts –it does not address how students help requests (via glossaries or hint 
requests) or issues of timing affect performance. This fact has been addressed in later 
work [2][3][5][6][7] by creating separate models of engagement or more complex 
Bayesian models that address the impact of help on student knowledge. The problem 
that still remains is that issues of timing or hints are not addressed in an integrated 
way within these knowledge estimation models, leading to biased estimations of 
knowledge (e.g., the student answers very fast incorrectly may lead to an estimation 
of unknowing, however, it really reflects disengagement). One attempts was [7], who 
modeled student engagement and knowledge at the same time within one model. It 
helped to keep knowledge more stable instead of an apparently decreasing knowledge, 
as if students were unlearning while they were actually disengaged. This work 
encoded math knowledge as single latent variable, though, which is not practical to 
make decisions in the pedagogical model,  so this work is still preliminary.  

In summary, while progress has been made in student modeling and intelligent 
learning environments, there is a need for student models that integrate and discern 
between engagement, student knowledge and other factors such as affect and meta-
cognition, or descriptions about how to juggle different models to make optimal 
pedagogical decisions. This paper provides one approach that discerns among the 
reasons for student effort (or not) at individual practice items, based on different 
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dimensions of student behavior. We then thoroughly document a pedagogical model, 
which is heavily based on empirical estimates of student effort and problem difficulty. 
We last provide results of a randomized controlled study that shows the adaptive 
nature of this tutor does improve learning, compared to an “unintelligent” version that 
makes less smart moves when selecting practice activities. We also provide a 
methodology to evaluate that the estimates of problem difficulty are accurate. The 
level of detail in the methodology allows for replication of the tutoring mechanism 
and estimates of effort on other learning environments, even for systems without a 
large amount of content available, or ill-defined content (ill-defined domains).  

1.1 Wayang Outpost: A Mathematics Tutoring System 

Wayang Outpost is a software tutor that helps students learn to solve standardized-
test type of questions, in particular for a math test called the Scholastic Aptitude Test, 
and other state-based exams taken at the end of high school in the USA. This 
multimedia tutoring system teaches students how to solve geometry, statistics and 
algebra problems of the type that commonly appear on standardized tests. To answer 
problems in the Wayang interface, students choose a solution from a list of multiple 
choice options, providing immediate feedback on students’ entries and offering hints 
that students can accept or reject. Students are encouraged to ask the tutor for hints 
that are displayed in a progression from general suggestions to bottom-out solution. In 
addition to this domain-based help, the tutor currently provides a variety of affective 
and meta-cognitive feedback, delivered by learning companions  designed to act like 
peers who care about a student's progress and offer support and advice [1][8]. Both 
decisions about content sequencing and characters response are based on a model of 
student effort, used to assess the degree of cognitive effort a student invests to 
develop a problem solution, described in the next sections. 

2 Modeling and Acting Upon Student Effort 

We start by estimating the expected behavior that a student should have on a problem 
based on three indicators of effort: 1) number of attempts to solve a problem; 2) 
number of hints requested for a problem; 3) time required to solve a problem. These 
are three orthogonal axes that help understand student effort. The only pre-processing 
done for this data set was to use data corresponding to “valid” student users (instead 
of test users), and discarding outliers just for the “time” variables.  

Figure 1 shows examples of problem solving behavior for nearly 600 students in one 
problem. This one problem may seem evidently too easy at first glance, as the 
majority of students made zero or few incorrect attempts, saw no hints, and solved the 
problem in less that 5 seconds. However, this is not the case. It is common to find 
problem-student interaction instances where students spend little time and effort. It is 
also common that students under-use the help in the system. We find it essential to 
take into account that this is the real way that students use the tutoring system, and we 
need to take into account what are likely student behaviors when considering how to 
adjust instruction and the presentation of the material to students. Note that the 
distributions are not normal, but more similar to Chi-Square distributions. 
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Figure 1. Distribution of attempts, hints and seconds in one problem. Expected and delta values. 

The combination of mistakes, hints and time as shown in Figure 1 will allow to 
estimate higher-level scenarios of mastery or disengagement, see Table 1. For each of 
the hundreds of problems or practice items in an intelligent tutor, we compute the 
median (or the sample mean after discarding the top 10 percentile, which was a good 
approximation in our data and much easier to compute using SQL) and standard 
deviation for the whole population of students. This median or mean is considered the 
expected value, i.e. the expected number of incorrect attempts for a problem pi (E(Ii)) 
where i=1…N, and N=total practice items in the tutoring system. Expected hints seen 
is E(Hi) and time required to solve the problem is E(Ti). We also define two delta 
values for each E(Ii), E(Hi) and E(Ti), a total of six delta values (see Figure 1) for each 
problem pi, which represent a fraction  of the standard deviation, regulated by two 
parameters, θLOW and θHIGH in the interval [0,1]. For example, if θLOW=1/4  and 
θHIGH=1/2, then δIL=θLOWSD(Ii)= SD(Ii)/4  (a fourth of the standard deviation of Ii) 
and δIH= SD(Ii)θHIGH= SD(Ii)/2, half of the standard deviation of Ii. θLOW and θHIGH  
are the same for all problems in the system. These values help define what is 
“expected behavior” for a practice item within the tutoring system. Note that the 
notation for δ values has been simplified (e.g. 

! 

"
IL

 should really be 

! 

"
I

i
L
, as it refers to 

an individual practice item). 

2.1 Pedagogical  Decisions based on Student Effort  

The large benefit of an effort model based on different orthogonal axes of behavior 
(hints, time and correctness) is that it can help researchers discern between behaviors 
related to student engagement (affective) and behaviors related to help misuse (meta-
cognitive or affective) in addition to behaviors related to cognitive mastery. Table 1 
shows the estimations of most likely scenarios made by the pedagogical model in 
Wayang Outpost, and the pedagogical decisions made in terms of content difficulty, 
plus other pedagogical moves related to affective and meta-cognitive feedback. Note 
that disengagement (e.g. lines 3 and 5) produces a reduction in problem difficulty, 
based on the assumption that if a student is not working hard enough on the current 
problem, they probably won’t work hard on a similar or harder problem. However, the 
key intervention is that Learning Companions deemphasize the importance of 
immediate success. 
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Table 1. Empirical-based estimates of effort at the recently completed problem lead to adjusted 
problem difficulty and other affective and meta-cognitive feedback 

 

 

Student Model 
Estimate most likely scenario for student on 

problem i 

Pedagogical Model Moves 
Cognitive or Affective or Metacognitive 

 Mistakes Hints Time Most Likely  Decision Other Actions 

1 < E(Ii) – 
δIL 

< E(Hi) 
– δHL 

< E(Ti) 
– δTL 

Mastery 
without effort 

Increase Problem 
Difficulty Show learning progress 

2 < E(Ii) – 
δIL 

< E(Hi) 
– δHL 

> E(Ti) 
+ δTH 

Mastery with 
high effort 

Maintain Problem 
Difficulty 

Affective feedback: Praise 
Effort 

3 < E(Ii) – 
δIL 

> E(Hi) 
+δHH 

< E(Ti) 
– δTL 

Hint abuse, low 
effort 

Reduce Problem 
Difficulty 

Deemphasize importance 
of immediate success 

4 < E(Ii) – 
δIL 

> E(Hi) 
+δHH 

> E(Ti) 
+ δTH 

Towards 
mastery, effort 

Maintain Problem 
Difficulty 

Praise effort 

5 > E(Ii) + 
δIH 

< E(Hi) 
– δHL 

< E(Ti) 
– δTL 

Quick 
guessing, low 

effort 

Reduce Problem 
Difficulty 

Deemphasize importance 
of immediate success 

6 > E(Ii) + 
δIH 

< E(Hi) 
– δHL 

> E(Ti) 
+ δTH 

Hint avoidance 
and high effort 

Reduce Problem 
Difficulty 

Offer hints upon incorrect 
answer in the next 

problem 

7 > E(Ii) + 
δIH 

> E(Hi) 
+δHH 

< E(Ti) 
– δTL 

Quick guess 
and hint abuse 

Reduce Problem 
Difficulty 

Deemphasize importance 
of immediate success 

8 > E(Ii) + 
δIH 

> E(Hi) 
+δHH 

> E(Ti) 
+ δTH 

Low mastery 
and High Effort 

Reduce Problem 
Difficulty 

Emphasize importance of 
effort and perseverance 
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Otherwise 
Expected 
Behavior 

Maintain Problem 
Difficulty 

 

The retrieval of an increased difficulty item is based on a function Harder(H[1..n], γ) 
that returns a problem of higher difficulty; H is a sorted list of n practice items the 
student has not yet seen, all harder in difficulty than the one the student has just 
worked on; H[1] is the item of lowest difficulty, and H[n] is the item of highest 
difficulty, and γ is a natural number greater than zero. The problem returned by 
Harder is specified in Eq. 1. For example, Harder with γ=3 will return the problem at 
the 33rd percentile of items in list H[1..m].  

! 

Harder(H[1..m],") = H ceiling
m

"

# 

$ 
% 

& 

' 
( 

) 

* 
+ 

, 

- 
.  

 
(1) 

Similarly, a problem of lesser difficulty is selected with function Easier(E[1..n], 
where E is a sorted list of problem items, all items are easier than the problem just 
seen by the student; E[1] is the item of lowest estimated difficulty, and E[n] is the 
item of highest difficulty. Eq. 2 shows Easier as a function of n and γ. Easier with γ=3 
will return the item that at the 66th percentile of items in list E[1..n]. 

! 

Easier(E[1..n],") = E ceiling n #
n

"
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. 
/  

 
(2) 
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Both Easier and Harder work upon the assumption that there are easier or harder 
items to choose from. The next section addresses what happens when m=0 or n=0. 

2.2 Progression through Knowledge Units  

In Wayang Outpost, the curriculum is organized in a linear set of topics or knowledge 
units (KU), which is a classification of problems in sets of items that involve similar 
skills (e.g. polygon perimeter measurement problems). Pedagogical decisions about 
content sequencing are made at two levels: within a topic and between topics, skills or 
knowledge units. This section addresses between topic decisions. 

The criteria of “chunking” problems in knowledge units is based on the idea that 
similar problems should be seen close to each other, to maximize the transfer of what 
a student has learned, as the concepts are still in working memory to be applied to the 
next cognitive transfer task. Cognitive effort is then reduced, and the likelihood of 
applying a recently learned skill to the next task is enhanced. 

Each knowledge unit may be defined at a variety of levels, and is composed of a 
variety of problems involving a set of related skills. For instance, within the 
“Statistics” topic, a student may be presented with problems about finding the median 
of a set of numbers, or deciding whether the mean or median were larger, from a 
picture of a stem and leaf plot. While overlap of skills exists, not all problems within a 
topic involve the same skills, and their difficulties may vary to a large degree. 

Topics are arranged according to pre-requisites (problems presented in KU2 will not 
include skills introduced in KU3). When a topic begins students are presented an 
explanation of the kinds of problems that will follow, generally introduced aloud by 
pedagogical animated creatures. Sometimes this involves an example problem, 
accompanied by a worked-out solution via multimedia features.  

 

Figure 2. Spiral curriculum in which Knowledge Units are ordered according to pre-requisites  

 

Table 2. Conditions for topic switching in Wayang Outpost 

Topic Switch Criterion Reason Parameter 
2.1 Topic Mastery was reached (e.g. enough “hard” 

problems answered correctly) 
Cognitive MKU 

2.2 Persistent failure to find a problem of desired 
difficulty 

Content 
limitation 

FKU 

2.3 Maximum time in Topic condition,  
or Maximum Number of Problems allowed 

Classroom 
Implementation 

TKU 

NKU 
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A student progresses through these knowledge units depending on a variety of 
criteria, specified in Table 2 beyond cognitive mastery. For instance, condition 2.2 
shows how a topic switch may be forced based on limitations of content --the system 
failed FKU times to find a problem of the difficulty it believes the student should get 
for the topic. If the pedagogical model suggests the student should increase problem 
difficulty, but there are no harder problems remaining, then a counter for the number 
of failures for the current topic is increased. Because failures < FKU an easier problem 
is provided instead. Another possibility is condition 2.3, where the teacher has 
allocated a specific amount of time for the student to study or review a certain topic.  

2.3 Problem Difficulty Estimates 

The pedagogical model must be able to estimate problem difficulty in order to assign 
problems for students in specific scenarios. We identify two faces of problem 
difficulty in intelligent tutors. From the perspective of a knowledge engineer, 
problems have objective difficulty (e.g., based on number of skills and steps involved 
in each problem). However, students may perceive each problem differently 
according to a student perceived difficulty (SPD). While objective problem difficulty 
should be similar to SPD, they are not necessarily the same. Proper estimation of 
problem difficulty is essential for this pedagogical model, and not possible to do with 
simple Item Response Theory because tutoring involves more dimensions (help, 
engagement) than testing (accuracy). We capture SPD from the three independent 
sources of evidence of students’ effort to solve a problem: 1) correctness in term of 
number of required attempts to solve a problem (random variable Ci); 2) amount of 
time spent in a problem (random variable Ti); 3) amount of help required or requested 
to solve the problem correctly (random variable Hi). 

We define problem difficulty di for a practice activity component i  in Eq. 3, as the 
mean of these three factors: attempts to solve, time and help needed. 
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Where dci is the difficulty factor in terms of correctness, dti is the difficulty factor in 
terms of time, and dhi is the difficulty factor in terms of help needed. Alternatively, 
the three factors might be given a weight, to emphasize them differently.  

di, dci, dti and dhi are normalized values in the interval [0,1] and express SPD. Eq. 4, 5 
and 6 show how each of the three difficulty factors are computed. 
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dci (Eq. 4) is the expected value of Ii (number of incorrect attempts while trying to 
solve a problem pi) across all students who have seen that problem, divided by the 
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maximum E(Ij) registered for any problem pj in the system (N=the total number of 
problems or practice activities in the system).  

Similarly, dti (Eq. 5) is the expected value of Ti (time spent on problem pi) and is also 
normalized. This expected time is the mean value after removing outliers, or median. 

dhi (Eq. 6) is the expected value of Hi (number of attempts for problem pi) divided by 
the maximum E(Hj) registered. 

2.4 Accuracy of Item Difficulty Estimations 

We computed SPD estimates using a data set of 591 high school students who used 
Wayang Outpost tutoring software over past years, from 2003 until 2005. The tutors 
employed a variety of problem selectors during those years, with some percentage of 
students using a random problem selector.  

Validating that student perceived difficulty estimates were reasonable seemed 
essential. The first reason is that the difficulties play a crucial role in the adaptive 
behavior of the tutor, and inappropriate difficulties would make the system behave in 
undesired ways (e.g. providing a harder problem when the student clearly needs an 
easier one). The second reason is that it is just too likely that the student perceived 
difficulty estimates are biased, because student behavior is contingent to the problem 
selector in place at the moment the data on problem performance was collected. 
Unless the raw data comes from a random selection of problems, student behavior and 
thus the data collected will be biased in some direction. This will make problems look 
easier or harder than they truly are. 

We devised a variety of methods to assess the correctness of our estimation of 
perceived student difficulty, and implemented three of them. All of these are based on 
the following axiom: “Pairs of Similar Problems Should have Similar Problem 
Difficulty Estimates”. In other words, if two problems are very similar, the perceived 
differences in their difficulty should approach zero. We subsequently drew a subset of 
60 mathematics problems (p1 to p60) from our tutoring system. These sixty problems 
are special because may be divided into 30 pairs of problems, where each pi , with 
i=1…30, is extremely similar to p30+i. In this domain of geometry problems, similar 
problems involved similar showing graphics with slightly different angles, or 
measurements. For example, same problems with a rotated figure (and different 
operands). Similar problems involve the application of the same skills the same 
amount of times. We call these highly similar pairs and now describe four criteria 
used to verify that these pairs are similar in their difficulty estimates.  

 2.4.1 Criteria 1: Correlations. We tested that such pairs had similar difficulty 
estimates with a simple Pearson correlation, which is the most familiar measure of 
dependence between two quantities. It is obtained by dividing the covariance of the 
two variables (
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d
p

i

 and 

! 

d
p30+i

) by the product of their standard deviations. A Pearson 
correlation determined that pairs of problems were significantly correlated (N=30, 
p<0.000, R=.823), thus this test is passed.  

2.4.2 Criteria 2: Mean Squared Error. Another criteria used was that the difference 
in objective difficulty between highly similar problems should be smaller than the 
difference in difficulty between either of these problems and any other problem in the 
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system that is not as similar –other problems will involve different skills, or different 
total amount of applications of the same skills. While it may be coincidental that a 
problem foreign to the pair might have a very similar difficulty to either problem in 
the pair, this should not be the general case.  

The distance between the difficulty of a problem pi and its highly similar problem pair 
p30+i should be smaller than the mean distance between one of the problems in the pair 
and the remaining problems in the set. A more common jargon when talking about 
differences due to error is the mean squared error. Eq. 7 rephrases the above in terms 
of squared differences, where N=total number of pairs=30.  
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If we can show that this inequality holds in general for problems, we have some 
evidence that our system is doing a reasonable job at estimating difficulties. We 

computed the 30 square differences 
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, and their corresponding mean squared 
differences as specified in Eq. 7. The result was that the inequality holds for 29 of the 
thirty cases, which is a 97% success rate. A paired-samples t-test for the two 
inequality terms in Eq. 6 revealed that these two sides of Eq. 7 are significantly 
different t(29)=7.35, p<.000. The second test is then passed. 

2.4.3 Criteria 3: Human Expertise. While pairs of highly similar problems should 
have similar student perceived difficulty levels, they don’t necessarily need to have 
exactly the same difficulty (i.e. the difference in their difficulty levels will not be 
exactly zero. In other words, 
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would be hard to determine the true value of epsilon for each problem pair, an expert 
human eye (e.g. a teacher or tutor) could probably make good predictions about 
whether 

! 

d
p

i
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or whether 
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< d
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. This kind of expert knowledge can help us 
establish that the latter problem should be harder for a student to solve than the former 
one. Other restrictions may have to do with operand size, involvement of decimals or 
negative numbers, or a small extra step. We managed to establish such restrictions for 
21 of the 30 pairs of problems we considered, the other 9 were just too similar to each 
other. Such restrictions (true positives or true negatives) were correctly guessed in 14 
of the 21 cases (67%), and a Chi-Square test revealed this is significantly better than 
chance (Pearson Chi-Square=5.25, p=.022). Thus, the third test is passed. 

2.4.4 Criteria 4: Convergence. Ideally, the difference between highly similar pairs 
of problems would converge to 

! 

"
i
 as more data arrives to the logs, even if different 

problem selectors are in place at different moments. This test is still ongoing. 

2.5 Evaluation of Effectiveness  of Effort-Based Pedagogical Model 

While we may be satisfied that difficulty of items are reasonably estimated, we need 
also to show that the adaptive mechanism underlying the pedagogical model makes a 
difference to student learning. A study was carried out in the 2003-2004 academic 
year with 60 students to evaluate the effectiveness of the adaptive sequencing of 
problems, compared to a random selection of problems within a topic (no learning 
companions or affective feedback).  
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Both the experimental and the control conditions implemented topic switching based 
on one parameter only, NKU, so that the “topic switch” criterion was set to a fixed 
maximum number of problems per topic. This was established so that all students 
were exposed to the same number of problems in each topic. MKU, FKU and TKU were 
then ignored. The main difference between conditions was the problem selection 
mechanism within the topic. For the experimental condition, it adjusted problem 
difficulty as described in previous sections, with the following parameters: γ=2; 
θLOW=0; θHIGH=0; this made the changes in problem difficulty quite  marked.  Control 
condition students received random problems within each topic. 
Students were randomly assigned to either the Effort-based Adaptive Problem 

Selection condition, or the Random Problem Selection Condition. Students used the 
Wayang Tutoring System for 4 class periods, completing a 10-item math test before 
starting and a similar posttest the last day. The test consisted of items drawn from the 
SAT (Scholastic Aptitude Test) and released by the College Board. The two tests 
were counterbalanced –half of students received pretest A, and half pretest B, and the 
tests were reversed for students at posttest time. 

We measured the total number of correct items achieved in the test, and the accuracy 
at items (correct/test items attempted) as a measure of performance, see Table 3. We 
obtained full pre and posttest data for 56 students, 23 in the experimental adaptive 
condition, and 33 in the control condition.  Table 3 shows the mean and standard 
deviation of pretest and posttest scores for the pretest and the posttest. Mean 
achievement in the posttest increased and standard deviations reduced for both 
groups. However, mean improvement was higher for the experimental adaptive 

 
Figure 3. Pre to Posttest Improvement with Effort-based Pedagogical Model compared to a 

Random Problem Selector Within the Topic. 

 

 

Table 3. Pretest and Posttest Scores in Math Test 
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problem selection group (Figure 3). This difference is significant (ANCOVA for 
posttest score with pretest score as a covariate, group effect F(55,1)=8.4, p=.006). The 
group receiving adaptive effort-based pedagogical decisions about problem difficulty 
improved more than did the group receiving random problem selection control 
condition. We conclude that adaptive problem selection is better than random. 

3 Summary 

This paper presented a novel approach to the development of smart learning 
environments, based on empirical measures of student effort at individual items. It 
described a pedagogical model that uses empirical estimates of problem difficulty, 
specifying parameters that regulate behavior within knowledge units (γ, θLOW and 
θHIGH) and between knowledge units (MKU, FKU , TKU, NKU). Knowledge Units may be 
defined at different levels of abstraction, thus addressing restrictions of content. This 
allows for replication in other ILEs, even in ill-defined domains or in small ILEs that 
are trying to encode smart decisions about practice items or activity selection. 

We have described criteria for evaluating that estimates of problem difficulty are not 
too biased to the problem selector in place at the time of data collection. Last, we have 
shown that this effort-based pedagogical model leads to improved learning compared 
to uninformed random decisions within a topic or knowledge unit. 
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Abstract.  We study how student behaviors associated with disengagement differ 
between different school settings. Towards this, we investigate the variation in 
the frequency of off-task behavior, gaming the system, and carelessness in an 
urban school, a rural school, and a suburban school in the United States of 
America. This analysis is conducted by applying automated detectors of these 
behaviors to data from students using the same Cognitive Tutor educational 
software for high school Geometry, across an entire school year. We find that 
students in the urban school go off-task and are careless significantly more than 
students in the rural and suburban schools. Differences between schools in terms 
of gaming the system are less stable. These findings suggest that some of the 
differences in achievement by school type may stem from differences in 
engagement and problem behaviors.   

1 Introduction 

In recent years, intelligent tutoring systems have left the research laboratory, expanded 
beyond the research classroom, and have started to see large-scale use worldwide. To 
give two examples, Cognitive Tutors for high school Algebra and Geometry [cf. 14, 15] 
are now used by hundreds of thousands of students each year in the United States, and 
constraint-based tutors for SQL and database normalization are now used by tens of 
thousands of students each year worldwide [20]. Aplusix, another system that has seen 
particularly wide use, is now in use in at least 6 countries [cf. 21]. As the reach of 
intelligent tutors increases, they become available to an increasingly diverse population 
of students. Tutors are now used by students of very different economic and ethnical 
backgrounds, by students in suburbs, cities, and rural areas, by wealthy, middle-class, and 
poor students, by students from ethnic majority groups and students from minority groups 
[cf. 8, 14, 15, 23].  

As the use of intelligent tutors spreads to a more diverse selection of populations, we gain 
the potential to use intelligent tutors as a research tool in yet another domain of 
educational research – comparisons of student learning and behavior between learners in 
schools with different demographic profiles. There is increasing evidence that students in 
different learning settings have radically different learning outcomes [cf. 11], but there is 
insufficient understanding about what factors mediate those learning outcomes. There are 
many differences between schools in different settings, including differences in teacher 
expertise [17], in the physical conditions of schools, and in students’ backgrounds.  

An additional possibility is that the differences in learning in schools may be influenced, 
at least in part, by disengagement. Given the known relationships between disengaged 
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behaviors and learning (see [13] for an early review of this literature in traditional 
classrooms; see [2, 6, 10, 12, 22] for studies on this topic in classrooms using educational 
software), there is valid reason to think that disengaged behavior may mediate the 
differences in learning between different school settings. However, it has not yet been 
established whether there are significant differences in disengaged behavior between 
types of schools.  

In this paper, we focus on this topic, studying how three types of student behavior 
associated with disengagement differ across different school settings. In specific, we 
investigate the variation in gaming the system, off-task behavior, and carelessness 
between urban, rural, and suburban classrooms in the United States of America, using 
“discovery with models” methods on data from students using the same Cognitive Tutor 
across an entire school year. Although there have been many studies on off-task behavior 
within rural, urban, and suburban settings ([13] offers an early review of this literature), 
we are not aware of any systematic comparisons of off-task behavior between types of 
schools. Similarly, we are not aware of any studies on gaming the system that span urban, 
rural, and suburban schools, and are not aware of systematic attempts to measure 
carelessness in any type of school prior to the model advanced in [3].  

Studying these issues in the context of Cognitive Tutors several advantages. First, 
Cognitive Tutors have been deployed to a wide variety of settings, and learning gains 
have been demonstrated in urban, rural, and suburban schools [7, 8, 15, 23]. Second, 
Cognitive Tutors collect extensive logs of every student answer or help request within the 
software [16]. For Cognitive Tutors, sufficient log data to study these research questions 
is currently available in the Pittsburgh Science of Learning Center (PSLC) DataShop 
[16], in a format compatible with existing detectors of disengaged behaviors [2, 3, 4, 5].  

In this paper, we utilize data from the PSLC DataShop in order to compare USA schools 
with 3 very different profiles (urban, suburban, and rural), according to 3 metrics (percent 
of time off-task, percent of time spent gaming the system, and average slip probability). 
We do so in the context of an entire year of use of the exact same Cognitive Tutor for 
Geometry. 

2 Methods 

Data from 3 schools was obtained through the PSLC DataShop [16] in order to compare 
students’ behavior within urban, rural, and suburban settings, across an entire school 
year. While a sample of 3 schools is clearly not enough data to be able to draw 
conclusions about all schools from these categories, it enables us to statistically compare 
the behavioral profile of 3 schools that are representative of each of these categories. This 
study also provides a methodological template for future expanded investigations of these 
issues, which can be conducted as data becomes available from a broader range of 
schools.  

The three schools studied are each public high schools in Southwestern Pennsylvania. As 
shown in Table 1, each school has a distinctive demographic profile; the urban school is 
overwhelmingly African-American, whereas the suburban and rural school are  
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Table 1.  School Population Demographics 

 Urban 
school 

Suburban 
school 

Rural 
school 

% African-American 100% <1% 2% 
% White 0% 98% 97% 

% Hispanic 0% <1% <1% 
Free or Reduced-Price Lunch 99% 4% Not 

Reported 
% Proficient on state math exam 20% 77% Not 

Reported 
Median household income in 

community 
$26,621 $60,307 $32,206 

% Children under poverty line 30.8% 2.5% 18.4% 
 

overwhelmingly White Non-Hispanic (the ethnic majority group in the region). There is 
evidence of considerable poverty in the urban school’s population, with a low median 
household income for the United States, and a high percentage of children under the 
poverty line. Similarly, the rural school has a low median household income for the 
United States, and a substantial percentage of children under the poverty line. The suburb 
has considerably less poverty, with a median household income over double the urban 
school’s median household income, and only 2.5% of children under the poverty line.  

Data from each school was obtained through the PSLC DataShop [16]. In each case, high 
school students took their Geometry courses using the same Cognitive Tutor for 
Geometry [7, 14, 15], and all data was collected in the PSLC DataShop. Data was 
collected for the entire school year, from August 2005 to May 2006. 434 students in the 
rural school used the software, 88 students in the suburban school used the software, and 
34 students in the urban school used the software. The three schools each assigned the 
software to students who were neither in special needs nor gifted classes – the difference 
in the number of students using the software is solely based on school size, and how 
many teachers chose to use the software (in particular, the rural school is a large regional 
school, as is increasingly common in the USA in rural areas, whereas the urban and 
suburban schools serve smaller populations).  

In all schools, the software was used by groups of students in a computer laboratory, 
working individually at separate computers, at their own pace. Students in the rural 
school used the software an average of 9 hours, students in the suburban school used the 
software an average of 35 hours, and students in the urban school used the software an 
average of 51 hours. Hence it appears that the teachers in each school chose to have their 
students use the software in different amounts. This difference represents a selection bias 
in our data, but it is a difficult confound to resolve; for instance, restricting analysis to 
students who used the software above a time cutoff introduces a different selection bias. 
In particular, the difference in usage is a natural one, reflecting genuine implementation 
in each type of school.  
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To address this selection bias stemming from teacher choice, we analyze the data in two 
ways – using all data (the more ecologically valid choice), and using a time-slice 
consisting of the 3rd-8th hours (minutes 120-480) of each student’s usage (this time-slice 
will not be as representative of the usage in each school, but avoids this confound). The 
3rd-8th hours were selected, because the initial 2 hours likely represent interface learning, 
and therefore may not be representative of overall tutor use (and interface learning is 
likely to be dependent on prior experience with educational software, which is likely to 
be greater for wealthier students). In general, implementational differences between 
schools are likely to exist in year-long comparisons. In the long-term, this problem can 
probably be best addressed by conducting analyses of this nature across large numbers of 
schools, in order to average across implementational differences orthogonal to the type of 
school (though some implementational differences may be characteristic to certain types 
of schools – for instance, urban schools might use specific pieces of educational software 
more heavily due to having lower resources to provide a wide range of educational 
software in their classrooms). 

Each action in each data set was labeled using detectors of gaming the system, off-task 
behavior, and carelessness.  The gaming detector used was trained using data from 
students using a Cognitive Tutor for Algebra [5], using an age-similar population and an 
approach validated to generalize between students and between Cognitive Tutor lessons 
[4]. The off-task detector used was trained using data from students using a Cognitive 
Tutor for Middle School Mathematics. The off-task detector was validated to generalize 
to new students, and to function accurately in several Cognitive Tutor lessons [2]. 
Although the age range was moderately older in this study than in the original training 
data, off-task behavior is similar in nature within these populations – it involves ceasing 
to use the software for a significant period of time without seeking help (which can be 
detected in the log files by the behavior occurring before and after an idle pause). 
Carelessness was detected using the slip detector from [3], which was trained on data 
from Cognitive Tutor Geometry. This use of contextual slip is in line with theoretical 
work by Clements [9], who argues that making errors despite knowing the skills needed 
for successful performance should be considered evidence of carelessness. It is important, 
however, to note that contextual slip could potentially also be an indicator of shallow 
knowledge that does not apply to all items in the tutor, even if they are labeled as 
involving the same skill.  

3 Results 

In discussing results, we will first discuss our analyses conducted across the full year of 
tutor data, and then discuss the same analyses conducted across only a time-slice 
including the 3rd to 8th hours of tutor usage. 

3.1 Analyses Across Full Data Set 

Across the full data set, representing data collected during the entire school year, the 
pattern of off-task behavior was highly different between the three schools. Students in 
the suburban school were off-task an average of 15.4% of the time (past research in 
traditional classrooms has averaged 15-20% of time off-task [cf. 18, 19]). Students in the  
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Table 2.  Average incidence of each indicator per school. Parentheses give standard deviation. 

 Urban school Suburban 
school 

Rural school 

% Off-Task 34.1% (18.0%) 15.4% (20.7%) 20.4% (13.3%) 
% Gaming the System 7.4% (2.2%) 6.9% (3.1%) 6.6% (1.7%) 

% Slip Probability 0.50 (0.07) 0.32 (0.11) 0.27 (0.13) 
 

rural school were off-task an average of 20.4% of the time. Students in the urban school 
were off-task an average of 34.1% of the time. Hence, students at the urban school were 
off-task 67% more than students at the rural school (a 1.0 SD difference), and over 
double as much as students at the suburban school (a 0.9 SD difference). The overall 
difference in off-task behavior between schools was statistically significant between 
schools, F(2,553)= 18.80, p<0.01. The model predicting time off-task by school predicted 
6.4% of the variance in time off-task. The pairwise differences between schools were all 
statistically significant, using Tukey’s HSD to control for multiple comparisons. 

The frequency of gaming the system had smaller differences between the three schools, 
although there were still significant differences. Students in the suburban school gamed 
6.9% of the time, students in the rural school gamed 6.6% of the time, and students in the 
urban school gamed 7.4% of the time. In other words, students in the urban school gamed 
only 13% more than students in the rural school (a 0.47 SD difference), and 9% more 
than students in the suburban school (a 0.16 SD difference). The overall difference in 
gaming the system between schools was statistically significant, F(2,553)= 3.12, p=0.05. 
The model predicting time spent gaming the system by school predicted 1.1% of the 
variance in gaming, considerably less than is predicted by individual differences between 
students or by the differences between tutor lessons [1]. According to Tukey’s HSD, the 
rural school had significantly less gaming than the urban school, but the other differences 
in gaming were not statistically significant. 

The pattern of carelessness was highly different between the three schools. Students in 
the suburban school had a probability of 0.32 of slipping despite knowing a skill, students 
in the rural school had a probability of 0.27 of slipping despite knowing a skill, and 
students in the urban school had a probability of 0.50 of slipping despite knowing a skill. 
The overall difference in slipping between schools was statistically significant, F(2,553)= 
54.50, p<0.001. The model predicting slip probability by school predicted 16.5% of the 
variance in slip probability. The pairwise differences between schools were all 
statistically significant, using Tukey’s HSD to control for multiple comparisons. 

3.2 Analyses Across Data From Hours 3-8 

Within the restricted time-slice of data from hours 3-8, the differences in the frequency of 
off-task behavior were qualitatively similar to the analysis across the full data set, 
although the difference between the urban school and the other schools was smaller.  
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Table 3.  Average incidence of each indicator per school. Parentheses give standard deviation. 

 Urban school Suburban 
school 

Rural school 

% Off-Task 25.7% (22.8%) 16.5% (27.5%) 21.0% (16.5%) 
% Gaming the System 4.7% (1.9%) 5.9% (7.3%) 6.4% (2.2%) 

% Slip Probability 0.53 (0.08) 0.44 (0.17) 0.33 (0.18) 
 
Students in the suburban school were off-task an average of 16.5% of the time, very 
similar to the 15.4% reported across all data. Students in the rural school were off-task an 
average of 21.0% of the time, very similar to the 20.4% reported across all data. 
However, students in the urban school were off-task an average of 25.8% of the time, 
substantially lower than the 34.1% reported across all data, a statistically significant 
difference, t(33)=-2.55, p=0.02, for a two-tailed paired t-test. This result suggests that 
off-task behavior increased during the year in the urban school.  

Nonetheless, even during this earlier time-slice, off-task behavior was higher in the urban 
school than the suburban school. The overall difference in off-task behavior between 
schools was statistically significant, F(2,484)= 3.01, p=0.05. The model predicting time 
off-task by school predicted 1.2% of the variance in time off-task. According to Tukey’s 
HSD, the urban school had significantly more off-task behavior than the suburban school, 
but the rural school was not significantly different from either of the other two schools.  

The pattern of gaming the system was highly different within the restricted time-slice of 
data from hours 3-8, as compared to the entire data set: Gaming the system was much 
rarer in the urban school. Students in the urban school gamed 4.7% of the time in the 
restricted time-slice, compared to 7.4% of the time in the full data set, a significant 
difference, t(33)=8.14, p<0.001, for a two-tailed paired t-test. Gaming was also less 
common in this time-slice in the other two schools, but to a much lower degree.  Students 
in the suburban school gamed 5.9% of the time, compared to 6.9% of the time in the full 
data set, which was not quite statistically significant, t(71)=1.51, p=0.13, for a two-tailed 
paired t-test. Students in the rural school gamed 6.4% of the time, compared to 6.6% of 
the time in the full data set.  

The overall difference in gaming the system between schools was statistically significant, 
F(2,484)= 4.09, p=0.02. The model predicting time spent gaming the system by school 
predicted 1.7% of the variance in gaming, considerably less than is predicted by 
individual differences between students or by the differences between tutor lessons [1]. 
According to Tukey’s HSD, the rural school had significantly more gaming than the 
urban school – the exact opposite of the result across the entire data set – but the other 
differences in gaming were not statistically significant. 

The pattern of carelessness retained the same ordering within the restricted time-slice of 
data from hours 3-8, and the entire data set, but the degree of carelessness was 
significantly higher for all three groups of students, t(71)=6.32, p<0.001 in the suburban 
school, t(374)=10.08, p<0.001 in the rural school, and t(33)=2.04, p=0.05 in the urban 
school. In all cases, a two-tailed paired t-test was used.  

16



The overall difference in slipping between schools was statistically significant, 
F(2,478)=29.78, p<0.001. The model predicting slip probability by school predicted 
11.1% of the variance in slip probability. The pairwise differences between schools were 
again all statistically significant, using Tukey’s HSD to control for multiple comparisons. 

4 Discussion and Conclusions 

In this paper, we have analyzed the prevalence of three student behaviors associated with 
disengagement in urban, suburban, and rural classrooms in the USA: off-task behavior, 
gaming the system, and carelessness. These students used the exact same learning 
software for high school Geometry across the same school year. However, the students 
used the software for different amounts of time in each school, a common phenomena in 
real-world use of educational software, where usage decisions are made by teachers and 
school administrators, rather than researchers and curriculum developers. To address this 
difference, we compared between these schools in two fashions. First, we compared all 
data to get a fully ecologically valid comparison. Second, we compared within a time-
slice consisting of each student’s 3rd to the 8th hours of usage in each school, in order to 
control for confounds stemming from differences in implementation between schools.  

The two versions of the analysis agreed that the urban school had more off-task behavior 
and carelessness than the suburban school and rural school. In terms of these behaviors, 
students in the rural and suburban schools were more similar to each other than either 
school was to the urban school. One interesting note is that carelessness dropped 
significantly more over the course of the school year in the suburban and rural schools 
than in the urban school, suggesting that some influence or factor caused the suburban 
and rural students to become more diligent during the school year, but that this influence 
or factor was significantly less relevant in the urban school.   

As both the rural school and the urban school had significant poverty, it appears that 
some aspect of these schools other than simply socio-economic status explains the higher 
frequency of off-task behavior and carelessness in the urban school. There are several 
potential hypotheses what other aspects may explain these behavioral differences, 
including differences in teacher expertise (which is often lower in urban schools [17]), 
differences in schools’ facilities, equipment (e.g. computers), and physical environment, 
and differences in students’ cultural backgrounds. Determining whether one of these 
factors explains the differences in off-task behavior and carelessness will be an important 
topic for future research.  

A contradictory finding between analyses was found for gaming the system. Across the 
whole data set and entire school year, gaming the system was most frequent in the urban 
school. However, within the 3rd to 8th hours of tutor usage, gaming the system was least 
frequent in the urban school. This suggests that students in the urban school gamed more, 
later in the year. This may just be an artifact of the lessons encountered, as tutor lesson 
predicts a substantial portion of the variance in gaming behavior in Cognitive Tutors [1]. 
However, it may also be that the novelty of Cognitive Tutors reduces gaming initially in 
American students. There is evidence for this possibility in the finding that gaming was 
lower in all schools during the 3rd-8th hours. The difference in gaming behavior between 
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the early time-slice and the overall data set was more pronounced in the urban school, but 
this may be due to lower familiarity with educational technology in general, a finding 
worth investigating further.  

In future years, we plan to replicate these analyses with a larger number of schools in 
each of these settings, using the research presented here as a methodological template for 
that later research. Automated machine-learned detectors provide an essential tool for 
analysis of this sort, in this author’s opinion a better tool than existing alternatives. For 
example, it is not tractable to use observational, text replay annotation, or video methods 
at this sort of scale. [5] presents a use of text replay methods to analyze a single behavior 
among 58 students over an entire school year; though text replay methods are 
significantly faster than live observation or video coding methods, the coding needed for 
this analysis took over 200 hours. Utilizing text replays to annotate the 3 school sample 
used in this paper would have taken over 2000 hours, assuming a rate of observation 
equal to that in [5]. Video coding and field observation would have taken even longer.  

That said, it is worth noting that automated detectors have important challenges not 
present when using human labels. It is important to validate the generalizability of 
detectors across students, schools, and learning materials, a task which has been only 
partially completed for the detectors used in this paper, and which has received 
insufficient attention in the literature in general. Construct validity is also a key issue in 
the use of machine-learned detectors,  and is more a risk in detectors that are based on 
theoretically determined training labels (e.g. the model of carelessness), compared to 
detectors based on human judgments shown to have good inter-rater reliability (e.g. the 
detectors of off-task behavior and gaming the system). It is worth noting that automated 
detectors produced with a common alternative to machine learning, knowledge 
engineering, are likely to be prone to the same challenges to generalizability and 
construct validity as machine-learned detectors. Current practice with knowledge 
engineering often does not check detectors against human labels or across contexts, a 
potentially significant risk to using these models in discovery with models analyses.  

As research applying detectors across contexts goes forward, it has significant potential 
to support progress in studying the impact of school context. By further study of which 
school contexts – and what attributes of those contexts – are associated with greater 
frequencies of disengaged behavior, we may be able to better understand the differences 
in learning between different learning settings. This may in turn support education 
researchers and practitioners in designing curricula, learning software, and interventions 
tailored to different schools – a potentially key step towards developing educational 
software that is equally effective for all students, whether they are in urban schools, rural 
schools, suburban schools, or elsewhere.  
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Abstract. The validation of models for skills assessment is often con-
ducted by using simulated students because their skills mastery can be
predefined. Student performance data is generated according to the pre-
defined skills and models are trained over this data. The accuracy of
model skill predictions can thereafter be verified by comparing the pre-
defined skills with the predicted ones. We investigate the faithfulness of
different methods for generating simulated data by comparing the pre-
dictive performance of a Bayesian student model over real vs. simulated
data for which the parameters are set to reflect those of the real data as
closely as possible. A similar performance suggests that the simulated
data is more faithful to the real data than for a dissimilar performace.
The results of our simulations show that the latent trait model (IRT) is a
relatively good candidate to simulate student performance data, and that
simple methods that solely replicate mean and standard deviation distri-
butions can fail drastically to reflect the characteristics of real data.

1 Introduction

Student cognitive diagnosis is commonly defined as estimating the probability of mastery
of a set of skills by a given student. However, skills mastery cannot be directly measured.
Instead, it is measured by observing performance results over a task, such as the successes
or failures over a set of question items or exercises.

How can the accuracy of a cognitive diagnosis model be validated without direct measures
of skill mastery? There are at least three, non exclusive means around this issue :

1. Obtain indirect and independent measures of skill mastery. Many studies rely on an
independent source to estimate skill mastery and match the model prediction with
this independent source. For example, Vomlel [9] asked experts to determine if a
student mastered a set of skill in fraction algebra based on their answers to a test.
The test data was used for training a Bayesian Network model and the prediction of
the model was matched against the experts’ judgment.
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2. Match predictions over observed items only. Another approach consists in using
solely the predicted outcome of observable items that can be directly matched to
real data. No attempt is made at estimating skill mastery, and instead the approach
relies on the assumption that hidden skills are correctly assessed if observed
performance is accurately predicted.

3. Generate simulated data. The approach we investigate here consists in generating
student performance data according to a predefined model for which skill mastery is
defined for each student. This approach is commonly used in psychometric research
where latent response models are validated against simulated data (see for eg. [4]).
The approach has also been used for cognitive modeling within a number of studies
and over different models such as the DINA [1] and a the Bayesian Network
approach [7], to name but a few examples.

The obvious advantage of having predefined skills with simulated data is, however,
plagued by the issue that the underling skill model may not reflect the reality. The models
can be over simplistic, or they can misrepresent the relationships between skills and
performance, and among skills themselves.

We investigate this issue by using four models of skills to generate simulated student data.
We look at how close are the performances of a student model trained over real and
simulated data, while ensuring that the simulated data reflects as closely as possible the
characteristics of the real data. The student model for this study is a Bayesian approach to
cognitive modeling, POKS [5].

The first data generation model is one of the simplest possible and it serves as a baseline.
The probability of item outcome (generally defined as a success or a failure to a test item
question, or to an exercise) is a function of the expected values from marginal
probabilities of item success rate and student scores. The second data generation model
relies on a Q-Matrix that defines the links between items and skills. The matrix is used to
assign skill outcome probabilities, from which a data sample can be generated. A third
approach is based on a standard approach in Monte Carlo simulations in which sample
data is generated by a technique that preserves the correlations among variables (among
items in our case). The fourth approach is based on latent trait modeling (IRT—Item
Response Theory) [2].

A number of studies on generating simulated student data have been conducted for the
latent trait (IRT) approach [10][3][6], but they were all done within the IRT framework,
using the same underlying latent trait models both for simulating the data and for
measuring the predictive accuracy of the student model constructed from this data. On the
contrary, the current study uses a Bayesian approach as the student model and a makes
comparison of widely different approaches in addition to IRT.

We explain each of the simulated data generation approach in greater details below before
moving to the experiments and the results.

22



2 Expected Outcome Based on Marginal Probabilities

The simplest model for generating simulated data is based on the expected item outcome
according to marginal probabilities, as represented by the student general skill level and
the item difficulty. This model presumes of no conceptual or skill structure behind the
items set. Each item is considered independent of the other and the outcome solely
depends on the item difficulty and the ability of the student.

Within this framework, the generation of sample test outcome can be conceptualized as a
random sampling process using the expected probabilities. Assuming two vectors of
probabilities: (1) S, that represents the skills mastery level of students, and (2), Q, that
represents the (inverse) difficulty of items, then, the outer product of the two vectors is a
matrix X = Q× S where each element, mij , represents the expected probability of
student i mastering item j. In the current study, we forced the sampling process to exactly
replicate the distribution of scores, S, by sampling a pedefined number of successes for
each examinee.

Since the probability of an item xij being considered a success is solely dependent on the
marginal probabilities, Qi and Sj , we will refer to this model as the Marginal Probabilities
sampling.

3 Q-Matrix Sampling

The second model we explore is based on a Q-matrix [8] which defines the links between
items and skills. For example, assuming we have I items and K skills, and a response
matrix of N students, then the Q-matrix and the response matrix are defined as:

Q =

 q1,1 · · · q1,K
... . . . ...
qI,1 · · · qI,K

 ,X =

 x1,1 · · · x1,I
... . . . ...

xN,1 · · · xN,I


For example, if an item x1 involves only skills k2 and k3, then q1,2 and q1,3 will be set to 1,
and all other entries for that item, q1,• will be set to 0.

The skill mastery of a set of students can be computed as the dot product of the two
matrices: X ·Q.

The generation of sample data from this Q-matrix consists in defining the probability of an
item outcome as a function of the level of mastery of the set of skills it involves. By
defining skill mastery in the range [0,1] (for which case the Q-matrix corresponds to a
capability matrix as defined in [1]), then, the probability of a successful outcome to an
item xi is defined as the smallest of the mastery value of each skill involved for xi. This is
a heuristic estimate that reflects the requirement that all skills must be involved in order to
correctly answer xi.

Akin to the process described for marginal probability sampling, we can ensure that the
scores distribution perfectly matches the real by fixing the number of item successes per
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examinee. Sampling thus proceeds in a similar manner to the marginal probabilities
sampling model, with the difference that instead of marginal probabilities, the item
probabilities are derived from concept mastery. In turn, concept mastery is derived, in our
experiment, from the student concept mastery distribution of the sample data and the
capability matrix.

4 Covariance Matrix

Another mean of generating simulated student performance data is based on the idea of
preserving the covariance (correlation) among items. This method is commonly used in
Monte Carlo simulations. In the context of student test data, the method would stipulate
that question items are interrelated and that a representative sample of simulated test data
preserves the structure of correlation among items. This assumption is not unreasonable as
we would, for example, expect that items of similar difficulty and that draw from the same
skill set to show correlated student response patterns.

The generation of sample data based on item covariance relies on the Cholesky
decomposition of the item covariance matrix. Assuming L is the upper triangular matrix
of the Cholesky decomposition of the item covariance matrix, a first step is to generate a
sample of correlated variables as:

S = NL

where N is an N × I matrix (number of students by number of items) of normally
distributed independent random values having a mean of 0 and a standard deviation of 1.
The sample data S will be an N × I matrix for which the item covariance matrix will
approach the real data item covariance. It will have an expected mean of 0. The second
step is to fit the distribution of this data’s item success rate to the real data by adding the
vector of real data item means to each row of S and, finally, to transform values to binary
item outcome, setting values above 0.5 to 1 and 0 otherwise.

5 Latent Trait Models (IRT)

The last method of generating simulated student performance data relies on Item
Response Theory, also known as latent trait modeling. As mentioned above, some authors
have studied the faithfulness of this approach to replicate real data [10][3][6]. We refer the
reader to [3] for a more elaborate description of this approach1

We use a 2 parameter logistic IRT model for generating the simulated data. According to
this model, the probability of a successful outcome by an examinee s to an item i is
defined as:

P (Xi | θs) =
1

1 + e−ai(θs−bi)

1Available from the ERIC Web Portal http://eric.ed.gov/ under ref. ED414297 (accessed April
23, 2010).
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where θs is the student’s ability level, and where ai and bi are respectively the
discrimination and difficulty levels of item i. The values for these three variables are
directly estimated from the real data sample and therefore it is possible to replicate
simulated data that reflects the real data. Estimates of the discrimination parameter is
obtained with the R ltm package2 and values for item difficulty and examinee ability are
directly obtained through the logit transformation of the item average success rate and
examinee percentage score. We also limit discrimination to values to the interval [0,4] and
difficulty values to [-4,4], as is commonly done for IRT with small samples.

6 Experiments

We mentioned in the introduction that the issue with simulated student performance data
is to determine how far the simulated data is representative of the complexity of the real
student performance. To address this question, we train the POKS student model [5] over
real and simulated data sets and compare its predictive performance across each condition.
The simulated data sets are generated to closely resemble the real data according to the
underlying model. The four models described above are used for simulated data: (1) MP
sampling, marginal probability sampling (section 2), (2) QM sampling, Q-matrix
sampling (section 3), (3) Covariance, sampling based on preserving item covariance
using the Cholesky decomposition (section 4), and finally (4) IRT, sampling based on the
latent trait modeling (section 5).

6.1 Adaptive Testing Simulation

The results of the different simulated data models are compared in the context of
simulated adaptive testing with the POKS model. The process of adaptive testing consists
in choosing the most informative item to present to the student and to infer the outcome of
other items based on the pattern of previous item outcomes.

The performance is measured as the percent-correct predicted item outcome. Items that
have been asked represent observed evidence and are considered correct by definition.
Thus, performance after all items have been observed always converges to 100%. At the
beginning, when no items are observed, item outcome is based on average item success
rate: if an item has a success rate above 50%, it is considered mastered, and not mastered
otherwise. As new items are observed, the POKS model computes the probability of
mastery of each item based on the pattern of previous item outcome, and the predictions
are compared to the actual data to compute the percent correct performance.

In this experiment, a cross-validation process is used for the College mathematics data set
and a leave-one-out process is used for the Unix data set because of the small number of
records.

2cran.r-project.org/web/packages/ltm/ltm.pdf
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6.2 Data Sets

The characteristics of the real data sets from which the simulated data is generated can be
very influential in this investigation and therefore we provide some details about them
here. The experiment is conducted over two data sets:

1. Unix. The Unix data set contains 34 questions items that have all been answered by
48 respondents. The average success rate is 53% and it contains a large array of
skills and difficulty, with test scores varying from 1/48 to 45/48, and item success
rate varying from 1/34 to 34/34.

Skills decomposition of this data is done over 9 topics ( ”sys-admin”, ”awk”,
”basic” ”directories”, ”file permissions”, ”input-output redirection”, ”printing”,
”regular expressions” ”shell language”). These topics contain from 3 to 7 items and
only one topic is associated with an item. In other words, the row sums of the
Q-matrix is always 1.

2. College Mathematics. The Math data set is composed of 59 items, which were
administered to 250 freshmen students at Polytechnique Montreal. Each item was
analyzed by two domain experts who determined if it involved one of the following
topics : (1) Algebra, (2) Geometry, (3) Trigonometry, (4) Matrices and Vectors, (5)
Differential equations and (6) Integrals. Mean student score is 57%, ranging from
9/59 to 55/59.

Contrary to the Unix data set, most items are linked from two to four topics (only 17
are single topic, 32 are linked to two topics, 9 to three topics, and 1 to four topics).

The simulated performance data is generated to reflect as closely as possible the
characteristics of the two real data sets. The similarity of the simulated data can be
compared to the real one by looking at the correlation between success rates of students
and items. Table 1 reports a number of similarity measures that represent the averages for
10 simulated data sets (numbers in parenthesis represent the standard deviations):

• Mean and Sim. mean: The percentage of correct responses over the whole data set.
This number is to be compared to 53% for Unix and 57% for Math. The data
generation process for the QM sampling and MP sampling methods were devised to
match exactly this parameter.

• Cor. exami.: Pearson correlation between the simulated and real respondent test
scores.

• Cor. items: Pearson correlation between the simulated and real average item scores.

• Cor. concepts: Pearson correlation between the simulated and real average concept
mastery scores of students. Concept mastery for the students is computed on the
basis of the dot product X ·Q (see section 3), but with a normalization that ensures
the scores range is between [0,1]. This normalization corresponds to the notion of a
capability matrix (see [1]).
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Table 1: Similarity of simulated data with real data

Unix Mean Sim. mean Cor. items Cor. exami. Cor. concepts % diff.
QM .53 .53 (.00) .93 (.01) .80 (.03) .81 (.02) 26 ( 1)
MP .53 .53 (.01) .55 (.08) .64 (.10) .28 (.05) 43 ( 2)
IRT .53 .57 (.01) .98 (.00) .98 (.01) .88 (.00) 15 ( 1)

Covariance .53 .53 (.04) .97 (.01) .03 (.13) .40 (.06) 38 ( 1)
Math Mean Sim. mean Cor. items Cor. exami. Cor. concepts % diff

QM .57 .57 (.00) .84 (.01) .03 (.05) .57 (.02) 44 ( 0)
MP .57 .57 (.00) .55 (.04) .78 (.04) .20 (.03) 47 ( 0)
IRT .57 .62 (.00) .83 (.01) .89 (.01) .44 (.01) 40 ( 0)

Covariance .57 .56 (.02) .98 (.00) .07 (.10) .11 (.05) 42 ( 0)

• % diff.. Percentage of items with different outcome.

The patterns of similarity vary considerably across the different sampling methods, but the
most consistent one is the IRT method, in particular for the Unix data set, with
correlations of 0.98 for both item success rate and examinee scores. Whilst these
correlations are very high, we find that 15% of items differ from the real to the generated
samples. We will see from the data in table 2 that this 15% difference can considerably
degrade the predictive performance if the items are chosen at random.

7 Results

The CAT simulations experiment results are reported in Figure 1. The graphs depict the
predictive performance of POKS over the two data sets. The percent correct number of
item outcome prediction (accuracy) is reported over the different experimental conditions.
Both graphs start a 0% observations, where the accuracy corresponds to guesses based on
item average success rate. They end at 100% of questions observed for each data set,
where the accuracy converges to 1 because observed item outcome are considered
correctly “predicted”. For indicative purpose, a straight line is drawn that starts at the
initial guess of the real data, (0, y0), and ends at (1,1). It corresponds to the theoretical
baseline accuracy of random guesses over non-observed items and provides an idea of the
prediction gain obtained with the student model (note that only the real data line is drawn).
Standard errors over simulation runs are not shown on the graphs to avoid cluttering, but
they are at most around 7% and have no significant affect on the general patterns observed.

The different curves correspond to the four methods respectively described in section 2 to
section 5 (see section 6 for label correspondance).

Table 2 provides a single score for the predictive performance, termed here the accuracy
gain. This score represents the gain from guessing the outcome based on the initial
probabilities of items and its range is [0,1]. It provides a simple means of comparing the
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Figure 1: Results predictive accuracy simulation experiments with real student performance
data compared with different models of simulated student data.

Table 2: Global accuracy gain over baseline

Real QM MP IRT Covariance 15%
Unix 0.77 (0.0∗) 0.43 (0.07) 0.14 (0.06) 0.80 (0.01) 0.58 (0.06) 0.29 (0.04)
Math 0.40 (0.02) 0.04 (0.01) 0.08 (0.01) 0.34 (0.01) 0.37 (0.01) 0.20 (0.03)
∗Deterministic leave-one-out simulation

overall predictive performances across the simulations and corresponds to the error
reduction averaged over all intervals. It is computed as:

accuracy gain =
1

N

N∑
i

yi − ŷi
1− ŷi

where N is the total number of intervals (we arbitrarily use 50), yi is the accuracy at
interval i (the x value) and ŷi is the baseline accuracy at that same interval as represented
by the straight diagonal of the figures (there exists one diagonal per curve but only the one
for the real curve is represented in the figures).

For indicative purposes and in addition to the four methods, table 2 also reports a score
corresponding to randomly changing the values of item outcome for 15% of the items,
which is the proportion of items differing from the IRT simulated data to the real data.

In the case of the Unix data, the results indicate that the IRT method is able to generate
data over which the POKS model is similar the performance, with accuracy gains of 0.77
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for real data agains 0.80 for IRT. The Covariance method comes second with a
performance of 0.58 instead of 0.77.

In the case of the Math data, the general predictive performance of all methods is
substantially lower than for the Unix data. The Covariance and IRT methods both yield
performance relatively close to the real data, but this time the Covariance method is closer
to the real data performance.

8 Discussion

This investigation is limited to two real world data sets and to predictions based on a
single student model, namely POKS. As such, further investigations are necessary to draw
stronger conclusions. Nevertheless, we can still hint at some conclusions. First, the
simpler methods of generating data, based on marginal probabilities and on concept
mastery, yield simulated data that do not appropriately reflect the underlying structure of
the real student performance data. However, the IRT method, based on the 2 parameter
model (difficulty and discrimination), does appear to reflect the characteristics of real data,
but not systematically for all data sets, as a non neglectible difference can be observed in
the case of the Math data set. Furthermore, the Covariance method actually generates data
for which the predictive accuracy is slightly closer to real data then the IRT method is. It
also is close overall to the real data, standing at 0.37 accuracy gain compared to 0.40 for
real data.

This investigation focused on models for generating data which allow their parameters to
replicate real data characteristics, namely items difficulty, student skill levels, concept
mastery as defined by the Q-matrix, and item covariance. Not all models allow this
replication as readily as for these approaches. The DINA model used in [1] contains
parameters that cannot be readily estimated from data, such as performance slips.
Validating the faithfulness of such models is a desirable endeavour that would require
means to estimate such parameters and constitutes an interesting research avenue.
Indirectly, such investigations are in fact a means to validate if a model can actually reflect
the characteristics of real data and, thus, they can be considered as an assessment of the
external validity of a student model.

Turning back to the fundamental question of whether we can rely on simulated data to
validate a student model, the simulations in this study suggest that simulated data from the
2 parameter IRT model can appropriately reflect some data set characteristics, but not with
equal faithfullness for all data sets. It suggests that the validation of a model based on the
indirect and independent measures of skill mastery may be indispensable to ensure a
proper validation, as we outlined in the introduction. Alternatively, we could argue that
the approach which consists in validating predictive performance over observable items
only is just as indispensable. If we assume that the accuracy of a model for predicting item
outcome is directly and monolitically linked to the accuracy of non observable parameters
estimates of a model, then item outcome represents a good indirect measure of skills and
concept mastery.

29



References

[1] Ayers, E., Nugent, R., and Dean, N. A comparison of student skill knowledge
estimates. In 2nd International Conference on Educational Data mining, Cordoba,
Spain (2009), pp. 1–10.

[2] Baker, F. B., and Kim, S.-H. Item Response Theory, Parameter Estimation
Techniques. Marcel Dekker Inc., New York, NY, 2004.

[3] Davey, T., Nering, M. L., and Thompson, T. Realistic simulation of item response
data. Tech. rep., ACT Research Report Series 97-4, July 1997.

[4] de la Torre, J., and Douglas, J. Higher-order latent trait models for cognitive
diagnosis. Psychometrika 69 (September 2004), 333–353. 10.1007/BF02295640.

[5] Desmarais, M. C., Maluf, A., and Liu, J. User-expertise modeling with empirically
derived probabilistic implication networks. User Modeling and User-Adapted
Interaction 5, 3-4 (1996), 283–315.

[6] Harwell, M. R., Stone, C. A., Hsu, T.-C., and Kirisci, L. Monte carlo studies in item
response theory. Applied Psychological Measurement 20, 2 (1996), 101–125.
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Abstract. We investigated 28 learners’ postural patterns associated with 
naturally occurring episodes of boredom, flow/engagement, confusion, 
frustration, and delight during a tutoring session with AutoTutor, a dialogue-
based intelligent tutoring system. Training and validation data were collected in 
a learning session with AutoTutor, after which the learners’ affective states (i.e., 
emotions) were rated by the learner, a peer, and two trained judges. An 
automated body pressure measurement system was used to capture the pressure 
exerted by the learner on the seat and back of a chair during the tutoring session. 
We extracted 16 posture-related features that focused on the pressure exerted 
along with the magnitude and direction of changes in pressure during emotional 
experiences. Binary logistic regression models yielded medium sized effects in 
discriminating the affective states from neutral. An analysis of the parameters of 
the models indicated that the affective states were manifested by three unique 
postural configurations and a general increase in movement (when compared to 
neutral). 

1 Introduction 

Intelligent Tutoring Systems (ITSs) have emerged as valuable tools to promote active 
learning by capitalizing on the benefits of one-on-one tutoring in an automated fashion. 
Although ITSs have typically focused on the learner’s cognitive states, they can be far 
more than mere cognitive machines. ITSs can be endowed with the ability to recognize 
and respond to learners’ affective states. Consequently, the last decade has witnessed a 
burst of research activities aimed at developing ITSs that are responsive to learners’ 
affective states in addition to their cognitive states [1-6]. Much of the research has 
focused on developing systems to detect learner affect automatically because an ITS 
cannot respond to learners’ affective states if it cannot detect their affective states. 

State-of-the-art affect detection systems have overlooked posture as a serious contender 
when compared to facial expressions and acoustic-prosodic features (see reviews by [7, 
8]), so an analysis of posture merits a closer examination. There apparently are some 
benefits to using posture as a means to diagnose the affective states of a learner. One 
compelling reason is that human bodies are large and have multiple degrees of freedom, 
thereby providing them with the capability of assuming a myriad of unique 
configurations [9]. These static positions can be concurrently combined and temporarily 
aligned with a multitude of movements, all of which makes posture a potentially ideal 
affective communicative channel [10, 11]. Perhaps the greatest advantage to posture-
based affect detection is that gross body motions are ordinarily unconscious, 
unintentional, and thereby not susceptible to social editing, at least compared with facial 
expressions, speech intonation, and some gestures [12].  

There has been some recent research aimed at developing posture-based affect detection 
systems [13-15]. The results of these studies have indicated that posture is an important 
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channel to detect the affective states that occur during learning sessions. Although these 
studies have provided an indication of how accurate posture-based affect detectors are, 
left unanswered is the important question of how does the body convey affect through 
articulations of posture and modulations of movement. For example, we have previously 
reported that supervised classifiers can discriminate confusion, frustration, boredom, 
engagement/flow, and delight from neutral with an average accuracy of 74% (baseline = 
50%) [15], but we are unaware of the manner in which these states are expressed through 
the body (e.g. forward leans, arms akimbo, general fidgeting).  

Hence, taking a step back from affect detection, the present paper focuses on applying 
data mining techniques to uncover relationships between body position, arousal, and 
affect. Learner affect and posture data were obtained from an earlier study [16] where 28 
students were tutored on computer literacy topics with AutoTutor, an ITS with 
conversational dialogues [17]. Learner affect was measured via a retrospective affect 
judgment protocol in which the learners’ affective states were rated by the learner, a peer, 
and two trained judges (described in section 3). An automated body pressure 
measurement system was used to capture the pressure exerted by the learner on the seat 
and back of a chair during the tutoring session. Bodily patterns of affective experience 
were mined with binary logistic regressions. We begin with a description of the 
theoretical framework that links body posture and affect. 

2 Theoretical Framework Linking Posture and Affect 

Several researchers have proposed that affective experience can be productively analyzed 
by initially considering the underlying dimensions of valence (pleasant/unpleasant) and 
arousal (active/sleepy) [18, 19]. After this initial classification of emotions is achieved, 
the emotion is analyzed further with respect to the task, environment, and social world 
(i.e., an appraisal is performed). We adopt the first-stage valence-arousal framework in 
uncovering the expressive nature of body language in communicating affect. 

One challenge to adopting the valence-arousal framework for learning environments is 
that it does not neatly fit as well as the analyses of the basic emotions (anger, fear, 
sadness, enjoyment, disgust, and surprise) which naturally align on a valence scale [20].  
A simple valence-based categorization is more challenging for the affective states that are 
prominent during learning. For example, while prolonged, hopeless confusion can be 
considered to be a negative emotion, it is not necessarily the case that brief experiences of 
confusion share the same negative connotation. In fact, confusion is a state that has been 
positively correlated with deep thinking and learning [21, 22], and some learners, such as 
academic risk takers, like to be challenged with tasks that create short-term confusion, 
followed by a resolution [23].  Although it is difficult to fathom that learners derive 
pleasure from being confused, there are theories of learning that suggest complex 
relations between affect and cognition that extend beyond a simple valence dimension. 

Therefore, we relied on an attentive-arousal framework [24] to interpret relationships 
between posture and the affective states of the learner. One can think of heightened 
pressure in the seat as resonating with a tendency to position one’s body towards the 
source of stimulation (i.e., high attentiveness since the learner is positioning his or her 
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body towards the learning interface, or a short distance between the nose and the screen). 
On the other hand, an increase in pressure on the back of the chair suggests that the 
learner is leaning back and detaching himself or herself from the stimulus (low 
attentiveness). Arousal was operationally defined by the rate of change of pressure 
exerted on the back and the seat of the pressure sensitive chair (described below) and is 
similar to the degree of movement [18].  

3 Data Collection 

The participants were 28 undergraduate students from a mid-south university who 
participated for extra course credit. The study was divided into two phases. The first 
phase was a standard pretest–intervention–posttest design. The participants completed a 
pretest with multiple-choice questions, then interacted with the AutoTutor system for 32 
minutes on one of three randomly assigned topics in computer literacy (Hardware, 
Internet, Operating Systems), and then completed a posttest. During the tutoring session, 
the system recorded a video of the participant’s face, their posture patterns with the Body 
Pressure Measurement System (BPMS), and a video of their computer screen.  

The BPMS system, developed by Tekscan™ consisted of a thin-film pressure pad (or 
mat) that can be mounted on a variety of surfaces. The pad was paper thin with a 
rectangular grid of sensing elements. Each sensing element provided a pressure output in 
mmHg. Our setup had one sensing pad placed on the seat of a Steelcase™ Leap Chair 
and another placed on the back of the chair (see Figure 1A).  

The output of the BPMS system consisted of 38 × 41 matrix (rows × columns) with each 
cell in the matrix monitoring the amount of pressure as reported by the corresponding 
sensing element (see Figure 1B).  Therefore, in accordance with our setup, at each 
sampling instance (1/4 second), matrices corresponding to the pressure in the back and 
the seat of the chair were recorded for offline analyses. 

 

Figure 1: Body Pressure Measurement System 

The second phase of the study involved affect judgments by the learner, a peer, and two 
trained judges. The affect judging session proceeded by displaying video streams of both 
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the learner’s screen and face, which were captured during the AutoTutor session. Judges 
were instructed to make judgments on what affective states were present at any moment 
during the tutoring session by manually pausing the videos (spontaneous judgments). 
They were also instructed to make judgments at each 20-second interval where the video 
automatically stopped (fixed judgments); these fixed points are particularly useful to 
compute interrater reliability among judges (see [16]). A list of the affective states and 
definitions was provided for all judges. The states were boredom, confusion, flow, 
frustration, delight, neutral and surprise. The selection of emotions was based on previous 
studies of AutoTutor and other learning environments [25].  

Judgments were provided by the learners themselves (self judgments), by untrained 
peers, and by two trained judges. These trained judges had been trained on how to detect 
facial action units according to Ekman’s Facial Action Coding System [20] and on 
characteristics of AutoTutor’s dialogue (i.e., contextual cues).  

4 Results and Discussion 

4.1 Computing Posture Features 

Several features were computed by analyzing the pressure maps of the 28 participants 
recorded in the study. We computed six pressure-related features and two features related 
to the pressure coverage for both the back and the seat, yielding 16 features in all. Each 
of the features was computed by examining the pressure map (called the current frame) 
during an emotional episode (i.e., when an emotion judgment was made). The pressure 
related features include the average pressure, which measures the average pressure 
exerted on the chair and the top pressure which was the pressure on the topmost segment 
of the pad (see Figure 1C). The prior change and post change measure the difference 
between the average  pressure in the current frame and the frame three seconds earlier 
and later respectively. The reference change measures the difference between the average  
pressure in the current frame and the frame for the last known affective rating. Finally, 
the average  pressure change measures the mean change in the average  pressure across a 
predefined window, typically 4 seconds, that spans two seconds before and two seconds 
after an emotion judgment. The two coverage features examined the proportion of non-
negative sensing units (average  coverage) on each pad along with the mean change of 
this feature across a 4-second window (average  coverage change). Please see [15] for 
detailed description of the features. 

Each feature vector was associated with an emotion category on the basis of each of the 
four human judges’ affect ratings. More specifically, each emotion judgment was 
temporally bound to each posture based feature vector. This data collection procedure 
yielded four ground truth models of the learner’s affect (self, peer, two trained judges), so 
we were able to construct four labeled data sets. When aggregated across each 32-minute 
session for each of the 28 participants, we obtained 2967, 3012, 3816, and 3723 labeled 
data points for the self, peer, trained judge 1, and trained judge 2, respectively.  
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4.2 Affect-Neutral Discrimination from Posture Features 

We conducted a series of binary logistic regression analyses in order to systematically 
explore relationships between the posture features and the various affective states. The 
analyses served two purposes. First, we were interested in determining the extent to 
which the five affective states of interest could be predicted from the various posture 
features. Second, the statistically significant predictors (positive or negative) of the 
logistic regression models were used to isolate commonalities in posture configurations 
that accompany affective experience through the body. 

We conducted five binary logistic regression analyses for each of the four data sets (self, 
peer, 2 trained judges). Each logistic regression analysis was conducted to segregate each 
of the five affective states from neutral. Therefore, the criterion (dependent) variable for 
each logistic regression analysis was the affective state (1 or 0 if present or absent, 
respectively) whereas the predictor variables were the set of posture features. 

Statistically significant relationships (p < .05) were discovered for all of the models. 
When R2 values were averaged across judges and affective states, the posture features 
explained 11% of the variance in discriminating each affective state from neutral. For the 
affective states of boredom, delight, flow, and frustration, the posture features explained 
13% 12%, 14%, and 11% of the variance respectively. The weakest model was obtained 
for confusion with the posture features explaining only 6% of the variance.  

However, when one considers the best model across judges (e.g., self for boredom and 
confusion, peer for flow and frustration, and judge 2 for delight), 19%, 10%, 16%, 19%, 
and 14% of the variance was explained for boredom, confusion, delight, flow, and 
frustration, respectively. More succinctly, 16% of the variance was explained on average. 
This result is close to a medium sized effect [26], and indicates that posture is indeed a 
viable channel for affect detection. 

Table 1. Summary of binary logistic regression analyses with posture features as predictors of each 

affective state from neutral for data sets based on affective judgments of the four judges 

Affective State 

Affect Judge 

Self Peer Judge 1 Judge 2 

χ2 R2 b  χ2 R2 b  χ2 R2 b  χ2 R2 b  

Boredom 196.87 .19  139.43 .12  91.44 .09  148.61 .10  

Confusion 105.71 .10  87.05 .08  53.35 .03  44.01 .03  

Delight 42.24 .09  29.82 .09  94.13 .12  10.22 .16  

Flow 142.96 .13  235.40 .19  118.92 .09  142.90 .13  

Frustration 101.94 .12  102.61 .14  73.33 .08  71.63 .11  

bComputed in accordance with the Nagelkerke R2 which is a pseudo R2 [27]. 
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Next, we consulted the numerical directions (i.e. signs, + and -) of the statistically 
significant coefficients of the logistic regression models in order to explore relationships 
between body position, movement, and affect. Although all 16 features were used as 
predictors for the logistic regression analyses, we focus on the average pressure and the 
change in pressure; these are the most interpretable features and can be theoretically 
aligned within the attentive-arousal framework. 

The logistic regression analyses were used to discriminate between each affective state 
versus neutral, hence, a statistically significant predictor implies that the feature is 
heightened (significant positive predictor) or suppressed (significant negative predictor) 
during the emotional experience when compared to neutral. For example the back 

average pressure change feature was a significant positive predictor for the boredom-
neutral logistic regression, so the episodes of boredom were accompanied by an increase 
in movement on the back when compared to neutral.  

Table 2. Significant predictors for the multiple regression models for emotions in each data set 

Sensor Feature 

 Boredom  Confusion  Delight  Flow  Frustration 
 

 SF PR J1 J2  SF PR J1 J2  SF PR J1 J2  SF PR J1 J2  SF PR J1 J2 
 

Back 
Pressure    + +   - -    - -   - - - -   -    

Change   -           + +    + +   -    

                            

Seat 
Pressure   - - -        + + +  +  + +  - +  +  

Change   + + +   + +     +     -    + +   

Notes. SF: Self Judgments, PR: Peer Judgments, J1: Trained Judge1, J2: Trained Judge2 
+ or  - indicates that the feature is a positive or negative predictor in the logistic regression model 
at p < .05 significance level. Empty cells indicate that a feature was not a statistically significant 
predictor for the respective emotion. 

A number of relationships surface when one considers the significant predictors of the 
affective states in which at least two judges agreed. The requirement that two judges 
agree on the significance and direction of each predictor is motivated by a desire to 
establish a degree of convergent validity in exploring the posture-affect relationships. By 
requiring that the features need to be significant predictors of affect for at least half of the 
judges models ensures that, to some extent, they generalize across judges. 

Boredom. Our results suggested that during episodes of boredom, the learners leaned 
back and presumably disengaged from the learning environment (low attentiveness 
indicated by an increase in pressure on back and a significant decrease in pressure on the 
seat). Experiences of boredom were also accompanied by an increase in the rate of 
change of pressure exerted on the seat. Therefore, heightened arousal was associated with 
the boredom experience, presumably as learners mentally disengage from the tutor and 
divert their cognitive resources to fidget around and alleviate their ennui.  
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Some may view the heightened arousal accompanying boredom to conflict with the 
preconceived notion of boredom in which a learner stretches out, lays back, and simply 
disengages. Our results suggest that the learner lays back, disengages, but is aroused. 
Furthermore, this pattern of increased arousal accompanying disengagement (or 
boredom) replicates a previous study by Mota and Picard [14]. They monitored activity 
related posture features and discovered that children fidget when they were bored while 
performing a learning task on a computer. 

Delight and Flow.  In contrast to boredom, learners experiencing the positive emotions of 
delight and flow demonstrate increased attentiveness towards the learning environment 
by leaning forward. Learners experiencing these emotions also demonstrate heightened 
arousal on the back of the chair – at least when compared to the neutral state. 

Confusion and Frustration. Similar to delight and flow, learners experiencing confusion 
and frustration tend to lean forward. However, it appears that during episodes of delight 
and flow learners lean forward at a steeper inclination than with confusion and 
frustration. We arrived at this conclusion because the increase in the pressure exerted on 
the seat of the chair was accompanied by a commensurate decrease in pressure exerted on 
the back of the chair for delight and flow. On the other hand, confusion was accompanied 
by a decrease in pressure exerted on the back of the chair without any accompanying 
increase on the seat. Similarly for frustration the increase in pressure on the seat was 
devoid of a notable (statistically significant) decrease on the back. We suspect that the 
pattern of body position with confusion and frustration indicates that learners are in an 
upright position when they experience these states, as opposed to the forward lean that 
seems to accompany experiences of delight and flow. 

Arousal. In addition to boredom, it also appears that experiences of delight, flow, 
confusion, and frustration are accompanied by significant arousal, either on the back or 
the seat of the pressure sensitive chair. The arousal that is affiliated with confusion and 
frustration occurs on the back while there is an increase in movement on the seat when 
the emotions of delight and flow are experienced. While the significance of the location 
of the arousal (back or seat) during experiences of these is unclear, what is important is 
that all affective experiences (including boredom) were accompanied by heightened 
arousal when compared to neutral. In summary, the experience of each affective state is 
accompanied by a significant increase in arousal, at least when compared to the neutral 
baseline.  

General Discussion 

We discovered relationships between body position, degree of movement, and learners’ 
affective states. Our findings are in line with an attentive-arousal or engagement-arousal 
framework (see section 2). With respect to the attentiveness dimension, it appears that 
there are three bodily configurations that are associated with the affective states. These 
include heightened attentiveness, which is manifested by a forward lean when the 
positive emotions of delight and flow are experienced. On the other hand, bored learners 
tend to lean back, presumably in a state of disengagement (boredom).  
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States such as confusion and frustration occur when learners confront contradictions, 
anomalous events, obstacles to goals, salient contrasts, perturbations, surprises, 
equivalent alternatives, and other stimuli or experiences that fail to match expectations 
[28]. Learners are in a state of cognitive disequilibrium, with more heightened physiological 
arousal, and more intense thought. Our results suggest that the bodily corollary to the 
mental state of cognitive disequilibrium is an alert position, where the learner sits upright 
and pays attention. 

The single major finding with respect to the arousal dimension is that each of the 
affective experiences is accompanied by a significantly higher arousal when compared to 
a neutral baseline (i.e. no emotion). This finding has important theoretical implications 
because some of our colleagues view some of these emotions (i.e., flow, confusion, etc.) 
as cognitive states, whereas other researchers would classify them as either emotions or 
affect states. We have traditionally agreed with the latter group because we hypothesize 
that the single major discriminator of an affective state over a cognitive state is that the 
affective state is accompanied by enhanced physiological arousal (compared with 
neutral). Our results indicate that in most cases there is a significant increase in bodily 
movements (bodily arousal) during the experience of emotional episodes indicating that 
both cognitive and affective processes are at play. Therefore, it might be the case that the 
term cognitive-affective state is the most defensible position for mental states such as 
confusion, flow, and frustration. 

We acknowledge that the aforementioned relationships between body posture and affect 
ignore individual differences in affect expression. In ideal circumstances, from a 
statistical point of view, the landscape of postural configurations would be evenly 
distributed among the 28 different students. However, this claim is implausible and it is 
therefore important to contrast contributions of individual learners versus generalizable 
posture features in predicting affect. Our results focused on broad patterns observed 
across all learners and should be interpreted with a modicum of caution. We are currently 
addressing these concerns by building models that attempt to separate variance explained 
by individual student characteristics versus variance explained by posture features above 
and beyond individual differences. 
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Abstract. Dynamic assessment (DA) has been advocated as an interactive approach to 
conduct assessments to students in the learning systems as it can differentiate student 
proficiency at a finer grained level. Sternberg and others have been pursuing an 
alternative to IQ tests. They proposed to give students tests to see how much assistance it 
takes a student to learn a topic; and to use as a measure of their learning gain. They 
referred to this as dynamic assessment. It was suggested that this assisting-while-testing 
procedure could be done well by computer. To researchers in the intelligent tutoring 
system community, it comes as no surprise that measuring how much assistance a 
student needs to complete a task successfully is probably a good indicator of this lack of 
knowledge. However, a cautionary note is that conducting DA takes more time than 
simply administering regular test items to students. In this paper, we report a study 
analyzing 40-minutes data of 1,392 students from two school years using educational 
data mining techniques. We compare two conditions: one contains only practice items 
without intervention while the other condition allows students to seek for help when they 
encounter difficulties. The result suggests that for the purpose of assessing student 
performance, it is more efficient for students to take DA than just having practice items. 

Keywords: Dynamic assessment, assessment in learning system. 

1   Introduction 

In the past twenty years, much attention from the Intelligent Tutoring System (ITS) 
community has been paid to improve the quality of student learning while the topic of 
improving the quality of assessment has not been emphasized as much. However, 
student assessment is very important. In the US, state tests mandated by “No Child 
Left Behind” are causing many schools to give extra tests to see if they can group 
students together to get special help. Of course, giving tests for this practices is not 
meant to help students learn, but is mainly focused on being able to tell teachers and 
principals about who needs help on what. It would be great if intelligent tutoring 
systems could be used to do the tests, so that no time from instruction is “stolen” to do 
extra assessments. Many psychometricians would argue that let students learn while 
being tested will make the assessment harder since you are trying to measure a 
moving target. Can an ITS, if given the same amount of time, be a better assessor of 
students (while also of course providing the benefit of helping students learn during 
that time period.  Is it possible to have our cake (better assessment) and eat it too 
(also let student learn)? 

As an intelligent tutoring system adapts the educational interaction to the specific 
needs of the individual student, student modeling is an essential component in an ITS 
as well. The learning effectiveness depends heavily on the understanding of student 
knowledge, difficulties, and misconceptions. Yet, assessing students automatically, 
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continuously and accurately without interfering with student learning is an appealing 
but also a challenging task.  

Dynamic assessment (DA, or sometimes called dynamic testing, Grigorenko & 
Sternberg, 1998) has been advocated as an interactive approach to conducting 
assessments to students in the learning systems as it can differentiate student 
proficiency at the finer grained level. Different from traditional assessment, DA uses 
the amount and nature of the assistance that students receive which is normally not 
available in traditional practice test situations as a way to judge the extent of student 
knowledge limitations. Even before the computer supported systems become popular, 
much work has been done on developing “testing metrics” for dynamic testing 
(Grigorenko & Sternberg, 1998; Sternberg & Grigorenko, 2001, 2002) to supplement 
accuracy data (wrong/right scores) from a single setting. Researchers have been 
interested in trying to get more assessment value by comparing traditional assessment 
(static testing; students getting an item marked wrong or even getting partial credit) 
with a measure that shows how much help they needed. Grigorenko and Sternberg 
(1998) reviewed relevant literature on this topic and expressed enthusiasm for the 
idea. Sternberg & Grigorenko (2001, 2002) argued that dynamic tests not only serve 
to enhance students’ learning of cognitive skills, but also provide more accurate 
measures of ability to learn than traditional static tests. Campione and colleagues 
(Bryant, Brown & Campione, 1983; Campione & Brown, 1985) took a graduated 
prompting procedure to compare traditional testing paradigms against a dynamic 
testing paradigm. In the dynamic testing paradigm, learners are offered increasingly 
more explicit prewritten hints in response to incorrect responses. In this study they 
wanted to predict learning gains between pretest and posttest. They found that student 
learning gains were not as well correlated (R = 0.45) with static ability score as with 
their “dynamic testing” (R = 0.60) score. They also suggested that this dynamic 
method could be effectively done by computer, but never pushed toward to conduct 
such studies using a computer system.  

Intelligent Tutoring Systems are perfect test beds for DA as they naturally lead 
students into a tutoring process to help students with the difficulties they have 
encountered. Traditional paper and pencil or even some online assessment usually 
focuses on students’ responses to test items and whether they are answered correctly 
or incorrectly. It ignores all other student behaviors during the test (e.g., response 
time). However, the most unique information from DA is information about the 
learner’s responsiveness to intervention (Fuches et al. 2007) in the tutoring system. 
There have been a few studies that pay attention to such unique information. For 
instance, recently Fuches and colleagues (Fuches et al., 2008) employed DA in 
predicting third graders' development of mathematical problem solving. We (Feng, 
Heffernan & Koedinger, 2006, 2009) have also taken advantage of a computer-based 
tutoring system (ASSISTments, www.assistment.org, Razzaq et al., 2005), to collect 
extensive information while students interact with the system. Our results showed that 
the assistance model that includes no assessment result on the main problems leads to 
significantly better predictions than the lean model that is based on the assessment 
results alone. This relative success of the assistance model over the lean model 
highlights the power of the assistance measures, which suggests not only is it possible 
to get reliable information during “teaching on the test”, but also data from the 
teaching process actually improves reliability. 
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Although DA has been shown to be effective predicting student performance, yet 
there is a cautionary note about DA since students are allowed to request assistance: it 
generally takes longer for students to finish a test using the DA approach than using a 
traditional test. For instance, in Feng et al. (2009) we reported that we could do a 
better job predicting student state test score using DA than a contrast case, the 
traditional testing situation. However, there is a caveat that the DA condition has 
included more time than the contrast case, which seems unfair for the contrast case. 
Although this sort of contrast leaves out the instructional benefit (e.g., Razzaq & 
Heffernan, 2006, 2007; Feng, Heffernan, Beck & Koedinger, 2008) of the tutoring 
system and, moreover, may not be well received by teachers and students, whether or 
not the system using DA would yield a better prediction of state scores or learning is 
still worth of further research. In this paper, we report a study that aims to answer this 
question.  

2   Methods 

2.1   ASSISTments, the test bed 

 

Fig.1. A screenshot showing student requested a hint for one scaffolding question in 
ASSISTments 

Traditionally, the areas of testing (i.e. psychometrics) and instruction (i.e., math 
educational research and instructional technology research) were separated fields of 
research with their own goals. The ASSISTments system is an attempt to blend the 
positive features of both computer-based tutoring and benchmark testing. The online 
system presents math problems to students of approximately 13 to 16 years old in 
middle school or high school to solve. If a student gets an item (the main item) right, 
they will get a new item. If a student has trouble solving a problem, the system 
provides instructional assistance to lead the student through by breaking the problem 
into a few scaffolding steps (typically 3~5 per problem), or displaying hint messages 
on the screen (usually 2~4 per question), upon student request as shown in Fig.1. 
Although the system is web-based hence accessible in principle anywhere/anytime, 
students typically interact with the system during one class period in the schools’ 
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computer labs every three or four weeks. As students interact with the system, time-
stamped student answers and student actions are logged into the background database. 
The hypothesis is that ASSISTments can do a better job of assessing student 
knowledge limitations than practice tests or other online testing approaches by using 
the DA approach based on the data collected online.  

2.2    Approach 

Fundamentally, in order to find out whether DA was worth the time, we would want 
to run a study comparing the assessment value of the following two different 
conditions:  

• Static a ssessment c ondition ( A): s tudents w ere pr esented w ith one  
static ( as oppos ed t o dy namic) t est i tem a nd w ere r equested t o s ubmit a n 
answer. Once they had done that, more static items followed. 

• Dynamic assessment condition (B): s tudents were presented with one  
static test item followed by a DA portion where they could request help.  

Then the question was: Is condition B better, or at least as good considering the 
learning effect, at assessing students after we control the time?  

We could have conducted a randomized controlled experiment with the two 
conditions. But, since the logging system of ASSISTments had collected data with the 
information needed by DA, we chose to compare predictions made based on log data 
from 40 minutes of time across simulated conditions that were similar but not exactly 
the same as above:  

• Simulated static assessment condition (A'): 40 m inutes of  s tudent 
work selected from existing log data on only main items 

• Dynamic assessment condition (B'): 40 m inutes of  w ork selected 
from existing log data on both main items and the scaffolding steps and hints 

Such a simulation study using educational data mining techniques not only saved time 
from setting up and carrying out classroom experiments, but also allowed us to 
compare the same student’s work in two different conditions, which naturally rules 
out the subject effect. There would be no threat to validity of the comparison as both 
A' and B' allow learning on the test so there was a general trend up that you would 
expect1

We chose to use student’s end of year state accountability test score as the measure of 
student achievement, and we used data from conditions A' and B' to predict state test 
scores and compare the predictive accuracy of the two conditions.   

. So we will not devote much attention to the learning value of these 
conditions. We will refer interested readers to our previous publications where there 
were evidences showing that the system led to better student learning (e.g. Razzaq & 
Heffernan, 2006, 2007; Feng, Heffernan, Beck & Koedinger, 2008).  

                                                           
1 Students in the static condition A’ potentially could have spent more time in the system considering the tutoring 

portion following main items.  
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2.3 Data 

The first raw data set we considered came from the 2004 – 2005 school year, the first 
full year in which the ASSISTment system was used in classes in 2 middle schools in 
Massachusetts. 912 8th grade students’ logs were maintained in the system over the 
time period from September to May. Among these students, we were able to obtain 
complete data for 628. The data set contained online interaction data from the 
ASSISTment system and the results of 8th grade state tests taken in May 2005. 
Students whose state test scores were not available and those who had done less than 
40 minutes of work were excluded.  

The second raw data set we used was from the 2005-2006 school year. We collected a 
full data set for 764 students from Worcester Public Schools, including the online data 
from ASSISTments and their 8th grade state test raw scores. We applied the same 
filter to exclude students who had not done enough work. In both years, the items 
involved in the data sets were given to students in a random order.  

For each of the two raw data sets, we prepared two data sets for analysis, one for 
simulated static assessment condition (A') and one for dynamic assessment condition 
(B'). The data for condition A' included student response data during the first 40 
minutes of work on only main problems; all responses and other actions during the 
DA portion were ignored. On the contrary, the data for condition B included all the 
responses for main questions and scaffoldings, as well as hint requests. For instance, 
consider the following scenario:  

Chris spent one minute trying to answer a main question in ASSISTments but 
failed, and was forced into the tutoring session. Chris then spent four minutes 
working through the three scaffolding questions. Chris answered one 
scaffolding question correctly and requested hints for the other two.  

This scenario counted as 1 minute of static work among the 40 minutes of data we 
prepared for condition A' with a response to the main question being recorded as zero. 
Yet it counted as 5 minutes of dynamic work in the data for condition B', including 1 
correct response to scaffolding, 2 incorrect responses to scaffolding and 2 hint 
requests. 

2.4 Metrics 

We followed our work in Feng, Heffernan & Koedinger (2006, 2009) of developing 
online metrics for dynamic testing that measures student accuracy, speed, attempts, 
and help-seeking behaviors. Simply, the metrics we picked were 

• Main_Percent_Correct2

• Main_Count - the num ber of  m ain i tems s tudents c ompleted. T his m easures 
students' a ttendance and how  on -task t hey w ere. T his m easure al so r eflects 
students' know ledge s ince be tter s tudents ha ve a hi gher pot ential t o finish 
more items in the same amount of time. This is especially true for condition B' 

 – students’ percent correct on m ain questions, which 
we often referred to as the “static metric”. 

                                                           
2 Student requesting for help before attempting a problem are considered as making an incorrect response to the 

main question.  
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where s tudents’ w ork o n s caffolding a lso c ounted a s pa rt of  t he 40 m inute 
work. W hile i n c ondition A ', l ow pe rforming ki ds c ould g o t hrough m any 
items but give wrong answers s ince their time consumed during the tutoring 
session is disregarded. 

• Scaffold_Percent_Correct - students' percent correct on s caffolding questions. 
In addition t o or iginal i tems, s tudents' pe rformance on s caffolding qu estions 
was also a reasonable reflection of their knowledge. For instance, two students 
who get the same original item wrong may, in fact, have different knowledge 
levels a nd t his m ay b e reflected i n t hat on e m ay do be tter on s caffolding 
questions than the other.  

• Avg_Hint_Request - the average number of hint requests per question. 

• Avg_Attempt - the average n umber o f at tempts s tudents m ade f or e ach 
question.  

• Avg_Question_Time - on average, how long it takes for a student to answer a 
question, whether original or scaffolding, measured in seconds.  

The last five metrics are DA style metrics and were not measured in traditional tests. 
They indicate the amount of assistance students needed to finish problems and the 
amount of time they needed to finish the questions. Our hypothesis is that the last 
three metrics will be negatively correlated with students’ performance. Thereby, the 
more hints they request, the more attempts they make on a question and the longer 
they need to go through a question, the worse their performance.  

Among the above six metrics, condition A' used only the first one as predictor to 
simulate paper practice tests by scoring students either correct or incorrect on each 
main problem while condition B' used all the metrics.     

2.5 Modeling 

We ran stepwise linear regression3

2.6 Results 

 to use the metrics described above to predict 
student state test scores. The same process was repeated on the second year’s data. 
For all the models, the dependent variable is the state test score but the independent 
variables differ. Specifically, for condition A', the independent variable of the simple 
linear regression model is Main_Percent_Correct; while for condition B', it changed 
to be a collection of metrics: Main_Percent_Correct, Main_Count, 
Scaffold_Percent_Correct, Avg_Hint_Request, Avg_Attempt, Avg_Question_Time.  

First, we noticed that in both years, students finished more test items in the 40 
minutes in static condition than in dynamic condition, which is not surprising 
considering the tutoring portion in the DA condition. Particularly, in year 2004-2005, 
the average number of main items finished was 22 in the simulated static assessment 
condition while it was only 11 in the dynamic condition; in year 2005-2006, the 
number was 31 in the static condition but it was only 13 in the dynamic condition.  

                                                           
3 probability of F-to-enter <= .05, probability of F-to-remove >= .10 
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Then, we examined the parameters and associated coefficients in the linear regression 
models of both conditions.  

Table 1. Parameters of simple regression models for simulated static assessment condition (A') 

Condition A' Parameter Coefficient 

2004-2005 Intercept 16.383 
 Main_Percent_Correct 24.690 
2005-2006 Intercept 13.993 
 Main_Percent_Correct 40.479 

As shown in Table 2, the first three parameters entered the models were the same in 
both years (with the order changed a little bit). Scaffold_Percent_Correct was the 
most significant predictor in the first year while in the second year, it changed to be 
Main_Percent_Correct. Also, in the later year 2005-2006, Avg_Attempt was 
considered as a significant predictor while in the first year it was Avg_Hint. Yet, it 
was consistent with our hypothesis that more attempts or more hints on a question will 
end up with a lower estimated score.  

Table 2. Parameters entered regression models of dynamic condition (B') 

Condition B' 
(2004-2005) 

Parameter Coefficient 

0 Intercept 17.090 
1 Scaffold_Percent_Correct 16.311 
2 Main_Percent_Correct 7.107 
3 Main_Count 0.179 
4 Avg_Hint -2.580 

 
Condition B' 
(2005-2006) 

Parameter Coefficient 

0 Intercept 16.061 
1 Main_Percent_Correct 21.331 
2 Scaffold_Percent_Correct 16.242 
3 Main_Count 0.172 
4 Avg_Attempt -2.543 

Now that we had looked at the parameters in the regression models, we would 
examine which condition does a better job predicting state test score. The R square’s 
of all models were summarized in Table 3. Additionally, because the models in 
different conditions always had different numbers of parameters, we also chose to use 
Bayesian Information Criterion (BIC) to compare the generalization quality of the 
models. We applied the formula for linear regression models introduced by Raftery 
(1995, p135), which was different from what is typical used for calculating BIC but 
most convenient for linear regression models:   

BIC = n*ln(1-R2) + p*ln(n) 

where  
n: the sample size (for the 2004-2005 data case, n = 628; for the 2005-2006 
data, n=764)  
ln: natural logarithm  
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p: the number of independent variables included in each model (not including 
intercept) 

Table 3. Summary of models 

 R2 BIC 
 2004-2005 2005-2006 2004-2005 2005-2006 

Simulated static condition 0.174 0.377 -114 -354 
Dynamic condition 0.240 0.426 -147 -398 

As we can see from Table 3, in both years, the R square of the model from the 
dynamic condition was always higher than that of the simulated static condition. 
Raftery (1995) discussed a Bayesian model selection procedure, in which the author 
proposed the heuristic of a BIC difference of 10 was about the same as getting a p-
value of 0.05. And the lower BIC indicated a better fitted model. Thereby, we can see, 
in both years, the dynamic assessment condition did a significantly better job at 
predicting state test scores than the control condition which is static. 

2.7 Validation 

Before jumping into the conclusion saying dynamic assessment is more efficient than 
just giving practice test items, we performed 5-fold cross validation on the 2004-2005 
data set. For the testing data, we calculated mean absolute difference (MAD) as a 
measure of prediction accuracy, which was computed as the average of the absolute 
difference between students’ real state test scores and the predicted scores across all 
students included in the testing set.  

Table 4. Results of cross validation 

 MAD 
Fold 1 2 3 4 5 Avg. 

Simulated static condition 9.44 9.05 8.67 9.01 9.13 9.01 
Dynamic condition 9.02 8.65 8.74 9.04 8.57 8.7 

p-value (95%) from two-sided 
paired t-test comparing absolute 

difference of two conditions 
0.35 0.36 0.88 0.94 0.13 0.10 

As illustrated in Table 4, out of the 5 folds, DA condition ended up with a lower 
MAD in 3 folds. On average, DA condition did a better job predicting state test scores 
in the testing set: The difference between MADs of the DA condition and simulated 
static condition was bigger in these 3 DA-winning folds, and it was much smaller in 
the other 2 folds (folds 3 &4). Even though, the results from two-sided paired t-test 
indicated none of the difference was statistically significant.  

Then we took a closer look to see whether the trained regression models of the DA 
condition were consistent across the 5 folds validation. We found out that the trained 
models were fairly stable. The four variables as shown in Table 2 (2004-2005 portion), 
Scaffold_Percent_Correct, Main_Percent_Correct, Main_Count, Avg_Hint entered all 
five trained models while no other variables have been selected. 
Scaffold_Percent_Correct was always the most significant predictor across all folds 
while the entering order of the other variables varied during the stepwise variable 
selection process. The associated coefficients of the selected variables differed across 
folds with variance ranging between 0.0 (Main_Count) and 2.4 
(Scaffold_Percent_Correct).  
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As the last step, we took the average of coefficients from the five trained models and 
applied the model on the full data set of year 2004-2005. The average model from the 
simulated static condition and the DA condition produced MAD of 9.01 and 8.7 
respectively. The paired t-test suggested that there was a marginally significant 
difference (p=0.10)   

All in all, based on the results, we conclude that dynamic assessment is more efficient 
than just giving practice test items. So, not only that students are learning during DA 
but also DA can produce at least as accurate assessment of student math performance 
as traditional practice test, even limited by using the same amount of testing time. 

This is surprising as students in the dynamic assessment do few problems and yet we 
get better assessment results. Of course, DA has another major advantage in that kids 
are learning during the test and therefore are not wasting their time just testing, while 
the practices tests are not likely to lead to much learning.   

3   Conclusion 

Dynamic assessment (DA) has been advocated as an interactive approach to 
conducting assessments to students in the learning systems as it can differentiate 
student proficiency at the finer grained level. In this paper, we compare dynamic 
assessment against a tough contrast case where students are doing assessment all the 
time in order to evaluate efficiency and accuracy of dynamic assessment in a tutoring 
system.  

Contribution: The contribution of this paper lies in that it eliminates the cautionary 
note about dynamic assessment that says DA will always need a longer time to do as 
well at assessing students, which further validates the usage of tutoring systems for 
assessment. ITS researchers have showed the effectiveness of such systems at 
promoting learning (e.g. Koedinger et al., 1997). This paper adds to that fact and 
presents a nice result suggesting that maybe, students should take their tests in an ITS 
as well!  

General implication: Combining with our previous findings (Feng, Heffernan & 
Koedinger, 2006, 2009), this paper tells us that not only we can better assess students 
while teaching them, but also the assessment can be done efficiently. Our results are 
important because they provide evidence that reliable and efficient assessment and 
instructional assistance can be effectively blended. At the Race to The Top 
Assessment Competition public input meetings, experts advocated for computer-based 
state assessments and argued the tests should be taken more than once a year (U.S. 
Dept of Ed., 2009). The general implication from this series research suggests that 
such computer-based, continuous assessment systems are possible to build and that 
they can be quite accurate and efficient at helping schools get information on their 
students while allowing student learning at the same time. 
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Abstract.  Functional magnetic resonance imaging (fMRI) data were collected 

while students worked with a tutoring system that taught an algebra isomorph. A 

cognitive model predicted the distribution of solution times from measures of 

problem complexity. Separately, a linear discriminant analysis used fMRI data 

to predict whether or not students were engaged in problem solving. A hidden 

Markov algorithm merged these two sources of information to predict the 

mental states of students during problem-solving episodes. The algorithm was 

trained on data from one day of interaction and tested with data from a later day. 

In terms of predicting what state a student was in during any 2 second period, 

the algorithm achieved 87% accuracy on the training data and 83% accuracy on 

the test data. Further, the prediction accuracy using combined cognitive model 

and fMRI signal showed superadditivity of accuracies when using either 

cognitive model or fMRI signal alone. 

1 Introduction 

This paper reports an approach of integrating cognitive modeling and neural imaging data 

to facilitate student modeling in intelligent tutoring systems. Intelligent tutoring systems 

have proven to be effective in improving mathematical problem solving (14, 20). Their 

basic mode of operation is to track students while they solve problems and offer 

instruction based on this tracking. These tutors individualize instruction by two processes 

called model tracing and knowledge tracing. Model tracing uses a model of students’ 

problem solving to interpret their actions. It tries to diagnose the student’s intentions by 

finding a path of cognitive actions that match the observed behavior of the student. Given 

such a match, the tutoring system is able to provide real-time instruction individualized to 

where that student is in the problem. The second process, knowledge tracing, attempts to 

infer a student’s level of mastery of targeted skills and selects new problems and 

instruction suited to that student’s knowledge state. While the principle of individualizing 

instruction to a particular student holds great promise, the practice is limited by the 

ability to diagnose what the student is thinking. The only information available to a 

typical tutoring system comes from the actions that students take in the computer 

interface. Inferring cognitive state based on such potentially impoverished data can be 

difficult and brain imaging data might provide a useful augmentation. Recent research 

has reported a variety of successes in using brain imaging to identify what a person is 

thinking about (e.g., 7, 10,11,15) and identifying when mental states happen (e.g., 1, 12, 

13). 

While the methods described here could extend to knowledge tracing, this article will 

focus on model tracing where the goal is to identify the student’s current mental state. 

Two features of the intelligent tutoring situation shaped our approach to the problem: 

1. Given that instruction must be made available in real time, inferences about 

mental state can only use data up to the current point in time. While inferences of 
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mental state may become clearer after observing subsequent student behavior, 

these later data are unavailable for real-time prediction.  

2. Model tracing algorithms are parameterized with pilot data and then used to 

predict the mental state of students in learning situations. Therefore, we trained 

our algorithm on one set of data and tested it on a later set. 

While many distinctions can be made about mental states during the tutor interactions, we 

focused on two basic distinctions as a first assessment of the feasibility of the approach. 

The first distinction involved identifying periods of time when students were engaged in 

mathematical problem solving and periods of time when they were not. The second, more 

refined, distinction involved identifying what problem they were solving when they were 

engaged and, further, where they were in the solution of that problem. While one might 

think only the latter goal would be of instructional interest, detecting when students are 

engaged or disengaged during algebraic problem solving is by no means unimportant. A 

number of immediate applications exist for accurate diagnosis of student engagement. 

For instance, there are often long periods when students do not perform any action with 

the computer. It would be useful to know whether the student was engaged in the 

mathematical problem solving during such periods or was off task. If the student was 

engaged in algebraic problem solving despite lack of explicit progress the tutor might 

volunteer help. On the other hand, if the student was not engaged, the tutoring system 

might nudge the student to go back on task.  

The research reported here used an experimental tutoring system described in Anderson 

(2) and Brunstein et al. (5) that teaches a complete curriculum for solving linear 

equations based on the classic algebra text of Foerster (8). The tutoring system has a  

 

Figure 1  Interface for equation solving isomorph.  (a) The student starts out in a state with a data-

flow equivalent of the equation x – 10 = 17. The student uses the mouse to select this equation and 

chooses the operation “Invert” from the menu. (b) A keypad comes up into which the student enters 

the result 17+10. (c) The transformation is complete. (d) The previous state (data-flow equivalent of x 

= 17+10) is repeated and the student selects 17+10 and chooses the operation “Evaluate”. (e) A 

keypad comes up into which the student will type 27. (f) The evaluation is complete.
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minimalist design to facilitate experimental control and detailed data collection. It 

presents instruction, provides help when requested, and flags errors during problem 

solving. In addition to teaching linear equations to children, this system can be used to 

teach rules for transforming data-flow graphs that are isomorphic to linear equations. The 

data-flow system has been used to study learning with either children or adults and has 

the virtue of not interfering with instruction or knowledge of algebra. The experiment 

reported here uses this data-flow isomorph with an adult population. Figure 1 illustrates 

sequences of tutor interaction during a problem isomorphic to the simple linear equation 

x – 10 = 17. The interactions with the system are done with a mouse that selects parts of 

the problem to operate on, actions from a menu, and enters values from a displayed 

keypad. 

2 Experiment 

Twelve students went through a full curriculum based on the sections in the Foerster text 

for transforming and solving linear equations. The experiment spanned six days. On Day 

0, students practiced evaluation and familiarized themselves with the interface. On Day 1, 

three critical sections were completed with functional magnetic resonance imaging 

(fMRI). On Days 2-4 more complex material was practiced outside of the fMRI scanner.  

On Day 5 the three critical sections (with new problems) were repeated, again in the 

fMRI scanner. Each section on Days 1 and 5 involved 3 blocks during which they would 

solve 4 to 8 problems from the section. Some of the problems involved a single 

transformation-evaluation pair as in Figure 1 and others involved 2 pairs (problems 

studied on Days 2-4 could involve many more operations). Periods of enforced off-task 

time were created by inserting a 1-back task (17) after both transformation and evaluation 

steps. A total of 104 imaging blocks were collected on Day 1 and 106 were collected on 

Day 5 from the same 12 students. Average time for completion of a block was 207 2-

second scans with a range from 110 to 349 scans. The duration was determined both by 

the number and difficulty of the problems in a block and by the students’ speed. 

Students solved 654 problems on Day 1 and 664 on Day 5. 76% of the problems on both 

days were solved with a perfect sequence of clicks. Most of the errors appeared to reflect 

interface slips and calculation errors rather than misconceptions. Each problem involved 

one or more of the following types of intervals: 

1.  Transformation (steps a-c in Figure 1): On Day 1 students averaged 8.2 scans with a 

standard deviation of 5.9 scans. On Day 5 the mean duration was 5.9 scans with a 

standard deviation of 4.1. 

2.  1-back within a problem: This was controlled by the software and was always 6 scans. 

3.  Evaluation (steps d-f in Figure 1): Students took a mean of 4.9 scans on Day 1 with a 

standard deviation of 3.6; they took 3.8 scans on Day 5 with a standard deviation of 2.7. 

4.  Between Problem Transition: This involved 6 scans of 1-back, a variable interval 

determined by how long it took students to click a button saying they were done, and 2 

scans of a fixation cross before the next problem. This averaged 9.1 scans with a standard 

deviation of 1.5 scans on both days.
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1
 For brevity we will give the standard algebraic equivalent of data-flow graphs. 

In addition there were 2 scans of a fixation cross before the first problem in a block and a 

number of scans at the end which included a final 1-back but also a highly variable period 

of 6 to 62 scans before the scanner stopped. The mean of this end period was 11.0 scans 

and the standard deviation was 6.5 scans. 

The student-controlled intervals 1 and 3 show a considerable range, varying from a 

minimum of 1 scan to a maximum of 54 scans. Anderson (2) and Anderson et al. (3) 

describe a cognitive model that explains much of this variance. For the current purpose of 

showing how to integrate a cognitive model and fMRI data, the complexity of that model 

would distract from the basic points. Therefore, we instead adapt a keystroke model (6) 

based on the fact that cognitive complexity is often correlated with complexity in terms 

of physical actions. Such models can miss variability that is due to more complex factors, 

but counting physical actions is often a good predictor. 

We will use number of mouse clicks as our measure of complexity. As an example of the 

range in mouse clicks – it takes 15 clicks in the tutor interface to accomplish the 

following transformation
1
: 

1000* X

10

1000

10

X

10
 

but only 5 clicks to accomplish the evaluation: 

X 7 5 X 2 

Transformation steps take longer than evaluation steps because they require more clicks 

(average 10.4 clicks versus 6.8). Figure 2 illustrates the systematic relationship that exists 

between mouse clicks required to accomplish an operation and the time that the operation 

took. The average scans per mouse click decreases from .77 scans on Day 1 to .57 on Day 

5. On the other hand the average ratio shows little difference between transformations 

(.69 scans) and evaluations (.65 scans) and so Figure 2 is averaged over transformations 

and evaluations. As the figure illustrates, the number of scans for a given number of 

mouse clicks is approximately distributed as a log-normal distribution. Log-normal 

distributions estimated from Day 1 were part of the algorithm for identifying mental state. 

The only adjustment for Day 5 was to speed up the mean of the distribution by a constant 

0.7 factor (based on Anderson (2), model in that volume figure 5.7) to reflect learning. 

Thus, the prediction for Day 5 is .77*.7 = .54 scans per click.  

2.1 Imaging Data 

 Anderson et al. (3) describe an effort to relate fMRI activity in predefined brain regions 

to a cognitive model for this task. However, as with the latency data, the approach here 

makes minimal theoretical assumptions. We defined 408 regions of interest (ROIs), each 

approximately a cube with sides of 1.3 cm that cover the entire brain. For each scan for 

each region, we calculated the percent change in the fMRI signal for that scan from a 

baseline defined as the average magnitude of all the preceding scans in that block. We 

used this signal to identify On periods when a student was engaged in problem solving 

(evaluation and transformation in Figure 1) versus Off periods when the student was 

engaged in n-back or other beginning and ending activities. A linear discriminant analysis 
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Figure 2. (a) and (c): The relationship between number of clicks and duration of problem solving in 

terms of number of 2-sec scans. (b) and (d): Distributions of number of scans for different numbers 

of clicks and log-normal distributions fitted to these. 

was trained on the group data from Day 1 to classify the pattern of activity in the 408 

regions as reflecting an On scan or an Off scan.Figure 3a shows how accuracy of 

classifying a target scan varied with the distance between the target scan and the scan 

whose activity was used to predict it. It plots a d-prime measure (9), which is calculated 

from the z-transforms of hit and false alarm rates. So, for instance, using the activity 2 

scans after the target scan, 91% of the 7761 Day 5 On scans were correctly categorized 

and 16% of 11835 Off scans were false alarmed yielding a d-prime of 2.34. Figure 3 

shows that best prediction is obtained using activity 2 scans or 4 seconds after the target 

scan. Such a lag is to be expected given the 4-5 second delay in the hemodynamic 

response. The d-prime measure never goes down to zero reflecting the residual statistical 

structure in the data.  

 

Figure 3. (a) Accuracy of classification as a function of the offset between the scan whose activity is 

being used and the scan whose state is being predicted. (b) Distribution of fMRI signal changes  for 

Day 1 and Day 5 On and Off scans using an offset of 2. All 408 regions are used. 
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While we will report on the results using a lag of 0, the main application will use the 

optimal lag 2 results – meaning it was 4 seconds behind the student.   Little loss occurs in 

d-prime going from training data to predicted data. The relatively large number of scans 

(21,826 on Day 1 and 19,596 on Day 5) avoids overfitting with even 408 regions. While 

our goal is to go from Day 1 to Day 5, the results are almost identical if we use Day 5 for 

training and Day 1 for testing. The weights estimated for the 408 regions can be 

normalized (to have a sum of squares of 1) and used to extract an aggregate signal from 

the brain. This is shown in Figure 3b for the On and Off scans on the two days.  

2.2  Predicting Student State.  

Predicting whether a student is engaged in problem solving is a long way from predicting 

what the student is actually thinking. As a first step to this we took up the challenge of 

determining which problem a student was working on in a block and where a student was 

in the problem. This amounts to predicting what equation the student is looking at. Figure 

4.1 illustrates an example from a student working on a set of 5 equations. As the figure 

illustrates, each equation goes through 4 forms on the way to the solution: the first and 

third require transformation operations while the second and fourth require evaluation 

operations (see Figure 1). Adding in the 21 Off states between forms there are 41 states. 

Consider the task of predicting the student state on scan 200. Information available to the 

algorithm includes the 5 problems, the distributions of lengths for the various states, and 

that there are 41 states in all. The classifier additionally provides the probability that each 

of scans 1-200 came from an On state or an Off state. The algorithm must integrate this 

knowledge into a prediction about what state, from 1 to 41, the student is in at scan 200. 

A key concept is an interpretation. An interpretation assigns the m scans to some 

sequence of the states 1, 2, …, r with the constraint that this is a monotonic non-

decreasing sequence beginning with 1. For example, assigning 10 scans each to the states 

1 to 20 would be one interpretation of the first 200 scans in Figure 4.1. Using the naïve 

Bayes rule, the probability of any such interpretation, I, can be calculated as the product 

of prior probability determined by the interval lengths and the conditional probabilities of 

the fMRI signals given the assignment of scans to On and Off states:  

)|()()()|(
2

3

1

1

m

j

j

r

k

kkrr IfMRIpapaSfMRIIp  

The first term in the product is the prior probability and the product in the second term is 

the conditional probability. The terms pk(ak) in the prior probability are the probabilities 

that the kth interval is of length k and Sr(ar) is the probability the rth interval surviving at 

least as long as ar. These can be determined from Figure 2 for On intervals and from the 

experimental software for Off intervals. The second term contains p(fMRIj|I), which are 

the probabilities for the combined fMRI signal on scan j+2 given I’s assignment of scan j 

to an On or a Off state. The linear classifier determines these from normal distributions 

fitted to the curves in Figure 3b. 
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2
 Since the states are not directly observable and their durations are variable our model is technically a 

hidden semi-Markov process (16). 

To calculate the probability that a student is in state r on any scan m one needs to sum the 

probabilities of all interpretations of length m that end in state r. This can be efficiently 

calculated by a variation of the forward algorithm associated with hidden Markov 

models
2
  (HMMs, 19) . The predicted state is the highest probability state. The most 

common HMM algorithm is the Viterbi algorithm, a dynamic programming algorithm 

that requires knowing the end of the event sequence to constrain interpretations of the 

events. The algorithm we use is an extension of the forward algorithm associated with 

HMMs and does not require knowledge of the end of the event sequence. As such it can 

be used in real time and is simpler.  Figure 4.1 illustrates the performance of this 

algorithm on a block of problems solved by the first student. Figure 4.1a shows the 20 

forms of the 5 equations. Starting in an Off state, going through 20 On states, and ending 

in an Off state, the student goes through 41 states. Figure 4.1b illustrates in maroon the 

scans on which the algorithm predicts that the student is engaged on a particular equation 

form. Predictions are incorrect on 19 of the 241 scans but never off by more than 1 state. 

In 18 of these cases it is one scan late in predicting the state change and in 1 case it is one 

scan too early.  

Going beyond showing 1 student during 1 block, Figure 4.2 shows the average 

performance over the 104 blocks on Day 1 and the 106 blocks on Day 5.   

  

Figure 4. (4.1) An example of an experimental block and its interpretations. The sequence of 

equations is shown in column a. Columns b, c, and d compares attempts at predicting the states with 

both fMRI and model, just fMRI, or just model. On scans (when an equation is on the screen) are to 

the left and Off times (when no equation is on the screen) are to the right. (4.2) Performance, 

measured as the distance between the actual state and the predicted state, using both cognitive model 

and fMRI, just fMRI, or just a cognitive model on (a) Day and (b) Day 5.
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Performance is measured in terms of the distance between the actual and predicted states 

in the linear sequence of states in a block. A difference of 0 indicates that the algorithm 

correctly predicted the state of the scan, negative values are predicting the state too early, 

and positive values are predicting the state too late. The performance of the algorithm is 

given in the curve labeled “Both”. On Day 1 it correctly identifies 86.6% of the 22138 

scans and is within 1 state (usually meaning the same problem) on 94.4% of the scans. 

Since all parameters are estimated on Day 1, the performance on Day 5 represents true 

prediction: It correctly identifies 83.4% of the 19914 scans on Day 5 and is within 1 state 

on 92.5% of the scans. To provide some comparisons, Figure 4.2 shows how well the 

algorithm could do given only the simple behavioral model or only the fMRI signal.  

The fMRI-only algorithm ignores the information relating mouse clicks to duration and 

sets the probability of all lengths of intervals to be equal. In this case, the algorithm tends 

to keep assigning scans to the current state until a signal comes in that is more probable 

from the other state. This algorithm gets 43.9% of the Day 1 scans and 30.6% of the Day 

5 scans. It is within 1 scan on 51.8% of the Day 1 scans and 37.3% of the Day 5 scans. 

Figure 4.1c illustrates typical behavior -- it tends to miss pairs of states. This leads to the 

jagged functions in Figure 4.2 with rises for each even offset above 0.  

The model-only algorithm ignored the fMRI data and set the probability of all signals in 

all states to be equal. Figure 4.1d illustrates typical behavior. It starts out relatively in 

sync but becomes more and more off and erratic over time. It is correct on 21.9% of the 

Day 1 scans and 50.4% of the Day 2 scans. It is within 1 scan on 32.9% of the Day 1 

scans and 56.9% of the Day 5 scans. 

The performances of the fMRI-only and model-only methods are quite dismal. Successful 

performance requires knowledge of the probabilities of both different interval lengths and 

different fMRI signals.  

Conclusions 

The current research attempted to hold true to two realities of tutor-based approaches to 

instruction. First, the model-tracing algorithm must be parameterized on the basis of pilot 

data and then be applied in a later situation. In the current work, the algorithm were 

parameterized with an early data set and tested on a later data set. Second, the model-

tracing algorithm must provide actionable diagnosis in real time – it cannot wait until all 

the data are in before delivering its diagnosis. In our case, the algorithm provided 

diagnosis about the student’s mental state in almost real time with a 4 second lag. 

Knowledge tracing, which uses diagnosis of current student problem solving to choose 

later problems, does not have to act in real time and can wait until the end of the problem 

sequence to diagnose student states during the sequence. In this case one could also use 

the Viterbi algorithm for HMMs (19) that takes advantage of the knowledge of the end of 

the sequence to achieve higher accuracy.  On this data set the Viterbi algorithm is able to 

achieve 94.1% accuracy on Day 1 and 88.5% accuracy on Day 2.  Morever, prediction 

accuracy using both information sources was substantially greater than using either data 
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source alone.  A Bayesian analysis can explain the basis of the apparent superadditivity 

of prediction accuracy when using the combined information sources. The odds of a scan 

being On given the model and the fMRI signal can be expressed: 
 

Odds(On | Model & Signal) = Odds(On | Model)* Likelihood-ratio(Signal| On & Model) 

If 

(a)  Likelihood-ratio(Signal| On & Model) = Likelihood-ratio(Signal| On) -- that is, the 

signal magnitude depends only on whether the state is On, 

(b)  Odds(On) = 1 -- that is, that On scans and Off scans are equally frequent, which is 

approximately true, and therefore Likelihood-ratio(Signal| On)  = Odds(On| Signal), 

then the equation above can be rewritten 

Odds(On | Model & Signal) = Odds(On | Model)* Odds(On| Signal), 

or by inverting the odds 

Odds(Off | Model & Signal) = Odds(Off| Model)* Odds(Off| Signal). 

 

These two equations show there is a multiplicative relationship in the Odds(Correct 

Acceptance) and Odds(Correct Rejection). Increasing either the strength of the signal or 

the strength of the model multiplies the effectiveness of the other factor 

This experiment has shown that it is possible to combine brain imaging data with a 

cognitive model to provide a fairly accurate diagnosis of where a student is in episodes 

that last as long as 10 minutes. Moreover, prediction accuracy using both information 

sources was substantially greater than using either source alone. The performance in 

Figure 4.2 is by no means the highest level of performance that could be achieved. 

Performance depends on how narrow the distributions of state durations are (Figures 2b 

and 2d) and the degree of separation between the signals from different states (Figure 

3b). The model leading to the distributions of state durations was deliberately simple, 

being informed only by number of clicks and a general learning decrease of .7 from Day 

1 to Day 5. More sophisticated student models like those in the cognitive tutors would 

allow us to track specific students and their difficulties leading to much tighter 

distributions of state durations. On the data side, improvement in brain imaging 

interpretation would lead to greater separation of signals. Finally, other data like eye 

movements could provide additional features for a multivariate pattern analysis. 
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Abstract.  Predictive accuracy and parameter plausibility are two major desired 
aspects for a student modeling approach. Knowledge tracing, the most 
commonly used approach, suffers from local maxima and multiple global 
maxima. Prior work has shown that using Dirichlet priors improves model 
parameter plausibility. However, the assumption that all knowledge components 
are from a single Dirichlet distribution is questionable. To address this problem, 
this paper presents an approach to integrate multiple distributions and Dirichlet 
priors. We show that modeling groups of students separately based on their 
distributional similarities produces model parameters that provide a more 
plausible picture of student knowledge, even though the proposed solution did 
not improve the model’s predictive accuracy. We also show Dirichlet priors 
might be hurt by outliers and models with trimming work better.  

1 Introduction 

In educational research, one fundamental goal is assessing students and estimating 
constructs, such as their knowledge levels, behaviors, goals and mental states, etc.  Since 
most of those attributes are difficult to directly measure, the technique of student 
modeling has been widely used for estimating latent characteristics. A common 
evaluation of student modeling focuses on how well the model fits the training data and 
how well the model can generalize to unseen test data.  However, there has been 
increasing research focusing on utilizing the model parameters to answer scientific 
questions [e.g., 1]. Since we are interpreting the model’s parameters, we need some 
means of validating the model’s parameters, not just its predictions. We call this property 
parameter plausibility. In this paper, we extended our prior work [2], investigating new 
approaches for improving the student model in terms of predictive accuracy and 
parameter plausibility. First, we provide some background into our student modeling 
framework, knowledge tracing, and its problems. We also illustrate the weaker points in 
our prior work and present a method that overcomes that limitation.   

1.1 Knowledge tracing model 
Corbett and Anderson style knowledge tracing (KT) [3] has been successfully used in 
many tutoring systems to estimate a student’s knowledge of a skill.  It is based on a 2-
state hidden Markov model where the student performance is observable, whereas his 
knowledge is latent. There are two parameters slip and guess, which mediate student 
knowledge and student performance. These two parameters are called the performance 
parameters in the model. The guess parameter represents the fact that the student may 
sometimes generate a correct response in spite of not knowing the correct skill. The slip 
parameter acknowledges that even students who understand a skill can make an 
occasional careless mistake.  
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In addition to the two performance parameters, there are two learning parameters. The 
first is prior knowledge (K0), the likelihood the student knows the skill when he first uses 
the tutor. The second learning parameter is learning, the probability a student will acquire 
a skill as a result of an opportunity to practice it. Every skill to be tracked has these four 
parameters, slip, guess, K0, and learning, associated with it. 

1.2 The problem and proposed solution  
How to estimate the model parameters is an important issue. There are a variety of model 
fitting approaches. The Expectation Maximization (EM) algorithm is one of the most 
commonly used methods. It finds parameters that maximize the data likelihood (i.e. the 
probability of observing the student performance data). Compared to other model fitting 
approaches for KT, using EM to learn the parameters has been found to achieve the 
highest predictive accuracy [4].  However, it still suffers two major problems that are 
inherent in the KT model’s search space: local maxima and multiple global maxima [2,5].  

Local maxima are common in many error surfaces. The issue is that the algorithm has to 
start with some initial value of each parameter, and its final parameter estimates are 
sensitive to those initial values. The second difficulty, multiple global maxima, is known 
as identifiability and means that for the same model, given the same data, there are 
multiple (differing) sets of parameter values that fit the data equally well. Based on 
statistical methods, there is no way to differentiate which set of parameters is preferable 
to the others. Consequently, we have to be more careful to select the parameters’ initial 
values when using EM to fit the model, as we want to neither be stuck with some local 
maxima, nor get unbelievable parameters which are meaningless for making scientific 
claims, even if those parameters make accurate predictions.   

In order to solve the problems, in the previous work [2], we proposed that, rather than 
using a single fixed value to initialize the conditional probability table when training a 
knowledge tracing model, it is possible to use Dirichlet priors to start the algorithm. 
Briefly speaking, we assumed each parameter’s values are drawn from Dirichlet 
distribution, which is specified by a pair of numbers (α, β).  The two numbers specify not 
only the most likely value for a parameter, but also the confidence in the estimate. The 
Dirichlet priors, which usually represent the researchers’ prior beliefs, provide a 
reasonable starting point and bias the model-fitting process, thus decreasing the 
probability of ending with an implausible value.  

Modeling all skills using the same set of Dirichlet priors assumes that all knowledge 
components are drawn from a single Dirichlet distribution. That is to say, knowledge 
components are assumed to have distributional similarities with each other in terms of all 
four attributes, prior knowledge, guess, slip and learning. Therefore, Dirichlet priors 
provide bias to all skills towards the mean of the distribution, especially to those 
abnormal outlier skills. In general, outliers could arise due to lack of sufficient 
observations. Specifically, with sparse data, the model is trained with few constraints 
from the evidence; thus although it achieves the highest predictive accuracy it could get, 
still generates implausible parameter estimates. In this situation, we argue that it is 
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preferable to have parameters which are more similar to the other, better-estimated, skills. 
As shown in Figure 1, Skill A and Skill B are at the tail of the distribution.  By using 
Dirichlets, those outliers are biased towards the mean of the distribution. The hypothesis 
is that it is probably good that they are moved towards the center.  

                 

Figure 1 Dirichlet distribution with two outliers             Figure 2  Dirichlet with more “outliers”                                               

1.3 The problem with a single Dirichlet distribution 
Dirichlets has been shown to work well on positively biasing outliers [2,5]. However, a 
key question was overlooked:  are the outliers really outliers?  

Since the assumption of using Dirichlets is that skills in the domain are from a single 
distribution, those skills which are located further away from the mean are considered 
outliers. However, is it really true that all skills are from the same distribution? As shown 
in Figure 2, which has the same distribution as the one in Figure 1, if there are additional 
skills, with similar parameter estimates to Skills A and B, perhaps they are not really 
outliers. A plausible hypothesis is that they are from a cluster of skills which behave 
differently, i.e. they were not drawn from the same Dirichlet distribution as the other 
skills. If so, then moving them towards the mean may be inappropriate as they are better 
modeled as a separate distribution.    

2 Methodology 

2.1 Clustering 
We used clustering to discover which skills should be modeled separately with their own 
distribution. In the current context, a skill cluster is considered a region in the knowledge 
tracing parameter space where the skills share similar patterns with respect to the four 
knowledge tracing parameters. For example, possibly a group of skills might be described 
as “not previously known (low K0), but easy to learn (high learning)”, or “hard to learn, 
but students have partial incoming knowledge”.  The intuition is that the skills within a 
group are spatially located close to each other in the parameter space.  

We used K-means clustering to identify the skill clusters. We did not  use any self-
adaptive clustering variants to automatically determine the number of clusters. The 
reason for this is that it is hard to evaluate the appropriate number of clusters, as our goal 
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is to find the clusters that will result in good predictive accuracy and parameter 
plausibility when modeled as Dirichlets.  We had no a priori reason to believe that an 
automated clustering approach would optimize our metrics.  Therefore, we used iteration 
until the number of clusters that works best on an unseen test set was found (i.e. we 
observed overfitting beginning to occur). 

2.2 Trimming the data to improve Dirichlet parameter estimation 
There are several approaches to setting Dirichlet prior values. One approach is using 
knowledge of the domain [e.g. 5]. If someone knows how quickly students tend to master 
a skill or the likelihood of knowing a skill, that knowledge can be used to set the priors. 
One problem with this approach is that it is not necessarily replicable, as different 
domains, subjects, and experts may give different answers. Therefore, following the 
methods in [2], we automatically derived the Dirichlet priors from the data.  

It is important to note, however, that automatically calculated Dirichlets are susceptible to 
undue influence from outliers.  Similar to calculating the arithmetic mean, outliers can 
distort the parameter estimates. In order to address this problem, we trimmed outliers 
from the data using two different approaches.  

The first approach was value-oriented, in which we processed the four knowledge tracing 
parameters separately and trimmed out the largest and smallest 5% of the values. For 
example, the 0.001 learning rate of the Pythagorean Theorem skill was in the lowest 5% 
and thus removed, while the more believable 0.45 prior knowledge estimate was not. The 
second approach was skill-oriented, in which we calculated the relative distance between 
a skill’s parameters and its cluster’s centroid. Those skills furthest away from the centroid 
were considered outliers, 10% of which we trimmed from the data used to calculate the 
Dirichlet priors.  

2.3 Training with multiple Dirichlet distributions 
To compare the parameter plausibility and predictive accuracy of the fixed, single-
Dirichlet prior and the multiple Dirichlet prior models, we trained a KT model on each of 
them using the following approach: 

 
 
 
 
 
 
 
 
 
 
 
 
We trained a knowledge tracing model for each skill using the same set of fixed priors for 
EM initialization. After finding each skill’s parameter set (prior knowledge, guess, slip, 

TrainWithMultiDrichlets (model, data) 
1    [prior knowledge, guess, slip, learning] := EM (model, data, fixed prior[]); 
2    for k :=1 to n 
3 if (k !=1)  clusters[] := K-means ([prior knowledge, guess, slip, learning], k); 
4 else cluster[1] := [prior knowledge, guess, slip, learning]; 
5 for i := 1 to k 
6        for each dimension d from [prior knowledge, guess, slip, learning] k,i 
7              Dirichlet priors[] (α, β) := CalculateDirichlets(d); 
8           [prior knowledge, guess, slip, learning]’ k,i := EM (model, data in cluster k,i, Dirichlet priors[]); 

64



 

 

 

learning), we calculated the priors for a single Dirichlet distribution and reestimated the 
KT model. For multiple Dirichlet distributions, we classified the parameter sets into k 
clusters. For each cluster, we calculated its own Dirichlet priors, and then used those to 
initialize the EM algorithm and reestimated the models. We didn’t specify an upper 
bound on the number of clusters (i.e. the value of n), as the number of clusters should 
depend on the improvement of predictive accuracy and parameter plausibility rather than 
the statistical properties of the clusters.  

2.4 Data 
For this study, we used data from ASSISTment, a web-based math tutoring system. The 
data are from 345 twelve- through fourteen- year old 8th grade students in urban school 
districts of the Northeast United States.  They were from four classes, each of which only 
lasted one month. These data consisted of 92,180 log records of ASSISTment during 
Dec. 2008 to Apr. 2009. Performance records of each student were logged across time 
slices for 105 skills (e.g. area of polygons, Venn diagram, division, etc). We took 20% of 
the students as the unseen test subjects. Their performance records are our test data. 

3 Results 

We used BNT-SM [7] to apply the EM algorithm to estimate the KT model’s parameters. 
Following the above procedure in Section 2.3, we trained several models to fit the test 
dataset. We compared the models focusing on the model’s predictive accuracy and 
parameter plausibility. 

3.1 Predictive Accuracy 
We measured the models’ predictive accuracy on the unseen test data set using two 
metrics: AUC (Area Under ROC Curve) and R2. 

In Table 1, for the three models with Dirichlets, the Dirichlet priors are calculated based 
on the trimmed data (since that gave slightly better results). We see the AUC values don’t 
show any difference among the first four models. The values remain unchanged even we 
considered the possibility that skills come from multiple distributions (shown in the third 
and fourth rows). R2 also didn’t show any meaningful differences.  

Since Ritter et al. have found that predictive accuracy when using the cluster centers is 
not much worse than when each individual skill’s parameters are used, we decided to see 
if that result will replicate on our data set.  Therefore, we evaluated the models using the 
cluster centers to predict the test data. The results in the last two rows of Table 1 showed 
that AUC values are similar to their counterparts, but R2 values are lower (0.053 vs. 
0.071 and 0.056 vs. 0.072), suggesting that compared to the predictions done by the 
models with parameters estimated for each skill, using generic cluster information to fit 
the data achieves less accurate, but possibly still acceptable, predictions. 

These results show that predictive accuracy is not improved by using Dirichlets even with 
multiple distributions. Related to the prior work [4] where we evaluated the predictive 
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accuracy of the knowledge tracing model using a variety of model fitting approaches, and 
also the Performance Factor Analysis model [8], it seems that improving the model’s 
predictive accuracy on the unseen students is a very difficult task.    

Table 1. Comparison of AUC and R2 

AUC  R2 

Fixed  0.66  0.072 
Single Dirichlet   0.66  0.071 
2 Dirichlet distributions  0.66  0.071 
3 Dirichlet distributions   0.66  0.072 
2 distributions  (cluster center)  0.64  0.053 
3 distributions  (cluster center)  0.65  0.056 

3.2 Parameter plausibility 
In addition to using models for prediction, educational researchers also expect model 
parameters to be able to provide meaningful interpretations. Therefore, parameter 
plausibility is another important aspect for evaluating models. However, quantifying 
parameter plausibility or goodness is non-trivial due to the lack of gold standards. In our 
study, we used the two metrics we explored in [2].  

For the first metric, we inspected the number of practice opportunities required to master 
each skill in the domain. We assume that skills in the curriculum are designed to neither 
be so easy to be mastered in three or fewer opportunities nor too hard as to take more 
than 50 opportunities. We define mastery as the same way as was done for the mastery 
learning criterion in the LISP tutor [9]: students have mastered a skill if their estimated 
knowledge is greater than 0.95. Based on students’ prior knowledge and learning 
parameters, we calculated the number of practice opportunities required until the 
predicted knowledge exceeds 0.95. Then, we compared the number of skills with 
unreliable values in both cases (fewer than 3 and more than 50). 

As seen in Table 2, the results might not be consistent in the two conditions. Fixed priors 
results in more skills with too fast mastery rate, whereas the other three models produce 
5-6 more skills mastered too quickly. It is worth pointing out that the skills found to be 
slowly mastered by the fixed model is a subset of those found by the other three models. 
Furthermore, the skills with low mastery rates found by the three Dirichlet models have 
high overlap.  

One possibility is the skills really are learnt that slowly. For example, if the students 
lacked preparation, they are unlikely to learn just through an ITS.  All of the skills that 
required more than 50 opportunities to master were from the same distribution in the 2-
distribution model.  That distribution with “unlearnable” skills has the parameter 
estimates of 0.5, 0.36, 0.22 and 0.08 for prior knowledge, guess, slip and learning, 
respectively. Compared to the learning rate of the other distribution, 0.36, the skills are 
captured as ones that students have difficulties to learn, thus the mastery rates are very 
slow. Interestingly, in the 3-distribution model, the “unlearneable” skills are from two 
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distributions. One has higher prior knowledge, 0.62, but lower learning rates, 0.07. The 
other has lower prior knowledge, 0.39, but normal learning rate, 0.11. We know that both 
cases could result in a slow mastery progress. Therefore, although the numbers seems to 
suggest those skills are poorly-estimated, if there really are skills students don't learn, the 
models are better at finding them due to clustering.  

Table 2. Comparison of extreme number of practice until mastery 

  # of skills with # of 
practices >=50 

# of skills with # of 
practices <=3 

Fixed   22  2 
Single Dirichlet  28  0 
2 Dirichlet distributions  27  0 
3 Dirichlet distributions   27  0 

 
We also tried to evaluate parameter values directly by calculating the correlation between 
a skill’s estimated prior knowledge and the grade at which that skill was taught. We 
assumed that the earlier the students learned the skills, the higher their incoming 
knowledge would be. However, we found our data suffer a severe problem that most 
items require multiple skills to answer, especially skills learned in earlier grades. 
Consequently, it confounds the relationship between the estimated prior knowledge and 
the grade at which the corresponding skill was taught, thus this approach was not viable. 
Therefore, we still followed the technique in [2]: using external measurement to evaluate 
parameter plausibility. The students in our study had taken a 33-item algebra pre-test 
before using ASSISTment. Taking the pre-test as external measure of incoming 
knowledge, we calculated the correlation between the students’ prior knowledge 
estimated by the models and their pretest scores. In other to acquire the student’s K0 
parameter, we used KT to model the students instead of skills (see [2] for details). 

Table 3 shows four interesting results. The first and the most important one is that more 
Dirichlet distributions generally result in higher plausibility (shown in the second row). 
The correlation values of 0.88 and above are significantly higher than the baseline value 
0.83 from the fixed prior model with p-values < 0.05.   In the 7-distribtuion model, the 
value drops to 0.83. It suggests classifying students in a fine-grained level provides the 
models more confidence about the distributions where the data are from, thus taking the 
extra information specified by the Dirichlet priors, the models converge at more 
believable points. The second result is that we found the evidence of Dirichlet is hurt by 
outliers. As seen in the first column, the Dirichlet model produces lower correlation (0.80 
vs. 0.83) compared to the fixed prior model. However, the Dirichlet model with trimming 
equals the fixed prior model, indicating the necessity of trimming for Dirichlets. 
However, the advantage from trimming decreases as the number of cluster increases, 
until eventually the untrimmed Dirichlet has better performance.  Thus, the power from 
trimming is reduced as presumably the higher similarity of the students in a distribution 
reduced the problem of outliers. 

The third result is the hypothesis that there is an interaction effect between using more 
distributions and using Dirichlets. To confirm that higher plausibility is not simply an 
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result of having additional distributions, we set each distribution’s mean values as the 
fixed priors to train the models (first row of Table 3). We see that fixed prior models 
performance is independent of the number of distributions (except for possible overfitting 
with 6 clusters).  Thus, the improvement from multiple Dirichlet distributions is not an 
artifact of multiple distributions necessarily resulting in better performance. The fourth 
result is shown at the last row of Table 3 where we used cluster centers to represent the 
individual student’s prior knowledge. This approach achieves surprisingly high 
plausibility. With more distributions, it even outperforms the fixed prior models in spite 
of requiring less computation.   

Table 3 Comparison of correlation between prior knowledge and pretest, by number of clusters 

  1 cluster  2 clusters 3 clusters 4 clusters 5 clusters  6 clusters
Fixed  0.83  0.83  0.83  0.83  0.83  0.80 
Dirichlet  0.80  0.83  0.85  0.86  0.88  0.91 
Dirichlet (trimmed)  0.83  0.85  0.85  0.87  0.89  0.85 
Cluster center  N/A  0.77  0.81  0.84  0.87  0.84 

4 Contributions  

This paper presents a new approach for strengthening the fundamental assumption of the 
usage of Dirichlet priors in order to improve the knowledge tracing model’s predictive 
accuracy and parameter plausibility. Although Dirichlets are a solution to the problem of 
parameter plausibility, the assumption that all skills are from a single distribution is 
troubling. Rather than modeling skills as a single homogenous group, we acknowledge 
that similar skills should be modeled similarly. We used clustering techniques to identify 
groups of similar skills, and then modeled those groups with their own, independent 
Dirichlet priors.   

In spite of using multiple Dirichlet distributions, we failed to find any improvement in 
predictive accuracy, which is consistent with the results in our previous work of 
investigating a single Dirichlet distribution. However, we confirmed that using 
distribution centers to fit the data isn’t much worse than using the skill’s individual 
parameter estimates [6].  

For parameter plausibility of modeling skills, it appears using Dirichlets does not produce 
a more believable mastery rate, even when using multiple distributions. It is worth 
pointing out that if there really are skills that students don't learn, the Dirichlet approach 
is better at finding them. We also showed that using multiple Dirichlet distributions to 
model students results in high plausibility of the students’ knowledge parameters.  With 
multiple Dirichlet distributions (6 clusters), the correlation between the model’s 
parameter estimates and the external standards reaches 0.9. We also showed that using 
the cluster centers, rather than individual student estimates, generates plausible results 
too, but with less computational work. 

We found that Dirichlets are likely to be hurt by outliers, both with respect to predictive 
accuracy and parameter plausibility.  For predictive accuracy, the models with trimming 

68



 

 

 

perform comparable or even better than not using trimming.  For the student knowledge 
parameter plausibility, trimming resulted in stronger results, except when six clusters 
were used.  To understand this reversal requires additional experimentation.   

Finally, our intuition that modeling a distribution as a single Dirichlet could be hurt since 
the “outliers” are the skills which are drawn from a different distribution has been 
partially supported by the results.   

5 Future work and Conclusions 

There are several unsolved problems related to this work. First of all, predictive accuracy 
is strongly desired in most student modeling applications. We have tried various 
approaches to improve accuracy in the knowledge tracing framework. However, we have 
found that there are no quick wins [2, 4, 5, 8]. We think perhaps only relying on the KT 
model with the basic structure might not be sophisticated enough to account for the 
substantial variability in student problem-solving efforts.  One line of research is to 
consider integrating other useful information with KT, as it makes sense to be aware of 
other variables that might affect student performance such as question difficulty and 
student engagement.  By accounting for other sources of variance, it enables us to better 
estimate the student’s knowledge and (hopefully) consequently have a higher predictive 
accuracy and estimate more plausible parameters.  

Second, considering the existence of multiple distributions seems reasonable and using 
multiple Dirichlet distributions is found to be beneficial in improving parameter 
plausibility. Dirichlet priors work fine in parameter plausibility on the student models, 
but don’t have apparent benefit for skill models. It is an important task to understand how 
to overcome this issue, or even determine if it is a problem at all.  At present, we lack the 
strong domain-driven parameter plausibility metric that was used in the initial work with 
Dirichlets for reading [5]. Determining better metrics for the domain of mathematics, or 
even better domain-independent metrics is a high priority.  Human-generated Dirichlets 
might be a solution, as the single attempt [5] did result in more plausible parameters.  
Again, if we had more powerful parameter evaluation metrics we could better determine 
whether using human knowledge is a promising direction.  It is interesting to see the 
outcomes from using other techniques to identify the distributions, such as latent 
Dirichlet allocation (LDA [10]), which is a generative model that allows sets of 
observations to be explained by unobserved groups. In this context, skills can be 
considered from several unobserved groups and each of them can be represented by a 
Dirichlet distribution. Thus, LDA is a promising technique rather than using clustering.   

There is a limitation in this work. We took the benefit of looking at the test dataset for 
determining the number of clusters where the models result in the best performance. 
However, a better way that would be conducted in the future work is to use a tuning 
dataset besides the training and test datasets. This approach would enable us to tweak our 
models based on the models’ performances on the tuning data, and then validate our 
models on the test data. 
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This paper has explored the idea of integrating multiple Dirichlet distributions with the 
knowledge tracing model. In terms of predictive accuracy, we failed to find any 
improvement contributed by the proposed technique.  This work provides some 
additional support that using the using cluster centers is a reasonable approach. We found 
that, with multiple Dirichlet distributions, student knowledge parameters achieved high 
plausibility, even when using cluster centers to represent student knowledge. We have 
also found Dirichlet priors could be hurt by outliers, and found that first trimming the 
data before Dirichlet parameter estimations usually gives better performance.  
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Abstract.  High potential variation in prior knowledge, metacognitive skills, and 
motivation within learner populations can prompt design strategies that combine 
explicit structuring and scaffolding with increased learner control.  We examine 
the use of such a strategy—a structured inquiry cycle—in a corpus of online 
modules (50) for adult informal learners using process mining.  We apply 
process analysis techniques previously demonstrated by others to formative 
assessment data from the modules.  We then use process modeling for mining 
module deliveries (N=5617) to investigate learner control within the inquiry 
cycle as a whole.   Our experience suggests roles for these techniques beyond 
assessing conformity, both for design reflection and in preparation for deeper 
inquiry on self-regulation. 

1 Introduction 

Informal learning situations often exhibit high variability within the learner population, 
especially when learning experiences and environments offer broad availability, such as 
learning through the web.   Varying school, work, and life experiences lead to differences 
in prior knowledge, learning skills, and learning styles among such learners.  Disparate 
intrinsic and extrinsic motivations affect their engagement.  Such variation presents 
interesting challenges for creating designs that are responsive to learners as individuals. 

For over a decade, we have pursued design strategies that emphasize adaptive agency 
within computer-based environments for increasing responsiveness to individual learners.  
We have created and used a model-based design technology and adaptive learning 
platform [5] expressly for this purpose.   But in designing a large corpus of online 
resources for adult informal learners (50 modules, each representing 4-8 contact hours) 
we chose to emphasize learner control as a primary strategy for individualization.  Given 
research on learner control showing the positive and negative effects it can have on 
learning [8, 9, 14], we sought to strike a balance between the freedom of navigation 
afforded in cyberlearning environments and the need to scaffold learner experiences, 
particularly when prior domain knowledge or learning skills are weak. 

This tension between self-direction and unambiguous instructional guidance is alleviated 
in environments where freedom of movement and explicit structuring can coexist within 
the same resource, such as in cyberlearning environments.  To support learners who 
might otherwise make poor sequence or content choices within the environment, we 
present a well-formed structure—an inquiry cycle—in which to situate available learning 
activities.[11]  Preserving navigational freedom, learners can follow a canonical path 
through the cycle and thus reduce cognitive load, or define their own unique pathway, 
exercising more control to create a more personalized learning experience.  While the use 
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of such a ―loose-tight‖ design strategy is informed by prior work, it presents many new 
issues warranting analysis and reflection. 

Earlier analyses of observational data from modules designed in this way [7] suggested 
value in putting observations of learner behavior into a process context.   Two process 
mining directions were pursued: a process discovery approach using hidden Markov 
models [8] and a process analysis approach that we address here.  In [12], the authors 
described process analysis techniques and applied them to online assessment data.   
Inspired by their work, we began by replicating the application of these techniques to 
similar formative assessment data from our modules.   We then enlarged the scope of this 
application to examine issues of learner control within the modules as a whole. 

We begin the paper with a description of the learning cycle employed by the modules and 
its influences from prior work.   In Section 3, we describe the formative assessment 
aspects of the modules and present a process analysis of associated data.   Section 4 
presents and discusses the use of process mining to investigate issues of learner control 
for the modules overall.  We conclude by briefly reflecting on our experience and 
highlighting directions for future work. 

2 Anchored Inquiry and STAR Legacy 

The inquiry cycle used as an instructional 
design pattern for the modules is an instance 
of the Software Technology for Assessment 
and Reflection (STAR) Legacy Cycle [13] 
that was developed in the course of work by 
the Cognition and Technology Group at 
Vanderbilt (CTGV) on anchored instruction 
[1] and situated cognition.  STAR Legacy 
organizes a student’s inquiry of a posed 
challenge around a set of activities.  Among 
its central ideas is providing a structure that 
is both well-formed, including kinds of 
activities known to be beneficial to learner 
inquiry, and explicit, so that learners know 
where they are in the cycle, the intention of its activities, and therefore what it means to 
select and use them.  STAR Legacy has been employed in many different educational 
settings, including a large corpus of classroom and blended instruction for undergraduate 
bioengineering education [2] and online continuing education for teachers [3]. 

STAR Legacy arose from interest in ―flexibly adaptive‖ instructional designs that are 
informed by research on effective learning experiences and easily tailored by educators to 
characteristics of particular learning situations.  The original learning cycle consisted of 
six activities: The Challenge, Generate Ideas, Multiple Perspectives, Research and 
Revise, Test Your Mettle and Go Public.[13]  In applying it to informal, asynchronous 
learning, the role of the original Multiple Perspectives activity was subsumed by Initial 
Thoughts, which guides the student’s initial exploration of the challenge in ways echoing 

 

Figure 1: STAR Legacy Inquiry Cycle 
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Multiple Perspectives.  Also, the original Go Public activity, used to scaffold synthesis, 
was replaced by a Wrap Up activity, where learners reflect on their initial thoughts in the 
presence of expert views and are provided an opportunity to apply what they’ve learned 
to a related situation.   These adaptations reflect serious compromises, yet they allowed 
us to introduce extensive leaner control while preserving essential qualities of an explicit 
learning cycle and inquiry scaffolding afforded by its activities. 

3 Formative Assessments 

The Assessment activity in our adaptation of STAR Legacy provides a collection of 
questions that allow learners to confirm their understanding of learning materials 
presented in the cycle’s Resources activity.  Learners select questions from a menu 
organized around categories based on the module’s terminal learning objectives.  Each 
question’s text is presented in the menu to facilitate selection.  Questions can be used 
whenever, and as often as, learners choose.   

The self-assessment questions support multiple attempts with feedback as shown in 
Figure 2.  The feedback after an initial incorrect attempt (L1F) concerns clarifying the 
question by restatement.  Following a second incorrect attempt, criticism of the learner’s 
response is offered (L2F).  This feedback takes the general form: ―If X was true, as your 
answer indicates, then Y‖, where Y is some negative consequence.   After the third and 
subsequent attempts, critiquing feedback is combined with a link back to related learning 
materials provided in the Resources activity (L3F). 

 

Figure 2: Feedback Progression in Module Self-Assessments 

When a question is accessed, the feedback-giving process continues until either (1) the 
learner provides the correct response, at which time she is automatically returned to the 
question menu, or (2) the learner abandons the question, either by interface-supported 
navigation to another cycle activity or by selecting a resource link offered in the L3F.    
Successive accesses of a question restart the feedback process.  On returning to the menu, 
an indication of success (or abandonment) for the most recent access is presented next to 
the question.  The menu thus provides learners an ―at a glance‖ view of their use of 
questions in the activity and the results. 

3.1 Process Modeling 

We began our process analysis of formative assessment data by constructing a Petri Net 
model of a question access, shown in Figure 3 below, which commences when a learner 
selects a question from the question menu.  This model details the feedback process 
described above for consecutive attempts made during the access.  Places in the Petri Net 
represent presentations of the question.  Outbound transitions represent learner actions.  
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The CR and WR transitions represent the learner providing the correct or wrong 
response, respectively.  WR transitions are labeled with the level of feedback 
incorporated into the subsequent question presentation.  Two forms of question 
abandonment are modeled.  The first (AR) occurs when the learner backtracks to a 
learning resource in the Resources activity immediately following question abandonment.   
The second (unlabelled) represents abandonment through other navigation supported by 
the interface without resource backtracking, such as continuing to a different question or 
transitioning to another activity. 
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Figure 3: Petri Net Model of Accessing a Self-Assessment Question 

The addition of the AR transitions represents modeling not solely for the purposes of 
fidelity, but also to address particular analysis interests.  In this case, we wanted to 
examine prompted versus discretionary resource backtracking during a question access.   
The feedback provided on the third question attempt (L3F) and beyond includes remedial 
resource recommendations, so abandonment in this setting is prompted.  In all earlier 
contexts, abandonment with resource backtracking is an unprompted discretionary move. 

3.2 Discussion 

The mining results, overlaid on the process model in Figure 3 above, detail 82,851 
question accesses.  87% (72218) of these were first time accesses and the correct 
response was given 93% of the time over the sequence of attempts.  Nearly 70% of the 
correct responses were given on the first attempt.  The remaining question accesses were 
a combination of repetition following prior success (5%), suggesting review, and 
repetition following prior abandonment (8%). 
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One subject of our analysis was efficacy of the remediation scheme.  The provided 
questions include a combination of multiple choice (MC) and fill-in-the-blank (FIB) 
types, skewed heavily towards the former for ease in constructing the critiquing (L2F) 
feedback.  While the capability exists to provide response-specific FIB feedback, planned 
data mining and feedback preparation exceeded project constraints, so only non-specific 
feedback is given.  Also different between the two question types is the falsification of 
alternatives that naturally occurs with MC questions over a series of attempts.  We were 
interested in how these differences affected learner response to feedback. 

 

Figure 4:  Question Accesses By Attempt Detailing Question Types 

Figure 4 above provides a summary of results by attempt, both collectively and for each 
question type, which varied significantly.  We will therefore present our discussion of the 
results by question type. 

Overall, 95% of MC questions were correctly answered over the series of attempts.  For 
2nd MC attempts, with one choice falsified and the initial feedback, only 58% of learners 
provided the correct response, suggesting low efficacy for the question clarification 
feedback.  With two choices falsified and specific criticism of the second response, 
correct responses on 3rd attempts improved marginally to 61%, a disappointing result for 
the much more labor-intensive response-specific feedback.   On 4th attempts (where most 
questions provided just four choices) correct responses improved to just 70%.   One 
possible explanation for results on later attempts (3+) is that a lack of penalty for 
incorrect responses, combined with benefits from specific formative feedback, lead some 
learners to explore, effectively using the questions as supplemental learning resources.  

Only 70% of FIB questions were answered correctly over the sequence of attempts.  
Performance actually degraded, rather than improved, from 60% correct responses on the 
initial attempt to 23%, 17%, and 6% on subsequent attempts, respectively.  Even the 
initial performance differed significantly from FIB questions on high-stakes assessments, 
where it was comparable to MC questions.  On the formative assessments, the lack of 
penalty for attempts likely contributed to guessing or gaming to obtain more feedback, 
and non-specific feedback provided insufficient prompting. 
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Another analysis focus was to 
understand abandonment behavior. 
Figure 5 (at right) shows resource 
backtracking and other abandonment 
for each question type by attempt.  
Discretionary abandonment (attempts 
1 thru 3) was clearly more 
pronounced for FIB questions, likely 
owing to weakness in feedback 
specificity and inability to proceed by 
falsifying choices, as with MC 
questions.   Resource backtracking 
following abandonment predominated 
for both question types.   While 
incidence of unprompted 
abandonment was low as an overall percentage, when viewed as a percentage of learners 
not making a correct response, between 1 and 2 in 10 made conscious decisions to 
remediate rather than (continue to) guess.  For 4th attempts, abandonment without 
resource backtracking was practically non-existent, suggesting that the specific resource 
recommendations prompting abandonment were largely taken up by learners. 

An area for future work is to examine the effectiveness of self-remediation when 
backtracking to resources.  An initial look showed that, on 88% of questions where 
learners backtracked to a resource following abandonment, a correct response was given 
on the 1st attempt when returning to the question.  Comparative question evaluation, as in 
[10], might also help clarify performance differences between FIB and MC questions on 
self-assessments and on FIB questions between formative and summative assessments.     

4 Examining Learner Control in STAR Legacy Modules 

With this initial process mining, we turned our attention to issues of learner control 
within the modules as a whole.  An initial area of interest concerned identifying the 
extent and nature of control that could be viewed as discretionary, as with unprompted 
question abandonment discussed earlier, versus ordinary forms of control, such as 
advancing to the next element in a sequence. 

Discretionary navigation controls in the modules typically serve the dual purposes of 
affording action and informing status, as with the menu for self-assessment questions in 
the Assessment activity described earlier.  The controls are not adaptive in the sense of 
controlling action through presentation, as typically found in adaptive hypermedia.   A 
fixed navigation sidebar interface element continuously informs learners of where they 
are in the learning cycle and supports arbitrary transitions to any cycle activity at any 
time.  Learners can decide for themselves when and how often to use the activities 
comprising the cycle.  There is thus admitted a wide range of possible behavior.  Such 
affordances for discretionary control are paired with traditional controls for advancing 
and backtracking, such that learners are not forced to choose direction, as a means of 
decreasing cognitive load [15]. 

 

Figure 5: Question Abandonment By Attempt 
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4.1 Process Modeling 

As before, we began by constructing a Petri Net model of navigation pathways within the 
inquiry cycle, shown in Figure 6 below.   Places in the model represent the cycle 
activities and transitions are learner accesses of an activity.  Transitions are labeled by the 
activity destination: ―The Challenge‖ (C), ―Initial Thoughts‖ (T), ―Resources‖ (R), ―Self-
Assessment‖ (A) and ―Wrap Up‖ (W).   Unlabelled transitions represent leaving the 
module.  Learners can freely move between a set of modules constituting a course, 
returning in-place to previously visited modules.  Such ―suspend-resume‖ decisions are 
not modeled here, so the exiting transitions represent final departures. 
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Figure 6: Petri Net Model of Learner Navigation in STAR Legacy 

Annotating the transitions in this model with incidence data (177,632 observations from 
5,617 individual module deliveries) showed that every possible navigation behavior was 
observed.   The benefit of this exercise was that it yielded an ―at a glance‖ view of learner 
control, allowing us to quickly compare relative transition incidences.  Yet, to examine 
discretionary versus sequential control, we needed a more refined model.  We began by 
marking the sequential pathway through STAR Legacy in Figure 6 (darkened edges.)  
From this we derived another process model, shown in Figure 7 below, to investigate 
deviation from sequential navigation.  As before, places represent cycle activities.  From 
each place is a transition (unlabelled) that represents deviation from the sequential path.  
For the Resources and Assessment activities, a cyclic transition was added (dashed edges) 
to differentiate just entering the activity’s menu from use of its contained elements 
(resources or questions) prior to departure.  Another incidental transition was included to 
identify any occurrence of backtracking by the learner from Assessment to Resources. 
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Figure 7: Petri Net Model of Linear Progression in STAR Legacy Cycle 

4.2 Discussion 

Results from data mining using the process model in Figure 7 are shown in annotations of 
the process model and summarized in Figure 8 below.  The latter indicates cycle 
activities after which the learner deviated from the sequential process, both overall and 
for module progressions to examine changes over time.   Overall, in 70% of the 5,617 
modules examined learners stayed within the sequential pathway throughout the learning 
cycle.  Only 51% of learners reaching the Assessment activity sequentially performed any 
resource backtracking.  Curiously, 16% of learners reaching the Resources and 
Assessment activities linearly accessed no resource or question within the activity prior to 
transitioning or backtracking: a subject for future investigation. 

The overall extent of sequential navigation agrees in some respects with earlier analyses 
performed using coded transition data, but process analysis clarified moments of 
deviation for further reflection.  By-passing the Thoughts activity (that is, deviation 
immediately following the Challenge) was the most significant linear process deviation.  
This activity is intended to help learners consider what will be involved in addressing the 
challenge to highlight what they may already know and will need to learn in the course of 
their inquiry.  In terms of self-regulation, it relates to the metacognitive task of strategic 
planning.[16]   Typically an instructor-led discussion in classroom uses of STAR Legacy, 
with obvious social affordances, the online modules present open-ended questions that 
prompt learners to capture their initial thoughts.  In feedback from course evaluations, 
some learners explicitly noted discomfort with this activity, regarding it as some form of 
evaluation prior to learning, even given guidance for the activity to the contrary.  
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Figure 8: Changes in Deviation from Linear Pathway between Modules 

One implication of greater learner control is that it allows avoidance of design elements 
intended to create ―cognitive dissonance‖ [4].   As shown in Figure 8, over consecutive 
modules the avoidance of the Thoughts activity increases to the point where it is three 
quarters of the total deviation, with the most significant increase immediately following 
the first module.   Examination of summative assessment performance showed weak 
correlation between participation in the Thoughts activity and increased learning 
outcomes.  These preliminary findings indicate weakness in our design of the activity that 
warrants further investigation to inform potential redesign efforts. 

5 Conclusions and Future Work 

Analysis approaches to process mining use models as a priori representations.   In the 
presented analyses of formative assessments and learner control within a structured 
inquiry cycle, we incorporated elements into process models to disambiguate forms of 
control or address other control-related interests.  These examples demonstrate use of 
process analysis not just to address conformity, but for other inquiry that involves putting 
data into ordered contexts.  Petri Net process models, being both formal and visual, aided 
collaborative planning for such analyses and in reviewing results, where unshared, 
informal understandings can contribute hindrances.  As discussed in [12], technology to 
support mining directly from process models would have been beneficial, and we are 
tracking progress towards this goal in frameworks such as ProM [14]. 

Whether using discovery or analysis approaches, the potential to assign meaning to 
observed behavior using process mining is limited.  In an investigation of self-regulated 
learning, we plan to use more traditional, expensive, and invasive methods for attributing 
learner behavior in following-up our preliminary analyses.  Understanding gained with 
such methods will be used to enhance the value of passively collected instrumentation as 
a primary data source.  We hope this approach will enable richer accounts of learner 
behavior in environments for informal learning that afford both structure and freedom in 
addressing broad and diverse populations. 
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Abstract.  This paper demonstrates the generality of the hidden Markov model 
approach for exploratory sequence analysis by applying the methodology to 
study students’ learning behaviors in a new domain, i.e., an asynchronous, 
online environment that promotes an explicit inquiry cycle while permitting a 
great deal of learner control. Our analysis demonstrates that the high-performing 
students have more linear learning behaviors, and that their behaviors remain 
consistent across different study modules. We also compare our approach to a 
process mining approach, and suggest how they may complement one another. 

1 Introduction 

One of the broader goals for Intelligent Learning Environments (ILEs) is to help students 
not only become proficient in particular topics, but also to become better prepared for 
future learning (PFL) [3]. Among others, two PFL considerations stand out: (1) students 
should learn the content with good understanding so that they may apply it in problem 
solving situations, and (2) students should develop good learning behaviors and strategies 
that they can apply in other learning situations, even those outside the computer learning 
environment. Computer tutoring systems typically impose learning or problem solving 
structure on the learner [1]. They are primarily designed to monitor students’ 
performance on the task, and provide feedback to help students improve their learning 
performance. In contrast, students have choice in their learning activities in inquiry-based 
and exploratory learning environments. In such systems, it may be quite useful not only 
to monitor students’ learning performance, but also track and interpret their activities, 
map them into good and bad learning behaviors, and then provide appropriate feedback to 
help the students become better learners. If done well, this would also help students 
become better prepared for future learning. In this paper, we employ data mining 
methods to analyze students’ activity sequences and map them on to potential learning 
behaviors. 
 
We have used hidden Markov models (HMMs) [6, 7, 10] as an exploratory tool to 
analyze traces of students’ activities as they learn by teaching a computer agent called 
Betty. Exploratory data analysis makes few initial assumptions about the domain, but its 
results, even if they are preliminary, informs confirmatory data analysis. The system, 
Betty’s Brain [2], is also designed to help students become aware of and learn self-
regulated learning (SRL) skills through interactions with the teachable agent, Betty, and a 
mentor agent, Mr. Davis. The HMMs provide aggregated descriptions of the more 
prevalent patterns of students learning behaviors (both good and bad). A challenging task, 
after learning a HMM from the trace data, is the interpretation of its “hidden” states. In 
our work, we have interpreted the states in terms of the set of activities linked to the 
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states, and then characterized activities associated with states as learning behaviors. 
However, how best to assign meaning to the states in HMM analyses is application 
dependent.  
 
In this paper, we demonstrate the generality of our HMM approach by applying it to 
analyze student learning behaviors in another domain, an asynchronous cyber learning 
environment in cyber terrorism. Unlike the middle school subjects in the Betty’s Brain 
studies, the users of this system are adult professionals, who use this course as a degree 
requirement or for professional certification. A few use the system for self-study. The 
system had a wide variety of users (over 6,000) but we do not have access to the specifics 
of their background information. Therefore, we decided to focus our exploratory data 
analysis methods on examining the differences in behaviors between the high and the low 
performers on the system, where the categorization of high versus low was determined 
from the posttest scores. We believe that this analysis will provide insights on how 
learning behaviors relate to performance. As further discussion, we will compare our 
HMM analyses with the results of a model-driven analyses conducted by our colleagues 
at ISIS who developed this system [5]. In particular, we note how the process modeling 
techniques can complement our analysis by providing a finer-grained perspective on 
students’ behaviors. 

2 System Description 

The asynchronous cyber learning environment on cyber-terrorism is derived from the 
STAR Legacy Cycle, a software shell designed to organize learning activities as an 
inquiry cycle [9]. A key feature of this learning model is that it makes the steps in the 
learning cycle explicit, making it easier for learners to understand the intent of the 
activities, and how they apply to learning. Some adaptations were made to the original 
STAR Legacy cycle to tailor it for asynchronous, online learning of a number of cyber-
terrorism modules. The adaptation preserves the essential qualities of the explicit inquiry 
cycle: adaptive and progressive feedback, and scaffolds for planning, reflection, and 
synthesis. The Overview (O) phase is the portal that students use to enter and exit the 
cycle. The modified cycle is represented in five phases (see Fig. 1): (1) Challenge (C), 
where the students are presented with the problem description; (2) Initial Thoughts (T), 
where the students provide their initial thoughts on the problem; (3) Resources (R), where 
the students can learn about the problem; (4) Self-Assessment (A), where the students 
answer assessment questions to get formative feedback on their progress; and finally (5) 
Wrap-up (W), where the students can review their initial thoughts and conclude the 
module.  

 

Figure 1.  The Adapted STAR Legacy Cycle 
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While the canonical inquiry cycle supported by the STAR Legacy interface has students 
progressing in a linear fashion from Challenge to Wrap-up, the system is also designed to 
promote the idea of learner control [4, 11]. In other words, students are given complete 
freedom to navigate through the cycle to accomplish their learning tasks. We should note 
that it is precisely this freedom that allows for various behavior patterns to emerge as the 
students use the system; this makes the activity sequences collected from the system 
particularly amenable to our exploratory data analysis methods. 

3 Experimental Study 

The users of the system are primarily adults who take the course to meet certification 
requirements or for recommended workplace training. A few students took the course for 
other reasons, but this number was insignificant. In all, the preliminary dataset which we 
retrieved consists of 6,298 learners covering 50 learning modules in 10 independent-
study courses.  

Each module represents roughly 4 to 8 hours of self-study, and each independent-study 
course contains 3 to 7 different learning modules. The students could pass the pretest for 
a module and avoid the training. Otherwise they went through the training and took the 
summative assessment at the end (outside of the training system). Both the pretest and the 
summative assessment questions were randomly generated subset from a shared pool of 
questions. It is important to note that learners who successfully completed every section 
(pretest or summative assessment) were immediately awarded the course certification. In 
fact, around 18% of the students successfully prequalified during the pretest, and skipped 
the training modules. Hence, the students who used the system were necessarily those 
who did not have the requisite prior knowledge to pass the test the first time. 

In our previous analyses, we created groups based on how the students improved from 
pre to posttest by using the system, and made distinction between a low (pretest 
performance) and low (posttest performance) group, low and high group, and high and 
high group [2]. However, in this study, as discussed above, all students who use the 
system universally belong in the “low prior knowledge” category. Therefore, our 
grouping uses only the posttest scores. For this study, we split the scores into three 
uniform groups (after determining that the data was unimodal) to define our low, middle 
and high performance groups. At the two ends of the middle group, there were a number 
of scores that were close to the low and high group scores respectively, so we ignore the 
middle group, and focus our analysis on the differences between the low and the high 
groups. 

Using these performance groupings, we examine ways to characterize the behaviors of 
the different students, and determine, for example, whether the high-performing students 
have learning behaviors that are distinct from the low performers. In our previous 
domain, we have found that the higher-performing students exhibit patterns of behaviors 
that correspond to good learning strategies (e.g., explore one’s understanding of a topic 
by asking relevant follow-up queries and checking to see if the explanations for the 
answer are meaningful) [7]. For our current domain, cyber security, we direct our 
attention to studying how students transition between the different phases of the STAR 
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Legacy cycle. In particular, we are interested in determining whether the path students 
take when following the cycle is in any way related to the students’ performance. For 
example, one may argue that the students who follow the cycle in a linear fashion (the 
implicit model of inquiry learning in STAR Legacy) would perform better in their 
learning tasks than students who make numerous jumps between the phases. An alternate 
hypothesis may state that students who make multiple forward and backward jumps in 
the cycle do so because they have formulated their own strategy for learning the content 
material, and hence would perform better. 

Our behavior analysis will focus on the transitions students make as they go through the 
cycle and their context. Howard, et al. [9] have defined six different types of transitions: 
linear (L), jumping (J), retrying (R), searching (S), transitioning (T), and backtracking 

(B). Linear transitions comprise directed navigation steps in the cycle, and may be 
performed by clicking the “Next Up” navigation button appearing at the end of each 
activity or resource. Jumping transitions imply the use of Resources and Assessments in a 
non-linear way through the use of descriptive menus. Retrying transitions occur in the 
Assessment phase, and represent the activity of re-attempting a specific question. 
Searching transitions comprise of actions, where the students search the materials in 
either the Resources or the Assessments phase. Transitioning represents the students 
moving to and from the course module menu. Finally, Backtracking transitions indicate 
that the student has previously seen the destination activity, resource, or menu. 

We hypothesize that students in the different performance groups will employ different 
learning behavior patterns (and likely, different strategies) when using the system. 
Further, students’ behavior patterns will evolve as they study different modules. 
Therefore, hypothesis 1 states that there will be a marked difference between the two 
performance groups, especially in their use of linear transition behaviors as they learn 
using the STAR Legacy cycle. Hypothesis 2 states that the students’ behaviors will 
evolve as they use the system, and that this can be seen when comparing early and late 
module behaviors. We will use two metrics to assess the difference between the models: 
(1) the definition and interpretation of the HMM states; and (2) the stationary 
probabilities, which represent the proportion of time spent in a state relative to the other 
states of the HMM. We will describe these metrics in more detail in the following 
section. 

4 Methods 

Before the students’ trace data can be analyzed to generate HMMs, necessary 
preprocessing steps have to be executed on the raw activity sequences. As stated before, 
the focus of our analysis is to interpret students’ behaviors as states and the transitions 
between states. Thus, the objective of the preprocessing is to extract and reduce the 
activity sequences to just the transition and the context associated with the transition. 
Because clear distinctions were made between the different types of transitions, all of the 
preprocessing can be done automatically. At the end of the preprocessing phase, we have 
activity sequences consisting of series of transition-context pairs (e.g. “AR-Linear; RR-
Linear; RR-Retrying”, where A represents the Assessment phase, and R represents the 
Resources phase). 
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4.1 The HMM Procedure 

Deriving a HMM from students’ activity sequences should result in a model that 
identifies frequently occurring sequence patterns, which are then interpreted as student 
behaviors. The HMMs are so named because the derived states are hidden, i.e., they 
cannot be directly observed. Instead, one provides meaning or interpretation to the states 
by studying the activities associated with the state. These activities imply behaviors, and 
the collection of states may imply one or more behavior patterns.  

A first step in model generation is to initialize the parameters that define the states of the 
HMM and the possible state transitions. Starting from an initial model description, 
expectation-maximization techniques are applied iteratively until the model parameters 
converge [6, 10]. The estimation process is quite sensitive to the initial state description, 
and bad initializations may lead to generating suboptimal models. In past work [6, 8], we 
have used a conceptual clustering algorithm to generate good parameters for the initial 
state. 

Another unknown in the model derivation process is the “best” number of states that 
define the HMM. The metric that we use to assess the model fit is the Bayesian 
Information Criterion (BIC) measure, which takes into account both the log likelihood of 
the model (i.e., how likely the model is given the data) and the number of states in the 
derived model (i.e., how complex the model is) to find the model that strikes the best 
balance between high likelihood and low complexity [8]. The full procedure for deriving 
HMMs from sequence data is outlined in our previous EDM paper [6]. 

The HMMs offer us a state-based aggregated interpretation of the students’ activity 
sequences, and we can analyze them in various ways. A first step is to assign meanings or 
labels to the states of the model. For example, we may find that some types of activities 
tend to cohere in certain states, which would provide clues to determine what behaviors 
these states represent. Also, we can examine the stationary probabilities to get a sense of 
what the more relevant (i.e., more frequently occurring) states are. The stationary 
probability, as we define here, is the relative proportion of activities that belongs to a 
certain state (i.e., the stationary probability of a state A is the proportion of occurrences of 
State A among all states that occur in a sequence of length n iterations generated by the 
model; n is typically the average number of activities in the input sequences). For 
example, a state having a 20% stationary probability implies that 20% of students’ 
activities during the session are related to the behavior(s) that state represents. We can 
also study the transitions between the states to see how students transition between 
different behaviors. In addition, the structures of the models themselves can be studied to 
see if certain patterns appear (e.g., cycles), and these patterns can then be interpreted in 
terms of students’ learning behaviors.  
 

4.2 The Experimental Datasets 

The HMMs were run using two different datasets. For the first dataset, we investigated 
the first module that the students worked on. The second dataset was a module that the 
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students worked on toward the end of their study for that course. Table 1 lists the number 
of students in the early and late modules, and the average posttest scores for these 
modules.  

Table 1.  Modules Used 

 Module Type 
Numbers 

(low, high) 
Average Scores 

(low, high) 

First Dataset Early (189,83) (51, 95) 
Second Dataset Late (133,97) (34, 93) 

5 Results 

Examples of the HMM structures generated are shown in Figs. 2 and 3. All four models 
(Low-Early; Late-Early; High-Early; and High-Late) had 5 or 6 states. The main 
difference among the models was more in the activities associated with each state, rather 
than the state transition behavior. We discuss one of the derived models in some detail to 
familiarize the reader with the HMM structure. Fig. 2 depicts the model for the high 
performance group in the early module. Table 2 complements the model by listing the 
major composition of activities for each state. The first two letters denote the phases 
involved in the transition (e.g. “AR” is the transition from Assessments to Resources), 
and the letter after the hyphen indicates the transition type (e.g. “L” is linear).  
 
We see that the students begin from state 1, and moving from Overview to Thoughts is 
the only activity associated with this state. Fig. 1 confirms that this corresponds to the 
initial part of the STAR Legacy cycle, so we label this state as the Start State. From state 
1, the students move directly to state 2, where they proceed to thoughts (82% of the time) 
or jump to the resources (14% of the time) (see Table 2). Since this corresponds to the 
start of the problem solving, we call this the Initiation State. Then, the students move to 
state 3, where the students perform multiple activities, but the two primary ones are 
proceeding linearly through the resources (56%) and retrying questions in the resources 
(13%). The dominant activities plus the others lead us to label this state as the Assessment 

State.  
 
Other analyses have determined that students spend significant portion of the time 
working on assessments (can be thought of as self-assessments), so not surprisingly our 
model indicates a self-loop with high likelihood (90%) for this state. When students exit 
the Assessment State, the HMM indicates moves to state 4 (likelihood of 7%) or to state 5 
(likelihood of 3%). State 4 is composed mainly of linear transitions involving the wrap-
up phase (47%) and retrying assessments (35%). For this reason, we call this the Wrap-up 

State. States 5 and 6 are composed mainly of backtracking transitions. In particular, we 
note that state 5 contains a significant portion of backtracking through resources and 
assessments (44%). Hence, we call state 5 a RA (Resources-Assessment) Backtracking 

State. Meanwhile, state 6 is composed significantly of activities involving wrap-up, 
overview, or thoughts (48%). Hence, we call state 6 a HL (High-Level) Backtracking 

State. 
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State 1 State 2 State 3

State 4

State 5

100%

90%

State 6

100%

7%

7%

3%

14%

65%

93%

21%
100%

 

Figure 2.  Early Module – High Performance Group 

State 1 State 2 State 3

State 4

State 5

9%

7%

10%

3%

82%

100%

2%

81%
7%

89%

8%

100%

 

Figure 3.Early Module – Low Performance Group 

Table 2. Distribution of Major Activities (those with probabilities greater than 5%) 

 State 1 State 2 State 3 State 4 State 5 State 6 

Early-
High 

OC-L (100%) CT-L (82%) AA-L (56%) AA-R (35%) RA-B (24%) WO-B (26%) 

 CR-J (14%) AA-R (13%) WO-L (25%) AR-B (20%) RA-B (13%) 

  RA-J (8%) AW-L (22%) RR-B (8%) CT-B (12%) 

  TR-L (6%) AR-J (6%) WO-L (6%) AA-B (11%) 

  RR-L (6%)   
WA-B (10%) 

Early-
Low 

OC-L (100%) RR-L (19%) AA-L (45%) AR-B (32%) AW-L (51%) 
 

 CT-L (11%) AA-R (35%) RA-B (31%) AW-B (19%) 
 

 WO-L (10%)  AA-B (14%) AW-J (12%) 
 

 TR-L (10%)  AA-L (8%)   

 WO-B (8%)  RA-J (6%)   

Figure 3 shows the corresponding HMM for the low performing group working on the 
early module. This model has 5 states. Upon close observation, we see that the reduction 
in states is due to the Wrap-up State and the HL Backtracking State being merged into a 
single state (State 3). The other states that we have identified all appear in this model, 
albeit with a somewhat different compositions of activities, which we will be one of the 
key issues in our investigation. The identified states are summarized in Table 3. 

Using these interpreted states, our first level of analysis would be to see if there are 
differences in the proportion of time that the students spend in each of the states. The 
computed stationary probabilities are summarized in Table 4. It is clear that the High-
Early and the High-Late models are almost identical. Thus we may conclude that the 
high-performing students’ learning behaviors remained the same as they studied the 
different modules. On the other hand, the low performers’ behaviors changed 
significantly from the early to the late module, primarily in the amount of time they spent 
on wrap up, as well as the amount of backtracking between resources and assessments. 
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The mixed state that was observed early also went away in their learning activities in the 
late module. One may conclude that with time, the low performers started behaving more 
like the high performers, and one may conjecture that this was because the system was 
helping the low performers become better learners. This needs to be investigated further. 
In terms of hypothesis 2, Table 4 implies that the low-performer data supports hypothesis 
2, but that the high-performer data does not. One may conclude that this is reasonable, 
because the high performers have figured out how to do well, and do not need to modify 
their behaviors. 

Table 3.  Descriptions of States 

Start State Students move from the Overview to the Challenge phase 

Initiation State Students move from the Challenge to mainly the Initial 

Thoughts phase or the Resources phase 

Assessment State Students stay in the Assessments phase, mainly moving to 
the next question, or retrying a question they get wrong 

Wrap-up State Students proceed to the Wrap-up phase and conclude the 
module 

RA (Resources-Assessment) 
Backtracking State Students revisit previous resources or assessment questions 

HL (High-Level)                
Backtracking State Students revisit Initial Thoughts or the Challenge phases 

 
Table 4.  Stationary Probabilities 

 Start Initiation Assess
ment 

Wrap-
up 

RA 
Backtrac

k 

HL  
Backtrack 

Merged 
Wrap-up and 
RA Backtrack 

Low-Early 3 - 40 2 29 - 25 
High-Early 2 2 50 33 10 2 - 

Low-Late 2 2 37 12 46 - - 
High-Late 2 2 50 33 11 - - 

 
Another interesting difference revealed by the models is how the proportions of activities 
significantly differ among the different performance groups. In particular, there is much 
higher incidence of linear transitions in the Initiation State and the Assessment State 
among the higher performing groups. These results are summarized in Table 5. 

6 Discussion and Comparisons 

Using the results from the hidden Markov model analysis, we sought to investigate how 
the high-performing students transitioned through the different phases in the system in 
contrast with the low-performing students. In particular, we were interested in the 
students’ relative tendencies to follow the explicit, canonical model presented by the 
system, given the great degree of freedom that they were also provided. Confirming our 
first hypothesis, we found that the high-performing students moved more linearly from 
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the Challenge to the Initial Thoughts phase, and also that they moved more linearly 
through the Assessment phase. We also found that the high-performing students spent 
markedly more time in the Wrap-upstate, while the low-performing students engaged 
much more in backtracking through previous assessment questions and resource items. 
While these results are promising, we should note that the results likely stem from the 
high-performing students having a better understanding of the domain, and, therefore, 
showing better abilities to plan their learning and assessment tasks. On the other hand, the 
low performers seem to flounder more, which manifest as backtracking actions.  

Table 5. Proportions of Linear Transitions 

 Low-Early Low-Late High-Early High-Late 
Initiation State - 75 82 82 

Assessment State 45 52 68 68 

Our results are complemented by our colleagues’ findings from using process mining 
techniques to examine similar problems [5]. This approach uses specifically structured 
models to investigate individual problems at a greater detail. For example, our colleagues 
provide a Petri Net Model for how the learners navigate through the STAR Legacy cycle. 
Such a model provides precise numbers of students who follow the sequential path and 
those who deviate from it at any point. A result of interest to us is the finding that most 
students follow the canonical model at first, but start to diverge as they use the system. Of 
particular concern is that most of the divergence stems from the students’ avoidance of 
the Thoughts phase in the later modules; the Thoughts phase figures prominently into the 
cycle as it is designed to create “cognitive dissonance” among the learners [4]. 
Complemented with our finding that higher-performing students are more likely to 
proceed linearly and not skip the Thoughts phase. It might be worth investigating why the 
students grow to avoid the Thoughts phase, and whether this avoidance actually leads to a 
drop in performance. Also, the direction of the causality should be explored: does 
proceeding linearly lead to higher performance, or does higher cognitive ability lead to 
proceeding linearly? Our hypothesis is that learners face increased cognitive load for the 
metacognitive tasks, such as strategic planning, and that following the structural scaffolds 
in the environment, i.e. progressing linearly, would help them manage the cognitive load, 
and hence perform better.  

7 Conclusions and Future Work 

In this paper, we have shown that the hidden Markov model approach is general, and can 
be applied to performing exploratory data analysis in new domains. The analysis implies 
that there are differences in transitionary state behavior between the high and the low-
performing students. Namely, the results indicate that the high-performing students move 
through the model more linearly and spend less time backtracking than the low-
performing students. Our results, combined with our previous work, show the general 
nature of the hidden Markov model approach for exploratory sequence analysis. Like 
speech synthesis applications [8], HMMs may prove to be a valuable tool for analyzing 
learning behaviors in a variety of domains. We have also shown how exploratory data 
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analysis can be complemented by process mining analysis to help examine problems in 
greater detail. In particular, we imagine that interesting and inconclusive results from 
exploratory data analysis may be investigated using process mining to yield more definite 
findings. We believe that the combination of these approaches will lead to many 
promising avenues to extend our research in the future. 
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Abstract.  In this paper we present a tool where both past and current student 
data is used live to generate hints for students who are completing programming 
exercises during a national programming online tutorial and competition. These 
hints can be links to notes that are relevant to the problem detected and can 
include pre-emptive hints to prevent future mistakes.  Data from the year 2008 
was mined, using clustering, association rules and numerical analysis, to find 
common patterns affecting the learners’ performance that we could use as a 
basis for providing hints to the 2009 students. During its live operation in 2009, 
student data was mined each week to update the system as it was being used. 
The benefits of the hinting system were evaluated through a large-scale 
experiment with participants of the 2009 NCSS Challenge. We found that users 
who were provided with hints achieved higher average marks than those who 
were not and stayed engaged for longer with the site. 

1 Introduction 

Educational Data Mining (EDM) has been applied to extract patterns from student data, 
but it is usually employed after the course has finished, for instance to analyse student 
behaviour. The idea of carrying out data mining as an integrated, functional part of the 
system has yet to be explored, and is outlined as future work by [1].  

In this paper, we investigate whether data mining can be used to generate tailored 
feedback for users of an existing e-learning system without the overhead of building an 
ITS from scratch. We build on the NCSS Challenge1, an annual web-based programming 
competition in which students are taught the basics of programming in Python. Each 
week they are given sets of notes and questions to answer by submitting source code. 
Challenge problems become very difficult in later weeks and in previous years, this had 
resulted in a high dropout of participants. We aim to address this issue by providing more 
support during the Challenge, in the form of hints and easier access to notes.  

In our system, feedback is provided to users through the introduction of data mining 
directly into the system loop to provide hints. The hinting system helps students with 
topics that they are struggling with, by suggesting parts of the notes to reread and 
previous questions to revisit. The hints are generated automatically using patterns mined 
from both the previous year’s data and the data generated by live users of the system in 
previous weeks. This is in contrast to the manual construction of solutions and feedback 
in previous systems. The hinting system is fully operational, and was used in the 2009 
NCSS Challenge. We conducted an experiment to measure its effectiveness in providing 
                                                
1 http://challenge.ncss.edu.au 
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aid for students by presenting hints to some students and not others. We found that the 
system helped students considerably, resulting in a large and highly significant effect on 
the marks and retainment of those students who received automated hints. 

2 Related work 

The excellent review by Shute of formative feedback [2]  provides guidelines on what to 
look for and what to avoid when designing feedback, and outlines that learning is best 
improved when the feedback is kept as simple and focused as possible. Hints and cues 
fulfil this objective. The Lisp Tutor [3], ELM-ART [4] and SQLT-Web [5] are all 
examples of successful programming tutors. Each is able to aid student problem solving 
by providing feedback in the form of very specific hints and error messages, even to the 
point of providing correct code snippets if the student is struggling. All three systems rely 
on example solutions and a finite set of rules that specify what code is valid for a given 
task, and any deviations that will result in error can be identified quickly. Encoding such 
sample solutions and rules requires the formulation of pre-determined feedback for 
students, which can be expensive in terms of time and cost, and may not cover all 
scenarios. These methods are fairly domain specific, and therefore cannot be easily 
generalised to other systems. 

While the use of data mining to aid the diagnosis of students’ behaviour and ability is 
common, relatively little work has been done in using data mining to support student 
problem solving. One system that aims to do this is the Logic-ITA [6], where the system 
takes into account past associations of student mistakes to provide on-the-fly, proactive 
feedback to the students. The identification of students who are in difficulty in a 
programming course has been the aim of some studies such as [7] and [8], but with the 
aim of predicting failure or dropping out of a course, not for providing hints. 

3 The NCSS Challenge site 

The NCSS Challenge is an annual online programming competition that has been running 
for Australian high school students and teachers since 2005. The Challenge runs for five 
weeks during which participants are provided with notes and questions on a weekly basis, 
and are given feedback and marks out of 10 based on their submissions to the questions. 
When a user submits an answer to a question, it is evaluated by an automatic marker. 
This marker generates basic feedback, giving high-level descriptions of tests that the 
submission passed or failed to the users. We have now developed an extension to the 
Challenge website that provides users with additional feedback when they fail a question, 
in the form of hints which we describe next. 

3.1 Hints 

We implemented two main types of hints: “pre-emptive” and “post-failure”. Pre-emptive 
hints are available to weak students before they submit any code for a question. Post-
failure hints are provided after a student’s submission failed. Both types of hints lead to a 
hints page, automatically generated and specific to each student and question. It suggests 
links for (1) topics to review, (2) similar questions to attempt and (3) easier questions to 
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attempt. A screenshot of a post-failure hint is shown in Figure 1. Pre-emptive ones look 
similar, except they do not contain any associated topics to review. 

 

Figure 1. Screenshot of a post-failure hint page 

The topics to review hints link to specific sections of the notes that address these topics 
(e.g. string slicing in Figure 1). Each section of the notes and each question were tagged 
with the relevant Python topics, as per a lightweight ontology that we built for that 
purpose, therefore allowing for the notes and questions to be related to each other. The 
question hints link to other Challenge questions selected by the data mining. The hints 
only suggest notes and questions that all students already have access to. 

4 Data mining for the hinting system 

As mentioned earlier, we used data mining as a basis for the generation and triggering of 
relevant hints for each student. The data came from the past 2008 Challenge and the live 
2009 Challenge, including the questions, the corresponding topic tags from the ontology 
and the students’ results and submissions. Data mining was carried out using clustering, 
association rule mining and simple numerical analysis, the results of which were used as 
various components in the final hinting system as indicated below. 

Table 1. Generation methods for each part of the hint 

Part of the hint Method to generate it Pre-emptive 
hints 

Post-failure 
hints 

Topics to review Topic tags √ √ 

Associated topics to 
review 

Association rules on topics of 
failed submissions 

 √ 

Easier questions Clustering questions (difficulty) √ √ 

Similar questions Clustering questions (similarity) √ √ 
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Table 2. Triggering mechanisms for hints 

Hint Triggered for Method 
Pre-emptive Weak students Clustering (students per ability) 
Post-failure All students after x failures Simple numerical analysis 

 

4.1 Mining the 2008 data 

We mined the Challenge data from the previous year (2008) with the overall aim to (i) try 
to extract useful information that could be used to generate hints for our 2009 Challenge 
students and (ii) experiment with some techniques such as clustering to select and fine-
tune our methods before using them live in 2009. 

Throughout the five weeks of the 2008 Beginners Challenge, 16,814 submissions were 
gathered from 712 separate users. There were 25 questions in total (5 per week) that were 
available to the students, usually in increasing order of difficulty. Students could submit 
several times for the same question until successful. All these attempts were recorded, 
along with the mark eventually obtained by students in each question. 

4.1.1 Clustering students 

The aim was to group students based on their abilities. We used the K-Means clustering 
algorithm used in Tada-Ed [9]. For each student ID, we collated the following attributes 
for each of the 25 questions: whether the student attempted the question (nominal), 
whether the student eventually passed the question (nominal), and the marks gained for 
the question (numeric [0 or 5-10]). We also computed the average numbers of passed and 
failed questions, and the average number of submissions before the student passed a 
question. Clustering with these attributes produced three distinct groups, which we 
identified as being “strong”, “medium” and “weak” students. While this result was only 
relevant for the 2008 students, the effectiveness of clustering with these pre-processed 
attributes indicated that clustering was a viable technique for discriminating between 
students. 

4.1.2 Clustering questions 

We clustered the questions with two distinct aims: to find questions that were similar to 
each other and to group questions by difficulty. Our goal was to remind students of other 
related questions that may help them with the question they were considering at the time. 
We again used the K-means algorithm. The similarity-based clusters were extracted using 
the question metadata (topic tags). We found 5 clusters, as each of the 5 weeks of the 
Challenge introduced new topics. The difficulty-based clusters of questions were 
extracted based on the number of students who passed each question and the percentage 
of students who passed it that attempted it. Similarly to the clustering of students, we 
found three clusters, which we identified as “easy”, “medium” and “hard”. Table 3 shows 
the 2008 questions with performance statistics and their difficulty clusters. We found that 
the three groups were not grouped chronologically, but that several medium questions 

94



appeared earlier than the last of the easy questions, and that the hard questions were 
interspersed through the medium ones. This meant that clustering to generate difficulty 
levels was worthwhile, as a simple chronological ordering would not have worked. 

Table 3. The 2008 questions and their clustered difficulty rankings 

Week Question  Passed  %  Difficulty   Week Question  Passed  %  Difficulty  
1 hello-world  691  98  easy   4 aardvark-files  227  96  medium  
1 hello-name  652  97  easy   4 word2sms  226  98  medium  
1 string-repeater  589  96  easy   4 find-max  213  98  medium  
1 fuel-

consumption  
461  94  easy   4 primes-contact  161  79  hard  

1 eliza-simple  418  90  easy   4 animal-
interactive  

165  90  medium  

2 aardvark  461  91  easy   5 tranlation-
latin2english  

139  92  medium  

2 pig-latin-basic  434  97  easy   5 function-
swedish  

118  82  hard  

2 simon-says  392  95  easy   5 rationals-
simple  101  95  medium  

2 hailstone-
numbers  

353  96  easy   5 rpn-evel-
simple  

87  91  medium  

2 animal-
wordgame  

315  93  medium   5 eliza-templates  38  64  hard  

3 weird-units  418  98  easy        
3 leap-years  345  95  easy        
3 birthday-cards-

for-loop  
321  96  medium        

3 diamonds  278  96  medium        
3 eliza-

interactive  226  90  medium        

4.1.3 Mining associations in topics 

The aim was to find association rules that indicated which topics should be mastered 
before another question was attempted, so that the hints could suggest topics that students 
should review before moving onto a more complex one.  We initially aimed to generate 
the association rules by assigning scores for each student on the 46 tags used in the 2008 
Challenge. If a student passed a question, they were given one point for each tag in the 
question; if they did not pass a question a point was taken away for each relevant tag. 
Once all the scores were calculated, positive scores were labelled as “passed” and zero or 
negative scores were labelled as “failed”. This method, however, was too coarse-grained. 
If a student failed a question tagged with a large number of tags but only had problems 
with one or two topics, they would be penalised for all the topics. We revised this to a 
more fine-grained method, and mined sequences of tags that students failed on. We 
ordered the students’ results chronologically, and kept an ordered sequence of the tags for 
each question they made an incorrect submission to. We then used these sequences to 
generate association rules. Originally, we set the support and confidence to 70%. 
However, this excluded many advanced topics as they occurred less often in the students’ 
sequences. This was because they were introduced in later weeks, and as such, fewer 
questions were tagged with them and fewer students attempted those questions. We 

95



therefore lowered the support and confidence to 20%, and used cosine, which has been 
shown to be a more appropriate evaluation metric for educational data [10]. We post-
processed the rules generated by the aPriori algorithm [11] to discard rules with a cosine 
of less than 0.65  [10] and rules with topics out of the order in which they appeared in the 
notes. We only retained rules that had two topics in the antecedent and one in the 
consequent. We finally manually extracted the rules in which the three topics involved 
were related to one another to remove trivial rules. We ended up keeping 83 rules, two of 
which are shown in Table 4. The first rule means that students who struggle with basic 
arithmetic in Python and comparison operators also struggle with how to loop over a set 
of values, and the second one means that those who struggle with converting to integers 
and while loops also struggle with stopping after a number of iterations. 

Table 4. Examples of association rules found 

mth:arth, mth:bool:comp  ctrl:loop:term:vals 
typ:int:cast, ctrl:loop:whl   ctrl:loop:term:nums 

  

4.1.4 Numerical Analysis 

Aside from the more complex data mining algorithms, we subjected the 2008 data to 
some simple numerical analysis to find frequencies and averages for certain aspects of 
the data. An important measure was to have an idea of the “give-up point”, that is, the 
number of wrong submissions a student made before he or she stopped attempting it. To 
do this we found, for each question, the total number of submissions made by students 
who never passed the question. We then averaged this over the number of students who 
had attempted but not passed that question. We then computed the mean of the averages 
already found, which was found to be 3.7. This was used in the final system as the point 
at which students were presented with post-failure hints; a student would only receive 
such hints after making their fourth incorrect submission to a question. 

5 Experiment and results with 2009 Challenge  

We tested our hinting system on participants of the 2009 NCSS Challenge. We ran the 
experiment using the live data being generated by the Challenge participants. We 
evaluated through a controlled experiment whether the hinting system had a positive 
effect on student performance, based on their marks and the ability clusters they were 
grouped into.  

5.1 Experiment design 

The Challenge ran for five weeks from mid August to late September 2009. There was an 
overnight period between one week’s questions being closed to submissions and the next 
week’s questions being released, which allowed us to carry out the data mining using the 
live system and current participant data and upload the new clusters for the next week. 
This also involved finalising the tags for the questions, and clustering both the questions 
and the students. All data mining was carried out as described in the previous section. 
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1303 participants registered for the 2009 NCSS Beginners Challenge. We took the first 
1000 participants to enrol to be involved in our experiment, and provided them all with 
hints for the first week of the Challenge. At the end of the first week, we found any 
participants who had not yet made any submissions, and excluded them from our 
experiment due to inactivity, ending with a population of 584 students. At the end of 
week 1 where everyone received hints, we split the students into 2 equal-sized groups: a 
test group, which received hints, and a control group, which did not from week 2 to 5. All 
584 students were clustered based on their week 1 results. We then split each cluster in 
half for our hinted and control groups, based on the schools the students were registered 
with so students from the same school were in the same group.  

At the end of each week, students were clustered according to abilities (as in 4.1.1), using 
the cumulative student data. Question clusters were also updated weekly. We discovered 
each cluster could be mapped to a specific topic when we clustered the 2008 questions. 
Since new topics were introduced each week, we increased the number of similarity 
clusters over the weeks. We created two clusters in week 1 and week 2, and then 
increased this weekly until there were five clusters in week 5. 

Unlike the 2008 questions, in which all the data on student performance per question was 
known and available for clustering, the data for the 2009 Challenge was being generated 
during the experiment. As such, we were required to estimate the difficulties for each of 
the new week’s questions instead of deriving them solely from the participant results. At 
the end of each week, we analysed the results data from that week and clustered the 
questions to assign their difficulty levels, then estimated and assigned a difficulty to the 
new questions for the next week. At the end of the next week we readjusted the difficultly 
level based on the results generated by the participants for those questions. While the 
difficulty levels sometimes needed readjustment, we were generally able to estimate the 
question difficulties accurately at the start of the week and could predict the difficulties 
that were generated at the end of the week by the clustering.  

5.2 Results of 2009 clustering 

The techniques and attributes of the clustering of questions and students was the same as 
in 2008. The final set of question clusters by similarity is presented in Table 5. These 
were the clusters as used for Week 5 of the 2009 Challenge.  

Table 5. The 2009 questions clustered by similarity 
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The data for the difficulty clustering of the questions is shown in Table 6, which also 
includes the clusters questions were assigned to at the start of week 5. The week 5 
difficulty clusters (in italics) were estimated. 

Table 6. The 2009 questions and their clustered difficulty rankings 

Week Question Week 5 
Difficulty 

Passed %  Week Question Week 5 
Difficulty 

Passed % 

1 hello-world easy 579 99  4 numbers-to-words medium 272 96 
1 hello-name easy 563 99  4 file-merge medium 186 94 
1 pirate-yarrrr easy 485 95  4 substitution-cipher medium 171 93 
1 download-time easy 404 89  4 banner-printer hard 123 95 
1 debug-longest-string easy 383 91  4 sudoku-checker hard 118 87 
2 biscuit-value easy 442 97  5 shopping-list-file medium 97 92 
2 pirate-count-lines easy 364 97  5 function-pirate-

translate 
medium 83 95 

2 crypto-scrambler-simple medium 282 93  5 function-list-
calculator 

medium 75 97 

2 debug-odd-one-out easy 364 97  5 cellular-automata hard 57 95 
2 crypto-substitution-undo medium 286 88  5 bfs-sudoku hard 29 74 
3 black-ballon-calc easy 343 97  5 snakes-n-ladders hard 17 61 
3 hollow-square medium 305 97  
3 pirate-decode-repeats medium 212 95  
3 anagram-super medium 232 97  
3 sort-uniq medium 223 98  

5.3 Evaluation 

Firstly, we measured student performance based on their average overall marks. For each 
of the 584 students in the experiment, we calculated their average score out of 10 for the 
questions they made at least one submission to. We then calculated the mean of these 
scores over the hinted students, and the mean of the scores for the control group. The 
hinted group's mean score was 4.02 (sd = 2.78), while the control group had a mean score 
of 3.18 (sd = 2.71). This was a difference of 0.84, i.e. an increase of 26.4%, with a 
significance of p < 0.0006 using an Approximate Randomisation test [12]. We used this 
because the students’ marks were not normally distributed, making a t-test inappropriate. 
This indicates that the hints substantially helped students when solving problems and lead 
to a significantly higher level of correct submissions being submitted.  

Table 7. The number of students who submitted at least one question per week 

Week 1 2 3 4 5 
Hinted 292 244 203 172 75 
Control 292 220 163 120 38 
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We also investigated whether users who received hints were active on the site for longer 
than those in the control group. Table 7 shows the number of hinted and control group 
users who submitted an answer to at least one question per week. There were consistently 
more users in the hinted group who made submissions, meaning the hinted group of users 
had an overall higher level of participation over the five weeks of the Challenge. The 
hints therefore had a distinctly positive effect on students’ willingness to stay engaged 
with the course.  

To get insights on students’ satisfaction with the hinting system, we presented them with 
a survey at the end of the course. Students were asked to rate the relevance of the hints to 
the questions they were answering and the topics they had difficulty with by using a five-
point Likert scale. 67% of students found the topics “relevant” or “somewhat relevant” 
and 90% of them found the questions “relevant” or “somewhat relevant”. Therefore, it is 
clear that as far as the users were concerned, the methods for choosing topics to present 
were effective. In addition, 71% of students stated they would like more hints. 

Overall, the survey responses showed that the students found the hints helpful. When 
asked to provide comments, many of the students emphatically stated that the hints had 
helped them with problem solving, with students giving extremely positive comments 
and requests for the hints to continue in future years of the Challenge. Furthermore, one 
student found that the hints helped her access the notes much more effectively, which 
was our overall aim for the system: “I found the tips more helpful, because when we are 
using the notes to solve the problem we really don’t know where to go and what to do or 
which formula to use. But after using the hint formula we know where to go and what to 
use for solving the problem. So I reckon that the hint boxes were a very smart way to 
access the notes that can help us to solve the problems."  

6 Future work and conclusion 

Our project aimed to integrate data mining into an e-learning system to generate 
dynamically tailored hints for users. These hints give users immediate help by directing 
them to parts of the notes and questions that are relevant to questions that they find 
difficult. We built this hinting system for the NCSS Challenge website, using association 
rule mining and clustering on the data produced by live users, to update the system as it 
was being used. We evaluated the hinting system through a large-scale experiment 
conducted with participants of the 2009 NCSS Challenge. In the future, we would like to 
compare the effectiveness of our dynamic hints with statically generated hints. 

We found that users who were provided with hints achieved a 26% higher average mark 
than those who were not provided with hints, with statistical significance of p < 0.0006. 
Furthermore, we found qualitative evidence through positive student feedback that the 
hinting system had greatly helped users. These results show that the use of data mining to 
provide hints as part of the system loop is extremely effective, and can be used to build 
intelligent systems with much less of the time and cost expenses associated with 
traditional ITSs.  
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Abstract.  While many aspects of tutoring have been identified and studied, off 
topic conversation has been largely ignored. In this paper, off topic conversation 
during 50 hours of one-to-one expert tutoring sessions was analyzed. Two 
distinct methodologies (Dialogue Move occurrence and LIWC analysis) were 
used to determine the anatomy of off topic conversation. Both analyses revealed 
that the expected social talk occurred, but pedagogically-relevant talk emerged 
as well. These occurrences may reflect the discussion of more global 
pedagogical strategies. These findings suggest that off topic conversation may 
serve a useful purpose in tutoring and that further investigation is warranted.  

1 Introduction 

When it comes to tutoring, expert human tutors are widely acknowledged as the gold 
standard for producing learning gains. According to [1], accomplished tutors produce an 
effect size of 2.0 sigma (approximately 2 letter grades) when compared to learning gains 
found in a classroom scenario. Accomplished tutors also outperform tutors with domain 
knowledge but no pedagogical training [2] and Intelligent Tutoring Systems [ITSs; 3]. 
One assumes that expert tutors excel for a number of reasons. Expert tutors use 
pedagogical techniques that depart from those seen in previous work on novice tutors [4, 
5]. It has also been hypothesized that expert tutors provide emotional support for their 
students [6] while increasing their feelings of competence [7]. The real question, 
unaddressed by current research, is this: how do expert tutors build the necessary rapport 
with students to produce high learning gains and boosted confidence? 

Recent research proposes that this rapport building takes place during the non-
pedagogical parts of a tutoring session [8]. While previous work on off-task behavior has 
shown a negative relationship with learning [9, 10], it is important to distinguish off-task 
behavior from off topic conversation. Off-task behavior involves such actions as gaming 
the system [9]. During off topic conversation, on the other hand, the student is still 
invested in the tutoring system and the divergence is still under the close supervision of 
the tutor. An investigation into a corpus of tutoring sessions collected by [8] suggests that 
rapport building occurs in these moments of "social talk." They contend that not only is 
social talk a considerable portion of their corpus (20%), but that it is repeatedly used for 
greetings, rapport building, social coordination, and general learning strategies. It is 
during social talk that the tutor will give "pep talks," potentially to increase both student 
motivation and self-confidence. They casually observed that those tutors who were the 
least effective in imparting knowledge also came up short in building positive rapport. 
Observations such as these deserve more systematic, follow-up attention. If social talk/off 
topic conversation is the source of rapport building, then it is certainly deserving of study. 
Rapport building helps to create good communication [11] and is viewed as very 
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important by students [12]. However, these observations were made in regards to a fairly 
contrived corpus; the tutors were graduate students, and the students were recruited as 
part of an experiment (though they were in a class on the domain topics). Additionally, 
these sessions occurred over the computer through an interface with video and chat 
capabilities. This raises an issue of ecological validity: do these observations generalize 
to natural tutoring sessions, and are they true of expert tutors as well? 

To answer this question, an investigation into the practices of expert tutors in a natural 
tutoring setting is needed. The present study used a previously collected corpus of 50 
expert tutoring sessions with ten expert tutors to investigate off topic conversation and 
rapport building. Though these sessions have been coded and examined in the past, off 
topic conversation in expert tutoring has been given little more than a cursory glance. 
However, we suspect that the interaction between student and tutor in these “off topic 
conversations” forms the basis of the student-tutor rapport, which will later allow the 
tutor to alternately encourage and critique the student without seeming disingenuous or 
harsh. We know that expert tutors give negative feedback where novice tutors never 
would [13, 14], but we also know that expert tutors help the student build confidence in 
themselves [7]. Perhaps the key to this paradoxical situation lies within the unstudied off 
topic conversation. 

We approach this investigation using two distinct methods of exploring off topic 
conversation. The first of these methods seeks to establish a general layout of what is 
occurring during non-pedagogical modes through a manual coding scheme. This analysis 
will provide a broad picture of what is occurring during these discussions and reveal any 
potential pedagogical purpose to off topic conversation. We will also use the Linguistic 
Inquiry and Word Count tool (LIWC) [15] to get at the meaningful differences between 
Off Topic and Scaffolding. Both of these phases of tutoring are highly interactive, yet 
they greatly differ in purpose. While the purpose of Off Topic is assumed to be irrelevant 
conversations, Scaffolding has been shown to be the epitome of problem solving during 
these tutoring sessions [4]. By comparing these two different modes along linguistic 
feature dimensions, we can better establish the instructional and rapport-building 
components of Off Topic.  

2 Expert Tutoring Corpus 

In this study, we examined one-to-one, human-to-human expert tutoring sessions. Ten 
expert math and science tutors participated in 50 sessions in the current study. The tutors 
had to meet four criteria to be considered an expert: licensed to teach at the secondary 
level, five or more years of tutoring experience, employed by a professional tutoring 
agency, and highly recommended by school personnel. While one student was receiving 
tutoring in order to obtain a GED, the other student participants were in grades 7 to 12. 
All of the students were in academic trouble and actively sought out tutoring. Each 
student participated in a maximum of two tutorial sessions, while each tutor participated 
in between two and eight tutoring sessions.  

Fifty, hour-long tutoring sessions were recorded with thirty-nine of the tutors’ students. 
The tutoring locations were chosen by the tutor and the student. The experimenters were 
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merely observers of a natural tutoring session that would have taken place regardless of 
this study. Prior to any tutoring session, the tutors signed an informed consent and gave 
informed consent forms to the parents of prospective participant-students. 

Each transcript has been coded using two coding schemes: the dialogue move and the 
dialogue mode coding scheme [4, 16, 17]. While a move is a smaller unit of meaningful 
speech (such as a word or short phrase), modes are longer, sustained, pedagogically-
distinct phases of a tutoring session. Dialogue moves have been categorized into three 
pedagogically-relevant groups: Tutor Motivational Dialogue Moves, Tutor Pedagogical 
Dialogue Moves, and Student Dialogue Moves. There are eight dialogue modes in the 
coding scheme, but only four are of interest in this study: Scaffolding, Off Topic, 
Introduction, and Conclusion; [4]). These modes accounted for 48.58%, 4.35%, 2.60%, 
and1.85% of tutoring dialogue, respectively. For some of the analyses Introduction, Off 
Topic, and Conclusion are collapsed into one larger category of non-pedagogical modes 
(8.80% of tutoring sessions).  

In preparation for the analysis of dialogue move distributions, non-pedagogical modes 
were isolated from the larger corpus. Proportional occurrence of student dialogue moves 
in non-pedagogical modes was then determined for each session. Proportions were based 
on the total number of dialogue moves in non-pedagogical modes in each session. Thus 
all instances of Introduction, Off Topic, and Conclusion in each session were combined 
for this analysis. Finally, the base rate proportional occurrence of each dialogue move 
within each session was determined to serve as a comparison.  

Our next method of investigating off topic conversation involved the use of the Linguistic 
Inquiry and Word Count tool (LIWC), developed by [15]. In this study, we used 
LIWClite 7, which calculates the percentage of each document’s words that fall into 
specific, predefined categories. Though this version of LIWC offers over 70 linguistic 
categories, only 16 were of interest in determining the nature of off topic conversation 
(see Table 3). These were selected because of their relevance to pedagogical and social 
dimensions of language. Only sessions including at least one instance of Scaffolding and 
Off Topic were included, leaving 30 sessions for this analysis. To prepare the transcripts 
for LIWC analysis, instances of Off Topic and Scaffolding were separated into two 
documents for each session. If a transcript had multiple types of each mode (e.g., three 
Scaffolding modes), the dialogue from those modes was compiled into one document. 
Those documents were then subdivided by speaker, making a maximum of four possible 
documents per session (Tutor-Scaffolding, Tutor-Off Topic, Student-Scaffolding, 
Student-Off Topic). Each document was capped at 1,000 words to control for verbosity 
(as Scaffolding is a frequently occurring, lengthy mode [4]). The resulting documents 
were then submitted to LIWClite 7 in order to find the means of every word category per 
document. 
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3 Results & Discussion 

3.1 Comparison of dialogue move occurrence in off topic modes and base rate  

For the dialogue move analyses, the non-pedagogical modes will simply be referred to as 
Off Topic. These proportions were then compared to the base rate occurrence for each 
dialogue move in each tutoring session. Base rate represents the average occurrence of 
each dialogue move throughout the entire tutoring session. Paired samples t-tests were 
conducted and significant differences were found. The means, standard deviations, t-
values and effect sizes (Cohen’s d) of each comparison can be found in Table 1 (tutor 
dialogue moves) and Table 2 (student dialogue moves).  

Table 1. Comparison of tutor dialogue moves within off topic modes and base rate 

       

 Off Topic Base Rate t-value Cohen's d 
              
       

Motivational M SD M SD df = 49  
Positive Feedback 0.035 0.037 0.074 0.037 -6.86* -1.05 
Negative Feedback 0.003 0.006 0.009 0.006 -5.58* -1.11 
Humor 0.018 0.033 0.009 0.014 2.14* 0.348 
Repetition 0.005 0.012 0.016 0.016 -4.67* -0.814 
Solidarity Statement 0.005 0.013 0.001 0.002 1.80† 0.335 
General Motivational 0.016 0.026 0.004 0.005 3.30* 0.613 
Off Topic 0.268 0.109 0.068 0.039 14.46* 2.45 

Pedagogical       
Forced Choice 0 .000 0.000 0.002 0.003 -4.26* -0.852 
Hint 0.001 0.006 0.013 0.009 -8.20* -1.65 
Preview 0.007 0.019 0.003 0.004 1.79† 0.341 
Prompt 0.001 0.004 0.020 0.021 -6.33* -1.28 
Pump 0.000 0.002 0.020 0.005 -4.89* -0.965 
Paraphrase 0.000 0.002 0.003 0.003 -3.98* -0.824 
Simplified Problem 0.006 0.012 0.034 0.016 -10.25* -1.95 
Example 0.001 0.007 0.006 0.008 -3.63* -0.586 
Counter Example 0.000 0.000 0.000 0.001 -3.75* -0.750 
Provide Correct Answer 0.000 0.002 0.011 0.008 -9.16* -1.81 
Direct Instruction 0.069 0.069 0.182 0.045 -12.54* -1.93 
Comprehension Gauging Question 0.034 0.043 0.032 0.023 0.330 0.058 

              

†= p < .1; * = p < .05. d ≈ .2, .5, .8 indicate small, medium, and large effects, respectively [18]. Significantly 
larger mean values are italicized. 

As was expected, student and tutor off topic dialogue moves along with other socially-
focused dialogue moves occurred more frequently during the non-pedagogical modes [8]. 
Consistent with this expectation, problem solving and other pedagogically-focused 
dialogue moves occur outside of non-pedagogical modes. In particular, the absence of 
tutors asking questions, students answering questions, and tutors giving feedback 
demonstrates that non-pedagogical modes are truly a separate, distinct time of the 
tutoring session. 
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Table 2. Comparison of student dialogue moves within off topic modes and base rate 

       

 Off Topic Base Rate t-value Cohen's d 
              
       

Answer M SD M SD df = 49  
Correct 0.012 0.023 0.056 0.032 -8.77* -1.583 
Partial 0.004 0.012 0.024 0.026 -5.72* -0.966 
Vague 0.008 0.016 0.019 0.015 -4.10* -0.706 
Error-Ridden 0.001 0.004 0.011 0.009 -7.41* -1.493 
None 0.001 0.005 0.006 0.009 -4.76* -0.666 

Question       
Social Coordination 0.015 0.026 0.007 0.009 2.79* 0.425 
Common Ground 0.005 0.013 0.024 0.019 -6.22* -1.186 
Knowledge Deficit 0.005 0.009 0.011 0.010 -3.85* -0.665 

Metacognition       
Misconception 0.000 0.002 0.004 0.004 -4.89* -0.977 
Metacomment 0.030 0.042 0.020 0.015 2.01* 0.321 

Action       
Think Aloud 0.001 0.003 0.006 0.010 -3.26* -0.643 
Read Aloud 0.000 0.000 0.003 0.013 -1.93† -0.385 
Work Silently 0.001 0.005 0.015 0.019 -5.19* -1.006 
Off Topic 0.215 0.117 0.059 0.038 10.65* 1.791 

              

†= p < .1; * = p < .05. 

Those occurrences which break from these general patterns are of particular interest. The 
only pedagogical move to occur more frequently in non-pedagogical modes was preview. 
This could indicate that non-pedagogical modes are being used as a transition between 
new topics or problems. Preview could potentially be occurring within Introduction, 
which can be thought of as a preview to the entire tutoring session. For student dialogue 
moves, the higher occurrence of metacomment shows that non-pedagogical modes 
contain discussions of the student’s knowledge. Many metacomments are delivered in 
response to tutor comprehension-gauging questions (i.e., “Do you understand?” 
“Okay?”). The fact that comprehension-gauging questions are not significantly occurring 
during non-pedagogical modes suggests that student knowledge and comprehension is 
being discussed in a different context.  

However, the strongest occurrences by far were still tutor (d = 2.45) and student (d = 
1.79) off topic dialogue moves. Given that these dialogue moves serve as a catchall for 
any topic outside of the tutoring topic (e.g., algebra), it is difficult to truly determine what 
occurs during non-pedagogical modes. While it was casually observed that these dialogue 
moves ranged from after school activities to study strategies, the exact proportion of each 
is currently unknown. There are two options for expanding our analysis of off topic 
dialogue moves. One is to create a new coding scheme that makes finer distinctions in 
off-topic. The other option, which we discuss next, is to use a text analysis tool to look 
for text-level features that might show what’s going on inside off topic 
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3.2 LIWC analysis of off topic modes 

The comparisons between the Off Topic and Scaffolding modes along LIWC dimensions 
were done using a series of paired t-tests. The means (values in % of words), standard 
deviations, t-values and effect sizes (Cohen’s d) of each comparison can be found in 
Table 3. The analysis was conducted on both tutor (T) and student (S) contributions 
during the tutoring sessions. These same comparisons were also made using the 
Wilcoxon’s signed-rank test, as a normal distribution of scores cannot be assumed. 
However, those results very closely mirror the results of the paired t-test, and so only the 
paired t-test comparisons are presented here. A Bonferroni correction was not used in this 
analysis; as this is exploratory research that will be used to orient future research, the 
authors felt that a conservative correction would result in a loss of critical, if minor, 
information. In sum, the results here seem to indicate that every significant category 
difference favored the Off Topic mode, with the exception of when students use 
ACHIEVEMENT and FUTURE words. 

Table 3. Occurrence of LIWC category words 

                

LIWC Category T/S Off Topic  Scaffolding                t-value Cohen's d 
  M SD M SD df = 29 (sig only) 

                
        

T 11.15 3.09 7.75 1.66 6.272* 1.37 
Social Process S 8.25 4.73 4.87 2.43 4.148* 0.9 
Positive  T 5.41 2.68 4.83 2.43 1.082  
Emotion S 6.54 5.56 4.54 2.34 2.046* 0.47 

T 3.00 1.40 2.06 0.67 3.480* 0.86 
Insight S 2.75 1.75 1.62 0.68 3.029  

T 3.10 1.70 1.91 0.64 3.874* 1.08 
Tentative S 2.68 2.19 1.60 0.80 2.562* 0.65 

T 2.90 2.81 1.10 1.00 3.289* 0.86 
Work S 2.70 2.70 2.09 3.19 0.801  

T 1.02 1.14 0.95 0.55 0.313  
Achieve S 0.52 0.72 1.89 1.98 3.682* 0.92 

T 0.78 2.74 0.23 0.20 1.115  
Leisure S 0.50 0.95 0.15 0.32 1.859† 0.5 

T 0.30 0.68 0.04 0.08 2.013† 0.53 
Home S 0.24 0.89 0.01 0.03 1.412  

T 1.51 1.00 1.11 0.81 1.849† 0.44 
Nonfluencies S 3.89 5.97 4.14 2.56 0.236  

T 1.13 0.86 1.23 0.70 0.452  
Future S 0.74 1.27 1.35 1.24 2.124* 0.49 
                

†  = p < .1; * = p < .05. 

In general, it may be said that there is more to off topic conversation than simple 
socializing and “time wasting.” Instead, there is a complex dynamic within the Off Topic 
mode, where the tutor and student are achieving a balance of work-related discussion and 
subtle socializing. Though off topic conversation seems to be an unlikely place for WORK 
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words to arise, the Off Topic mode contains significantly more WORK words than does 
Scaffolding. At first, this seems counterintuitive; however, this difference may be due to 
the way in which work is talked about in these two different modes. In Scaffolding, work 
may not be discussed on a superficial level, as this is where work is actually performed. 
Off Topic may be a place to discuss work on a superficial level, without content. The 
authors of LIWC list examples of WORK words being things like “class” and “graduate,” 
so perhaps Off Topic conversation is a place where the student and tutor talk generally 
about schoolwork and homework. This could be supported by the significantly elevated 
use of HOME words in Off Topic as opposed to Scaffolding. Perhaps HOME is being 
discussed in the context of homework. Word categories that would hint at a more social 
use of HOME words, like FAMILY and FRIEND words, do not significantly differ from Off 
Topic to Scaffolding. In fact, those two categories make up less than 1% of the words in 
both modes. This suggests that HOME words are not being used in a social context, but 
rather, in work-related discussion. This is similar to the results of [8]; in that work, tutors 
engaged in “social talk” with their students, which involved discussing learning 
strategies. Our tutors may be doing something similar during their “social talk” (Off 
Topic). It may be the case that expert tutors use off topic conversation to discuss more 
general studying strategies.  

This may also explain why TENTATIVE words and NONFLUENCIES occur significantly 
more in Off Topic than they do in Scaffolding on the part of the tutor. Rather than overtly 
stating problem solving and study suggestions, the tutor may use TENTATIVE words and 
NONFLUENCIES to lessen the face threatening nature of these suggestions. In one tutoring 
session, the tutor tells the student that, although the teacher assigned the odd problems for 
homework, she should work additional problems to get more practice. While this can be 
portrayed as a mere suggestion, it is alluding to the student’s deficient abilities and need 
for further practice. Suggesting additional work like this may induce the tutor to use more 
words like “maybe,” “perhaps,” and “umm”, given that barking orders is unlikely to lead 
to the completion of this additional work. 

Although the LIWC results do suggest the presence of work-related discussion, there is 
an undeniable socio-emotional factor involved in off topic conversation. Generally, the 
Off Topic mode contains more POSITIVE EMOTION words than does Scaffolding; this 
aligns with work by [16], which found that the emotion “happiness” was much more 
likely to occur with tutor and student off topic conversation than other portions of the 
tutoring session. These off topic conversations, then, may be used as a sort of short 
“break” from the tutoring material that restores positive emotion and builds rapport 
between the tutor and student. This positive emotion and rapport building may act as a 
buffer against some of the direct, negative feedback that expert tutors give [17]. 
However, other affective LIWC categories like AFFECTIVE PROCESSES, NEGATIVE 
EMOTION words, and ANXIETY are not used in significantly different amounts between Off 
Topic and Scaffolding. This may be indicative of students’ greater comfort in discussing 
positive emotions, as their negative emotions are likely tied to past and current academic 
struggles and failures. However, it may instead reflect that the purpose of Off Topic is 
not to discuss the emotional state of the student during learning. Which may also mean 
that off topic conversation does not necessarily include “pep talks”, as [8] suggest. In 
addition, tutors do not use a larger amount of ACHIEVEMENT words Off Topic, suggesting 
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that they are not trying to overtly bolster students’ feelings of confidence. Instead, rapport 
seems to be built in more subtle ways, such as by using more SOCIAL PROCESSES words 
like “we” and “us”, and perhaps by using higher-level strategies of rapport building like 
humor and solidarity statements.  

4 Conclusion 

These two methodologies seem to converge and support our initial casual observations 
that off topic conversation is more than simply social talk or irrelevant ramblings. Off 
topic does not seem to be simply an “other” category. We feel that the evidence supports 
claims that off topic dialogue may serve motivational uses, to discuss more global 
pedagogy or study skills [8], build rapport [11], and in certain cases serve as a much 
needed mental break from tutoring.  

Exploratory studies often are limited by the use of a single methodology. This study 
benefits from the use of two distinct approaches to investigating off topic conversation in 
tutoring. One approach utilized pre-existing coding schemes to determine whether the 
activities generally assigned to pedagogical conversation are occurring to any degree 
during off topic conversation. The second approach brings in a new and different analysis 
of the dialogue. This approach allows for a more objective look at the data, whereas 
results from the pre-existing coding scheme could be critiqued as simply an artifact of our 
coding methodology. Given that both approaches showed off topic conversation to be 
complex and multidimensional, this convergence gives support to further exploration. 
These results have given an improved depiction of what occurs during off topic 
conversation; however, we are still only able to speculate on its anatomy. Future research 
will reveal the true role and importance of off topic conversation in tutoring.  

These findings have afforded a framework to begin future, more directed investigations. 
First, they have allowed us to determine whether further exploration is even worthwhile. 
These exploratory findings suggest that further investigation is, in fact, warranted. 
Second, the findings here can be used as the basis for future coding schemes. Whether a 
manual coding scheme or an automated methodology, such as probabilistic topic models 
[19], is employed, either can be used to determine the proportion of off topic 
conversation that is dedicated to global pedagogy, building rapport, social topics, and 
possibly even irrelevant ramblings. Through the accurate depiction of off topic 
conversation, its most advantageous features can be applied to the building of ITSs.  

While implementing off topic conversation into ITSs under the current conception of 
discussing social topics seems peculiar, incorporating those pedagogical and rapport-
building dimensions of off topic conversation would be a useful addition. So while an 
ITS may never form a deep, meaningful social bond with a student, it could help to 
increase learning in a broader scope than simply the present topic. ITSs such as 
MetaTutor already incorporate strategies similar to our proposed global pedagogy during 
learning [20-22]. By incorporating the global pedagogy of expert tutors as well as more 
local pedagogical strategies, ITSs can give greater aid to struggling students in over many 
disciplines.  Further analysis will be needed to know the exact nature of off topic 
conversation and its potential usefulness in building ITS systems. 
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Abstract.  In this paper we present an evaluation of new techniques for 
automatically detecting sentiment polarity (Positive or Negative) in the students 
responses to Unit of Study Evaluations (USE). The study compares categorical 
model and dimensional model making use of five emotion categories: Anger, 
Fear, Joy, Sadness, and Surprise. Joy and Surprise are taken as a Positive 
polarity, whereas Anger, Fear and Sadness belong to Negative polarity in the 
binary classes, respectively. We evaluate the performances of category-based 
and dimension-based emotion prediction models on the 2,940 textual responses. 
In the former model, WordNet-Affect is used as a linguistic lexical resource and 
two dimensionality reduction techniques are evaluated: Latent Semantic 
Analysis (LSA) and Non-negative Matrix Factorization (NMF). In the latter 
model, ANEW (Affective Norm for English Words), a normative database with 
affective terms, is employed. Despite using generic emotion categories and no 
syntactical analysis, NMF-based categorical model and dimensional model 
result in better performances above the baseline. 

1 Introduction 

Universities are increasingly interested in using quality measures that provide evidence 
that can be used for benchmarking and funding decisions. For this reason, questionnaires 
such as the Unit of Study Evaluation (USE) [1], or Students Evaluations of Teaching 
(SET) as they are called in the USA, have been developed as a means of collecting data 
from students on their experience of learning at the individual subject or unit of study 
level (these terms are interchangeable and used as synonymously in this study) 

Reviews of the literature of student evaluations of teaching show the massive amount of 
evidence collected using these standard instruments [2, 3]. According to Marsh [2], SET 
are the most studied form of personnel evaluation. Most of the studies look into 
quantitative measures gathered in the questionnaires. This paper utilizes the textual open-
ended responses that are also collected. Scholarly literature generally agrees on the 
validity, reliability, dimensionality and actual usefulness of this kind of data. Despite this 
standardized evaluations have been highly controversial for decades. Arguably because 
University faculty have normally no formal training in teaching, so those mechanisms 
that are used for assessing teaching effectiveness are threatening. Staffs are not generally 
aware of the above mentioned literature, or when they are, they are often skeptic about its 
meaningfulness. 

Despite its criticisms USE and SET are increasingly used by academics, institutions and 
the students themselves. They reflect valuable aspects of the student experience that can 
complement other forms of feedback from students to academics and institutions. One of 
the obstacles is that reading and making sense of all the textual responses can be a 
daunting task. This paper aims at a combined analysis of the textual and quantitative 
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responses using novel data mining techniques in order to provide a more comprehensive 
understanding of the student experience. 

Sentiment analysis [4] attempts to automatically identify and recognize opinions and 
emotions in text. One goal of sentiment classification is to determine whether a text is 
objective or subjective, or represents a positive or negative opinion, affect classification is 
to identify the expressions of emotion such as happiness, sadness, anger, etc. In the area 
of sentiment classification, most research has been built around corpora of users’ reviews 
(e.g. movie reviews) that contain a rating system (e.g. number of stars) and a textual 
description, a data structure similar to the one in the USE used in this study. These 
reviews are also subjective and contain information about the user experience of the 
product. 

This paper contributes a novel approach to study USE and potentially other descriptions 
of students’ experience. It analyses a corpus of 909 student questionnaires containing 
3,353 (raw) textual responses, and explores the feasibility of automatic approaches to 
making sense of this data. The combination of text and ratings invites the use of 
sentiment analysis techniques focusing on the valence of opinions (positive vs. negative), 
but a richer exploration of student experience would include the affective aspects of the 
experience beyond its valence. In fact, as it is shown in our study the rating and textual 
descriptions do not always coincide, possibly highlighting factors in the experience that 
only surface from the text. The paper explores techniques that could be used for this 
richer analysis. 

The first goal of this paper is to evaluate the feasibility of using sentiment analysis to 
study the textual responses in USE, an aspect of the data normally sidelined by the ratings.  
The second goal is to evaluate the merits of two conceptualizations of emotions 
(categorical model and dimensional model) on this data. 

The rest of the paper is organized as follows: Section 2 presents representative research 
of the two emotion models used to capture the sentiment of a text. We also describe the 
affect classifications utilizing the linguistic lexical resources. In Section 3 we will go over 
the sentiment dataset which comes from USEs. Section 4 provides comparison results 
from experiments, before coming to our discussion in Section 5. 

2 Background 

2.1 Emotion Models 

There are largely two models for representing emotions: the categorical model and 
dimensional model. The categorical model assumes that there are distinct emotional 
categories such as Ekman’s six basic emotions -anger, disgust, fear, joy, sadness, and 
surprise- [5]. These have been used in many studies despite not necessarily appearing in 
specific practical scenarios like in teaching. The advantage of such representation is that 
it represents human emotions intuitively with easy to understand emotion labels. ITS 
researchers have used other than Ekman’s categories to group emotions that appear in 
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student-system dialogues. D’Mello [6]  proposed five categories (boredom, confusion, 
delight, flow, and frustration) for describing the affect states in ITS interactions. 

A second approach where core affects can be represented in a dimensional form [7] 
represents emotions in a 2 or 3 dimensional space. A valence dimension indicates positive 
and negative emotions on different ends of the scale. The arousal dimension differentiates 
excited vs. calm states. Sometimes a third, dominance dimension is used to differentiate if 
the subject feels in control of the situation or not. 

The categorical model and the dimensional model have two different methods for 
estimating the actual emotional states of a person. In the former, a person is required to 
choose one emotion out of an emotion set that represents the best feeling. On the other 
hand, the latter exploits rating scales for each dimension like Self Assessment Manikin 
(SAM) [8], which consists of pictures of manikins, to estimate the degree of valence, 
arousal, and dominance. 

2.2 Categorical Classification with WordNet-Affect 

WordNet-Affect [9] is an affective lexical repository of words referring to emotional 
states. WordNet-Affect extends WordNet by assigning a variety of affect labels to a 
subset of synsets representing affective concepts in WordNet. In addition, WordNet-
Affect has an additional hierarchy of affective domain labels. There are publicly available 
lists relevant to the six basic emotion categories extracted from WordNet-Affect and we 
used five lists of emotional words among them for our experiment. 

In addition to WordNet-Affect, we exploited Vector Space Model (VSM) in which 
textual documents can be represented through term-by-document matrix. In general, both 
terms and documents are encoded as vectors in the reduced k-dimensional space. We take 
into consideration log-entropy with respect to a tf-idf weighting schema. 

The vector-based representation enables all the contextual information such as words, 
sentences, and synsets to be represented in a unifying way with vectors. VSM provides a 
variety of similarity mechanisms between two vectors.  In particular, we take advantage 
of cosine angle between an input vector (input sentence) and an emotional vector 
(emotional synsets) as similarity measures to identify which emotion the sentence 
connotes. This can be done in the reduced LSA or NMF representation. We also entail 
the predetermined threshold (t = 0.65) for the purpose of validating a strong emotional 
analogy between two vectors [10]. If the cosine similarity does not exceed the threshold, 
the input sentence is labeled as “neutral”, the absence of emotion. Otherwise, it is labeled 
with one emotion associated with the closest emotional vector having the highest 
similarity value. If we define the similarity between a given input text, I, and emotional 
class, 𝐸𝐸𝑗𝑗 , as sim(I, 𝐸𝐸𝑗𝑗 ), the categorical classification result is more formally represented as 
follows:  

CCR(𝐼𝐼) = �
arg  max

𝑗𝑗
�sim�𝐼𝐼,𝐸𝐸𝑗𝑗 ��  if sim(𝐼𝐼,𝐸𝐸𝑗𝑗 ) ≥ 𝑡𝑡

"neutral"                        if sim(𝐼𝐼,𝐸𝐸𝑗𝑗 ) < 𝑡𝑡
�  
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One class with the maximum index is selected as the final emotion class.  

Two statistical dimensionality reduction methods (LSA and NMF) are utilized in a 
category-based emotion model for the purpose of reducing dimensions in VSM. Graesser 
and colleagues [11] used Latent Semantic Analysis (LSA) for detecting utterance types 
and affect in students’ dialogue within Autotutor. 

Latent Semantic Analysis (LSA) [12] is the earliest model that has been successfully 
applied to various text manipulation areas. The main idea of LSA is to map terms or 
sentences into a vector space of reduced dimensionality that is the latent semantic space. 
The mapping of the given term/sentence vectors to this space is based on singular vector 
decomposition (SVD). It is known that SVD is a reliable tool available for matrix 
decomposition. It can decompose a matrix as the product of three matrices. The columns 
of one of three matrices represent the coordinates for documents in the latent space. 
Therefore, we make use of the columns in order to compute sentence similarities. 

Non-negative Matrix Factorization (NMF) [13] has been successfully applied to semantic 
analysis. Given a non-negative matrix A, NMF finds non-negative factors W and H that 
are reduced-dimensional matrices. The product WH can be regarded as a compressed 
form of the data in A. This non-negative peculiarity is desirable for handling text data that 
always require non-negativity constraints. The classification of sentences is performed 
based on the columns of matrix H that represent the sentences.   

2.3 Dimensional Estimation with ANEW 

ANEW [14] is a set of normative emotional ratings for collections of words (1,035 
words) in English, which means that it provides emotional dimensions. This collection 
provides the rated values for valence, arousal, and dominance for each word that are rated 
by means of the Self Assessment Manikin (SAM). For each word w, the normative 
database provides coordinates 𝑤𝑤�  in an affective space as:  

𝑤𝑤� = (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣,𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) = 𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴(𝑤𝑤) 

Therefore, it is possible to accomplish the mapping of contextual information into the 3-
dimensional emotion space through ANEW dictionary. For example, words or sentences 
are scattered all over the emotional plane. 

As a counterpart to the categorical classification above, this approach assumes that an 
input sentence pertains to an emotion based on the least distance between each other on 
the Valence-Arousal-Dominance (VAD) space. The input sentence consists of a number 
of words and the VAD value of this sentence is computed by averaging the VAD values 
of the words. A series of synonyms from WordNet-Affect are used in order to calculate 
the position of each emotion. These emotional synsets are converted to the 3-dimensional 
VAD space and averaged for the purpose of producing a single point for the target 
emotion. 
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𝑎𝑎𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣������������ =  
∑ 𝑤𝑤�𝑣𝑣
𝑑𝑑=1

𝑣𝑣
, 𝑣𝑣𝑑𝑑𝑎𝑎𝑡𝑡𝑑𝑑𝑎𝑎𝑣𝑣����������� =  

∑ 𝑤𝑤�𝑘𝑘
𝑑𝑑=1

𝑘𝑘
 

where 𝑤𝑤�  is the VAD value of a word, and n and k denote the total number of words in an 
input sentence and synonyms in an emotion, respectively. Anger, fear, joy, and sadness 
emotions are mapped on the VAD space. Let Angerc, Fearc, Joyc, Sadc, and Surprisec be 
the centroids of five emotions. Then the centroids, which are calculated by the above 
equation, are as follows: Angerc = (2.55, 6.60, 5.05), Fearc = (3.20, 5.92, 3.60), Joyc = 
(7.40, 5.73, 6.20), Sadc = (3.15, 4.56, 4.00), and Surprisec = (5.23, 5.33, 4.70). Apart 
from the five emotions, we manually define neutral to be (5, 5, 5). If the centroid of an 
input sentence (𝑎𝑎𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣������������) is the most approximate to that of an emotion (𝑣𝑣𝑑𝑑𝑎𝑎𝑡𝑡𝑑𝑑𝑎𝑎𝑣𝑣�����������), the 
sentence is tagged as the emotion. We define the distance threshold (empirically set to 4) 
to validate the appropriate proximity like categorical classification.  

3 Unit of Study Evaluation (USE) Data 

The Unit of Study Evaluation (USE) questionnaire has 12 questions, 8 of which are 
standardized University-wide and 4 that are selected by each Faculty. It is designed to 
provide information to those seeking a) to assess the learning effectiveness of a subject, 
for planning and implementing changes in the learning and teaching environments, and b) 
to assess the contributions of units or subjects to students’ learning experience in their 
whole degree program, as monitored by the CEQ. The USE in our study contains 12 
statements:  

1. The learning outcomes and expected standards of this unit of study were clear to 
me. 

2. The teaching in this unit of study helped me to learn effectively. 
3. This unit of study helped me develop valuable graduate attributes. 
4. The workload in this unit of study was too high. 
5. The assessment in this unit of study allowed me to demonstrate what I had 

understood. 
6. I can see the relevance of this unit of study to my degree. 
7. It was clear to me that the staff in this unit of study were responsive to student 

feedback. 
8. My prior learning adequately prepared me to do this unit of study. 
9. The learning and teaching interaction helped me to learn in this unit of study. 
10. My learning of this unit of study was supported by the faculty infrastructure. 
11. I could understand the teaching staff clearly when they explained. 
12. Overall I was satisfied with the quality of this unit of study. 

Eleven items (I1-I11) focus on students’ experience and one item (I12) on student 
satisfaction. Students indicate the extent of their agreement with each statement based on 
a 5 - point Likert scale: 1 - strongly disagree, 2 - disagree, 3 - neutral, 4 - agree and 5 - 
strongly agree. Below each statement there is a space requesting students to explain their 
response. Question 4 has a different sentiment structure therefore was removed in this 
study. 
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The USEs of subjects taught by two academics collected over a period of six years were 
used to create the dataset. After removing responses to question 4, the dataset contains a 
total of 909 questionnaires (each with 11 ratings), and out of the possible 9,999, students 
responded with 3,008 textual responses (each expected to be a description of a rating), a 
textual response rate of 30.1 %. Out of these we removed internal referencing (e.g. ‘see 
above’) and meaningless text (e.g. ‘?’). 

The textual data has two characteristics that may significantly affect the classifiers. First 
the sentences are hand-written in an informal style, containing spelling errors, 
abbreviated non-dictionary words or hard to read text. The lack of proper grammar would 
make it extremely challenging to use part-of-speech (POS) tagging or other 
computational linguistic approaches. Examples include: “Computers in labs too slowk no 
lecture notes” (spelling mistakes and non-grammar), “tutes were overcrowded, stopping 
teacher / student interaction” (non-standard words). For these reasons, the techniques 
used in the experiment are based on the bag-of-words assumption (so word order is not 
used) and we do not use POS tagging that would require relatively correct grammar. 

Table 1.  Number of comments and sample comments for each sentiment 

Rating Number Sentiment Number Comments tagged with each sentiment 

Strongly Agree 381 
Positive 1,455 lecturer and tutor was helpful and explained 

concepts well. Agree 1,074 

Neutral 611 Neutral 611 It is a bit clear about staff response but need 
more examples in there answer. 

Disagree 571 
Negative 874 Not enough computers to accommodate all 

the students. Strongly Disagree 303 

4 Experiments and Results 

The following five different approaches are implemented in Matlab. One categorical 
model that has two variants, according to three corresponding methods of dimension 
reduction, one dimensional method, and two similarity comparison methods for each 
model are implemented. For evaluation purposes, we employ Majority Class Baseline 
(MCB) as our baseline and Keyword Spotting (KWS). We remove stop words and use 
stemming. Text to Matrix Generator (TMG), a Matlab toolkit [15], is used to generate 
term-by-sentence Matrix.  

• Majority Class Baseline (MCB): classification that always predicts the majority 
class, which in this dataset is Positive across all sentiment classifications.  

• Keyword Spotting (KWS):  a naïve approach that counts the presence of obvious 
affect words like “frustrating” and “satisfaction”, which are extracted from 
WordNet-Affect for five emotion categories. 

• CLSA: LSA-based categorical classification 
• CNMF: NMF-based categorical classification 
• DIM: Dimension-based estimation 
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Five emotion categories are utilized (Anger, Fear, Joy, Sadness, and Surprise) in which 
Joy and Surprise emotions are assigned to positive class while Anger, Fear, and Sadness 
are the members of negative class, respectively. Negative emotion, disgust, is removed 
because the emotion is similar to anger and leads to making sentiment classes biased. 
Likewise, strongly agree and agree belong to positive, and strongly disagree and 
disagree are referred to negative. The number of sentences for each rating and sentiment 
used in our experiment is shown in Table 1. In addition, sample comments of the 
annotated corpus appear in Table 1. 

Table 2 shows the precision, recall, and F-measure values obtained by the five 
approaches for the automatic classification of three sentiments. The highest results are 
marked in bold for each individual class. We do not include accuracy values in our results 
due to the imbalanced categories (see Table 1). The accuracy metric does not provide 
adequate information, whereas precision, recall, and F-measure can effectively evaluate 
the classification performance with respect to imbalanced datasets [16]. 

Table 2.  Sentiment identification results 

Sentiment Positive Negative Neutral 
 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 

MCB 0.495 1.000 0.662 0.000 0.000 - 0.000 0.000 - 
KWS 0.527 0.220 0.310 0.270 0.061 0.099 0.212 0.743 0.330 
CLSA 0.575 0.362 0.445 0.388 0.203 0.266 0.218 0.560 0.314 
CNMF 0.505 0.897 0.646 0.378 0.120 0.182 0.421 0.052 0.093 
DIM 0.591 0.329 0.423 0.398 0.317 0.353 0.223 0.522 0.312 

 

As can be seen from the table, the performances of each approach depend on each 
sentiment category. In case of the positive class, which has the largest number of 
sentences, MCB and CNMF get the best sentiment detection performance in terms of 
recall and F-measure. DIM achieves rather high precision score in comparison with all 
other classifications. We can see that DIM approach gives the best results for negative 
class. When it comes to neutral, KWS shows the best performance with respect to recall 
and F-measure. On the other hand, CNMF particularly outperforms the others for 
precision. Figure 1 indicates a result of the 3-dimensional and 2-dimensional attribute 
evaluation for USEs. 

 

Figure 1.  Distribution of the USEs 
dataset in the 3-dimensional (left) 
and 2-dimensional (right) sentiment 
space. The ‘x’ denotes the location of 
one comment corresponding to 
valence, arousal, and dominance. 
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A notable aspect observed in the USE data is that there are somewhat inconsistencies 
between students’ ratings and written responses illustrated with examples in Table 3. For 
instance, the third row is unambiguously negative but the student graded this sentence as 
neutral. Therefore, all approaches have a weakness in recognizing sentiments due to the 
peculiarity of this data. Another factor, which makes the automatic classification difficult, 
is that all classifiers are not specific to education domains. For this reason, we speculate 
that this mediocre performance of the methods is owing to poor coverage of the features 
found in education domains. 

Table 3.  Sample feedbacks from misclassified results. (Positive values are those rates 4 as 5, neutral 
as 3 and negative 1 or 2) 

Student’s feedback Student rating System rating 

It should be core to software gingerbeering Positive (5) Neutral (LSA) 
The labs were not long enough with too few tutorials. 4 labs were 
too few. How about one for FETS/MOSFETS? Given the 
instruction was for AC/DC components (i.e. lower/uppercase) it 
was difficult to follow the hadn written notes on the overhead. 
Maybe print it all up? 

Positive (4) Negative (NMF) 

We never got personal feedback. Neutral (3) Negative (DIM) 
Hi my name is ABC, I like this LECTURER_NAME, I mean this 
course!! 

Negative (2) Positive (NMF) 

 

Table 4 shows overall precision, recall, and F-measure comparison with respect to MCB, 
KWS, CLSA, CNMF, and DIM in two averaging perspectives (micro-averaging and 
macro-averaging). The notable difference between these to calculate is that micro-
averaging gives equal weight to every sentence whereas macro-averaging weights equally 
all the categories. From this summarized table, we can see that MCB, KWS, and CLSA 
perform less effectively with a little low number of evaluation scores compared with 
CNMF and DIM. In case of macro-averaging, CNMF is superior to other classifications 
in precision, while DIM surpasses the others in recall and F-measure. On the other hand, 
DIM has the best precision and CNMF performs better for F-measure in micro averaging. 
Overall, CNMF and DIM vie with each other in precision, recall and F-measure and the 
best F-measure is obtained with the approach based on CNMF or DIM for each average. 
Our KWS conducted in all experiments is inferior to CNMF, DIM as well as CLSA. The 
result implies that keyword spotting techniques cannot handle the sentences which evoke 
strong emotions through underlying meaning rather than affect keywords. In addition, we 
can infer that the models (CNMF and DIM) with non-negative factors are appropriate for 
dealing with text collections. In summary, NMF-based categorical model and 
dimensional model shows the better sentiment recognition performance as a whole. 

The most frequent words used by students to describe aspects of their experience, include 
terms such as labs, lecturer, lectures, students, tutors, subject, and work. When we 
remove these terms, the words most frequently used to describe positive experiences 
include: good (n=263), helpful and helped (n=183), online (n=79), understand (n=49). 
Those used to describe negative experiences include: hard (n=72), understand (n=67), 
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time (n=47). Neutral experiences contain a combination of both. These words lists are 
obtained from CNMF and DIM because two classifications have better overall 
performance as aforementioned. Stemming was not used for this analysis since in this 
particular corpus it might hide important differences as between ‘lecturer’ and ‘lecture’. 

Table 4.  Overall average resutls 

Mean Micro Macro 
 Prec. Rec. F1 Prec. Rec. F1 

MCB 0.245 0.495 0.328 0.165 0.333 0.221 
KWS 0.385 0.281 0.325 0.337 0.341 0.247 
CLSA 0.445 0.356 0.396 0.394 0.375 0.342 
CNMF 0.450 0.490 0.469 0.434 0.356 0.307 
DIM 0.457 0.366 0.406 0.404 0.389 0.363 

5 Discussion 

This paper described a dataset of ratings and textual responses of student evaluations of 
teaching. Sentiment analysis techniques for automatically rating textual responses as 
positive, negative or neutral using the students’ ratings were evaluated. In particular, the 
performance of categorical model and dimensional model were compared, each of which 
makes use of different linguistic resources.  

This paper highlighted that NMF-based categorical and dimensional models have a better 
performance than the others. Moreover, despite not having an appropriate set of 
emotional categories to use, the efficacy of two emotion lexicons (WordNet-Affect and 
ANEW) promises to be useful in these sentiment classification tasks.  

While two models and two lexicons are promising for identifying sentiments, there are 
still challenges to overcome. We believe that affective expressivity of text is on the basis 
of more complex linguistic features such as morphological features. Hence, we are going 
to delve into Natural Language Processing (NLP) to recognize fine-grained emotion in 
the future. 

Future work will include extending the corpora with more student evaluations and this 
should provide more reliable results. The categorical model should be evaluated with a 
set of emotion categories better grounded in the educational research literature and we 
suspect that the literature on motivation would be particularly useful. With regards to the 
use of normative databases to study the dimensional model, we are aware that the terms 
in ANEW are not the best suited for the vocabulary that students use to describe their 
experiences, but we are not aware of other more appropriate databases.  
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Abstract.  Curriculum planning is perhaps one of the most important tasks 

teachers must perform before instruction.  While this task is facilitated by a 

wealth of existing online tools and resources, teachers are increasingly over-

whelmed with finding, adapting and aligning relevant resources that support 

them in their planning.  Consequently, ripe research opportunities exist to study 

and understand online planning behavior in order to more generally characterize 

planning behavior.  In this paper, we introduce a web-based curriculum planning 

tool and study its use by middle and high school Earth science teachers.  We ex-

amine the web analytics component of the tool and apply clustering algorithms 

to model and discover patterns of the use within the system.  Our initial results 

provide insights into the use of the tool over time and indicate teachers are en-

gaging in behavior that show affinity for the use of interactive digital resources 

as well as social sharing behaviors.  These results show tremendous promise in 

developing teacher-centric analysis techniques to improve planning technologies 

and techniques to study online curriculum planning patterns. 

1 Introduction 

A large body of research suggests that teachers are the single most important influence on 

students‟ academic achievement [1]. Thus, helping teachers do their jobs better should 

lead to improved student outcomes. One of the specific pedagogical techniques now be-

ing demanded of many K-12 teachers is differentiated instruction. Differentiated instruc-

tion involves the customization of curriculum and teaching practices to better foster stu-

dent understanding of course material [17]. An example of differentiated instruction 

would be a teacher who uses animations and graphic images to impart a science concept 

to his students because he has discovered his largely immigrant population of students 

struggles with English reading comprehension. Given the increasing racial, ethnic, and 

linguistic diversity in American K-12 schools, differentiated instruction is becoming 

more important than ever precisely because a „one size fits all‟ approach to teaching can-

not reach all of today‟s diverse student body. 

At the same time that differentiated instruction is being stressed in K-12, the Internet is 

changing the educational landscape to a degree not seen since the introduction of person-

al computers in the 1980s [11]. As Internet connectivity becomes available in more and 

more classrooms, cloud-based applications and databases have become increasingly im-

portant both for teachers‟ instructional practices and students‟ learning [3]. Our study lay 

at the intersection of these two important trends – the drive to differentiate instruction and 

the widening availability of the Internet in educational contexts. 

One of the challenges of differentiating instruction is developing supplementary educa-

tional materials that target specific students‟ learning needs [17]. That is, given a com-

mon curriculum, this group of students may require additional visual aids to help them 

grasp a concept while that group of students might benefit most from an extra hands-on 
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activity that reinforces a lesson. The Internet provides a portal to a nearly infinite set of 

digital resources that could help teachers in their differentiation of instruction, but the 

unmanaged nature of the Internet places the burden of filtering and evaluating digital re-

sources on teachers, adding to their already significant workload. If this filtering and 

evaluation process could be at least partially automated, teachers would be able to focus 

on teaching rather than on preparing to teach.  

In this paper, we examine two research dimensions related to the process of differentiat-

ing instruction: (1) learning science for online curriculum planning and (2) educational 

informatics for application usage pattern detection and analysis. Since curriculum plan-

ning is a task which every teacher must perform before instruction, we begin by describ-

ing a Web-based application that is designed to help teachers review curricular objec-

tives, locate relevant supplementary digital resources, and develop differentiated instruc-

tional plans that connect their curricular goals and digital materials with classroom activi-

ties and assessments.  

The first research dimension is framed by a few key research questions : (1) What are the 

behavioral components of Web-based curricular planning? (2) How do these behaviors 

play out as patterns in online curricular planning? (3) What techniques are used to meas-

ure the effectiveness of curriculum planning behavior? (4) How can or do online tools 

and resources shape curriculum planning behavior? (5) How do online tools and re-

sources impact curriculum planning outcomes? Not all of these questions will be covered 

within the scope of this study.  

With an application context to study the learning science component of curriculum plan-

ning, our second research interest is focused on developing and applying tools and tech-

niques for observing and classifying teachers‟ online behavior in educational applica-

tions. This research offers a unique view into the online usage patterns and behaviors of 

educators by examining the use of a curriculum planning application in the web mining 

and analytics context. Specifically, we observe and analyze the use of system features 

and functionality as well as commonly used resources available within the system to 

gather a more complete understanding of system use. Using web analytics and clustering 

algorithms, we develop the education informatics dimension of this research, framed by 

the following questions : (1) What computational tools can be used to discover and model 

the online behavior patterns of teachers engaged in curriculum planning? (2) What com-

putational tools can be used to predict the online behavior of teachers once this behavior 

is modeled? (3) What techniques can be used to maximize teacher‟s use of online tools 

and resources? 

2 Research Context 

While much of the online learning science research to date tends to focus on students‟ 

behaviors vis-á-vis computer-assisted learning [12], little research has been done to un-

derstand teacher behavior in online curriculum planning tasks. The online behaviors of 

teachers performing planning tasks online may hold useful clues to the development of 

applications that not only improve student outcomes, but also teacher outcomes, particu-

larly as they relate to improving teacher access to and use of digital materials within the 
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classroom instruction and learning context. This research presupposes that teachers‟ on-

line activities are important in their own right and worthy of study. 

Two broad contexts are applied to the research : the user context and application context. 

The focal point of the user context, described in more detail below, is middle and high 

school Earth science teachers. The corresponding application context is a web-based cur-

riculum planning application called the Curriculum Customization Service (CCS) [15], 

designed to support those same middle and high school teachers in curriculum planning 

tasks. The application was designed to provide general support for accessing, searching, 

browsing, storing, sharing and reviewing curriculum goals, objectives, guidelines, mate-

rials and resources for the middle and high school Earth science curriculum. 

2.1 User Context 

The users of the CCS are Earth science teachers at the 6th and 9th grade levels within a 

medium sized urban school district. Nearly 120 sixth and ninth grade Earth science 

teachers within the school district were invited (but not required) to use the CCS program 

during the 2009-2010 school year. In July 2009, a four-hour face-to-face training session 

(and a Web-based teleconference for those who could not attend)  was carried out to 

demonstrate the features and use of the CCS. User account access to the CCS was pro-

vided during the remainder of the summer so that teachers could further acquaint them-

selves with the tool and learn more about its features before the start of the semester. Us-

ers represent a wide cross section of experience, planning skill, technological ability and 

interests, with user teaching experience spanned from first year teacher to more than 30 

years of experience. No information was collected before the study window about who 

would choose to participate or who would plan to fully use the tool during the semester, 

though a survey was given to teachers before the semester to probe their familiarity with 

technology within the classroom and initial perceptions of the CCS tool during the train-

ing sessions. The survey also provided further insights about the teachers‟ technology-

related skills and perceptions, as well as demographic profile information. 

2.2  Application Context 

The CCS application is a Web-based application that provides access to the specific con-

tent of the 6th and 9th grade Earth science curriculum of the participating school district 

(see Figure 1). The application has several unique features that target teacher-centric be-

haviors around curriculum planning and customization, specifically planning, storing and 

sharing, and searching. First, the CCS encompasses the entirety of the district-wide Earth 

science curriculum – that is it contains all the curriculum units, goals and objectives for 

the district-wide 6th and 9th grade Earth science curriculum.   

Traditional curriculum materials that were typically provided in paper form are instantly 

accessible digitally through the CCS. Within a single environment, teachers also can 

access critical planning artifacts : all of the Earth science materials for their lesson plan-

ning, including digital access to publisher materials (e.g. textbook content, assessments), 

curriculum learning goals and objectives, as well as relevant standards and concept hie-

rarchies. Second, the CCS provides instant access to a number of digital resources that 
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are automatically coupled with relevant curriculum unit topics. Teachers accessing unit-

level goals have access to pre-fetched digital resources that match the topics of the unit. 

This feature displays the most relevant and useful materials for quick access, circumvent-

ing the need for custom (and potentially time-consuming) searches to find the same mate-

rials. Third, a customizable space to save resources of interest, called “My Stuff,” is pro-

vided to encourage teachers to privately save what they may consider to be useful re-

sources. This feature also has the ability to make available to other CCS users the re-

sources a teacher may think his or her colleagues might also find useful. Therefore, with-

in the same environment as planning tasks, teachers can engage fully in customization 

activities : finding and saving materials of value, sharing and contributing those materials 

to the participating teachers at large, rating, tagging and even uploading arbitrary mate-

rials they wish to store for later use within the planning environment or share with other 

users. Finally, since searching for contextualized materials is a difficult task within gener-

ic search engines (e.g. Google, Yahoo!, Bing), a customized search engine was provided 

within the application that returns concept-relevant digital resources obtained from search 

results against the Digital Library for Earth Systems Education (DLESE), a high quality 

and highly regarded Earth systems digital library [16].  

 

Figure 1: The Curriculum Customization Service  User Interface  

(A few sample features are in highlighted in red) 

The CCS provides a single entry point for teachers to efficiently develop and execute 

their most important curriculum planning and customization tasks, and as such provides a 

powerful research platform for several key reasons : (1) it is bounded and constrained to 
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the most frequently used curriculum planning task space used by teachers, thus providing 

a single place to examine teachers‟ behavior around this task, (2) the user pool is con-

strained to a diverse but specific group of users, middle and high school Earth science 

teachers, so relationships between these users will be more amenable to analysis, (3) the 

subject area of analysis is narrowed to a middle and high school Earth science curriculum 

focus, thus amplifying inter-user and inter-group comparison and analysis, and (4) the 

nature of web-based application activity analysis is well understood and supported by 

techniques that are robust and effective. 

3 Methodology 

The goal of our methodology is to understand and prepare the required data to run expe-

riments that allow us to detect patterns of use for further evaluation. The research metho-

dology of this initial study has four components : (1) select and prepare an initial data set, 

(2) select an experimental feature set, (3) perform clustering experiments, (4) analyze ex-

perimental results. Our research draws on widely understood techniques for web server 

log analysis [11] of the CCS application. While it is not difficult to determine system use 

frequency, such as commonly visited pages or resources, frequent use alone provides a 

narrow view of actual use. System components are often used in concert with one anoth-

er, thus providing different views of system use that may reveal unexpected or unusual 

relationships.  We therefore turn to clustering algorithms to help build connections 

among the CCS system components that make up the experimental feature set.  

3.1 Data Set and Data Filtering 

Data for the initial set of experiments in this study was derived from the server logs of the 

core CCS system. The CCS system has a number of unique client-side scripting features 

that are not usually captured in server logs because there is typically no direct server inte-

raction during such activity. This client-side activity was capture by instrumentation that 

stored such activity as if it were direct server interaction. All users of the system were 

given unique login IDs that were captured during session activity over a 16 week period 

from August 2009 to December 2009.  

 

Allowing for the broad use of the CCS, session duration was defined to accommodate a 

complete working day of activity. Sessions longer than 10 hours or shorter than 30 

seconds with fewer than 4 actions were eliminated from the data set. While the minimum 

session length may seem short, there were some sessions detected that lasted for abbre-

viated periods of time but nonetheless showed meaningful activity. Logging in to the sys-

tem to access a singular, specific resource is one such example. Other filtering activities 

involved removing data with user IDs of non-teacher users not part of the research study. 

3.2 Experimental Features 

Feature selection for data mining is a difficult task and requires many considerations to 

be both valuable and effective [12]. For the initial research experiments, the user session 

was abstracted and examined for features to be used in the clustering experiments de-

tailed in section 5. In all, 27 features were selected for our initial feature set.  
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Web sessions are usually seen as a  temporal ordered stream of clicks (click stream). 

However, for our initial research these sessions were simplified into a larger grained bag 

of clicks. Instead of examining the transitions from one click to another, we assign and 

examine click types within the system for a given session. This bag of clicks model sim-

plifies log processing and feature selection and borrows similar intuitions found in bag of 

words models in linguistic processing, where word frequency is used to analyze docu-

ment content, sometimes arriving at similar conclusions as temporal, structural or seman-

tic analysis with far less complexity. 

Each client-side UI click has one of 5 associated click types which our initial experiments 

exploit as a feature. Furthermore, since click stream data is ultimately important in under-

standing session behavior, the number of clicks within a session was also selected as a 

feature. It would not be unreasonable to expect sessions with high click counts to 

represent sessions of interest. In addition to the number of clicks, session duration or the 

amount of time (in seconds) a user spends interacting with the system, was chosen as a 

feature.  

Other data was also selected as part of the initial feature set selection process. Since the 

CCS is a highly visual and largely client-side interaction environment, commonly used 

visual controls of the environment were natural targets for the experimental feature set. 

This visual features set was narrowed to the top 20 visual features of the interface, which 

was computed by flattening the visual hierarchy of the interface controls and examining 

the global use frequencies of each of these visual components. 

User activity can be measured in many ways and for the purpose of this study, we make 

note of several server log data. First, total actions analyzed provides an indication of how 

many discrete actions were logged from the server, discrete sessions details the total 

number of sessions in an interval (monthly, weekly, etc.), and unique user accounts 
shows the number of unique user accounts in a period. The total number of actions over 

the 16 week data collection period was 17,527 in 1,370 total sessions over 82 unique user 

accounts, detailed in Table 1.  

Table 1 : Monthly data summary 

Month 
Total 

Actions 

Analyzed 

Discrete 

Sessions 

Unique 

User 

Accounts 
September 7,371 526 82 

October 3,626 331 65 

November 4,698 337 60 

December 1,832 176 50 

 

Table 2 : Cluster ranks and relative size (%) 

Rank K12 EM12 EM
*
 

1 58% 47% 37% 

2 14% 17% 26% 

3 8% 11% 11% 

4 8% 5% 10% 

5 5% 5% – 

6 4% – – 

4 Algorithms and Feature Analysis 

Clustering algorithms are commonly used to find patterns within large data sets [2, 6, 7] 

and two clustering algorithms were chosen to study the initial data set. First, the K-means 

clustering algorithm was used. K-means is an unsupervised learning, iterative descent al-
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gorithm that partitions n data observations into K clusters. Each cluster is assigned a cen-

troid and cluster membership is determined by minimizing the distance from each cluster 

member and the centroid. The second algorithm in the initial experiment was the Expec-

tation-Maximization (EM) algorithm [4]. EM is a model-based iterative algorithm that 

examines data observations and represents each cluster as a probability distribution. Giv-

en n data observations, EM maximizes the likelihood of the observed distributions by es-

timating the means and standard deviations of each cluster. 

Neither algorithm is without flaws and our experimental results in section 6 show this. K-

means primary weakness is that the number of clusters must be determined a priori. This 

weakness, however, is inherent in many partitional clustering algorithms and may require 

an experimentally selected n. Another weakness is that K-means is sensitive to outliers – 

data that are distant from the centroid may pull the centroid away from the real centroid 

in a given data set. Finally, it is difficult to understanding which feature contributes more 

to cluster membership, since every feature is assumed to have the same weights. EM‟s 

core weaknesses are the relative speed with which the clusters converge, and the possibil-

ity of convergence at the boundary of a cluster. 

5 Experiments 

Two experiments were performed on the initial feature set with a few variations for com-

parison. The first experiment was designed to run the K-means algorithm with n = 12 and 

the Euclidean distance function, referred to as K12. The n for this initial experiment was 

derived from the total number of sessions analyzed over the period (~1,400) divided by 

the number of users invited to participate (~120). This provides a baseline for comparison 

with the other algorithms. For comparison, the expectation maximization algorithm was 

chosen for the remainder of the experiments. EM was first chosen to automatically select 

n clusters using cross validation, referred to as EM
*
. This provided a baseline to compare 

the algorithm's performance against the K-means algorithm (K12). The last experiment 

was run using EM again with a fixed cluster size of 12, referred to as EM12. 

6 Evaluation and Results 

Table 2  shows each of the algorithms and the sizes of the largest clusters they produced.  

EM
*
 produced 10 clusters, the top 4 of which represent 84% of all the data. Similarly, for 

EM12, the top 5 largest clusters represent 84% of the data. Finally, K12 shows a similar 

trend, with the top 5 clusters representing 87% of the data. For the purposes of evaluation 

we consider the top 4 clusters in EM
*
, top 5 in EM12, and the top 6 clusters in K12, since 

the K12 distribution of clusters was more sparse.  

Table 3 shows the features with the greatest means of the top clusters for each algorithm. 

The cluster labels represent UI features for example, A1 represents clicks on the Interac-

tive Resources tab, A2 the Shared Stuff for This Concept tab, A6 for the Embedded As-

sessments toggle element, A12 for the Images/Visuals tab, and so on.  The top features of 

the largest cluster in EM
*
 (A1, A2 and A4) correspond to CCS UI tab clicks on Interac-

tive Resources, Shared Stuff for This Concept and Shared Stuff for This Activity. This top 

cluster suggests a pattern of activity that is focused on both CCS-suggested interactive 
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resources and shared resources that others have saved, which may indicate the impor-

tance of  what others have saved as well the automatically generated interactive resource 

list. 

The  EM12 and K12 algorithms indicate very similar patterns. For example, EM12‟s 

largest cluster shows the exact same pattern as EM
*
. Similarly, K12 shows A1, A3 and 

A4 as its top features. Examining other clusters show cluster 4 of K12 and cluster 11 of 

EM12 share similar patterns over features A3, A6, A8 and A11. This pattern corresponds 

to clicks on Instructional Support Materials, Embedded Assessments, Answers and 

Teaching Tips system areas. Similarly, cluster 2 of K12 and cluster 1 of EM12 share sim-

ilar features along A3, A7 and A14, which correspond to the Instructional Support Mate-

rials and Activities tabs, suggesting time being spent on preparing or reviewing student 

activities and corresponding materials. 

Table 3 : Top cluster features and their cluster membership 

 Cluster # A1 A2 A3 A4 A5 A6 A7 A8 A11 A12 A13 A14 A16 

K
1

2
 

1 (8%)              

2 (5%)              

3 (14%)              

4 (4%)              

8 (4%)              

9 (58%)              

E
M

*
 

0 (26%)              

1 (11%)              

6 (10%)              

7 (37%)              

E
M

1
2

 

1 (5%)              

3 (5%)              

6 (17%)              

7 (47%)              

11 (11%)              

 

Each cluster algorithm revealed data that was consistent with overall system use seen in 

the server logs, though the smaller cluster sizes show greater differentiation of features. 

That there was not complete agreement in cluster features or sizes, however, may indicate 

more experiments are required. 

7 Related Work 

Much of the work here has been influenced by the body of work in web use analytics, 

which break down into two categories : (1) content analytics and (2) usage analytics [12]. 

This work is focused on usage analytics. Broadly, use analytics aims at understanding the 

aggregate activity and use patterns of a website primarily using advanced server log anal-

ysis. Such analytics often aim at understanding aspects of the site that are popular, con-

tent that seems to be frequently accessed, times of frequent/infrequent use, etc. with the 

goal of developing a sense of where the site could be improved or enhanced for optimal 
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performance, increased advertisement penetration or site content enhancement through 

recommender techniques [13]. Such use analytics are invaluable for developing site con-

tent, but also useful in developing models of user behavior. Website session characteris-

tics are commonly studied to determine how users are accessing the site and statistical 

techniques are used to determine tasks being performed within a website, revealing clus-

ter usage patterns in the ways we have discussed here. Markov models have been used to 

derive the meaning of certain behaviors within a session by observing page transitions 

and their probabilities to develop behavioral models of use [5]. Work has also been done 

to connect page semantics to web usage, for example [9] use Probabilistic Latent Seman-

tic Analysis to determine if the content and subsequent usage of a page implies an under-

lying task. Finally, user interface event mining [8] aims at developing techniques to ex-

ploit detailed user experience and interaction data. 

8 Discussion 

The initial experiments presented in this paper offer some insights into the planning be-

havior of teachers online. However, two areas of improvement can be immediately dis-

cussed : improved feature selection and expanded algorithm experiments and compari-

son. The initial experimental feature set provides interesting insights into the behavior of 

teachers for the visual components selected in this initial observation. However, the flat-

tened visual hierarchy of the CCS interface only provides a convenient way to discretize 

each visual element of the system without advancing the notion of the semantic structure 

of this hierarchy. For example, while it is clear that the Interactive Resources tab of the 

interface was widely used, there are substructures under that tab which also contain wide-

ly used features. The current feature set is not capable of capturing this hierarchy or its 

implied semantic structure, though considering it might yield new insights into the se-

mantics of the features commonly accessed by users. Further extensions to the feature set 

might also include adding link-to-link features, for example, exploring high frequency 

transitions might reveal unique relationships between UI features and functionality. 

The EM and K-means algorithms are commonly used in data mining, and while some 

clusters in K12 and EM12 had similar characteristics, all of the top clusters were not sim-

ilar enough to say both algorithms were converging on exactly the same feature sets. This 

may underscore the differences in each algorithm or in the way they each treat the fea-

tures. It may also reinforce the effects parameter sensitivity (e.g. n clusters) and feature 

selections have on the results. The focus of the next round of experiments will be to expe-

riment further with EM and K-means parameters, and also to expand algorithm coverage 

to hierarchical-based algorithms. Such experimentation may also fit well with the seman-

tic features already suggested and allow a comparison of the hierarchies that are produced 

from a semantic-based structure with the clusters already observed.  

As with all learning algorithms, it is challenging to determining if the experimental data 

would be predicted by and hold up to some gold standard or human expert evaluation. 

Determining if the discovered behaviors match the observed data in practice is difficult 

and further research is underway to study actual and reported system use through on-site 

observation and survey instruments, which should lead to a higher fidelity confirmation 

of the patterns discovered thus far. 
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Abstract.  Learning  software  is  not  designed  for  data  analysis  and  mining. 
Because  usage  data  is  not  stored  in  a  systematic  way,  its  thorough  analysis 
requires long and tedious preprocessing. In this contribution we first present a 
data model to structure data stored by Learning Management Systems (LMS). 
Then we give an overview of the system architecture that performs the structure/
export functionality and of its implementation for the Moodle LMS. Finally, we 
show  first results using this data model for analysing usage data. 

1    Introduction

It is a well known fact that data understanding and preprocessing constitutes the main 
work of the data analysis and mining process. Learning software is not designed for data 
analysis and mining. Even if many learning software do store usage data, they are 
designed to support learning and teaching, not to analyse the data they store. However, 
the field of educational data mining is emerging precisely because valuable pedagogical 
information is gained from analysing and mining data stored by educational software [17, 
1]. As a consequence, the process of educational data mining requires long and tedious 
preprocessing as mentioned in various works, see [2, 13, 20] for a few examples.
In this contribution we present a data model to structure and export usage data stored by 
learning software. Note that separating the data used for the business, in our case the data 
stored by the learning system, from the data used for analysis and mining is well in the 
line of the usual approach in the data mining field, see for example [4]. The aim of this 
data model is to automate, at least partly, the usual long and tedious preprocessing and to 
facilitate the data exploration step that should precede data mining. Our data model is 
primarily oriented towards  the particular educational software called Learning 
Management Systems (LMS). We have designed a modular and extensible architecture to 
realise the structure/export function and we present an implementation for the particular 
LMS Moodle [14]. Our system handles data that have been rendered anonymous. We 
show first results using this data model for analysis of usage data. 

1.1   Background and Related Works

In our own university and in most universities at least in Germany, LMS are used both in 
distance education and face to face teaching. They are becoming a must-have in distance 
education [18]. They are more and more used in face to face teaching as they make the 
administration of a course much easier for teachers, and provide a handy way to cater for 
special needs. Experienced teachers can handle better a diverse classroom as 

1 This work is partially supported by the European Social Fund for the Berlin state.
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supplementary learning materials can easily be made available through them for example. 
LMS provide a virtual place where students can find learning materials, study guides as 
well as an overview of their results, and where they can communicate with teachers and 
with other students. The functionality of an LMS can be divided in three main parts: 
Management of learning resources, management of users, and communication between 
users [18]. However statistics and reports are usually basic.
To illustrate this last point, we list below a few questions that reporting facilities of most 
of the currently used LMS cannot handle:
1.How many students have never viewed Learning Resource A?
2.If students do well on activity B, do they also do well on activity C?
3.If students solve exercise D, do they also solve exercise E?
4.What is the average mark on quiz G got by students who have viewed resource F?
5.Which courses use a lot of Audio Learning Resources?
To manage properly learners, especially distance learners, it is quite important to gain a 
good overview of their learning behaviours. To manage properly degrees, it is important 
to harmonize the different modules offered in a degree. The aim of our work is to 
complement LMS in all aspects dealing with data analysis and mining. 
Many works to analyse and mine data stored by LMS have been undertaken, see [17, 1] 
for some overview. To the best of our knowledge, all these works do some ad hoc 
preprocessing of the data.  They do not aim at proposing some data model for analysis 
and mining that could be shared by all LMS independently of their internal structure. The 
work undertaken in [16] bears similarity with our work in the sense that it considers all 
data stored by an institution in higher education and unifies it into a model to explore 
behaviours of students. Another work that bears similarities to our work is PSLC 
Datashop [9], an open repository of educational data. The analysis tools offered in 
Datashop are more suited for educational software such as intelligent tutoring systems. 
Our work is not concerned with discovering or sharing learning objects as other works 
such as [19, 7] do. It is concerned with describing and structuring the interactions of users 
with learning objects as stored in LMS. Our vocabulary to describe these interactions is 
partly borrowed from the vocabulary adopted by the LMS Moodle [14], as Moodle is 
used by a large community worldwide. The part related to the interactions of users with 
quizzes contains elements that the IMS specification [8] also contains, though it is much 
simpler that [8].
This paper is organised as follows. The following section introduces our data model. The 
third section gives an overview of the export tool that exports the data stored by an LMS 
into this data model. Section 4 presents a case study in analysing data stored in a specific 
course using our tool. Last section concludes this paper. 

2    The Data Model

The data model we present is quite close to a fact constellation schema [4]. It contains 
three kinds of tables: tables to describe objects found in LMS, these tables can be seen as 
dimension tables; tables to describe interactions with learning objects, these tables can be 
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seen as fact tables; and third, association tables to describe associations between objects. 
The choice of having a table per object comes from the observation that most LMS have 
a limited set of objects that teachers are used to handle. Adopting this same set should 
make it easier for teachers to analyse usage of resources by students. 

2.1   The schema

Our data model makes several general assumptions that we expose now. First we  assume 
that an LMS contains users and courses. Users can enroll or sign in courses and sign off 
courses.  Users can have roles like “lecturer”, “administrator”, “tutor”, “student” and so 
on. A user may have different roles in different courses. For example a user  can be a 
tutor in the course “Introduction to Programming” and a student in the course “Early 
American History”. An LMS may contain groups that are associated to courses. Students 
enroll in those groups. An LMS contains forums, wikis, resources and quizzes. We call a 
quiz any kind of assignment, exercise or test a lecturer may wish to give to students. 
Forums, wikis, resources and quizzes are associated to courses. Thus a resource for 
example, can be used in several courses. A quiz may contain one or more questions that 
are also contained in the LMS. Questions are associated to quizzes and a given question 
can be associated to several quizzes. These general assumptions cover the particular case 
of LMS where resources, forums, wikis or quizzes exist only inside a given course. In 
this particular case an association table contains only one tuple. We assume that an LMS 
logs or stores interactions of users. For any given interaction, the LMS stores the 
identification of the user, of the course, of the resource, forum, wiki, quiz, as well as the 
timestamp, the nature of the interaction (“view”, “modification”, “creation”, “attempt”, 
“submit” and so on), the marks and the contribution when relevant. 
We present now in more details the tables that are the most useful for our case study, see 
Figure 1. For the current full set of tables, we refer to [11, 12]. Every table contains an 
element id, which is the key or identifier of the tuple. 
The five tables below describe objects usually found in LMS.
Table user:  This table describes users registered in the LMS. The elements firstaccess 
and  lastaccess are the times and dates when a user first and last accessed any kind of 
learning object, such as a resource, a quiz etc. in the LMS. The elements  lastlogin and 
currentlogin are  the  times  and  dates  a  user  logged  in  the  LMS  for  the  last  time, 
respectively currently. Note that a user can log in without accessing any learning object. 
Table course: This table describes courses existing in the LMS. We assume that a course 
exists for a given period of time. The element timecreated is the date and time the course 
has been created, usually by the administrator.  The element startdate is the time and date 
the course is supposed to start, this time is usually fixed by the lecturer in charge. The 
element enrolstart is the date users are allowed to enroll in this course, and the element 
enrolend is  the  date  users  can  not  enroll  anymore  in  the  course.  The  element 
timemodified is the time and date this course has been last modified. The elements  title 
and shortname are self explanatory.
Table quiz: This table describes quizzes existing in the LMS. As already mentioned, we 
call a quiz any kind of assignment or test a lecturer gives to students. The element qtype 
is the  type of the quiz. It can take values such as “assignment”, “SCORM” and so on, 
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according to the different kinds of quizzes an LMS makes available. The elements  qid 
combined with  type make up the identification of a quiz. A quiz  may contain one or 
more questions, see table question. The element title is a title the lecturer in charge gives 
to this quiz. The elements timeopen and timeclose refer to the dates and times students are 
allowed to answer the quiz, while the element timecreated is the date and time the quiz 
has been created and the element timemodified is the  date and time the quiz has been last 
modified.

Figure 1.  Snapshot of the relational schema

Table question: This table describes questions that make up quizzes. The element title is 
the title of the question, while the element text is the actual text of the problem to solve. 
The  element  type is  a  category like  “multiple-choice”,  “true-false”  etc.  The  elements 
timecreated and timemodified are as described in the table quiz. 
Table resource: This table describes resources available in the LMS that lecturers may 
use in courses. The element  type describes the type of the resource like “file”,  “uri”, 
“directory”, “audio”, “picture” and so on. The elements timecreated and timemodified are 
as for quiz. The element title is the title of this resource like “transparencies01”. 
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The three following tables describe interactions with learning objects. They are the facts 
that are stored while users use objects of an LMS.
Table  quiz_log: This  table  describes  the  information  that  a  LMS stores  when  users 
interact with quizzes. The element user is the id (the key) of the user who interacted. The 
element course  is the id (the key) of the course in which the interaction took place. The 
elements qid and qtype refer to the quiz that was tackled.  The element grade is the mark 
obtained in the quiz. The element  timestamp gives the date and time of the interaction. 
The element action gives the kind of action that took place. An action can be “view”, in 
that case the user simply looked at the quiz,  “attempt”, in that case the user attempted the 
quiz,  “submit”, in that case the user attempted and finished the quiz, “modify” if the quiz 
has been modified etc. .
Table question_log: This table describes the information that a LMS stores when users 
interact with a question of a quiz, and contains all elements already included in the table 
quiz_log. The element penalty gives the penalty marks given in that interaction. If a quiz 
is run in adaptive mode then a student is allowed to try again the question after a wrong 
answer. In this case one may want to impose a penalty for each wrong answer to be 
subtracted  from  the  final  mark  for  the  question.  The  amount  of  penalty  is  chosen 
individually  for  each  question  when  setting  up  or  editing  the  question.  The  element 
raw_grade gives the raw mark obtained in that interaction. The element grade gives the 
marks for that question in that interaction when penalty has been taken into account. It 
includes also an element  question, the id of the question that was tackled, the elements 
type, which can take values like “multiple choice”, “true/false” and the element answers, 
the actual answer or answers, when several answers are allowed, given by the user in the 
interaction.
Table resource_log: This table describes the information that a LMS stores when users 
interact with resources. This table contains elements that are similar to the ones of table 
quiz_log. 
Finally our data model contains a number of association tables to associate objects with 
each other, see [11,12].

3    System Architecture

Figure 2 presents an overview of the system architecture. The central part of the system is 
the abstract class “ExtractAndMap” that describes and partly implements functionalities 
concerning data extraction from an LMS and data generation for the data model. To 
create the present data model with an LMS, what is needed is to implement the abstract 
extract  methods according to the features of the LMS. The concrete save function can be 
inherited as is. The system contains an implementation for Moodle. It is implemented in 
Java, uses the Database Mysql [15] and the persistence framework Hibernate [6].
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Figure 2.  System architecture

4    First Results

We have used our system to analyze the course “Introductory Programming with Java” 
taught in face to face teaching to first semester students enrolled in the degree “Computer 
Science and Media” at the Beuth University of Applied Sciences, Berlin, in winter 
semester 2009/2010. In that semester 65 students were enrolled in this course.
The teaching of this course is supported by the use of the Learning Management System 
Moodle in which mandatory as well as additional resources are uploaded for students. A 
list of 8 exercises belongs to the mandatory resources. Students have to solve these 8 
exercises to get a mark for the practical part of the course. The lecturer has additionally 
offered gradually in the semester 7 self-evaluation exercises on key concepts of Java 
programming like methods, arrays, statements etc.. These exercises are not compulsory. 
Solving them is left to the sole discretion of the students. The lecturer is interested to 
know whether students have used these self-evaluation exercises and, most importantly, 
whether solving or attempting them could have a positive impact on the marks obtained 
in the final exam. Figure 3, obtained by simple queries, gives an overview of how 
students have used these exercises. For each exercise the column on the left means view, 
the column in the middle means attempt and the column in the right means close attempt. 
Note that view means that students have clicked on the resource, attempt means that they 
have submitted a solution and close attempt means that they have finished the exercise. 
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Figure 3.  Access to self-evaluation exercises

One notices a pattern that we have already observed in other courses regarding optional 
self-evaluation exercises [13, 11]: As the semester progresses always less students make 
use of them. We are interested in investigating whether a dedicated group of students 
emerges that keep doing the exercises during the semester. Therefore we want to know 
whether associations such as “if students complete exercise 2, they complete exercise 1” 
or ,  “if students complete exercise 3, they complete exercise 2”, and so on, hold. For that 
we have used the method exposed in [10]. Indeed, the answer is positive as Table 1 
shows. The association rule 2→1 means “if students complete exercise 2, they complete 
exercise 1”. All rules have a rather high confidence and are rated as interesting both by 
lift and cosine. We recall that confidence is a number between 0 and 1 (highest is 1), that 
lift rates a rule as interesting if its value is above 1, and that cosine rates a rule as 
interesting if its value is above 0.66. Support gives the proportion of the data involved in 
the rule. 

Table 1.  Association rules “if students attempt exercise x, they also attempt exercise x-1”

Associations 2→1 3→2 4→3 5→4 6→5 7→6

support 0.34 0.28 0.25 0.2 0.22 0.14

confidence 1 0.9 0.8 0.72 0.88 0.9

lift 1.97a 2.66a 2.6a 2.35a 3.16a 3.66aa

cosine 0.82 0.86 0.8 0.69 0.82 0.71

To investigate whether solving these self-evaluation exercises has a positive impact on 
the marks in the final exam cannot be achieved by correlation or regression analysis as 
not so many students have solved them. That means for many students we would have 
missing data, since 45 students have written the final exam. We have simply queried our 
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data and looked at the average mark on each group of students. The result is given in 
Table 2.

Table 2.  Completing self-evaluation exercises and marks in the exam. 

Exercise min. max. mean s.deviation meanNoEx

General 1 13 8.63 4.34 7
Ex1 1 13 9.48 4.06 7.33
Ex2 1 13 9.56 3.97 7.95
Ex3 1 13 9.2 4.4 8.26
Ex4 1 13 8.56 4.77 8.68
Ex5 1 13 9.21 4.54 8.29
Ex6 1 13 10.91 3.4 7.70
Ex7 9 13 11.67 1.41 7.69

The line General is the minimum, maximum, mean and standard deviation obtained 
taking all students who have taken part in the final exam. The last column gives the mean 
for students who have not solved any exercise. The line Ex1 gives similar results 
restricting the population to students who have completed the first self-evaluation 
exercise. The last column gives the mean for students who have not solved the first self-
evaluation exercise. And so on till Ex7. One notices that the highest average and smallest 
standard deviation in the final exam is obtained in the group of students who have 
completed exercise 7 (11.67 and 1.41 respectively), while smallest average is obtained in 
the group that has not solved any exercise (7). Given the results of the association rules, 
students who have completed exercise 7 have most probably completed all optional self-
evaluation exercises. These results may speak for a positive impact on the final mark of 
the self-evaluation exercises. However our small population prevents of making any 
strong conclusion since statistical tests to check the significance of the difference in the 
average, like t-test, usually require a sample of size 30 or more. The line for exercise 4 
looks different and requires more investigation.

5    Conclusion and Future Work

In this paper we have presented a data model to structure and export the data that most 
LMS usually store in scattered places into an homogeneous schema. The first aim of our 
data model is to automate and alleviate the preprocessing that is needed to explore, 
analyse and mine these data. We have designed an architecture of the tool that does the 
actual structure/export functionality, and  implemented it for the LMS Moodle. Finally 
we have used our tool to analyse the data stored in the course “Programming 1” in our 
university. We have focused our analysis on the optional self-evaluation exercises. The 
analysis shows that, as the semester progresses, less students solve them. It shows also 
that a group emerges that keeps solving them and that reaches slightly better marks in the 
final exam.
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Another aim of this data model is to couple loosely an LMS and the analysis of the data it 
stores.  If the persistence functionality of an LMS is changed, only the structure/export 
tool needs to be changed, not the analysis tools linked to the data model. Note that the 
implementation of the module that performs the export functionality for a concrete LMS 
has to be programmed with particular consideration regarding performance as the data 
stored inside an institution can be huge. However this programming happens only once.
As noticed in [5] on-line learning is likely to grow, and so is the use of LMS. As pointed 
out in [1] the number of works tackling data stored by LMS is increasing. We hope that 
this work will help boost results and best practices in that area.
We have used this data model mainly to explore thoroughly how students use learning 
resources in a course. Results of such an exploration are enlightening for teachers and are 
necessary to conduct a better informed data mining afterwards. Will this model be robust 
enough to answer any pedagogical question using data mining techniques? It  depends on 
who is asking. Our data model contains all interactions that users perform with any object 
of the LMS along with the timestamp. Therefore a whole range of pedagogical questions 
related to navigation, performance prediction, activity of students for instance should be 
treatable. 
We begin to notice recurring questions that users of LMS are interested in. A future work 
is to continue enhancing and structuring those questions, so that we try out our data 
model further. We aim also at not restricting our data model to LMS, but consider other 
learning software as well. Our next step in that direction is to consider learning portals. 
We are also working on a graphical user interface for users to query and mine the data 
model in an intuitive way. This interface should work as an adaptive front-end for the 
user, the real analysis work will be done by connecting suitable queries and mining tool 
already available. Our work is open for the community and will be released soon on [12].
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Abstract. This research investigates the detection of student meta-cognitive 
planning processes in real-time using log tracing techniques. We use fine and 
coarse-grained data distillation, in combination with coarse-grained text replay 
coding, in order to develop detectors for students’ planning of experiments in 
Science Assistments, an assessment and tutoring system for scientific inquiry. 
The goal is to recognize student inquiry planning behavior in real-time as the 
student conducts inquiry in a micro-world; the eventual goal is to provide real-
time scaffolding of scientific inquiry. 

1 Introduction 

Self-regulation is recognized as a highly important aspect of learning [3, 12, 25]. Self-
regulation includes planning, meta-cognitive monitoring, reflection, and checking 
outcomes. While several studies on self-regulation within computer-based learning 
environments have been conducted [15, 18, 23, 27], there is no consensus about how to 
automatically measure self-regulation [3, 23]. Furthermore, very few studies have 
addressed planning within the context of scientific inquiry. Some research has shown that 
deliberate scaffolding of self-regulation leads to better learning in science [22], but it is 
difficult to figure out what to measure [15]. Our study seeks to demonstrate a method for 
detecting one aspect of self-regulation, students’ planning in the context of scientific 
inquiry. Planning is one of the inquiry skills outlined by the National Science Education 
Standards [21]. Since inquiry problems require several meta-cognitive processes, one of 
which is planning [11], detecting students’ inquiry strategies and skills, including 
planning, is a critical first step in order to provide students with support in the form of 
computer-based adaptive scaffolding during real time inquiry [13, 14]. This study brings 
together research on self-regulation and planning during scientific inquiry.  

In this paper, we present a machine-learned model that detects student planning by 
tracing time spent looking at data tables and hypothesis lists within our inquiry-based 
learning environment, Science Assistments (http://users.wpi.edu/~sci_assistments; [13, 
14]) and microworld for Phase Change. Planning is required especially when applying 
the control for variables strategy (CVS), a key cognitive strategy within the domain [10], 
but also in deciding what experiments are needed. We leverage from the success of [6], in 
using text replays [4] to provide training instances for machine-learned detectors of 
gaming the system within intelligent tutors. Specifically, by manually inspecting and 
coding a proportion of the student inquiry sequences using text replay tagging of log 
files, we extended this approach in order to develop detectors that determine whether a 
student is planning by viewing data from their previous trials and/or their hypotheses. 
Our text replay coding approach differs from previous text replays in two ways. First, 
whereas text replays allow for the classification of a replay clip as a single category (out 
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of a set of categories), text replay tagging allows multiple tags to be associated with one 
clip. For example, a clip may be coded as using the data table for planning, using the 
hypothesis table for planning, both, or neither. Second, the behaviors we are studying are 
temporally more coarse-grained than in [6], displaying the entire sequence of 
experimental trials for part of a hypothesis rather than specific trials. In addition to this 
coding, we summarized each clip by creating a feature set from the action data. In 
accordance with our coding, we consider problem-level features of the student data rather 
than step or transaction-level data, unlike in many prior EDM models of student behavior 
(e.g. [2, 8, 9, 24, 26]). Using the coding and the feature set, we created detectors for 
planning. 

2 Learning Environment 

Our phase change environment (Figure 1), hosted by the Science Assistments [13, 14], 
enabled students to engage in authentic inquiry using a microworld and inquiry support 
tools. Each problem in our learning environment required students to conduct 
experiments to determine if a particular independent variable, e.g., container size, 
affected various outcomes like the melting point or boiling point of a substance.  

 

Figure 1. Hypothesizing widget (left) and data collection panel (right) for the phase change microworld. 

We scaffold students’ inquiry processes by organizing these tasks into different inquiry 
stages, namely, “observe”, “hypothesize”, “experiment”, and “analyze data”. Students 
start in the hypothesizing stage and move between stages in a suggested order but can 
navigate back and forth between some of the inquiry phases. For example, from the 
“analysis” stage students can collect more data by returning to the “experiment” stage, 
they can create new hypotheses by returning to the “hypothesize” stage (starting a new 
inquiry loop), or can submit their final experimentation procedures and analyses and 
begin the next problem. While in the hypothesizing stage, they can either explore the 
microworld or begin collecting data in the experiment phase. Finally, within the 
experiment phase, students can only move to the analysis phase. 
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This learning environment has a moderate degree of learner control, less than in purely 
exploratory learning environments [2], but more than in model-tracing tutors [17] or 
constraint-based tutors [20]. Though our scaffolding restricts when students can switch 
inquiry phases, there is enough freedom such that students can approach these inquiry 
tasks in many ways, e.g., while experimenting, students could set up and run as many 
different experiments as they desired. 

In the Hypothesis stage, the student is prompted to build a hypothesis using drop down 
boxes (Hypothesis Builder). The fields are: independent variable, change to the 
independent variable, dependent variable, and change to dependent variable. So, for 
example, the student can change the first [Choose One…] box to “amount of ice”, which 
enables the next box. Proceeding, the student can create the hypothesis “If I change the 
[amount of ice] so that it [increases], the [melting point][doesn’t change].  

When students reach the experimentation stage, they can then change independent 
variables, such as Level of Heat, and see the results within the microworld by running a 
trial (by clicking on Run). They can also view representations of their full set of 
hypotheses (by clicking on Show hypotheses list) and they can view the trial run data 
(clicking on Show Table). Both the data table and the hypothesis list provide external 
memory aid, allowing the student use information about previous decisions to reflect and 
plan new experimental trials. 

As students solve these inquiry problems, they could engage in a number of behavior 
patterns. Particular to collecting data, systematic [24] students collect data that test their 
hypotheses by designing and running controlled experiments. Additionally, such students 
may use the table tool and hypothesis list to reflect upon their results and plan for 
additional experiments they may need to run. Students who are unsystematic in their 
experimental design and collection of data may exhibit haphazard behaviors such as: 
constructing experiments that do not test their hypotheses, not collecting enough data to 
support their hypotheses, not using CVS, or running the same experimental setup 
multiple times [17].  

3 Data Set 

Participants were 148 eighth grade students, ranging in age from 12-14 years, from a 
public middle school in Central Massachusetts. These students used the phase change  
microworld. Students engaged in authentic inquiry problems using the phase change and 
density microworlds within the Science Assistments learning environment. As part of the 
phase change activities, students attempted to complete four tasks using our interactive 
tools. 

Each of these students completed at least one data collection activity in the phase change 
environment (two other students did not use the microworld, and were excluded from 
analysis). As students solved these tasks, we recorded fine-grained actions within the 
inquiry support tools and microworlds. The set of actions logged included creating 
hypotheses, setting up experiments, showing or hiding support tools, running 
experiments, creating interpretations of data, and transitioning between inquiry activities 
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(i.e., moving from hypothesizing to data collection). Each action’s type, current and 
previous values (where applicable – for instance, a variable’s value), and timestamp were 
recorded. In all, 27,257 student actions for phase change were logged. These served as 
the basis for generating text replay clips consisting of contiguous sequences of actions 
specific to experimenting. 

4 Method 

The data used for this study was collected by Science Assistments, which logs every 
widget action performed by the student including button clicks, checkbox choices, etc. 
Each action has a time stamp, student/problem identifiers, and widget information, and is 
tagged as to its step (step tag) in the inquiry process. The step tags are a level above a 
simple action (this is captured by the widget information), representing a step within the 
inquiry process, across microworlds. This allows us to analyze similar actions across 
microworlds. These step tags are used for two purposes: as markers to create clips for text 
replay coding and to categorize data for fine-grain feature extraction. 

4.1 Text Replay Coding 

Text replay hand coding presented our team with two significant challenges: specific 
codes and grain size. In designing our text replays, it was necessary to use a coarser 
grain-size than in prior versions of this method [4]. In particular, it is necessary to show 
significant periods of experimentation in order to put usage of the table and hypothesis 
list into context, while limiting clip size to reduce memory load. We decided to use clips 
that include both the hypothesis and the experiment stages, which is long enough to see 
context, but short enough to tractably code. Another important issue in grain-size 
selection is that trial run data from one hypothesis test can be used in another to make 
inferences about the hypothesis at hand (for instance, by comparing a current trial to one 
conducted earlier). To compensate for this, we code using both the actions in testing the 
current hypothesis, and cumulative measures which include actions performed when 
testing previous hypotheses. 

 Figure 2 - Clip showing a single Hypothesis-Experiment run (clips may be significantly longer) 

To support coding in this fashion, a new tool for text replay tagging was developed in 
Ruby, shown in Figure 2. The start of the clip is triggered by a hypothesis variable 
change after the beginning of a new problem. The tool displays all student actions 
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(hypothesis and experiment) until the student transitions to the analysis stage. Subsequent 
clips include previous clips and any single new cycle which includes the Hypothesis and 
Experiment stage. A clip could be tagged with one of 10 tags: “Never Change Variables”, 
“Repeat Trials”, “Non-Interpretable Action Sequence”, “Indecisiveness”, “Used CVS”, 
“Tested Hypothesis”, “Used Table to Plan”, “Used Hypothesis Viewer to Plan”, “No 
Activity”, and “Bad Data.” Specific to our study, we tagged a clip as “Used Table to 
Plan” (TablePlan) if the clip contained actions indicative that the student viewed the trial 
run data table in a way consistent with planning for subsequent trials. “Used Hypothesis 
Viewer to Plan” (HypPlan) was chosen if the clip had actions indicating that the student 
viewed the hypotheses list in a way consistent with planning for subsequent trials.  

4.2 Coding Agreement 

Two coders (the third and fourth authors) tagged the data collection clips using at least 
one of the ten tags. To ensure that a representative range of student clips were coded, we 
stratified our sample of the clips on condition, student, problem, and within-problem clip 
order (e.g. first clip, second clip, etc.). The corpus of hand-coded clips contained exactly 
one randomly selected clip from each problem each student encountered, resulting in 581 
clips. Each coder tagged the first 50 clips; the remaining clips were split between the 
coders. Of the 50 clips tagged, 7 were discarded because of a problem with an early 
version of the text replay tool where the problem number of the code did not match the 
problem number of the microworld.  

For the 43 clips tagged by each coder, there was high overall tagging agreement, average 
 = 0.86. Of particular relevance to this study, there was strikingly high agreement on the 
TablePlan,  and of HypPlan, also Kappa at this level suggests particularly 
good agreement between coders, which was achieved in part through extensive 
discussion and joint labeling prior to the inter-rater reliability session. In particular, the 
coders found these two categories easy to code, as students either tended to spend 
significant amounts of time reflecting on these tools, or viewed them extremely briefly 
(or not at all). These categories were also relatively rare, potentially increasing  by 
chance; only 8% of clips involved TablePlan and only 4% of clips involved HypPlan. 

4.3 Feature Distillation 

Features extracted can be grouped into 10 categories: all actions, total trial runs, 
incomplete trial runs, complete trial runs, pauses, data table display, hypothesis list 
display, field changes in Hypothesis Builder, hypothesis made, and microworld variable 
changes. For each of these categories we traced the number of times the action and the 
time taken for each action. Two other categories were included indirectly related to 
actions: the number trials where only one independent variable was different between the 
two trials and the number of times a trial was repeated. These last two had no times 
associated with them. 

The microworld activity was divided into tasks in which the focus was a specific 
independent variable. Since there were four independent variables, there were four tasks. 
Within a task, the student is allowed to make and test several hypotheses. For each of the 
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12 categories above, we extracted data for each hypothesis the student worked on (non-
cumulative data), and across all hypotheses in the task (cumulative data). The reason for 
this is that within each task, the data table accumulates the trial run data across 
hypotheses. This allows the students to compare trial runs testing previous hypotheses 
with the runs made in the current hypothesis. 

Lastly, the time data was distilled to obtain the following values: minimum, maximum, 
standard deviation, mean and mode. It is these values plus the count which was used in 
the machine learning model. This data was arranged in a comma-delimited flat file 
suitable for input into RapidMiner. The data was divided into files, one for each coded 
feature. The coded feature being the first item on the line, followed by the distilled 
features described above. 

4.4 Machine Learning Algorithms 

Machine-learned detectors of the two behavioral patterns were developed within 
RapidMiner 4.6 [19] using the default settings. Detectors were built using J48 decision 
trees, with automated pruning to control for over-fitting, the same technique used in [26] 
and [6]. Six-fold cross-validation was conducted at the student level (e.g. detectors are 
trained on five groups of students and tested on a sixth group of students). By cross-
validating at this level, we increase confidence that detectors will be accurate for new 
groups of students. We assessed the classifiers using two metrics. First, we used A’ [16]. 
A' is the probability that if the detector is comparing two clips, one involving the 
category of interest (TablePlan or HypPlan) and one not involving that category, it will 
correctly identify which clip is which. A' is equivalent to both the area under the ROC 
curve in signal detection theory, and to W, the Wilcoxon statistic [16]. A model with an 
A' of 0.5 performs at chance, and a model with an A' of 1.0 performs perfectly. In these 
analyses, A’ was used at the level of clips, rather than students. Statistical tests for A’ are 
not presented in this paper. The most appropriate statistical test for A’ in data across 
students is to calculate A’ and standard error for each student for each model, compare 
using Z tests, and then aggregate across students using Stouffer’s method [5] – however, 
the standard error formula for A’ [16] requires multiple examples from each category for 
each student, which is infeasible in the small samples obtained for each student in our 
text replay tagging. Another possible method, ignoring student-level differences to 
increase example counts, biases undesirably in favor of statistical significance. 

Second, we used Kappa (), which assesses whether the detector identifies is better than 
chance at identifying the correct action sequences as involving the category of interest. A 
Kappa of 0 indicates that the detector performs at chance, and a Kappa of 1 indicates that 
the detector performs perfectly. As Kappa looks only at the final label, whereas A’ looks 
at the classifier’s degree of confidence, A’ can be more sensitive to uncertainty in 
classification than Kappa.  

5  Results 

We constructed and tested detectors using our corpus of hand-coded clips. TablePlan and 
HypPlan detectors were constructed from a combination of the subset of the first 43 clips 
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that the two coders agreed on, the remaining clips, tagged separately by the two coders. 
In total, 570 tagged clips were used for each detector. Of these clips, 47 out of 570 were 
tagged with TablePlan (8%) and 20 out of 570 (4%) were tagged with HypPlan. 

Table 1. Best results for detectors of each coding category 

Category A’  Attribute type % students 
in data 

HypPlan .93 .14 Non-cumulative 8% 

TablePlan .94 .46 Cumulative 4% 

 

Detectors were generated for each behavior using J48 decision trees and two sets of 
attributes, cumulative and non-cumulative attributes. Thus, four different detectors were 
constructed two for TablePlan and two for HypPlan. The TablePlan detector using 
cumulative attributes (A’ = .94,  = .46) performed slightly better than the detector built 
with non-cumulative attributes (A’ = .96,  = .36). Both versions of the detector achieved 
excellent performance, comparable to detectors of gaming the system refined over several 
years (e.g., Baker & de Carvalho, 2008), and are very likely to be appropriate for use in 
interventions. The HypPlan detectors did not perform as well, achieving A’ = 0.93,  = 
0.14 for the non-cumulative attributes and A’=.97,  = 0.02 for the cumulative attributes. 
The substantial difference between A’ and is unusual. It appears that what happened in 
this case is that the model, on cross-validation, classified many clips incorrectly with low 
confidence; in other words, A’ by considering pair-wise comparisons catches the overall 
rank-ordered correctness of the detector across confidence values even though many clips 
were mis-categorized at the specific threshold chosen by the algorithm. One possibility is 
that the low number of HypPlan labels in the data set made the detectors more prone to 
over-fitting. This result suggests that the HypPlan detector is probably acceptable for fail-
soft interventions, where students assessed with low confidence (in either direction) can 
receive interventions that are not costly if mis-applied.  

6 Discussion and Conclusions 

In this paper, we have presented models for detecting planning within science inquiry 
learning. Our efforts to detect planning from data table usage have met with greater initial 
success than our attempts to detect planning within the hypothesis list, although both 
detectors are, we feel, good enough to use for some forms of instructional intervention. 
The detector for showing data table use (TablePlan) in planning can detect a student 
using the data table effectively from one not using the data table effectively for planning 
94% of the time. The  is respectable, so this detector can be used robustly to 
scaffold table use for planning during inquiry. If we detect that a student is not using the 
table effectively, we can suggest that the user look at the table and provide hints on how 
to compare one table row with another, and how to use this to plan the next trial. 
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On the other hand, the detector for using the hypotheses table for planning (HypPlan) did 
not perform as well. Although it had a very good A’ (.93 and .97), the  was low, 
meaning that if we used this detector for scaffolding, we will need to do it in a fail-soft 
manner. There is reason to believe this approach may be successful. For example, an 
early detector of gaming the system [7] with a similar and lower A’ was found to be 
effective for improving gaming students’ learning when used in a fail-soft manner. In 
addition, combining the HypPlan detector with another (for example, one that detects 
control for variables strategy or CVS) may compensate for its low  So for example, if a 
detector indicated that CVS was not being used, this detector also can be used to decide if 
scaffolding should include a hint regarding how the student should use the hypothesis 
table in order to reflect on their work. In this fashion, interventions based on this detector 
will only be given when there is additional reason to believe that intervention is needed. 

Future work will include improving our for HypPlan and finding other meta-cognitive 
tasks that can be detected effectively. This would require an expansion of the tags we 
used and perhaps a way to track student progress from one problem to another, since 
lesson-wide attributes may be useful for measuring students’ progress.  

By detecting planning in real time, rich adaptive scaffolding becomes feasible [13, 14]. In 
addition, with helping students learn both content and inquiry skills, scaffolding for 
planning can help them become better learners, possibly by influencing their meta-
cognitive skill development [1, 23]. This study makes an important contribution towards 
linking these two areas of research, namely, meta-cognitive skills and planning during 
scientific inquiry. 
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Abstract. While students’ skill set profiles can be estimated with formal cognitive
diagnosis models [8], their computational complexity makes simpler proxy skill es-
timates attractive [1, 4, 6]. These estimates can be clustered to generate groups of
similar students. Often hierarchical agglomerative clustering or k-means clustering
is utilized, requiring, forK skills, the specification of 2K clusters. The number of
skill set profiles/clusters can quickly become computationally intractable. Moreover,
not all profiles may be present in the population. We present a flexible version of k-
means that allows for empty clusters. We also specify a method to determine efficient
starting centers based on theQ-matrix. Combining the two substantially improves the
clustering results and allows for analysis of data sets previously thought impossible.

1 Introduction

A common objective in educational research is the identification of students’ current skill
set profiles. That is, which skills do they have? Which skills do they not have? Which skills
are they in the process of learning? A variety of cognitive diagnosis models (e.g. DINA,
NIDA, RUM) estimate these latent profiles using information from a student item response
matrix and an expert-elicited assignment matrix of the skills required for each item [8, 10].
However, even simple models become difficult to estimate and computationally infeasible
as the number of skills, items, and students grow [8].

Recent work has proposed using computationally simpler skill set estimates, e.g. capabil-
ity scores and sum scores, as proxies for the cognitive diagnosis model estimates [1, 2, 4,
6]. These estimates are then clustered using common methods such as k-means and hier-
archical linkage clustering to generate groups of students with similar skill set profiles. A
common assumption is that all possible (combinations of complete/zero skill mastery) pro-
files exist in the population, a restriction that prevents us from being able to work with small
samples or large numbers of skills. In addition, both capability scores and sum scores suf-
fer from a strong dependency on a conjunctive assumption, namely that to answer an item
correctly, the student must have completely mastered all necessary skills. This assump-
tion effectively (and possibly erroneously) attenuates the individual skill set estimates in
the presence of multiple skill items and relies heavily on the presence of large numbers of
single skill items for reasonable estimates (which in our view is in most cases impractical).
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In this paper, we propose a flexible version of k-means that utilizes more appropriate start-
ing centers given the conjunctive assumption (conditioning on the items themselves) and
allows for empty clusters, removing the restriction that each possible skill set profile will
have a corresponding cluster. In our work thus far, this version outperforms both traditional
k-means and hierarchical clustering in almost all situations. In Section 2, we review two
skill mastery estimates and hierarchical agglomerative and k-means clustering. Details of
our more flexible version of k-means are provided in Section 3; selection of sensible start-
ing values and an illustrative example follow in Section 4. Further simulation results are in
Section 5. In Section 6, we finish with concluding remarks and other possible applications.

2 Skill Set Profile Clustering

In general, the goal of cognitive diagnosis models (CDMs) is to estimate the true skill set
profile for each student. GivenK skills, the true skill set profile for studenti is denoted
αi whereαik ∈ {0, 1} for k = 1, 2, ...,K. A student that has mastered skills 1, 3 but not
skill 2 would have the profileαi = {1, 0, 1}. There are 2K possible skill set profiles forK
skills; this collection of profiles is the set of corners of aK-dimensional unit hyper-cube.
For example, ifK = 2, the four possible profiles are:{0, 0}, {1, 0}, {0, 1}, {1,1}.

Estimation of theαi is done using a student response matrixY and an item-skill dependency
matrix Q. Student responses are assembled in aN × J matrix Y whereyi j indicates both
if studenti attempted itemj and whether or not they answered it correctly.N is the total
number of students,J the number of items. If studenti did not answer itemj, thenyi j = NA
(i.e. the indicatorIyi j,NA = 0). If studenti attempted itemj (Iyi j,NA = 1), thenyi j = 1 if they
answered correctly (0 if not). TheQ-matrix, also referred to as a skill coding or transfer
model [3, 11], is aJ×K matrix whereq jk = 1 if item j requires skillk and 0 if not. TheQ-
matrix is usually an expert-elicited assignment matrix (here assumed to be known/correct).

2.1 Skill Mastery Estimates

Here we briefly describe two proxy estimates for the CDM estimates, ˆαi: sum scores and
the capability matrix. Both estimates are easily derived from the response matrixY and the
transfer modelQ and have been shown to give comparable results to CDMs [2].

First, we present thesum scoremethod of [4, 6]. HereWi is defined as the vector of sum
scores where, fork = 1, 2, ...,K,

Wik =

J
∑

j=1

yi j q jk.

TheWik are simply the number of items studenti answered correctly for each skillk, as-
suming that all students answered all items. When an item requires more than one skill,
i.e., amultiple skill item, it contributes to more than oneWik. TheWi map the students into
a K-dimensional hyper-rectangle where the range of thekth dimension is [0, Jk] and Jk is
the total number of items that require skillk.
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In [1, 2], we define anN × K capability matrix B, whereBik is the proportion of correctly
answered items involving skillk that studenti attempted. That is,

Bik =

∑J
j=1 Iyi j,NA · yi j · q jk
∑J

j=1 Iyi j,NA · q jk

.

The vectorBi estimates studenti’s skill set knowledge and maps studenti into the same
K-dimensional unit hypercube as defined by the trueαi. For eachBik, zero indicates no
skill mastery, one is complete mastery, and values in between are less certain. This skill
knowledge estimate accounts for the number of items in which the skill appears as well as
for items not answered. IfBik = NA, we could impute an uninformative value (e.g., 0.5,
mean, median). The examples presented here do not have any missing values.

In this paper, we use the capability matrix as our skill mastery estimate; however, the
presented work could easily incorporate the sum score. (Comments are made where ap-
propriate to indicate any needed changes for the use of sum scores.) In addition, estimates
derived from the CDMs could similarly be analyzed.

Regardless of estimate choice, similarly to [4, 6], we find groups of students with similar
skill set profiles by clustering theBi vectors. The algorithm returns a set of cluster centers
and a cluster assignment vector. The cluster center represents the skill set profile for that
subset of students. Note that cluster centers are not restricted to be in the neighborhood
of a hypercube corner (although they could be assigned to one). Returning cluster centers
rather than their closest corners gives more conservative estimates of skill mastery (rather
than zero/complete mastery). Briefly we describe two commonly used clustering methods.

2.2 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HC) “links up” groups in order of closeness to form
a dendrogram from which a cluster solution can be extracted [5]. The user-defined distance
measure is most commonly Euclidean distance. Briefly, all observations begin as their
own group. The distances between all pairs of groups are found (initially just the distance
between all pairs of observations). The closest two groups are merged; the inter-group
distances are then updated. We alternate the merging and updating operations until we have
one group containing all observations. All merging steps are represented in a tree structure
where two groups are linked at the height equal to their inter-group distance at the time of
merging. The algorithm requiresa priori the definition of the distance between two groups
containing multiple observations. Here we use the complete linkage method. Complete
linkage defines the distance between two groups as the largest distance between all pairs
of observations, one per pair from each group, e.g., for Euclidean distance,d(Ck,Cl) =
maxi∈Ck, j∈Cl ‖(xi − xj)‖. It tends to partition the data into spherical shapes.

Once constructed, we extractG clusters by cutting the tree at the height corresponding
to G branches; any cluster solution withG = 1, 2, ...,N is possible. In [4], extraction of
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G = 2K clusters is suggested. This choice may not always be wise. First, if not all skill set
profiles are present in the population, we may split some profile clusters incorrectly into
two or more clusters. Moreover, ifN < 2K (a reasonable scenario for many end-of-year
assessment exams), we will be unable to extract the desired number of skill set profiles.
[4] has shown that in the presence of single skill items, hierarchical clustering will find the
correct clusters under some long test theory conditions (asN, J→ ∞). However, this again
relies on the assumption that all possible profiles are present.

2.3 K-means

K-means is a popular iterative algorithm for dataX = {x1, x2, ..., xn} ∈ RK [9]. It uses
squared Euclidean distance as a dissimilarity measure and tries to minimize within-cluster
distance and maximize between-cluster distance. For a given number of clustersG, k-
means searches for cluster centersmg and assignmentsA that minimize the criterionWC=
∑G

g=1

∑

A(i)=g ‖xi −mg‖
2. The algorithm alternates between optimizing the cluster centers for

the current assignment (by the current cluster means) and optimizing the cluster assign-
ment for a given set of cluster centers (by assigning to the closest current center) until
convergence (i.e. cluster assignments do not change). It tends to find roughly equal-sized,
spherical clusters and requires the number of clustersG and a starting set of cluster centers.
A common method for initializing k-means is to choose a random set ofG observations
as the starting set of centers. In this application, the suggested number of clusters is 2K,
the number of possible skill set profiles forK skills [4]. However, similarly to hierarchi-
cal clustering, if we are missing representatives from one or more skill set profiles in our
population, forcing 2K clusters may split some clusters into sub-clusters unnecessarily.

3 Empty K-Means

A traditional problem in k-means is the choice ofG. A common approach is to create an
“elbow graph” that plots theWCcriterion against a range of proposed numbers of clusters.
As increasingG almost always corresponds to a decrease in the criterion (depending on the
set of starting centers), we subjectively identify the number of clusters that corresponds to
the end of the large decreases in theWCvalue as our choice forG.

However, in this application (and others), we may have a natural number of clusters. While
it may seem that we should just search for the 2K different profiles, this number is likely
just an upper bound. All profiles might not be present in the population. Moreover, without
careful prior examination of the data, we will not know which profiles might be missing.
Ideally, we would like a flexible approach that searches for 2K possibleclusters but is not
forced to find them.
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We modify the k-means algorithm to allow for empty clusters (or absent skill set profiles)
in the following way:

1. Set the 2K starting cluster centersmg appropriately in theK-dim hyper-cube (Sec. 4).

2. Create the cluster assignment vectorA by assigning eachBi to the closestmg.

3. For allg, if no Bi is assigned tomg, i.e.
∑

i IA(i)=g = 0, thenmg remains the same.
Else,mg =

1
ng

∑

A(i)=g Bi.

4. Alternate between 2) and 3) until the cluster assignment vectorA does not change.

This algorithm continues to minimize theWC criterion with each step; the empty clusters
make no contribution to the criterion value. We discuss the choice of appropriate starting
centers in Section 4.

Our k-means variation allows for empty clusters or fewer clusters than originally requested.
This flexibility removes the constraint that there be one cluster per skill set profile. Early
work in this area has relied heavily on small examples withK = 2, 3, 4 skills. With the
advent of online tutoring systems and end-of-year assessment exams, the number of skills
has grown considerably. It is not uncommon to be interested inK = 10, 15, 20, etc. For
K = 10, say, we would have 210 = 1024 different skill set profiles. In practice, it would
be extremely uncommon to see a sample with all 1024 different subgroups. Moreover, the
large number of profiles computationally prohibits clustering of samples whereN < 2K.
Our k-means variation allows for the identification of the clusters/profiles that we do have;
any computational constraints (e.g. memory, storage) are limited and are a characteristic of
the operating system/platform and not of the algorithm.

4 Choosing Starting Centers

It is well-known than k-means can be dependent on the set of starting centers [9]. Given our
goal of identification of the true skill set profiles in the population, a natural set of starting
centers might be the hypercube cornersαi = {αi1, αi2, ..., αiK } whereαik ∈ {0, 1}. If students
map closely to their profile corners, k-means should locate the groups affiliated with the
corners very quickly.

However, even if all profiles are present, the students may not be near their profile corner
due to attenuation of our skill estimates in the presence of multiple skill items. Below are
two possibleQ matrices forJ = 24 items. InQ1, items 1-8 only require skill 1, items 9-16
only skill 2, and items 17-24 only skill 3 (all single skill items). InQ2, the first 12 items are
single skill; the remaining items require multiple skills. If a student’s true skill set profile is
{0, 1, 0}, (s)he should miss items 1-8, 17-24 inQ1 but receive aBi2 of 1. In Q2, (s)he should
miss items 1-4, 9-24 which correspondingly dropsBi2 from 13

13 to 4
13. Similarly, a student

with profile {1, 0, 1} will have Bi1 = Bi3 = 1 for Q1 but see a drop in capability from13
13 to

7
13 using Q2. (Analogous drops are seen in sum scores.) These attenuated estimates are not
reflective of the true profiles.
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(Q1)
T =





















1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1





















(Q2)
T =





















1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1





















4.1 Generating Response Data

To illustrate, we generate response data forN = 250 students for bothQ-matrices from
the deterministic inputs, noisy “and” gate (DINA) model, a common educational research
conjunctive cognitive diagnosis model [8]. The DINA item response form is

P(yi j = 1 | ηi j , sj, g j) = (1− sj)
ηi j g

1−ηi j
j

whereαi is the true skill set profile andηi j =
∏K

k=1 α
qjk

ik indicates whether studenti has all
skills needed for itemj. The slip parametersj is P(yi j = 0 | ηi j = 1); the guess parameter
g j is P(yi j = 1 | ηi j = 0). Similar to the capability matrix (and the sum score), if student
i is missing any skills required for itemj, P(yi j = 1) decreases due to the conjunctive
assumption. Prior to simulating theyi j , we fix the skills to be of equal medium difficulty
with an inter-skill correlation of either 0 or 0.25 and generate true skill set profilesαi for
each student. (In our work thus far, only a perfect inter-skill correlation has a non-negligible
effect on the results.) These choices spread students among the 2K true skill set profiles.
We randomly draw our slip and guess parameters (sj ∼ Unif(0, 0.30);g j ∼ Unif(0, 0.15)).
Given the true skill set profiles and slip/guess parameters, we then generate the student
response matrixY and estimate their corresponding capabilities.

Figure 1a below contains the capabilities estimated from theQ1 matrix, numbered by their
true profile (slightly jittered for visualization purposes). The absence of multiple skills
allows the mapping of the students to (near) their profile corners. Figure 1b contains the
capabilities estimated via theQ2 matrix, also jittered, numbered by the true profile. The
presence of multiple skills has pulled the non-{1, 1, 1} profiles toward the profile{0, 0, 0}.
Using the hypercube corners as the starting centers for empty k-means in the second data
set will make it more difficult to find the true groups. In fact, if there are no students within
a corner’s octant (0.5 as the cutoff), that profile will not be found. When multiple skill
items are included, the hypercube corners are no longer representative of the true profiles.
We would expect their locations to be attenuated as well. Given the Q matrix, we map the
true skill set profiles to their corresponding rescaled locations in the hypercube.
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Figure 1:a) Bi for Q1; b) Bi for Q2; Starting centers indicated with X’s

4.2 Rescaling the Starting Centers

Letαp be the possible true skill set profiles wherep = 1, 2, ..., 2K (e.g.{0, 0}, {1, 0}, {0, 1}, {1, 1}
for K = 2). LetAp j =

∏K
k=1 α

qjk

pk . ThenAp j indicates whether or not a student with true skill
set profilep has all the skills necessary to answer itemj. If yes,Ap j = 1, 0 otherwise. Our
starting centersC∗p are then, fork = 1, 2, ..K,

C∗pk =

∑J
j=1 Iqjk=1 · Ap j
∑J

j=1 q jk

.

Thenumerator is counting the number of items with skillk that the skill set profilep could
answer. The denominator is the number of items requiring skillk. (Note that

∑J
j=1 q jk = Jk.

If we were using sum scores, we would not scaleC∗pk by the denominator.) If theQ matrix
contains only single skill items, the starting centers return to the hypercube cornersαi.

In our example, the starting centers forQ2 would be, (as indicated by X’s in Figure 1b):
(0, 0, 0); (4/13, 0, 0); (0, 4/13, 0); (0, 0, 4/13); (7/13, 7/13, 0); (7/13, 0, 7/13); (0, 7/13, 7/13); (1, 1, 1).

These values are representative of the true profile locations given theQ matrix if all stu-
dents answered items according to their true profiles. They are derived with respect to the
conjunctive assumption made by the capability matrix (and the sum score). In practice, we
would expect students to slip up or make some lucky guesses; however, setting the starting
centers to these rescaled profile locations will allow the empty k-means (or even traditional
k-means) to easily find the groups. With respect to missing profiles, we still use the full set
of C∗p as our starting centers and allow the algorithm to discard the unnecessary ones.

Note thatAp j is similar in form toηi j in the DINA model. Although they serve a similar
function, our approach is not unique to clustering DINA-generated data. The capability
score (and the sum score) are reasonable estimates for any conjunctive CDM. As we will
see in Section 5, we can similarly rescale the centers for use with other CDMs.
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4.3 Performance

After calculating the correspondingB matrix, we cluster the students using hierarchical
clustering (complete linkage) and traditional k-means, both asking for 23 = 8 clusters. We
then re-cluster with traditional k-means and the empty k-means variation using the rescaled
starting centers. (Note that the symmetry of the rescaled starting centers is a direct result
of the balancedQ matrix; an unbalancedQ matrix will give asymmetric starting centers.)

To gauge performance, we calculate percent correct as the correct classification rate based
on the best one-to-one mapping of clusters to true skill set profiles. We also quantify the
clusters’ agreement to the true profiles using the Adjusted Rand Index (ARI), a common
measure of agreement between two partitions [7]. Under random partitioning, the expected
ARI value is zero. Larger values indicate better agreement; the maximum value is one.

Table 1:Comparing Clustering Methods with the True Skill Set Profiles via % Correct, ARIs

HC: Complete (23) k-means (23, random) k-means (23, rescaled) k-means (≤ 23, rescaled)
% Correct 0.940 0.847 0.973 0.980

ARI 0.952 0.745 0.947 0.971

All methods performed well; the rescaled starting centers resulted in the highest percents
correct and ARIs. Our k-means variation (correctly) found 8 clusters. In order to assess the
performance when not all possible skill set profiles are present, we then removed the three
smallest profiles{(0, 0, 1); (0, 1, 1); (1, 0, 1)} (which is the most favorable situation for the
other methods) and re-clustered.

Table 2:Comparing Clustering Methods with a Subset of the True Skill Set Profiles via % Correct, ARIs

HC: Complete (23) k-means (23, random) k-means (23, rescaled) k-means (≤ 23, rescaled)
% Correct 0.756 0.732 — 0.984

ARI 0.759 0.678 — 0.940

Again, all methods performed fairly well. Random starting centers for k-means showed
a decrease in performance when clustering a subset of the profiles. Traditional k-means
returned an error when using the rescaled starting centers since the initial cluster assignment
returned empty clusters (as expected). Our k-means variation, however, found five clusters
and had almost perfect agreement with the true skill set profiles. Even if we knew the
true number of clusters (5), it is not a guarantee of superior performance. The five-cluster
complete linkage solution was 93.5% percent correct with an ARI of 0.937. The traditional
k-means (5 random centers) was 80.5% correct with an ARI of 0.679. Even when using
only the five rescaled starting centers corresponding to the present profiles, the traditional k-
means performance was comparable (97.6%, ARI= 0.946) to using our k-means variation
which used the rescaled centers but required only an upper bound on the number of clusters.
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5 Simulations

We explore the performance of our approach using two conjunctive CDMs while varying
N, J, andK. For each simulation, theQ-matrix is randomly generated with a parameter
dictating the percentage of single skill questions. We initially cluster all generated students
and then remove a random number of profiles and re-cluster (the notation “—” corresponds
to errors in standard k-means). We first simulate from the DINA model (Section 4.1).

Table 3:Performance with DINA-generated Responses: % Correct (ARIs)

K N J Q Profiles HC: Complete k-means k-means k-means
% S/% M Removed (2K) (2K , random) (2K , rescaled) (≤ 2K , rescaled)

3 200 50 54/46 0.980 (0.978) 0.840 (0.776) 0.975 (0.981) 0.975 (0.981)
(4 removed) 0.640 (0.589) 0.620 (0.554) — 0.900 (0.933)

3 200 50 16/84 0.615 (0.416) 0.660 (0.352) 0.800 (0.778) 0.820 (0.814)
(1 removed) 0.775 (0.515) 0.639 (0.443) — 0.835 (0.838)

8 500 60 45/55 0.410 (0.197) 0.414 (0.166) — 0.764 (0.655)
(6 removed) 0.393 (0.173) 0.380 (0.129) — 0.236 (0.659)

8 500 60 5/95 0.332 (0.058) 0.356 (0.074) — 0.482 (0.199)
(8 removed) 0.328 (0.048) 0.343 (0.057) — 0.468 (0.159)

4 30 40 80/20 0.800 (0.581) 0.700 (0.390) — 1.000 (1.000)
(2 removed) 0.741 (0.447) 0.741 (0.544) — 1.000 (1.000)

In all cases, the k-means variation with attenuated starting centers outperforms the other
methods (via ARIs). We also noted in our simulations (not all presented here) that increas-
ing the percentage of multiple skill items decreases the other methods’ performance while
our k-means variation remains fairly steady. Moreover, in “classroom” size data sets, this
variation identified the profiles present while other methods unnecessarily split the clusters.

We also present results using responses generated from the noisy input, deterministic output
“and” gate (NIDA) model, another common conjunctive CDM. The item response form is

P(yi j = 1 | αi , sk, gk) =
K
∏

k=1

[(1 − sk)
αikg1−αik

k ]qjk

wheresk, gk are slip, guess parameters indexed on skill (rather than item); see [8] for further
details. Responses are similarly generated; the results are comparable.

Table 4:Performance with NIDA-generated Responses: % Correct (ARIs)

K N J Q Profiles HC: Complete k-means k-means k-means
% S/% M Removed (2K) (2K , random) (2K , rescaled) (≤ 2K , rescaled)

3 200 50 36/64 0.935 (0.941) 0.705 (0.622) 0.965 (0.942) 0.965 (0.942)
(4 removed) 0.604 (0.432) 0.549 (0.342) — 0.549 (0.408)

3 200 50 18/82 0.760 (0.552) 0.830 (0.688) 0.895 (0.787) 0.895 (0.787)
(3 removed) 0.838 (0.808) 0.738 (0.649) — 0.900 (0.922)

8 500 60 63/37 0.450 (0.225) 0.420 (0.163) — 0.734 (0.663)
(7 removed) 0.429 (0.212) 0.404 (0.155) — 0.753 (0.680)

4 30 40 54/46 0.700 (0.357) 0.633 (0.321) — 0.867 (0.661)
(2 removed) 0.615 (0.250) 0.538 (0.202) — 0.846 (0.600)
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6 Conclusions

The modified k-means algorithm presented here, called “empty k-means”, allows a more
flexible approach to clustering for use in applications such as skill set profile clustering
where the true number of clusters is not known, but may be bounded. It allows the user to
specify a maximum number of possible clusters which removes the need to make a subjec-
tive decision on the number of clusters. We define our attenuated starting cluster centers by
the Q-matrix (giving us the hypercube corners in the case of all single skill items). As seen
in the simulated results, in cases where all natural clusters were present, such starting val-
ues gave superior clustering results (compared with both k-means with random starts and
hierarchical clustering). In cases where some natural clusters were not present, the empty
k-means algorithm with the defined starting values again had superior performance, while
commonly traditional k-means would report an error due to empty clusters. Other appli-
cations might fit this framework as well. For example, compositional data on the simplex
would have natural cluster centers on the corners of hyper-triangle. Empty k-means could
also be used to investigate both the validity of theorized cluster centers and the believed
number of clusters. Further exploration of this approach is ongoing.
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Abstract.  Bayesian Knowledge Tracing (KT) models are employed by the 
cognitive tutors in order to determine student knowledge based on four 
parameters: learn rate, prior, guess and slip. A commonly used algorithm for 
learning these parameter values from data is the Expectation Maximization 
(EM) algorithm. Past work, however, has suggested that with four free 
parameters the standard KT model is prone to converging to erroneous 
degenerate states depending on the initial values of these four parameters. In this 
work we simulate data from a model with known parameter values and then run 
a grid search over the parameter initialization space of KT to map out which 
initial values lead to erroneous learned parameters. Through analysis of 
convergence and error surface visualizations we found that the initial parameter 
values leading to a degenerate state are not scattered randomly throughput the 
parameter space but instead exist on a surface with predictable boundaries. A 
recently introduced extension to KT that individualizes the prior parameter is 
also explored and compared to standard KT with regard to parameter 
convergence. We found that the individualization model has unique properties 
which allow it to avoid the local maxima problem. 

1 Introduction 

Knowledge Tracing (KT) models [1] are employed by the cognitive tutors [2], used by 
over 500,000 students, in order to determine when a student has acquired the knowledge 
being taught. The KT model is based on two knowledge parameters: learn rate and prior 
and two performance parameters: guess and slip. A commonly used algorithm for 
learning these parameter values from data is the Expectation Maximization (EM) 
algorithm. Past work [3,4,5], however, has suggested that with four free parameters the 
standard KT model is prone to converging to erroneous degenerate states depending on 
the initialized values of these four parameters. In this work we simulate data from a 
model with known parameter values and then run a grid search over the parameter 
initialization space of KT to map out which initial values lead to erroneous learned 
parameters. Through analysis of convergence and error surface visualizations we found 
that the initial parameter values leading to a degenerate state are not scattered randomly 
throughput the parameter space but instead exist on a surface within predictable 
boundaries. A recently introduced extension to KT that individualizes the prior parameter 
is also explored and compared to standard KT with regard to parameter convergence. We 
found that the individualization model has unique properties which allow for a greater 
number of initial states to converge to the true parameter values. 

                                                 

1 National Science Foundation funded GK-12 Fellow 
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1.1 Expectation Maximization algorithm 

The Expectation Maximization (EM) algorithm is a commonly used algorithm used for 
learning the parameters of a model from data. EM can learn parameters from incomplete 
data as well as from a model with unobserved nodes such as the KT model. In the 
cognitive tutors, EM is used to learn the KT prior, learn rate, guess and slip parameters 
for each skill, or production rule. One requirement of the EM parameter learning 
procedure is that initial values for the parameters be specified. With each iteration the 
EM algorithm will try to find parameters that improve fit to the data by maximizing the 
log likelihood function, a measure of model fit. There are two conditions that determine 
when EM stops its search and returns learned parameter results: 1) if the specified 
maximum number of iterations is exceeded or 2) if the difference in log likelihood 
between iterations is less than a specified threshold. Meeting condition 2, given a low 
enough threshold, is indicative of algorithm parameter convergence, however, given a 
low enough threshold, EM will continue to try to maximize log likelihood, learning the 
parameters to a greater precision. In our work we use a threshold value of 1e-4, which is 
the default for the software package used, and a maximum iteration count of 15. The max 
iteration value used is lower than typical, however, we found that in the average case our 
EM runs did not exceed more than 7 iterations before reaching the convergence 
threshold. The value of 15 was chosen to limit the maximum computation time since our 
methodology requires that EM be run thousands of times in order to achieve our goal. 

1.2 Past work in the area of KT parameter learning 

Beck & Chang [3] explained that multiple sets of KT parameters could lead to identical 
predictions of student performance. One set of parameters was described as the plausible 
set, or the set that was in line with the authors’ knowledge of the domain. The other set 
was described as the degenerate set, or the set with implausible values such as values that 
specify that a student is more likely to get a question wrong if they know the skill. The 
author’s proposed solution was to use a Dirichlet distribution to constrain the values of 
the parameters based on knowledge of the domain. 

Corbett & Anderson’s [1] approach to the problem of implausible learned parameters was 
to impose a maximum value that the learned parameters could reach, such as a maximum 
guess limit of 0.30 which was used in Corbett & Anderson’s original parameter fitting 
code. This method of constraining parameters is still being employed by researchers such 
as Baker et al. [4] and Ritter et al [5] in their more recent models.  

Alternatives to EM for fitting parameters were explored by Pavlik et al. [5], such as using 
unpublished code by Baker to brute force parameters that minimize an error function. 
Pavlik also introduced an alternative to KT, named PFA [5] and reported an increase in 
performance compared to the KT results. Gong, Beck and Heffernan [6] however are in 
the process of challenging PFA by using KT with EM which they report provides 
improved prediction performance over PFA with their dataset. 

While past works have made strides in learning plausible parameters they lack the benefit 
of knowing the true model parameters of their data. Because of this, none of past work 
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has been able to report the accuracy of their learned parameters. One of the contributions 
of our work is to provide a closer look at the behavior and accuracy of EM in fitting KT 
models by using synthesized data that comes from a known set of parameter values. This 
enables us to analyze the learned parameters in terms of exact error instead of just 
plausibility. To our knowledge this is something that has not been previously attempted. 

2 Methodology 

Our methodology involves first synthesizing response data from a model with a known 
set of parameter values. After creating the synthesized dataset we can then train a KT 
model with EM using different initial parameter values and then measure how far from 
the true values the learned values are. This section describes the details of this procedure. 

2.1 Synthesized dataset procedure 

To synthesize a dataset with known parameter values we run a simulation to generate 
student responses based on those known ground truth parameter values. These values will 
later be compared to the values that EM learns from the synthesized data. To generate the 
synthetic student data we defined a KT model using functions from MATLAB’s Bayes 
Net Toolbox (BNT) [7]. We set the known parameters of the KT model based on the 
mean values learned across skills in a web based math tutor called ASSISTments [9]. 
These values which represent the ground truth parameters are shown in Table 1. 

Table 1. Ground truth parameters used for student simulation 

Prior Learn rate Guess Slip 

Uniform random dist 0.09 0.14 0.09 
 
Since knowledge is modeled dichotomously, as either learned or unlearned, the prior 
represents the Bayesian network’s confidence that a student is in the learned state. The 
simulation procedure makes the assumption that confidence of prior knowledge is evenly 
distributed. 100 users and four question opportunities are simulated, representing a 
problem set of length four. Each doubling of the number of users also doubles the EM 
computation time. We found that 100 users were sufficient to achieve parameter 
convergence with the simulated data. Figure 1 shows pseudo code of the simulation. 

 

 

 

 

 

 

Figure 1. Pseudo code for generating synthetic student data from known KT parameter values 

KTmodel.lrate = 0.09 
KTmodel.guess = 0.14 
KTmodel.slip = 0.09 
KTmodel.num_questions = 4 
For user 1 to 100 
    prior(user) = rand() 
    KTmodel.prior = prior(user) 
    sim_responses(user) = sample.KTmodel 
End For 
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Student responses are generated probabilistically based on the parameter values. For 
instance, the Bayesian network will roll a die to determine if a student is in the learned 
state based on the student’s prior and the learn rate. The network will then again role a 
die based on guess and slip and learned state to determine if the student answers a 
question correct or incorrect at that opportunity. After the simulation procedure is 
finished, the end result is a datafile consisting of 100 rows, one for each user, and five 
columns; user id followed by the four incorrect/correct responses for each user.  

2.2 Analysis procedure 

With the dataset now generated, the next step was to start EM at different initial 
parameter values and observe how far the learned values were from the true values. A 
feature of BNT is the ability to specify which parameters are fixed and which EM should 
try to learn. In order to gain some intuition on the behavior of EM we decided to start 
simple by fixing the prior and learn rate parameters to their true values and focusing on 
learning the guess and slip parameters only. An example of one EM run and calculation 
of mean absolute error is shown in the table below. 

Table 3. Example run of EM learning the Guess and Slip parameters of the KT model 

Parameter True value EM initial value EM learned value 

Guess 0.14 0.36 0.23 
Slip 0.09 0.40 0.11 
Error = [abs(GuessTrue – GuessLearned) + abs(SlipTrue – SlipLearned)] / 2  
           = 0.11 

 
The true prior parameter value was set to the mean of the simulated priors (In our 
simulated dataset of 100 the mean prior was 0.49). Having only two free parameters 
allows us to represent the parameter space in a two dimensional graph with guess 
representing the X axis value and slip representing the Y axis value. After this 
exploration of the 2D guess/slip space we will explore the more complex four free 
parameter space. 

2.2.1 Grid search mapping of the EM initial parameter convergence space 

One of the research questions we wanted to answer was if the initial EM values leading to 
a degenerate state are scattered randomly throughout the parameter space or if they exist 
within a defined surface or boundary. If the degenerate initial values are scattered 
randomly through the space then EM may not be a reliable method for fitting KT models. 
If the degenerate states are confined to a predictable boundary then true parameter 
convergence can be achieved by restricting initial parameter values to within a certain 
boundary. In order to map out the convergence of each initial parameter we iterated over 
the entire initial guess/slip parameter space with a 0.02 interval. Figure 2 shows how this 
grid search exploration of the space was conducted. 
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Figure 3. Output of the grid search procedure exploring the initial EM guess/slip parameter space of KT 

We started with an initial guess and slip of 0 and ran EM to learn the guess and slip 
values of our synthesized dataset. When an EM run finished, either because it reached the 
convergence threshold or the maximum iteration, it returned the learned guess and slip 
values as well as the log likelihood fit to the data of the initial parameters and the learned 
parameters (represented by LLstart and LLend in the figure). We calculated the mean 
absolute error between the learned and true values using the formula in Table 3. We then 
increased the initial slip value by 0.02 and ran EM again and repeated this procedure for 
every guess and slip value from 0 to 1 with an interval of 0.02. 

3 Results 

The analysis procedure produced an error and log likelihood value for each guess/slip 
pair in the parameter space. This allowed for visualization of the parameter space using 
Guessinitial as the X coordinate, Slipinitial as the Y coordinate and either log likelihood or 
mean absolute error as the error function. 

3.1 Tracing EM iterations across the KT log likelihood space 

The calculation of error is made possible only by knowing the true parameters that 
generated the synthesized dataset. EM does not have access to these true parameters but 
instead must use log likelihood to guide its search. In order to view the model fit surface 
and how EM traverses across it from a variety of initial positions, we set the Z-coordinate 
(background color) to the LLstart value and logged the parameter values learned at each 
iteration step of EM. We overlaid a plot of these EM iteration step points on the graph of 
model fit. This combined graph is shown below in figure 4 which depicts the nature of 
EM’s convergence with KT. For the EM iteration plot we tracked the convergence of EM 
starting positions in 0.10 intervals to reduce clutter instead of 0.02 intervals which were 
used to created the model fit plot. No EM runs reached their iteration max for this 
visualization. Starting values of 0 or 1 (on the borders of the graph) do not converge from 
the borders because of how BNT fixes parameters with 0 or 1 as their initial value. 
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Figure 4. Model fit and EM iteration convergence graph of Bayesian Knowledge Tracing. Small white dots 
represent parameter starting values. Green dots represent the parameter values at each EM iteration. The 
red dots represent the resulting learned parameter values and the large white dot is ground truth. The 
background color is the log likelihood (LLstart) of the parameter space. Dark blue represent better fit.  

This visualization depicts the multiple global maxima problem of Knowledge Tracing. 
There are two distinct regions of best fit (dark blue); one existing in the lower left 
quadrant which contains the true parameter values (indicated by the white “ground truth” 
dot), the other existing in the upper right quadrant representing the degenerate learned 
values. We can observe that all the green dots lie within one of the two global maxima 
regions, indicating that EM makes a jump to an area of good fit after the first iteration. 
The graph shows that there are two primary points that EM converges to with this 
dataset; one centered around guess/slip = 0.15/0.10, the other around 0.89/0.76. We can 
also observe that initial parameter values that satisfy the equation: guess + slip <= 1, such 
as guess/slip = 0.90/0.10 and 0.50/0.50, successfully converge to the true parameter area 
while initial values that satisfy: guess + slip > 1, converge to the degenerate point.  

3.2 KT convergence when learning all four parameters 

For the full four parameter case we iterated through initial values of the prior, learn rate, 
guess and slip parameters from 0 to 1 with a 0.05 interval. This totaled 194,481 EM runs 
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(21^4) to traverse the entire parameter space. For each set of initial positions we logged 
the converged learned parameter values. In order to evaluate this data we looked at the 
distribution of converged values for each parameter across all EM runs.  

 

 

Figure 5. Histograms showing the distribution of learned parameter values for each of the four Knowledge 
Tracing parameters. The first row shows the parameter distributions across all the EM runs. The second 
row shows the parameter distributions for the EM runs where initial guess and slip summed to less than 1. 

The first row of histograms in Figure 5 shows the distribution of learned parameter values 
across all EM runs. Generally, we can observe that all parameters have multiple points of 
convergence; however, each histogram shows a clear single or bi-modal distribution. The 
prior and learn rate appear to be the parameters that are easiest to learn since the majority 
of EM runs lead to values near their true values. The guess and slip histograms exhibit 
more of the bi-modal behavior seen in the two parameter case, with points of 
convergence at opposite ends of the parameter space. In the two parameter case, initial 
guess and slip values that summed to less than one converged towards the ground truth 
coordinate. To see if this trend generalized with four free parameters we generated 
another set of histograms but only included EM runs where the initial guess and slip 
parameters summed to less than one. These histograms are shown in the second row. 

3.3 Evaluating an extension to KT called the Prior Per Student model 

We evaluated a model [9], recently introduced by the authors, that allows for 
individualization of the prior parameter. By only modeling a single prior, Knowledge 
tracing makes the assumption that all students have the same level of knowledge of a 
particular skill before using the tutor. The Prior Per Student (PPS) model challenges that 
assumption by allowing each student to have a separate prior while keeping the learn, 
guess and slip as parameters of the skill. The individualization is modeled completely 
within a Bayesian model and is accomplished with the addition of just a single node, 
representing student id, and a single arc, connecting the student node to the first 
opportunity knowledge node. We evaluated this model using the two-parameter case, 
where guess and slip are learned and learn rate and prior are fixed to their true values. 
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Figure 6. EM convergence graphs of the Prior Per Student (PPS) model (left) and KT model (right). 
Results are shown with ground truth datasets with guess/slip of 0.14/0.09, 0.50/0.50 and 0.60/0.10 

The KT models, in the right column of figure 6, all show multiple points of convergence 
with only one of the points near the ground truth coordinate (white dot). Unlike KT, the 
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PPS models, in the left column, have a single point of convergence regardless of the 
starting position and that single point is near the ground truth value. The red lines in two 
of the PPS models indicate that the maximum iteration count was reached. In the 
0.14/0.09 model it appears that PPS with starting parameters in the upper right region 
were converging towards the true values but hit the max iteration count before arriving. 
The PPS model was shown [9] to provide improved prediction over standard knowledge 
tracing with real world datasets. The visualizations shown in figure 6 suggest that this 
improved prediction accuracy is likely due in part to the PPS model’s improved 
parameter learning accuracy from a wider variety of initial parameter locations.  

In the case of the PPS models show above there were as many prior parameters as there 
were students and these parameters were all set to the values that were generated for each 
simulated student as seen in the line “KTmodel.prior = prior(user)” in figure 1. 
Accurately inferring many initial prior values would be difficult in practice; however, a 
heuristic is described in Pardos et al [9] that seeds each individual prior based on the 
student’s first response. Applying this same heuristic to our synthesized dataset with 
ground truth guess/slip values of 0.14/0.09 we found that all points converged to the true 
parameter location without EM reaching its maximum iteration count. This performance 
suggests that single point convergence to the true parameters is possible with the PPS 
model without the benefit of individual student prior knowledge estimates. A more 
detailed description and analysis of this technique is in work that is in preparation.  

4 Discussion and Future Work 

An argument can be made that if two sets of parameters fit the data equally well then it 
makes no difference if the parameters used are the true parameters. This is true when 
prediction of responses is the only goal. However, when inferences about knowledge and 
learning are being made, parameter plausibility and accuracy is crucial. It is therefore 
important to understand how our student models and fitting procedures behave if we are 
to draw valid conclusions from them. In this work we have depicted how KT exhibits 
multi-modal convergence properties due to its multi-modal log likelihood parameter 
space. We demonstrated that with our simulated dataset, choosing initial guess and slip 
values that summed to less than one allowed for convergence towards the ground truth 
values in the two parameter case and in the four parameter case, applying this same rule 
resulted in a convergence distribution with a single mode close to the ground truth value. 
Lastly, we found that use of the Prior Per Student model eliminated the multiple maxima 
dilemma in the two parameter case for our synthesized datasets and use of a prior seeding 
heuristic for PPS resulted in performance comparable to having perfect knowledge of the 
individual prior confidence probabilities.  

This research raises a number of questions such as how KT models behave with a 
different assumption about the distribution of prior knowledge. What is the effect of 
increased number of students or increased number of question responses per student on 
parameter learning accuracy? How does PPS converge with four parameters and what 
does the model fit parameter convergence space of real world datasets look like? These 
are questions that are still left to be explored by the EDM community. 
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Abstract. Rare association rules are those that only appear infrequently even 
though they are highly associated with very specific data. In consequence, 
these rules can be very appropriate for using with educational datasets since 
they are usually imbalanced. In this paper, we explore the extraction of rare 
association rules when gathering student usage data from a Moodle system. 
This type of rule is more difficult to find when applying traditional data mining 
algorithms. Thus we show some relevant results obtained when comparing 
several frequent and rare association rule mining algorithms. We also offer 
some illustrative examples of the rules discovered in order to demonstrate both 
their performance and their usefulness in educational environments. 

1 Introduction 

Nowadays most research on Association Rule Mining (ARM) has been focused on 
discovering common patterns and rules in large datasets. In fact, ARM is widely and 
successfully used in many different areas, such as telecommunication networks, market 
and risk management, inventory control, mobile mining, graph mining, educational 
mining, etc. The patterns and rules discovered are based on the majority of commonly 
repeated items in the dataset, though some of these data can be either obvious or 
irrelevant [5]. Unfortunately, not enough attention has been paid to the extraction 
process of rare association rules, also known as non-frequent, unusual, exceptional or 
sporadic rules, which provide valuable knowledge about non-frequent patterns. The aim 
of Rare Association Rule Mining (RARM) is to discover rare and low-rank itemsets to 
generate meaningful rules from these items. Notice that this specific type of rule cannot 
be revealed easily using traditional association mining algorithms.  

In previous works, other authors have applied ARM to e-learning systems extensively to 
discover frequent student-behavior patterns [13], [7]. However, RARM has been hardly 
applied to educational data, despite the fact that infrequent associations can be of great 
interest since they are related to rare but crucial cases. For instance, they might allow 
the instructor to verify a set of rules concerning certain infrequent/abnormal learning 
problems that should be taken into account when dealing with students with special 
needs. Thus, this information could help the instructor to discover a minority of students 
who may need specific support with their learning process. From the perspective of 
knowledge discovery, the greatest reason for applying RARM in the field of education 
is the imbalanced nature of data in education, as in other real-world tasks, i.e., some 
classes have many more instances than others. Furthermore, in applications like 
education, the minor parts of an attribute can be more interesting than the major parts; 
for example, students who fail or drop out are usually less frequent than those students 
who fare well. In the field of association rule mining, the rare item problem [6] is 
essentially considered to be a data imbalance problem which may, on either side of the 
association rule, give rise to severe problems. The problem of imbalance has only been 
dealt with in one educational data mining study [9]. However, in this work, data was 
firstly modified/preprocessed to solve the problem of imbalance and then several 
different classification algorithms were applied instead of specific association rule 
algorithms. 
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In this paper, we explore the application of RARM to student data stored in a large 
Moodle repository to discover information about infrequent student behavior. This 
paper is organized as follows. Section 2 presents some background on frequent and 
infrequent association rule mining while Section 3 describes the experiments carried out 
and the analysis of the most relevant results obtained, as well as including a description 
of the most accurate rules mined by applying both ARM and RARM to a Moodle 
dataset containing real information. Finally, conclusions are outlined in Section 4. 

2 Background 

Association Rule Mining is one of the most popular and well-known data mining 
methods for discovering interesting relationships between variables in transaction 
databases or other data repositories [2]. An association rule is an implication X⇒Y, 
where X and Y are disjoint itemsets (i.e., sets with no items in common). The intuitive 
meaning of such a rule is that when X appears, Y also tends to appear. The two 
traditional measures for evaluating association rules are support and confidence. The 
confidence of an association rule X⇒Y is the proportion of the transactions containing 
X which also contain Y. The support of the rule is the fraction of the database that 
contains both X and Y. The problem of association rule mining is usually broken down 
into two subtasks. The first one is to discover those itemsets whose occurrences exceed 
a predefined support threshold, and which are called frequent itemsets. A second task is 
to generate association rules from those large items constrained by minimal confidence. 
Nowadays, the problem of frequent itemset mining has been studied widely and many 
algorithms have already been proposed [3], mainly variations or improvements of the 
Apriori algorithm [2] which is the first, simplest and most common ARM algorithm. 
Most research in the area of ARM is focused on the sub-problem of efficient frequent 
rule generation. However in some data mining applications relatively infrequent 
associations are likely to be of great interest, too. Though these algorithms are 
theoretically expected to be capable of finding rare association rules, they actually 
become intractable if the minimum level of support is set low enough to find rare rules 
[5].  

The problem of discovering rare items has recently captured the interest of the data 
mining community [1]. As previously explained, rare itemsets are those that only appear 
together in very few transactions or some very small percentage of transactions in the 
database [5]. Rare association rules have low support and high confidence in contrast to 
general association rules which are determined by high support and a high confidence 
level.  Figure 1 illustrates how the support measure behaves in relation to the two types 
of rules. 

 

Figure 1.  Rules in a database.  
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There are several different approaches to discover rare association rules. The simplest 
way is to directly apply the Apriori algorithm [2] by simply setting the minimum 
support threshold to a low value. However, this leads to a combinatorial explosion, 
which could produce a huge number of patterns, most of them frequent with only a 
small number of them actually rare. A different proposal, known as Apriori-Infrequent, 
involves the modification of the Apriori algorithm to use only the above-mentioned 
infrequent itemsets during rule generation. This simple change makes use of the 
maximum support measure, instead of the usual minimum support, to generate 
candidate itemsets, i.e., only items with a lower support than a given threshold are 
considered. Next, rules are yielded as generated by the Apriori algorithm. A totally 
different perspective consists of developing a new algorithm to tackle these new 
challenges. A first proposal is Apriori-Inverse [4], which can be seen as a more intricate 
variation of the traditional Apriori algorithm. It also uses the maximum support but 
proposes three different kinds of additions: fixed threshold, adaptive threshold and hill 
climbing. The main idea is that given a user-specified maximum support threshold, 
MaxSup, and a derived MinAbsSup value, a rule X is rare if Sup(X) < MaxSup and 
Sup(X)> MinAbsSup. A second proposal is the Apriori-Rare algorithm [11], also known 
as Arima, which is another variation of the Apriori approach. Arima is actually 
composed of two different algorithms: a naïve one, which relies on Apriori and hence 
enumerates all frequent itemsets; and MRG-Exp, which limits the considerations to 
frequent itemsets generators only. Finally, please notice that the first two approaches 
(Apriori-Frequent and Apriori-Infrequent) are taken to ensure that rare items are also 
considered during itemset generation, although the two latter approaches (Apriori-
Inverse and Apriori-Rare) try to encourage low-support items to take part in candidate 
rule generation by imposing structural constraints. 

The algorithms aforementioned are the most important RARM proposals. Next, we will 
explore how these approaches can be applied over educational data in such a way that 
their usefulness in this research area is shown.  

3 Experimentation and Results 

In order to test the performance and usefulness of applying RARM to e-learning data, 
we have used student data gathered from the Moodle system to compare several ARM 
and RARM algorithms and show examples of discovered rules. 

3.1 Experimentation 

The experiments were performed using data from 230 students in 5 Moodle courses on 
computer science at the University of Córdoba. Moodle (http://moodle.org) is one of the 
most frequently used free Learning Content Management Systems (LCMS) and keeps 
detailed logs of all activities that students perform (e.g., assignments, forums and 
quizzes). This student usage data has been preprocessed in order to be transformed into 
a suitable format to be used by our data mining algorithms [10]. First, a summary table 
(see Table 1) has been created, which integrates the most important information about 
the activities and the final marks obtained by students in the courses. Notice that we 
have transformed all the continuous attributes into discrete attributes that can be treated 
as categorical attributes. Discretization allows the numerical data to be divided into 
categorical classes that are easier for the instructor to understand. 
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Name Description Values 

course Identification number of the course. C218, C94, C110, C111, C46 

n_assigment Number of assignments done. ZERO, LOW, MEDIUM, HIGH 

n_quiz Number of quizzes taken. ZERO, LOW, MEDIUM, HIGH 

n_quiz_a Number of quizzes passed. ZERO, LOW, MEDIUM, HIGH 

n_quiz_s Number of quizzes failed. ZERO, LOW, MEDIUM, HIGH 

n_posts Number of messages sent to the forum. ZERO, LOW, MEDIUM, HIGH 

n_read Number or messages read on the forum. ZERO, LOW, MEDIUM, HIGH 

total_time_assignment Total time spent on assignments. ZERO, LOW, MEDIUM, HIGH 

total_time_quiz Total time spent on quizzes. ZERO, LOW, MEDIUM, HIGH 

total_time_forum Total time spent on forum. ZERO, LOW, MEDIUM, HIGH 

mark Final mark obtained by the student in the 
course. 

ABSENT, FAIL, PASS, 
EXCELLENT 

Table 1. Attributes used for each student instance 

Due to the way their values are distributed, the course and mark attributes are clearly 
imbalanced, i.e., they have one or many values with a very low percentage of 
appearance: 

• Course: From a total of 230 students, 80 took course 218 (34.78%), 66 students 
did course 94 (28.69%), 62 students did 110 (26.95%), 13 students took course 
111 (5.65%) and 9 students took course 46 (3.91%). Thus, there are three 
predominant courses (C218, C94 and C110) and two minority courses (C111 
and C46). 

• Mark: From among 230 students, 116 students PASS the final exam with a 
normal/medium score (50.43%), 87 students FAIL the exam (38.82%), 15 
students obtain an EXCELLENT or very good/high score in the exam (6.52%) 
and 12 students were ABSENT from the exam (5.21%). So, there are two 
majority marks (PASS and FAIL) and two minority marks (EXCELLENT and 
ABSENT). 

A better view of such imbalanced value distribution for these two attributes (mark and 
course) can be seen graphically in Figure 2. 
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Figure 2. Value distribution for the attributes Mark and Course. The different colours on the right 
image correspond to the different Marks. 

We performed a comparison between ARM and different RARM algorithms to discover 
rare class association rules [12] from the aforementioned data. A class association rule 
is a special subset of association rules with the consequent of the rule limited to a target 
class label (only one predefined item), whereas the left-hand may contain one or more 
attributes. It is represented as A → C, where A is the antecedent (in our case, the course 
and activity attributes) and C is the class (in our case, the mark attribute). This type of 
rule is more easily understood than general association rules, since it only comprises 
one element in the consequent and usually represents discovered knowledge at a high 
level of abstraction, and so can be used directly in the decision making process [8]. In 
the context of EDM, class association rules can be very useful for educational purposes, 
since they show any existing relationships between the activities that students perform 
using Moodle and their final exam marks. To obtain class association rules we need to 
filter the resulting rules from the ARM or RARM algorithms, so we only select those 
rules that have a single attribute (i.e., the mark attribute) in their consequent. 

We evaluated the four different Apriori proposals following the configuration 
parameters stated below: 

• Apriori-Frequent [2], setting the minimum support threshold at a very low value 
(0.05);  

• Apriori-Infrequent, setting the maximum support at 0.1;  

• Apriori-Inverse and Apriori-Rare, using the same support threshold set at 0.1. 

We also assigned the value 0.7 as the confidence threshold for all these algorithms. 

3.2 Evaluation of results 

Table 2 summarizes the results obtained from the four Apriori proposals, and shows the 
number of frequent and infrequent itemsets mined, the number of rules discovered, and 
their average support and confidence.  
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Algorithm # Freq. 
Itemsets 

# UnFreq. 
Itemsets # Rules Avg Support/     

± Std Deviation 
Avg Confidence/ 
± Std Deviation 

Apriori-Frequent 11562 -- 788 0.162±0.090 0.717±0.211 

Apriori-Infrequent -- 1067 388 0.058±0.060 0.863±0.226 

Apriori-Inverse -- 3491 46 0.056±0.070 0.883±0.120 

Apriori-Rare -- 5750 44 0.050±0.080 0.885±0.108 

Table 2. Comparison of ARM and RARM proposals. 

Notice that the Apriori-Frequent is the only algorithm that uses frequent itemsets. 
Therefore, it discovers the greatest number of rules (both frequent and rare) with the 
highest average support but not the highest confidence. This means that the instructor 
needs to search manually for the rare rules. On the other hand, Apriori-Infrequent mines 
the smallest number of infrequent itemsets. Though it discovers a great number of rare 
rules, most of them are redundant. Finally, Apriori-Inverse and Apriori-Rare behave in a 
very similar fashion and are the best at discovering rare association rules, since they use 
a higher number of infrequent items than Apriori-Infrequent and discover a lower 
number of rare rules. A lower number of rules is easier than a higher number of rules for 
the instructor to use and understand. Furthermore, the standard deviation shows that 
both Apriori-Inverse and Apriori-Rare tend to be very close to the average, so one 
expects to obtain rules that will not vary much from these values. 

3.3 Examples of discovered rules 

Due to the imbalanced nature of the data source, different versions of the conditional 
support were defined. Conditional support is a well-known measure for the processing 
of imbalanced data using class association rules [12]. Thus, three different measures are 
considered to evaluate rule support, as defined in continuation: 

• The traditional support of a rule A → C, with A as the antecedent and C as the 

consequent, is defined as
N

CAnCASup )()( ∩
=→ , where n(A∩C) is the number 

of instances that matches both the antecedent and consequent, and N is the total 
number of instances.  

However, the support of rules that contain course and mark attributes 
(imbalanced attributes) must be defined as follows: 

o The conditional support with respect to the mark of a class association 
rule A → Mark, where Mark stands for the imbalanced attribute mark, 

and is defined as 
)(

)()(
Markn

MarkAnMarkASupM ∩
=→ , where n(A∩Mark) 

is the number of instances that matches both the antecedent and 
consequent and n(Mark) is the number of instances that matches the 
”mark” attribute. 
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o The conditional support with respect to the course of a class association 
rule MarkCourseA →∩ , where Course stands for the imbalanced 
attribute course and Mark for the class attribute, is defined as 

)(
)()(

Coursen
MarkCourseAnMarkCourseASupC ∩∩

=→∩ , where n(Course) 

is the number of instances that matches the “course”  attribute.  

Next, there are some examples of rules that were mined using both the ARM and the 
different RARM algorithms. For each rule, we show the antecedent and the consequent 
constructed, as well as the support and confidence measures. Firstly, Table 3 shows 
some representative association rules mined using the Apriori-Frequent algorithm. A 
further description is detailed below. 

Rule Antecedent Consequent Sup SupC/SupM Conf 

1 total_time_forum=HIGH mark=PASS 0.24 --/0.47 0.82 

2 n_posts=MEDIUM AND n_read=MEDIUM 
AND n_quiz_a=MEDIUM mark=PASS 0.13 

 

--/0.25 
0.71 

3 course=C110 AND n_assignment=HIGH mark=PASS 0.14 0.52/0.27 0.89 

4 total_time_quiz=LOW mark=FAIL 0.21 --/0.55 0.78 

5 n_assignment=LOW mark=FAIL 0.23 --/0.60 0.70 

6 n_quiz_a=LOW AND course=C218 mark=FAIL 0.18 0.51/0.47 0.83 

Table 3. Rules extracted using the Apriori-Frequent algorithm. 

As can be seen, all the rules discovered (not only the 6 rules shown in Table 3 but also 
the other 788 rules discovered) contain only frequent itemsets, such as mark=PASS 
(students who passed the exam), mark=FAIL (students who failed), course = 119 
(students who took the course 119), course=218 and course=94. Secondly, we can see 
that these rules have low support (but not very low), a medium value in the two 
conditional supports and are of high confidence (but not very high). Finally, to explain 
the usefulness of these rules for the instructor, we are going to describe their meaning. 
Rule 1 shows that if students spend a lot of time in the forum (a high value) then they 
pass the final exam. It provides information to the instructor about how the forum has 
been a good activity for students with a confidence of 0.82. Rule 2 shows that if 
students have submitted and read messages to/from the forum, and they have passed 
quizzes, then they have passed the exam. The information provided is similar to the 
previous data but adds the quizzes as another determining factor in the final mark (as is 
logical). Rule 3 shows that students in course 110 who sent in many assignments then 
passed the final exam (rule 5 is the opposite version but for any course). So, the number 
of assignments is directly related to the final mark. Rule 4 and 5 show that if the total 
time in quizzes is low or the number of passed quizzes is low (and the course is 218), 
then students obtain a bad mark. So, quizzes are also directly related to the mark and 
can be used to detect in time students at risk of failing the final exam. 
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Next, Table 4 shows some representative rare association rules obtained using the 
Apriori-Rare algorithm. Please notice that due to the Apriori-Inverse approach obtains 
almost the same set of rules, so we don’t present another analysis similar to the 
following table. A detailed description of this rule set is presented below. 

Rule Antecedent Consequent Sup SupC/SupM Conf 

1 n_quiz=HIGH AND n_quiz_a=HIGH mark=EXCELLENT 0.045 --/0.69 0.86 

2 total_time_assignment=HIGH mark=EXCELLENT 0.045 --/0.69 0.86 

3 n_posts=HIGH AND course=C46 mark=EXCELLENT 0.045 1.00/0.69 1.00 

4 
total_time_assignment=ZERO AND 

total_time_forum=ZERO AND 
total_time_quiz=ZERO]  

mark=ABSENT 0.050 
 

--/0.76 
0.78 

5 n_posts=ZERO AND  n_read=ZERO mark=ABSENT 0.050 --/0.76 0.78 

6 n_quiz=ZERO AND course=C111 mark=ABSENT 0.050 0.88/0.76 1.00 

Table 4. Rules extracted using the Apriori-Rare algorithm. 

As can be seen, all the rules that are discovered (not only the 6 rules shown in Table 4 
but also the other 44 rules discovered) contain only infrequent itemsets, such as 
mark=EXCELLENT (students who passed the exam with a very high score), 
mark=ABSENT (students who did not take the exam), course = 46 and course = 111 
(students who did courses 46 and 111 respectively). We can see that these rules have a 
very low support, a very high confidence level (the maximum value) and also a high 
value for the conditional supports; indicating that they are rare/infrequent rules and their 
data is imbalanced with respect to the course and mark attributes. To explain the 
usefulness of these rules for the instructor, we are going to describe their meaning. Rule 
1 shows that if students execute all the quizzes and pass them, then they obtain an 
excellent score in the final exam. It could be an expected rule that shows the instructor 
that quizzes can be used in order to predict very good student results. Rule 2 shows that 
if students spend a lot of time on assignments, they obtain an excellent score. This is the 
opposite of rule 5 in Table 3 

Finally, we have also compared the values of the evaluation measures, shown in 

and so it proves again that the number of assignments is 
directly related to the final mark. Rule 3 shows that if students in course 46 send a lot of 
messages to the forum, they obtain an excellent score. The instructor can use this 
information to detect very good students in course 46 depending on the number of 
messages they send to the forum.  The last three rules are about students who have been 
absent for the exam. They show the instructor that if students do not spend time on 
assignments, forum participation and quizzes, then they do not take the exam. The 
instructor can detect this type of student in time to help him/her to take part in course 
activities and also do the final exam. 

Table 3 
and Table 4. Firstly, we can see that confidence values (Conf) are normally higher in 
Table 4 (rare association rules) than in Table 3 (frequent association rules). Secondly, 
the support values (Sup) of rare association rules are much lower in Table 4 than the 
support of frequent association rules in Table 3. Then, we can see that relative support 
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values (SupC and SupM) of rare association rules are higher in Table 4 than the relative 
support of frequent ones in Table 3. It proves that rare association rules have high 
confidence levels, and although they have very low values of support with respect to all 
the data, these support values are high with respect to imbalanced attributes (as show 
the relative support measure). 

4 Concluding remarks and future work 

In this paper we have explored the use of RARM over educational data gathered from 
the Moodle system installed at the University of Córdoba. The use of this approach has 
shown to be an interesting research line in the context of EDM, since most real-world 
data are usually imbalanced. Rare-association rules are more difficult to mine using 
traditional data mining algorithms, since they do not usually consider class-imbalance 
and tend to be overwhelmed by the major class, leaving the minor class to be ignored. 
In fact, we have shown that the regular Apriori algorithm [2] (known as Apriori-
Frequent) discovers a huge number of rules with frequent items. Hence we explored 
how some specific algorithms, such as Apriori-Inverse and Apriori-Rare, are better at 
discovering rare-association rules than other non-specific algorithms, such as Apriori-
Frequent and Apriori-Infrequent. In fact, the set of rules discovered by Apriori-Rare are 
included into the set of rules discovered by Apriori-Inverse but they are included neither 
into the set of rules discovered by Apriori-Infrequent nor Apriori. 

Finally, we have shown how the rules discovered by RARM algorithms can help the 
instructor to detect infrequent student behavior/activities in an e-learning environment 
such as Moodle. In fact, we have evaluated the relation/influence between the on-line 
activities and the final mark obtained by the students.  

In the future, we would like to develop a new algorithm specifically to discover RARM 
using evolutionary algorithms, and to compare its performance and usefulness in e-
learning data versus the previous algorithms. We also plan to explore the use of other 
different rule evaluation measures for rare association rule mining. 
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Abstract.  We present machine-learned models that detect two forms of middle 
school students’ systematic data collection behavior, designing controlled 
experiments and testing the stated hypothesis, within a virtual phase change 
inquiry learning environment. To generate these models, we manually coded a 
proportion of the student activity sequence clips using “text replay tagging” of 
log files, an extension of the text replay method presented in Baker, Corbett & 
Wagner (2006). We found that feature sets based on cumulative attributes, 
attributes computed over all predecessor clips, yielded better detectors of CVS-
compliant and hypothesis-testing behavior than more local representations of 
student behavior. Furthermore, our detectors classify behaviors well enough to 
use them in our learning environment to determine which students require 
scaffolding on these skills. 

1 Introduction 

While inquiry learning is generally considered an important part of science education at 
all levels, many students lack inquiry skills [14]. Students have difficulties focusing on 
relevant variables, stating testable hypotheses, drawing correct conclusions from 
experiments, and linking hypotheses and data. They also struggle with basic experimental 
processes such as designing effective experiments, translating theoretical variables from 
their hypotheses into manipulable variables, and adequately monitoring their progress 
[10]. To that end, we are developing a learning environment, Science Assistments 
(http://users.wpi.edu/~sci_assistments), with the goal of assessing and scaffolding 
students’ scientific inquiry as they engage in inquiry using interactive microworlds [13]. 
We place special emphasis on students’ development of skills for conducting experiments 
since it has been argued that learning to correctly plan and execute controlled 
experiments is necessary to the development of other scientific inquiry skills [13]. In 
order to properly identify students needing inquiry support, we must be able to 
distinguish students who exhibit appropriate systematic behaviors from those who do not. 

In this paper, we present machine-learned models for detecting two forms of systematic 
data collection behavior exhibited as students conduct experiments in a phase change 
microworld. The first behavior we detected was designing controlled experiments using 
the Control of Variables Strategy (CVS) [9], a strategy stating that one should change 
only the variable to be tested, the target variable, while keeping all extraneous variables 
constant to test the effects of that variable on an outcome. The second was collecting data 
to test a stated hypothesis, as opposed to collecting data that does not pertain to the stated 
hypothesis. To train our behavior detectors we generated training instances by manually 
inspecting and coding a proportion of student activity sequences using “text replay 
tagging” of log files. Similar to a video replay or screen replay, a text replay [2] is a pre-
specified chunk of student actions presented in text that captures information such as 
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each action’s time, type, widget selection, and input selection. Our approach leverages 
the success of [4, 6] in using text replays to provide training instances for machine-
learned detectors of gaming the system within intelligent tutors. We are building 
detectors of these constructs, as opposed to detectors that identify specific kinds of 
unsystematic behavior, with the eventual goal of auto-scoring students’ systematicity. 
Despite the ill defined nature of science inquiry, we can tutor students’ inquiry skills with 
this approach, an approach similar to model tracing (cf. [16]). 

This approach differs from previous text replays in two ways. First, whereas text replays 
allow for the classification of a replay clip as a single category out of a set of categories, 
text replay tagging allows multiple tags to be associated with one clip. For example, a 
clip may be tagged as CVS-compliant, hypothesis testing-compliant, both, or neither. 
Second, the behaviors we are studying are temporally more coarse-grained than in [4] or 
[6], requiring the display of the entire sequence of work on part of a problem rather than 
specific attempts to answer a problem or problem step. This permits coders to obtain a 
more comprehensive view of students’ inquiry processes necessary for labeling processes 
like these that unfold over time. After producing these “gold standard” classifications, we 
summarized each student’s activity sequences by creating a feature set from the data and 
used classification methods to find models that predict the labels from the data. In 
accordance with our data, we considered problem-level features of the student data rather 
than step or transaction-level data, unlike in many prior EDM models of student behavior 
(e.g. [1, 4, 6, 8, 20]). 

Past research has attempted to model and analyze inquiry behavior using knowledge 
engineering approaches. In [7], the authors defined rules that encapsulated behaviors for 
differing levels of systematic experimentation skill when solving problems with 
interactive genetics simulations. They defined their rules over a set of domain-specific 
features extrapolated from student interactions, such as the types of genetic crosses made 
and if crosses were repeated, and domain-general features, such as time spent solving a 
problem. In [19], the authors constructed an ACT-R model based on an assessment of 
skill differences in novices and experts that designed and interpreted psychological 
experiments within a computerized environment. They developed a detailed set of rules 
and hierarchical high and low-level goals and actions to represent the cognitive processes 
of how an expert hypothesized, explored, analyzed and concluded about two competing 
theories. Finally, they tested the efficacy of their model by adding and removing key 
productions and comparing the model’s simulated performance to experts and novices. 
Like both these approaches, we use low-level student actions as a basis for creating our 
behavioral models and, particularly like [19], we are interested in quantifying how well 
our detectors predict behaviors. However, our approach is different in that it does not 
prescribe rules for systematicity; instead, given data, human classified labels, and a 
feature set, we use machine learning techniques to discover rules. This approach has 
several advantages. The resulting models capture relationships that humans cannot easily 
intuit. They also identify boundary conditions more precisely than knowledge 
engineering approaches. Finally, unlike knowledge engineering approaches, they are 
easier to verify, since cross-validation is possible. 
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2 Learning Environment

Our phase change environment 
students to engage in authentic inquiry using a 
Each problem in our learning 
to determine if a particular independent
outcomes like the melting point or boiling point of a substance.
students demonstrated proficiency
tables and graphs, analyzing 
variable affected the outcomes
arranging these tasks into different 
“experiment”, and “analyze data”. 
between phases in a suggested order but can navigate back and forth between some of the 
inquiry phases. For example, from the “analysis” panel students could collect more data 
by returning to the “experiment” 
to the “hypothesize” phase (starting a new inquiry loop), or could 
experimentation procedures and analyses and begin the next problem. While in the 
hypothesizing phase (left side of Figure 1), they could either expl
begin collecting data in the experiment 
experiment phase, students can 

This learning environment has a moderate degree of learner control, less than 
exploratory learning environments
or constraint-based tutors [18]

Figure 1. Hypothesizing widget (left) and data collection panel (right) for the phase change microworld.

Learning Environment 

environment (Figure 1), hosted by Science Assistments [13]
authentic inquiry using a microworld and inquiry support tools.
learning environment required students to conduct full experiments 

independent variable, e.g., container size, affected various 
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inquiry phases, there is enough freedom such that students could approach these inquiry 
tasks in many ways. For example, a student could choose to specify only one hypothesis 
like, “If I change the container size so that increases, the melting point stays the same” 
(left side of Figure 1), and then test that single hypothesis. Alternately, they could 
generate several and test them all sequentially. While experimenting (right side of Figure 
1), a student could set up and run as many different experiments as they desired, 
including repeating the same trial multiple times. A table tool was provided within the 
learning environment to display the results of the student’s previous experiments and to 
display their hypothesis list to determine which experiments to run next.  

As students engage in inquiry using our tools and microworld, they can exhibit several 
different inquiry behaviors. Students acting in a systematic manner [7] collect data by 
designing and running controlled experiments that test their hypotheses. Also, students 
acting systematically use the table tool and hypothesis viewer in order to reflect and plan 
for additional experiments. Students who are unsystematic, by contrast, may exhibit 
haphazard behaviors such as: constructing experiments that do not test their hypotheses, 
not collecting enough data to support or refute their hypotheses, not following CVS, 
running the same experimental setup multiple times, or failing to use the inquiry support 
tools to analyze their results and plan additional trials [10]. 

3 Dataset 

Participants were 148 eighth grade students, ranging in age from 12-14 years, from a 
public middle school in Central Massachusetts. These students used the phase change 
microworld as part of a broader study to determine if inquiry skills learned in one domain 
will transfer to inquiry skill in other domains [13]. Students engaged in authentic inquiry 
problems using the phase change and density microworlds within the Science 
Assistments learning environment.  Students were randomly assigned to one of two 
conditions that counterbalanced the order in which students engaged in a science domain: 
phase change followed by density vs. density followed by phase change. In this paper, we 
discuss detectors of systematic data collection for student actions within the phase change 
microworld only, as the version of the density microworld used lacked the hypothesizing 
scaffold used in the phase change microworld. In building these detectors, we look 
specifically at what students did in the “hypothesizing” and “experimenting” phases of 
inquiry. As part of the phase change activities, students attempted to complete four tasks 
using our interactive tools. 

Each of these students completed at least one data collection activity in the phase change 
environment (two other students did not use the microworld, and were excluded from 
analysis). As students solved these tasks, we recorded fine-grained actions within the 
inquiry support tools and microworlds. The set of actions logged included creating 
hypotheses, setting up experiments, showing or hiding support tools, running 
experiments, creating interpretations of data, and transitioning between inquiry activities 
(i.e. moving from hypothesizing to data collection). Each action’s type, current and 
previous values (where applicable – for instance, a variable’s value), and timestamp were 
recorded. In all, 27,257 student actions for phase change were logged. These served as 
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the basis for generating text replay clips consisting of contiguous sequences of actions 
specific to experimenting. 

4 Text Replay Tagging Methodology 

In designing our text replays, it was necessary to use a coarser grain-size than in prior 
versions of this method (e.g. [4, 6]).  In particular, it was necessary to show significant 
periods of experimentation so that coders could precisely evaluate experimentation 
behavior relative to stated hypotheses. We decided our text replays should include actions 
from only the hypothesis and the experimenting phases. Another important issue was that 
trial run data from one hypothesis test could be used in another hypothesis test to make 
inferences about the hypothesis at hand (i.e. comparing a current trial to one conducted 
earlier). To compensate for this, we code using both the actions in testing the current 
hypothesis, and cumulative measures that include actions performed when testing 
previous hypotheses.  Hence, each tagged clip focuses on actions in the current part of the 
inquiry process, but may take into account the context of the cumulative section. 

 

Figure 2. Text Replay Tagging Tool with an example student’s clip coded as running repeated trials, 
following CVS, and testing stated hypotheses. 

To support coding in this fashion, a new tool for text replay tagging was developed in 
Ruby, shown in Figure 2. The start of the clip is triggered by a hypothesis variable 
change after the beginning of a new problem.  The tool displays all student actions 
(hypothesis and experiment) until the student transitions to the analysis stage.  
Subsequent clips include previous clips and any single new cycle which includes the 
Hypothesis and Experiment stage. A clip could be tagged with one of 9 tags 
corresponding to data collection behaviors: “Never Change Variables”, “Repeat Trials”, 
“Non-Interpretable Action Sequence”, “Indecisiveness”, “Used CVS”, “Tested 
Hypothesis”, “Used Table to Plan”, “Used Hypothesis Viewer to Plan”, “No Activity”, 
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and one extra category for unclassifiable clips, “Bad Data”, for a total of 10 coding 
categories. Specifically for the analyses in this paper, we tagged a clip as “Used CVS” if 
the clip contained actions indicative of designing and running controlled experiments. 
“Tested Hypothesis” was chosen if the clip had actions indicating attempts to test the 
stated hypotheses, regardless of whether or not proper CVS procedure was used. 

4.1 Clip Tagging Procedure 

Two coders (the first and fourth authors) tagged the data collection clips using at least 
one of the ten tags. To ensure that a representative range of student clips were coded, we 
stratified our sample of the clips on condition, student, problem, and within-problem clip 
order (e.g. first clip, second clip, etc.) The corpus of hand-coded clips contained exactly 
one randomly selected clip from each problem each student encountered, resulting in 571 
clips. Each coder tagged the first 50 clips; the remaining clips were split between the 
coders. For the 50 clips tagged by each coder, there was high overall tagging agreement, 
average κ=0.86. Of particular relevance to this study, there was also better agreement on 
the CVS and testing hypotheses tags, κ=.69 and κ=1.00 respectively, than has been seen 
for previous text replay approaches that led to successful behavior detectors (e.g. [4, 6]). 

4.2 Feature Distillation 

Features were extracted relevant to the 10 categories of behavior within the microworld. 
These included: all actions, total trial runs, incomplete trial runs, complete trial runs, 
pauses, data table display, hypothesis list display, field changes in hypothesis builder (left 
side of Figure 1), hypotheses made, and microworld variable changes. For each category, 
we traced the number of times the action occurred and the time taken for each action. For 
timing values, we also computed the minimum, maximum, standard deviation, mean and 
mode for each student and compared these values relative to all other students. We also 
included the number of pairwise trials where only one independent variable differed 
between them and a count for repeated trials, trials with the same independent variable 
selections. These last two had no time associated with them. 

We extracted feature values from student actions as follows. As stated in Section 2, 
student microworld activity was divided into tasks, each focusing on a specific 
independent variable. Also, within a task, the student could make and test several 
hypotheses.  For each of the categories, we extracted data for each hypothesis the student 
tested (local data), and across all hypotheses in the set (cumulative data). We did this 
because within each set, the data table accumulated the trial run data across hypotheses, 
enabling students to compare trial runs testing previous hypotheses with the runs made in 
the current hypothesis. 

4.3 Machine Learning Algorithms 

Machine-learned detectors of the two behavioral patterns of interest, CVS and hypothesis 
testing, were developed within RapidMiner 4.6 [17]. Detectors were built using J48 
decision trees, with automated pruning to control for over-fitting, the same technique 
used in [4, 20]. Before running the decision tree algorithm, we filtered redundant features 
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correlated at or above 0.6. Six-fold cross-validation was conducted at the student level 
(e.g. detectors are trained on five groups of students and tested on a sixth group of 
students). By cross-validating at this level, we increase confidence that detectors will be 
accurate for new groups of students. We assessed the classifiers using two metrics. First, 
we used A’ [15]. A' is the probability that if the detector is comparing two clips, one 
involving the category of interest (CVS or Hypothesis Testing) and one not involving that 
category, it will correctly identify which clip is which. A' is equivalent to both the area 
under the ROC curve in signal detection theory, and to W, the Wilcoxon statistic [15]. A 
model with an A' of 0.5 performs at chance, and a model with an A' of 1.0 performs 
perfectly. In these analyses, A’ was used at the level of clips, rather than students. 
Statistical tests for A’ are not presented in this paper. The most appropriate statistical test 
for A’ in data across students is to calculate A’ and standard error for each student for 
each model, compare using Z tests, and then aggregate across students using Stouffer’s 
method (cf. [3]) – however, the standard error formula for A’ [15] requires multiple 
examples from each category for each student, which is infeasible in the small samples 
obtained for each student in our text replay tagging. Another possible method, ignoring 
student-level differences to increase example counts, biases undesirably in favor of 
statistical significance. 

Second, we used Kappa (κ), which assesses whether the detector identifies is better than 
chance at identifying the correct action sequences as involving the category of interest. A 
Kappa of 0 indicates that the detector performs at chance, and a Kappa of 1 indicates that 
the detector performs perfectly. As Kappa looks only at the final label, whereas A’ looks 
at the classifier’s degree of confidence, A’ can be more sensitive to uncertainty in 
classification than Kappa.  

5 Results 

We constructed and tested detectors using our corpus of hand-coded clips. The CVS and 
hypothesis testing detectors were constructed from a combination of the subset of the first 
50 clips that the two coders agreed on, and the remaining clips, tagged separately by the 
two coders. Of all clips, 31.2% were tagged as showing evidence of CVS and 34.4% 
were tagged as showing evidence of collecting data to test specified hypotheses. 

Detectors were generated for each behavior using J48 decision trees and two sets of 
attributes, cumulative and non-cumulative attributes. As a reminder, non-cumulative 
attributes were tallied over a single clip, irrespective of other clips, whereas cumulative 
attributes included data from earlier clips from the same problem. Thus, four different 
detectors were constructed. The CVS detector using cumulative attributes (A’=.85, 
κ=.47) appeared to perform better than the detector built with non-cumulative attributes 
(A’=.81, κ=.42). Likewise, the hypothesis testing detector built with cumulative attributes 
(A’=.86, κ=.46) scored higher on our metrics than the non-cumulative detector (A’=.84, 
κ=.44). We believe the detectors built from cumulative attributes perform better because 
students may perform actions within particular clips that, when taken in conjunction with 
actions from previous clips, represent a more complete picture of student behavior. For 
example, while analyzing results a student may realize they need to run one more 
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experiment to correctly test their hypothesis (which would start a new clip). The human 
coders would correctly label this as CVS and testing a hypothesis in reference to the 
previous context, but values for noncumulative attributes would most likely indicate that 
the student was not systematic because these attributes’ values are not computed based on 
previous clips. 

6 Discussion and Conclusions 

The goal of this research was to develop machine-learned models that can automatically 
detect if a student is systematic in their inquiry, particularly in their data collection 
actions, using text replay tagging. This work showed that combining text replay clip 
tagging of low-level student actions and machine learning can lead to the successful 
development of behavior detectors in an ill-defined domain such as scientific 
experimentation. This work also presents a contribution to the text replay process since it 
is more efficient to code a clip with multiple tags. Our results were promising; using 
cumulative attributes, we can distinguish students who are successfully applying the 
Control of Variables Strategy (CVS) in the phase change environment from students not 
applying CVS 85% of the time and can distinguish students testing their hypotheses 86% 
of the time. Furthermore, the Kappa values indicate that each of these detectors are 
substantially better than chance. In other words, though these detectors are not perfect, 
they can be used to select students for scaffolding. Since they are not perfect, some 
students may receive help when they do not need it and vice versa. Hence, interventions 
used should be fail-soft, relatively non-harmful when given incorrectly. As such, we aim 
to use these detectors to determine which students will receive scaffolding. 

An important area of future work will be to improve our detectors’ A’ and Kappa. To this 
end, we plan to add lesson-wide attributes, learner attributes, and data on the other tags 
used to critique a clip. Lesson-wide attributes, such as task attempt number, that can 
benchmark a students’ experience within our environment may aid in predicting 
systematicity, in coordination with other features. Additionally, rather than treating 
learner characteristics, such as prior knowledge, as external predictors of systematicity, 
we could incorporate those measurements into the detectors themselves. Similar to 
computing average attribute differences between clips (i.e. computing the difference in 
number of trials run for the given clip and the average number of trials run for all clips), 
we could compute differences between students with similar learner characteristics. 
Similarly, rather than using systematicity to predict content knowledge, we could 
incorporate student prior knowledge of content and inquiry using our standardized-test 
style questions [13]. Another important area of future work will be to generalize and train 
our detectors across different microworlds (cf. [5]) to increase their applicability across 
middle school science learning. 

This approach also enables us to research the interactions between content knowledge 
and authentic inquiry performance within our learning environments. Being able to 
classify students as systematic according to different skills, e.g. testing hypotheses and 
CVS, will enable us to determine if skill proficiency in solving authentic inquiry 
problems will predict skill proficiency in solving standardized test-style inquiry 
questions. We can also determine the degree to which systematic behavior predicts robust 
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content knowledge. Finally, by developing and generalizing detectors across domains, we 
can determine the degree to which authentic inquiry skill transfers between domains. As 
such, these models have considerable potential to enable future “discovery with models” 
analyses that can shed light on the relationship between a student’s mastery of systematic 
experimentation strategies and their domain learning. 
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Abstract.  We describe a data mining technique for the discovery of student behavior 
patterns while using a tutoring system. Student actions are logged during tutor 
sessions.  The actions are categorized, binned and symbolized.  The resulting symbols 
are arranged sequentially, and examined by a motif discovery algorithm to detect 
repetitive patterns, or motifs, that describe frequent tutor events.  These motifs are 
examined and categorized as student behaviors.  The categorized motifs can be used 
in real-time detection of student behaviors in the tutor system. 

Computer Science Department, University of Massachusetts, Amherst 

1 Introduction 

Tutoring systems have demonstrated effective learning in the classroom [11].  However, even 
the most effective tutoring system will fail if the student’s behavior is not receptive to the 
material being presented. For example, lack of motivation has been shown empirically to 
correlate with a decrease in learning rate [2]. In addition, students often use tutors 
ineffectively and adopt behavioral strategies that allow them to avoid learning, e.g., 
deliberately entering incorrect answers to elicit hints and, eventually, the correct answer from 
the tutor [2]. Although tutor instruction is beneficial, its effectiveness might be increased if 
maladaptive student behaviors could be identified [4].  
Intelligent tutoring systems can identify student behaviors that are likely to be unproductive in 
the long term. The potential to help students is much greater if their keystroke information is 
logged to provide teachers with real-time data on students’ performance, formative 
assessments, instead of summative assessments [8].  Recent research has utilized dynamic 
assessment of students’ performance to enhance the effectiveness of their tutor sessions [4].  
Previous methods for examining behavioral trends have focused on behaviors that are 
correlated to specific outcomes. One example is correlating engagement (e.g. fluctuations in 
attention, willingness to engage in effortful cognition, etc.) with successful and unsuccessful 
problem solving [3].  A potential drawback of this traditional approach is that behavior 
patterns during tutor usage can be masked in the overall data.   
The work presented here approaches the goal of understanding student use/misuse of tutoring 
systems in a different way.  Instead of correlating to specific outcomes, we data-mine patterns 
of student behavior that are frequent. Interesting frequent patterns over series of student data 
emerge.  This process is a variation of time-based motif discovery [7]. Continuous variables 
of student tutor progress are binned into discrete categories represented by "a, b, c …" These 
letters chronologically form a single string that represents one students actions over hours of 
tutor use.  Concatenating these strings we can create a single string representing of the work 
of hundreds of students in several schools over several work sessions.   Motif discovery is 
applied and the discovered patterns are examined and categorized qualitatively. The 
discovered patterns are a potential input for tutor interventions. 
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2 Relevant Literature 

Several models have been proposed to infer high-level student behavior, such as student 
motivation from behavioral measures. A latent response model [2] was learned to classify 
student actions as either gaming or not gaming the system. Two cases of gaming were 
identified: gaming with no impact on pretest-posttest gain and gaming with a negative impact 
on pretest-posttest gain. The latent response model features consisted of a student’s actions in 
the tutor, such as response time, and probabilistic information regarding a student’s latent 
skills. Beck [4] proposed a function relating response time to the probability of a correct 
response to model student disengagement in a reading tutor. He adapted the item 
characteristic curve from Item Response Theory (IRT) to include a student’s speed, 
proficiency, response time, and other problem-specific parameters. The learned model showed 
that disengagement negatively correlated with performance gain. These models embody 
different assumptions about the variables required to estimate student motivation (e.g. static 
versus dynamic models, complex versus simple features, user specified versus learned model 
parameters, generic versus domain specific models).  
A dynamic mixture model was proposed that used a student’s behavior to disambiguate 
between proficiency, modeled as a static, continuous variable and motivation, modeled as a 
dynamic, discrete variable [6]. These assumptions were based on a student’s tendency to 
exhibit different behavioral patterns over the course of a tutoring session. The model 
suggested four novel principles: the model should estimate both student motivation and 
proficiency, run in real time, be able to easily include other forms of unmotivated behavior, 
and motivation should be treated as a dynamic variable. Empirical evidence suggests that a 
student’s motivation level tends to ebb and flow in spurts [6]. 

Following the above literature, our method examines student interaction with the tutor during 
problem solving. However, rather than correlating behaviors with outcomes, we examine 
frequent behaviors to find meaning in the behaviors on their own. This involves four steps:  1) 
The raw tutor data is binned and categorized both by hand and statistically. This results in a 
string of symbols representing the tutor interactions of all students concatenated.  2) The 
discovery algorithm searches for reoccurring motifs representing student actions over 10 
problem intervals.  3) The discovered motifs are consolidated (combined) and categorized by 
hand, so that they describe high-level student behaviors.  4) These motifs are applied to the 
original student log and predict student behaviors during tutor usage.  In the future, these will 
be utilized within the tutor to predict real-time student behaviors and correlated to 
performance outcomes. 

3 Tutor description and method 

Wayang Outpost is an adaptive tutoring system that helps students learn to solve standardized-
test type of questions, in particular state-based exams taken at the end of high school in the 
USA. This multimedia tutoring system teaches students how to solve geometry, statistics and 
algebra problems of the type that commonly appear on standardized tests. To answer 
problems in the Wayang interface, students choose a solution from a list of multiple choice 
options. Students are provided immediate feedback when they click on an answer (a check for 
correct or a cross for incorrect). Students may click on a help button for hints, and 
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teachers/researchers encourage them to do so as many times as necessary, as hints are 
displayed in a progression from general suggestions to bottom-out solution.  

Despite efforts to emphasize the importance of going slowly through problems, students tend 
to “game” the system by using a variety of speeding strategies. Students either click through 
answers fast in order to get  the immediate reward of a correct answers (a green check); or 
they skip problems without making any attempts; or they click through hints to get to the 
“bottom-out” hint that reveals the correct choice. Decisions about content sequencing are 
based on a model of student effort, used to assess the degree of cognitive effort a student 
invests to develop a problem solution [1]. 

The data involved in this paper comes from 250 high school students from a variety of math 
classes in public high schools during Spring 2009. Students came to the computer lab to use 
Wayang Outpost during that spring semester for about a week, one-hour periods 
approximately, instead of their regular math class. Students went through various topics such 
as perimeter problems, area problems, angles, triangles, Pythagorean theorem, etc. The first 
day and the last day students took a mathematics pretest and posttest. For some students, the 
topics in Wayang were a review to their math class, to others it was a way to encounter new 
concepts (there is a short tutorial at the beginning of each topic) and for others it was a way to 
practice strategies for their upcoming standardized state-wide exams. 

4 Data binning and categorization  

During interaction with our tutoring system, each student’s actions are logged in a central 
database. We focus on the data collected during the course of a problem. We utilize four 
metrics: hints seen (hints), seconds to first attempt (secFirst), seconds between subsequent 
attempts (secOther), and incorrect attempts (numIncorrect).  These metrics are manually 
binned based on the meaning of the value. For example, there are two indicators for hints seen 
in our database. There is the count of hints, and there is an indicator that the last hint was 
seen. From this we have three bins. No hints seen, some hints seen, and last hint solved 
(because the last hint reveals the answer). 

Once the metrics are binned, each problem is represented as a four character problem string. 
For any given student, the tutor interaction can be summarized by the sequence ordered 
concatenation of problem strings that we will call a student string. The problem string 
construction and meaning is discussed in the following paragraphs. 

In motif discovery, data is sometimes binned into discrete categories to significantly reduce 
the data footprint in memory.   Our reasons for binning are to increase the clarity and meaning 
of the data; with our understanding of the tutor we categorize each metric so that the bins 
more clearly describe student behavior.  Each metric is categorized in three or five categories 
represented by a single character from 'a' through 'q', as follows: 

hints  (a, b, c) – Hints is a measure of the number of hints viewed for this problem.  
Although each problem has a maximum number of hints, the hint count does not have 
an upper bound because students can repeat hints and the count will increase at each 
repeated view.   The three categories for hints are: (a) no hints, meaning that the 
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student did not use the hint facility for that problem,  (b) meaning the student used the 
hint facility, but was not given the solution, and (c) last hint solved, meaning that the 
student was given the solution to the problem by the last hint.   As described above, 
this metric combines two values logged by the tutor: the count of hints seen, and an 
indicator that the final hint giving the answer was seen.  The data could have been 
simply binned low, medium, high hints; however, this would have missed the 
significance of zero hints and using hints to reveal the problem solution.  

secFirst (d, e, f) – The seconds to first attempt is an important measure as it is during 
this time that the student is reading the problem and formulating their response.    In 
previous research [6], five seconds was determined to be a threshold for this metric 
representing gaming: students who make a first attempt in less than five seconds are 
considered not working on-task.  We divide secFirst into three bins: (d) less than 5 sec,  
(e) 5 to 30 sec, (f) greater than 30 sec.  (d) represents students who are gaming the 
system, (e) represents a moderate time to the first attempt, (f) represents a long time to 
the first attempt. The cut at 30 seconds was chosen because it equalizes the distribution 
of bins (e and f), representing a division between a moderate and a long time to the 
first attempt. 

secOther (g, h, i, j, k) – This variable represents actions related to answering the 
problem after the first attempt was made. While the first attempt includes the problem 
reading and solution time, subsequent solution attempts could be much quicker and the 
student could still be making good effort. secOther is categorized in five bins: (g) skip, 
(h) solved on first, (i) 0 to 1.2 sec, (j) 1.2 to 2.9 sec, (k) greater than 2.9 sec. First, 
there are two categorical bins, skip and solve on first attempt. These are each 
determined from an indicator in the log data for that problem. Skipping a problem 
implies only that students never clicked on a correct answer; they could have worked 
on the problem and then given up, or immediately skipped to the next problem with 
only a quick look.  Solved  on first attempt indicates correctly solving the problem. If 
neither of the first two bins are indicated in the logs, then the secOther metric 
measures the mean time for all attempts after the first. The divisions of 1.2 sec and 2.9 
sec for the latter three bins were obtained using the mean and one standard deviation 
above the mean for all tutor usage; (i) less than 1.2 seconds would indicate guessing, 
(j) would indicate normal attempts, and (k) would indicate a long time between 
attempts. 

numIncorrect – (o, p, q) - Each problem has four or five possible answer choices, that 
we divide into three groups: (o)  zero incorrect attempts, indicates either solved on first 
attempt, skipped problem, or last hint solves problem (defined by the other metrics); 
(p) indicates choosing the correct answer in the second or third attempt, and (q)  
obtaining the answer by default in a four answer problem or possibly guessing when 
there is five answer problem. 

Some of the bins have dependencies that effect motif discovery and analysis.  For example, 
last hint solves (c) precludes solved on first (h) and skipped (g); solved on first (h) requires 
zero incorrect attempts (o).  In addition, by binning skip (g) in the secOther group, the timing 
of incorrect attempts is lost when the problem is skipped.  
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479 student strings representing 3762 total problems were constructed and concatenated into a 
15048 character input string for motif discovery.  The first 160 characters of the string (40 
words/problems, separated at problems for clarity) are: 

afkq bfho cekp bfho aeho cekq bfiq bfkq bfip aeho aeho aeip 
aeho aeip afip cekp aeho afip cfho aeho cfho bfkp bekp bekp 
aeho aekp beho bekp aeho cfho bfkq aekp ceho cfkp bfjp aeip 
bfkp aeho afip afho  

In the first problem, afkq indicates no hints used, greater than 30 seconds to first attempt,  
over 2.9 mean seconds in other attempts, and most or all choices were made to find the 
solution.  In the next problem, coded bfho, the student asks for one or two hints, greater than 
30 seconds to first attempt, then solves the problem on first attempt.  The sequence based 
motif discovery algorithm searches the input string in step two of the process. A detailed 
description follows.  

5 Word-skipping sequence-based motif discovery algorithm 

Our sequence-based motif discovery algorithm is a modification of the PROJECTION 
algorithm [10].  It is similar to the Chiu et al. [5] projection algorithm, except that our sliding 
window moves per word rather than per character. The PROJECTION algorithm is an 
efficient way to find planted strings in a long sequence of characters, and our modification to 
the algorithm allows us to apply it in a multivariate fashion where each character of the word 
represents a variable. In order to illustrate the algorithm, we first present an example, and then 
present a formal description of the algorithm. 

5.1 Example word skipping projection 

Take as input a string words, four characters each, with no separation.  Construct a matrix S as 
a 40 character sliding window that slides 4 characters (1 word) per row. The below 6 x 40 
character matrix (Figure 1a) represents the first 64 characters or 16 words. Randomly select 
10 columns in the S matrix as the projection highlighted below. Project the selected columns 
to a new matrix (Figure 1b). If there is a string match between any pair of rows, then add a 
collision to the collision matrix (Figure 1c). The highlighted rows (3 and 4) match and thus 
the 3rd row and the 4th column has a collision. 

5.2 Random projection multivariate motif discovery algorithm 

Function Name: wordMotif 

Inputs: word sequence (t), motif size in characters (n), word size (w), projection length (p), 
number of iterations (m), max character distance (d), number of motifs to find (c). 

Outputs: c motif lists with start index and strings of length n for each motif example. 
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Figure 1. Steps of word skipping projection. (a) the S matrix of 40 character substrings highlighted with a 
random projection (b) the projected matrix with 2 matching substrings (c) the resulting collision added to 

the collision matrix. 

wordMotif(t,n,w,p,m,d,c) 

1. Construct S matrix of size (t/w * n) by sliding an n sized window w characters at a 
time. 

2. Create collision matrix using project(S,p,m) 
3. Compare pair of examples (A,B) with highest collision value 
4. If (A,B) do not overlap and are within a hamming distance of d characters, then test 

them against other members of the S matrix, adding all members that are within 
hamming distance d to the motif set, and removing the collision values from the 
collision matrix. 

5. Repeat 3 and 4 until c motifs are found or the collision matrix is exhausted. 
6. Return the lists of up to c motifs 

project(S,p,m) 

1. let k be the number of rows in S 
2. construct an empty k x k collision matrix 
3. repeat m times 

a. make a k x p matrix based on a random mask of p columns of the S matrix 
b. add a collision for each pair whose string is equivalent. 

4. Return collision matrix 

The algorithm outputs a matrix of indices into the string, with a column for each discovered 
motif. For this study we found thirty motifs. The first two indices of the first 10 motifs are 
shown in Table 1. 
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Table 1. The first 2 indices of the first 10 motifs. 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
2305 6789 8989 8993 9485 2301 18181 29469 29301 48953 
6533 7717 9101 9105 11525 18061 19557 49577 58825 67561 

  

Each value in the matrix is an index to the first character of the motif. We can index into the 
original data to determine the symbols in each of these motifs. The first instance of the motif 
(in row 1) is representative of the pattern, and the other instances (in row 2, etc.) will be 
identical or within 10 characters of both the first and the second instance.  Table 2 shows the 
first instance of the first ten motifs. 

Table 2. Ten of the motifs The index of the first character is followed by the 40 character motif with a 
separation each word to see problem characteristics. 

M1 2305 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M2 6789 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M3 8989 adiq adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M4 8993 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M5 9485 adgo adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M6 2301 cdgo adgo adgo adgo adgo adgo adgo adgo adgo adgo 
M7 18181 adgo adgo adgo adgo adgo bdgo adgo adgo adgo adgo 
M8 29469 afho aeho aeho aeho aeho aeho aeho afho aeho aeho 
M9 29301 aeho aeho aeho aeho aeho aeho aeho afho afho aeho 
M10 48953 aeho afho afho afho aeho aeho aeho aeho afho aeho 

 

6 Discovered motifs 

In the third step, we examine and analyze the discovered motifs to determine the high level 
behavior that each motif discovered. We group motifs with similar behaviors. For this study 
we used the algorithm to detect thirty motifs.  Chiu et al. [5] suggest a need to eliminate 
degenerate motifs, which are motifs that have no informational content, such as a sequence of 
repeated characters. In the case of the tutor data, repeated words are not degenerate because 
they inform us that the student is repeating a particular behavior. Repetition of undesired 
behavior is an important feature to capture, so we do not remove such motifs as degenerate.  

In the 30 discovered motifs, there were a number of repeated motifs. This is because a number 
of motifs were essentially straight, i.e. repetitions of a motif word, so there are cases of motifs 
that have essentially the same structure; these would overlap with each other, so they are 
considered distinct patterns.  By grouping these exact match motifs, and also by comparing 
the different motifs by eye, we grouped the 30 motifs into 7 distinct meaning groups coded g, 
f, F, k, r, z, n: 

Game-like (g). adgo (10), adip (10), or adiq (10) – Student is not reading the problems and 
either skipping or making quick guesses. 
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Frustration (guess) (f). adiq (1) adgo (9) – Guessing to find solution, then skipping the next 9 
problems.  This could be an indication of frustration. 

Frustration (hints) (F). cdgo (1) adgo (9) – Using the hints to find solution, then skipping the 
next 9 problems.  This also could indicate frustration, and was grouped together with the 
previous motif.   

Not challenged (k). a[ef]ho (10) – Solving the problem on first attempt, not using hints, not 
guessing.  This student is using the tutor appropriately, but not being challenged. 

Too difficult (r). ceho (10) - student is taking time to read the problem, then using hints to 
find the answer.  These students could be working but the material is too difficult for them to 
solve the problem themselves. 

Skipping (z). adgo (5) aeho (5)  – Student skips 5 problems, then solves 5 normally on first 
attempt.  Taking time to read all problems, then answering or skipping depending on whether 
the answer is known.  

On-task(n) aeiq  aeho  aeho  aekp  aeho  aeiq  aeho  aeip  aeho  aeip - This is the most 
complex motif found and seems to indicate “on task learning” tutor usage; the student is 
always reading the problem and making a good first attempt, with a mixture of solving on first 
attempt (aeho), solving after some attempts (aekp, aeip) and guessing (aeiq).  The student is 
not using the hints nor skipping. 

With these groups coded as a single character, we can look a the progress of one student by 
converting the string of words to a string of motif groups for quicker interpretation.  For 
example, in the too difficult (r) grouping, these problems show the student is taking 5 to 30 
seconds before taking any action.  However, if the student initially chose the wrong answer, 
subsequent attempts were quick guesses or gaming hints.  In contrast, in the game-like (g) 
grouping the student was not reading the problem, simply skipping, or making quick guesses.  
In the frustration (guess) (f) grouping the student was skipping after an attempt.  This could 
just be an indication of skipping problems, or possibly the error in the first attempt triggering 
a frustration response to skip the next 9 problems. And the on-task(n) grouping appears to be 
a mixture of responses for on task tutor use. 

7 Evaluating student interaction 

The final step in the process is to apply the 7 meaning groups to individual students. To do 
this we can convert each student string into a student motif string. This is done by scanning 
the student string and replacing each problem string with a dash (-) until a motif is detected; at 
this point, the problem string is replaced with the meaning group code associated with the 
motif. The meaning group code is only placed at the final problem of each motif (the last four 
characters). The conversion is shown below for two students. 

Using the meaning group code, we generated the student number followed by patterns for 
each student representing their tutor interaction. We examine two students below: 
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4362,"---------k-kkkkkk---k-------k-kkkkk-----------------------kkkk-kkkkkkkk------------kkkkkk-kkkk-k----k---kk---------" 

4363,"--------------g------------k---------g-----------------------g-------------rrrrrr----rr------g-----" 

For student 4362 the not challenged (k) motif indicates solving of problems on the first 
attempt without using hints.  (The (-) patterns are those which did not match any motif.)  The 
behavior is a lagging indicator, representing the current and previous 9 problem.   

Student 4363 started by gaming the tutor, game-like (g) either skipping or guessing quickly to 
find answers.  This is followed by not challenged (k), a string problems solved on first 
attempt followed by more tutor gaming.  The too difficult (r) string of r’s are where the 
student began using the hint facility but in a manner to find answers. After about 20 of these 
too difficult problems he/she returned to skipping or guessing.   

This conversion process illustrates how our discovered motifs can be used in a real-time 
application. A tutor can detect these patterns and respond based on the meaning group in order 
to have a more personalized interaction with the student.  With student 4362 a tutor could 
increase problem difficulty.  For student 4363, a tutor could intervene at problem 15 where 
gaming was detected, perhaps by introducing the hint system, or directing the student to a 
teaching video.  

8 Discussion and future work 

This paper describes a novel method for determining student behavior without linking the 
behavior to performance outcomes. We have shown a case study where a number of 
meaningful behaviors were discovered using a combination of hand chosen features and 
automatic pattern discovery. The features that have been found can be used to detect student 
behaviors so that the tutor can react in real time. However, these outcome of our study needs 
to be verified in future work. A number of future directions are discussed below. 

We will validate that the discovered motifs accurately represent student behavior by 
implementing them in the tutor. Upon motif detection, the corresponding meaning group will 
be verified by a person in real time. The student or a teacher observer will verify the meaning 
group by responding to a query during the tutoring session, e.g.. “Are you skipping problems 
because...” These responses will be compared with the predicted behaviors for validation. 

We will study automatic data categorization as modifications to our process. The data binning 
is the most user intensive part of this process. Finding methods to automate it would allow for 
broader use of these methods. 

We will compare a number of different motif window sizes in order to understand the time 
scale of problem behavior patterns. The value used in this paper, ten problems, is sufficient to 
describe behavior, and it yielded a manageable number of informative motifs. However, other 
window levels may yield motifs of different quality and quantity. 
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Abstract. Unsupervised learning algorithms can discover models of stu-
dent behavior without any initial work by domain experts, but they also
tend to produce complicated, uninterpretable models that may not predict
student learning. We propose a simple, unsupervised clustering algorithm
for hidden Markov models that can discover student learning tactics while
incorporating student-level outcome data, constraining the results to in-
terpretable models that also predict student learning. This approach is
robust, domain-independent, and does not require domain experts. The
models have tecst-set correlations with learning gain as high as 0.5 and
the findings suggest possible improvements to the scaffolding used by many
software tutors.

1 Introduction

Since its inception as a field, educational data mining has consisted mostly of domain
experts who use machine learning rather than machine learning experts who study educa-
tion. The most commonly used methods are thus highly dependent on domain expertise.
Examples include domain experts constructing data features [3], generating priors [5], and
developing initial seed models [4]. An expertise-based approach is highly effective for edu-
cational data, but a reliance on domain experts has risks: if the domain expert’s prior beliefs
are wrong then the results will tend to be biased. The process can also be time-consuming
and difficult for other researchers to replicate.

Alternatively, educational data mining without domain experts often results in uninter-
pretable or ungeneralizable models. Our solution is a novel unsupervised algorithm that
incorporates student-level educational measures directly into the learning process, biasing
the model search towards models that predict learning gain. Domain experts are only in-
volved with the post-hoc interpretation of results. Further, in addition to predicting learning
gain, the algorithm’s models of student behavior suggest that the students who learn best
tend to make persistent attempts rather than using software help.

2 Definitions

The data for this study comes from the Geometry Cognitive Tutor. A screenshot from a
version of the tutor used in this study is shown in Figure 1. We will postpone most discus-
sion of the data for later, but the tutor’s representation of geometry problems is especially
important. Each problem is shown on a separate page along with a geometry diagram. Stu-
dents are expected to enter values, such as angle magnitudes, into answer cells. Solving

This work was supported in part by a Graduate Training Grant awarded to Carnegie Mellon University by the
Department of Education (#R305B040063)
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Figure 1: Geometry Cognitive Tutor, circa 1998

Table 1: Mapping from 〈Action,Duration〉 to a single variable
Attempt/Try Hint

Fast a h
Slow A H

for and filling in one of these cells is called a “step”. The first steps on a problem tends to
involve givens; the later steps require values from the previous steps. Students can switch
between steps at will, but can only switch problems by finishing them. Students can also
request hints (fairly common) or read the glossary (very uncommon).

Within each step of each problem, a student performs actions (also called transactions in
other literature). An action could be entering an answer (right or wrong), requesting a hint,
or reading a definition from the glossary. For simplicity, we will group hints and the rare
glossary request together, labeling them both as hints. The definition of an action has one
additional wrinkle: each action has a corresponding duration. For example, a student might
take 10 seconds to type an answer or 4 seconds to read a hint. Thus, actions are divided into
two categories, long and short, using a threshold to be discussed later. Table 1 shows this
mapping. For example, Aaaaaa denotes one long attempt followed by many short attempts
and might be considered a guessing tactic.

In sum, the data for this study consists of students working on geometry problems with
each problem split into steps. The problems and steps are broken down into actions (a, A,
h, or H). These rudimentary features are much simpler than human-constructed features.
Beal et. al., for example, work from researcher-constructed features like “independent-
inaccurate problem solving” [3]. Their approach, while successful, is dependent on the
quality of the constructed features. Similarly, Baker et. al. use a set of human-constructed
features as inputs to a feature construction algorithm [2]. Their approach can generate new
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a A h H
0 0 80 20

a A h H
50 50 0 0

20%

80% 100%

Figure 2: Example HMM

composite features, but the initial features must be expert-defined. Another distinction is
that the actions used in this study are atomic: there is no lower granularity of data available.
In contrast, Baker computes aggregate features over a roaming window of actions.

3 Hidden Markov Models

The goal of this study is to build models for student learning tactics. An example of a
learning tactic, as defined in this paper, is, “The student requests hints quickly, over and
over, until the tutor provides the solution. The student then enters the solution.” From this
example, a learning tactic can be generalized to be an observable, predictable, and repeated
pattern of behavior that is sufficiently abstract to include multiple observed instantiations.
We implement learning tactics using hidden Markov models. A hidden Markov model
(HMM) is a set of unobserved states, each state related to observations through a probability
distribution. Here, the observations are student actions. Figure 2 shows an example HMM.
Each unobserved state is represented by a circle; each arrow between states or looping back
to a state represents a transition; the number above the arrow is a transition probability.
The tables below the states show the probabilities of observing an action. When an HMM
generates an action symbol, we say it emits the symbol.

Let a series of observed actions be a sequence. Sequences can be defined for either all
actions in a problem or all actions in a step. Given a set of student sequences associated
with an HMM, the Baum-Welch algorithm can relearn the parameters of that HMM to
better fit the observed data. This is a standard method for learning a single HMM.

Single HMMs, as described above, have been used in many studies to model student be-
havioral traces. In a particularly relevant study, Beal et. al. used tutoring system log data
to learn HMMs modeling patterns of student behavior [3]. Their study differs from this
one in several ways: they define the structure of the HMMs by hand, they use outputs from
another algorithm as inputs to their HMMs, they learn one HMM per student, and they per-
form clustering of students (not tactics) only after learning the HMMs. However, their key
result is very relevant: HMMs work as both descriptive and predictive models for student
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learning behaviors and can find patterns without using cognitive models or domain content
knowledge.

3.1 HMM Clustering

Let each individual HMM represent a single learning tactic. Discovering learning tactics
requires discovering sets of HMMs. Let a set of HMMs be called a collection. In a col-
lection, an observed sequence of actions is classified by whichever HMM is most likely
to generate it. This results in a partitioning of the set of sequences, with each partition
corresponding to one HMM. Each partition thus includes all observed examples of a given
tactic.

The Baum-Welch algorithm can only learn parameters for a single HMM, but cluster-
ing algorithms can learn sets of HMMs, and thus sets of tactics. The usual objective of
an HMM clustering algorithm is to maximize the total likelihood of generating the ob-
served sequences. This type of problem has historically been tackled with Expectation-
Maximization (E-M) algorithms and, for HMM clustering, given an initial set of HMMs,
one iteration of the E-M algorithm is:

• Assign each sequence to the HMM most likely to generate it.
• For each HMM, relearn its parameters with Baum-Welch using the sequences in its

partition.

This process begins with initial seed HMMs and repeats until a termination criterion is
met, such as when an iteration results in fewer than 10 sequences being reclassified. A
collection learned by this algorithm fits the data well if the likelihood of generating the
observed sequences is high. This algorithm, here forth called HMM-Cluster, is provably
guaranteed to converge to a local maximum. Further, HMM-Cluster will never change the
number of HMMs in the collection (k) or the number of states per HMM (n); only the
parameters and partitions will change.

There have been many prior uses of similar E-M HMM clustering algorithms, beginning
with Rabiner et. al. for word recognition [6]. While there are newer variants, most HMM
clustering is still done with Rabiner’s original algorithm. A particularly illustrative study
was done by Schliep et. al. to analyze gene expression data[9]. The paper discusses,
amongst other things, the expressiveness of the models, the interpretation of results (for
genetics), the inclusion of human labels, and the comparison of HMM clusters to other
time series models.

3.2 Stepwise-HMM-Cluster

Unfortunately, naive HMM-Cluster has issues from both machine learning and educational
perspectives:

• Like most E-M algorithms, HMM-Cluster gets trapped in local maxima.
• The choice of k and n determines the effectiveness of HMM-Cluster. If they are too
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X:
HMM 1 HMM 2

Student 1 80% 20%
Student 2 30% 70%
Student 3 25% 75%

Y:
Gain
73%
9%
5%

Figure 3: Example Stepwise Regression Inputs

large, the collection will overfit; if they are too small, no collection will fit the data.
• Collections that fit the data may not actually predict learning.

In principle, a better algorithm would search over values of k and n with a bias towards
fewer, smaller HMMs, leading to better generalization and easier interpretation of the final
collection. One such algorithm is Stepwise-HMM-Cluster, which is to HMM-Cluster what
stepwise regression is to normal regression. An iteration of Stepwise-HMM-Cluster, for k
HMMs and n states per HMM, proceeds:

• Begin with a collection of HMMs C.
• If |C| < k, generate (k − |C|) new HMMs with n states per HMM.
• Run HMM-Cluster on C.
• Pick the “good” HMMs from C and use them for the next iteration.

A critical step in Stepwise-HMM-Cluster is the selection of “good models” from a collec-
tionC. This step allows Stepwise-HMM-Cluster to incorporate external data and iteratively
improve its fit across iterations of the algorithm. For this study, HMMs are selected using
forward stepwise linear regression: the total number of sequences classified by each HMM
for each student is used as the independent variable and the pre-test to post-test learning
gain is used as the dependent variable. A toy example is shown in Figure 3.

Stepwise-HMM-Cluster serves two goals at once: it tries to build a collection of HMMs to
fit the observed sequences of actions, but also requires that the collection predict student
learning gain. The incorporation of external data, such as pre-post learning gain, has been
traditionally difficult when applying machine learning algorithms to educational data. This
selection step addresses that issue, allowing student-level measures to influence the learning
of much lower-level HMMs. In this case, learning gain is used to constrain the search for
problem- and step-level HMMs. In future work, other data sources could be added, such as
grade-point averages, survey information, or expert labels.

For this study, the parameters are restricted to 2 ≤ k ≤ 8 and 2 ≤ n ≤ 8. The limits of
8 HMMs and 8 states per HMM were chosen to maximize interpretability, but both limits
exceed the complexity of any optimal collections actually found.

4 Data

This study uses two data sets, 02 and 06. Both data sets in this study originate in previous
experiments, so only the control groups for each study are used. Both data sets involve
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Table 2: Correlations with Learning, Best Collections, Test Data
τ 02 Problem 02 Step 06 Problem 06 Step
6 0.57 0.50 0.3 0.53
8 0.71 0.54 0.50 0.39

10 0.54 0.60 0.31 0.39

geometry tutoring systems that use the same general interface. However, the 02 data is
from the angles unit, while the 06 data is from the circles unit. The 06 tutor also has some
interface differences, including a minimum time per hint request. In the 06 data, students
do fewer actions per step, complicating direct comparisons between the two data sets. Also,
the 06 post-test used counter-balanced hint conditions between problems, e.g., sometimes
students could get a hint at the cost of partial credit. This makes the test scores noisier and
harder to predict.

• 02 data - First published in 2002, includes 21 students and 57204 actions [1].
• 06 data - First published in 2006, includes 16 students and 7429 actions [7].

5 Results

Stepwise-HMM-Cluster has several parameters. First, there is a threshold value between
long and short actions. Let that threshold be denoted by τ . Second, Stepwise-HMM-Cluster
can learn either problem-level or step-level tactics. For the former, HMMs are trained on
sequences that include an entire problem. In the latter case, each sequence only contains
actions from one step. The software implementation was built on the GHMM package [8]
and, for a given search using a fixed value of τ , approximately 100 candidate collections
reach the model selection stage.

Collections are learned from the first 80% of sequences per student; the remaining 20% are
saved as test data. The main measure of a “good” collection is that it provides an accurate
prediction of learning when applied to test data. To apply a collection of HMMs to test data,
the HMMs are first used to classify test-data sequences. The total number of sequences per
HMM per student is entered into the regression as shown earlier, now using parameters
learned from training data. Table 2 shows the best correlations, for both data sets, between
predicted learning gain and actual learning gain, as computed on the test data. Each column
contains the best results for a specific run of Stepwise-HMM-Cluster with the rows split by
value of τ .

In practice, Table 2 can be interpreted as showing upper bounds for predictions on with-
held test data. However, even in this simple table, it’s already clear that the 06 data is
harder. The conclusion from Table 2 is that there are collections with a good fit to test data,
if we can find them. The caveat to Table 2 is that it shows best collections picked after
applying to test data; our actual goal is to find good collections using only the training data.
To do so naively, however, invites overfit. This suggests the use of a selection heuristic:
pick the collection with the best adjusted R2 score on training data.
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Table 3: Correlations with Learning, Selected Collections, 02 Test Data
τ Problem-Level Step-Level # of HMMs Max # of States / HMM
6 0.49 0.44 5 3
8 0.42 0.50 5 4

10 0.47 0.52 4 4

a A h H
1 99 0 0

a A h H
100 0 0 0

42%

42%

58% 58%

Figure 4: Dominant HMM for τ = 6, 02 data

R2, unadjusted, is defined as the sum-of-squared-error divided by the total sum of squares.
For standard linear regression, R2 is equal to the square of the correlation coefficient. The
adjusted R2 includes an additional term that grows in the number of model parameters,
penalizing complex collections. Table 3 shows, for 02 data, test-set correlations for collec-
tions selected using adjusted R2, the number of HMMs in the best collection (step-only),
and the maximum number of states per HMM in the best collection (step-only).

The correlations in Table 3 are statistically significant (α < 0.05) and almost as high as
those in Table 2. They clearly show that, for the 02 data, it’s possible to pick collections
that generalize to with-held, within-student test data. However, the same table for the 06
data (not shown) is much less convincing. In 06 data, naively picking collections using
the adjusted R2 produces collections with poor predictions of learning. However, in 06,
amongst the collections with the highest adjusted R2, some collections do have a high test-
set correlation with learning gain. For example, for τ = 6, the fourth-best collection has a
0.46 test-set correlation with learning gain. The problem is selecting the right collection:
while the adjusted R2 is effective for 02 collections, it selects poorly from 06 candidates.

In the end, educational data mining requires interpretable results that have educational
implications. Fortunately, Stepwise-HMM-Cluster outputs simple, interpretable HMMs.
In particular, there is one HMM that occurs, with slightly different parameters, in every
02 collection shown in Table 3. This HMM-archetype always classifies a plurality of se-
quences, and so will be called the “dominant” HMM. Figure 4 shows a dominant HMM for
τ = 6, trained on 02 data at the step level. These dominant HMMs tend to be small, often
only two states and never more than four.
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a A h H
10 90 0 0

a A h H
99 0 1 0

79%

16%

15% 82%

Figure 5: Repeated Guessing HMM for τ = 6, 02 data

While interpreting the structure of individual HMMs is not actually meaningful (to be ad-
dressed), it is still a useful comprehension exercise. Here, the dominant HMM emits a
and A with high probability, and emit both actions equally often (over the course of many
sequences). One possible explanation is that the dominant HMMs select short sequences
where the student already knows the answers and can solve each step in one attempt. How-
ever, the correlation between the frequency of first-try-correct sequences and learning gain
is −0.24. Instead, an alternative interpretation for these HMMs is that they represent a
persistence-trait. Students that attempt to solve repeatedly are more likely to learn the ma-
terial than those that rely on hints. This is borne out by the resilience of the HMM to
changes in τ , and by the duration-agnostic nature of the HMM, which emits both a and A.

However, this conflicts with common sense. The HMM shown in Figure 4 has a high
probability1 of emitting a sequence of type Aaaaaa, i.e., a single long attempt followed by
many short ones. This is generally considered poor learning behavior [2]. Intuitively, it
represents a failed attempt followed by repeated, unthinking guessing. This paradox can
be resolved by noting that no single HMM in any collection can be interpreted alone. Each
HMM exists only as part of an entire collection and, thus, other HMMs in the collection can
remove specific, degenerate sequences. Take the τ = 6 collection as an example. It con-
tains an HMM, shown in Figure 5, that has a high probability of emitting repeated-guessing
type sequences. The repeated-guessing HMM, a highly specialized model, removes only
the guessing sequences from the dominant HMM’s partition. This relationship between
HMMs in a collection, where a specific HMM can be tuned to special cases of a more
general HMM, allows collections to be more expressive than the sum of their individual
HMMs. However, this feature is also what makes the interpretation of the structure of in-
dividual HMMs meaningless, as a high probability sequence for one HMM may actually
belong to another HMM’s partition.

A more appropriate way of interpreting the HMM clusters is to directly examine the se-

1A high probability as compared to any other sequence of the same length. These HMMs are not assumed
to model the distribution of sequence lengths, so comparing sequence probabilities is only meaningful for a
fixed length.
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quences classified by a particular HMM. For example, consider the dominant HMM for
τ = 6, 02 data, step-level. The five most commonly observed sequences in the HMM’s par-
tition are: A, AA, Aa, AAA, AAa. None of these sequences are of the repeated-guessing
type, yet they account for 95.5% of all sequences in the partition. Longer sequences in the
partition follow the same pattern: example sequences include AAaaAA and AAaAaA. As
noted above, guessing sequences, e.g., Aaaaaa, are about as likely to be generated by the
dominant HMM as the above sequences, but are actually captured by the repeated-guessing
HMM. Similar results apply to the collections discovered for other values of τ .

The general interpretation of these results is that students learn more when using persistence-
type tactics, as long as they don’t guess repeatedly. Interestingly, this is largely independent
of the choice of threshold τ . The most likely explanation is that very short or very long
actions contains the most information about the student, and thus the actions that are re-
classified by small changes in τ are relatively unimportant.

Finally, across all the best collections, hint-heavy tactics are negatively associated with
learning. However, many of the more complex collections (3 or 4 HMMs) contain a “noise”
HMM that generates all sequences with nearly uniform probability. Thus, hint-specific
HMMs are actually very specialized, usually emitting mostly h actions. This explains the
negative association with learning. Some “good” HMMs do involve hints, but those HMMs
are not structurally consistent enough to permit conclusions without more data or analysis.

6 Conclusions

Most educational data mining methodologies either rely on domain experts or discover
uninterpretable models. In contrast, Stepwise-HMM-Cluster, an unsupervised algorithm,
can generate collections of HMMs that predict learning, but are also interpretable. For
at least some data sets, Stepwise-HMM-Cluster produces collections of HMMs that can
provide good predictions on with-held test data. This algorithm thus satisfies multiple
educational data mining goals: it produces interpretable models, the models generalize
(within-student), and the models not only fit data, but also predict learning outcomes.

Additionally, Stepwise-HMM-Cluster produced models with potential educational impli-
cations. Our results provide an additional argument that the most common type of hint-
scaffolding in software tutors may be sub-optimal and that most learning may arise from
persistent attempts to solve. This suggests a paradigm for tutoring systems that emphasizes
attempts and provides hints or worked examples only when strictly necessary; however,
there are other feasible explanations and more extensive exploration of this issue is re-
quired. In particular, there may exist learning tactics that are both productive and involve
hints, but are difficult to detect due to noise or rarity.

There are many opportunities for future work. First, the evidence for statistical generaliza-
tion is still weak; collections learned on one data set should be tested on another data set en-
tirely. Second, adjustedR2 appears to be a poor model selection criterion in some cases and
other criteria may be more successful. Third, τ is a problematic parameter: while Stepwise-
HMM-Cluster was robust to changes in τ in this study, it may not be robust in general. For
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example, some data sets may require three action strata (“Long”,“Medium”,“Short”) or
require a different τ for hints versus attempts. Fourth, while there is already a procedure
for interpreting clusters, there is significant room for improvement. A promising approach
is to construct a visualization of the unfolding of sequences with sets of sequences with
the same prefix or suffix grouped together. Finally, the algorithm itself is overly simple.
The heart of Stepwise-HMM-Cluster is a strict assignment, E-M clustering algorithm using
Baum-Welch; probabilistic mixture models or another method, such as spectral clustering,
might improve the results, as might a better HMM learning algorithm.

Despite its limitations, Stepwise-HMM-Cluster has many potential applications. First, in
its present form, the algorithm can already learn interesting models with little dependence
on data. However, it is also flexible and extendible. Glossary requests could be separated
from hints; new action types could be added for new data sets; tactics could be learned on
the level of class sessions or curriculum units instead of problems and steps; human labels
could be incorporated into the model selection step; actions could be redefined to include
domain information, such as skill models. Further, there is the potential to develop a fully
hierarchical algorithm that could simultaneously learn HMMs for individual step tactics,
learn HMMs to classify problem tactics as a series of previously learned step tactics, and
so on up, as far as sample size will permit.

However, the most important contribution of this study is neither the algorithm nor the edu-
cational implications. Rather, our results suggest an opportunity for a new paradigm where
algorithms can simultaneously leverage multiple data sources at different granularities. In
particular, constraining low-level models using student-level measures could potentially
improve many existing algorithms and lead to important educational insights.
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Abstract. Current peer-review software lacks intelligence for responding to 
students’ reviewing performance. As an example of an additional intelligent 
assessment component to such software, we propose an evaluation system that 
generates assessment on reviewers’ reviewing skills regarding the issue of 
problem localization. We take a data mining approach, using standard 
supervised machine learning to build classifiers based on attributes extracted 
from peer-review data via Natural Language Processing techniques. Our work 
successfully shows it is feasible to provide intelligent support for peer-review 
systems to assess students’ reviewing performance fully automatically. 

1 Introduction  

Peers reviewing each other’s writing is commonly used in various academic fields. A 
typical peer-review practice consists of three sections: first, students write essays on 
certain prompts; second, they provide feedback on essays of their peers; third, based on 
the feedback they get from their peers, they revise their initial essays. Peer-review is 
valuable not only because it provides learning opportunities for students, but also because 
it is more abundant in quantity compared with feedback from instructors. Besides, peer-
review exercises also provide students the opportunity to develop their reviewing skills.  

One problem with peer-review feedback is that its quality is not always guaranteed [1]. 
Previous studies on the nature of feedback suggest that the quality of feedback, in terms 
of the likelihood of its implementation, is significantly correlated with certain feedback 
features [2], among which problem localization is most significant. As defined in 
previous work, problem localization refers to pinpointing the source of the problem 
and/or solution. While such feedback features were used as mediators in the analysis of 
feedback helpfulness in [2], we believe that they could also be used as indicators in 
evaluating feedback quality automatically.  

To date, current peer-review software facilitates the peer-review exercise with respect to 
document management and review assignment. However, no automatic feedback is 
generated for students regarding their reviewing performance. To add an automatic 
assessment component to peer-review software, we construct an evaluation system for 
reviewing performance that provides binary assessment for reviewers with respect to 
problem localization. Taking a data mining approach, we use standard supervised 
machine learning algorithms to build classifiers for identifying feedback features, based 
on attributes extracted from peer-review data with Natural Language Processing (NLP) 
techniques. Our results suggest that it is feasible to add an assessment component to peer-
review software that could respond to students’ reviewing performance automatically.   

211



 2 

2 Related Work  

Empirical studies of peer-review feedback based on manual coding have explored which 
feedback features predict whether feedback will be understood; the understanding of 
feedback was found to be a good predictor of whether feedback was implemented. For 
example, one study [2] has analyzed the rate of understanding the problem as a function 
of the presence/absence of feedback features, and found that feedback was more likely to 
be understood when the location of the problem was explicitly stated, or the solution to 
the specified problem was provided. This suggests those feedback features contribute to 
feedback implementation, which further indicates the helpfulness of feedback. 

There is an increasing interest in research on computer-supported peer reviews that can 
bring benefits to both instructors and students.  In our work, we aim to enhance the 
quality of feedback received by students by automatically assessing and guiding students’ 
reviewing performance. Similarly, researchers from the data mining community have 
tried to predict feedback helpfulness automatically based on previous theoretical 
discoveries. With the help of software such as SWoRD1, peer-review corpora are being 
collected and can be used for data mining and machine learning. One study [3] on a 
corpus that SWoRD collected used machine learning and classified any piece of peer-
review feedback as helpful or not helpful based on tags that are automatically generated 
by tagging software. (In contrast, [2] took a manual-analysis approach: they require 
human annotators to code many feedback features that could be potentially relevant with 
respect to their purpose of study.) The result in [3] showed the performance of the 
classifier was limited by errors from the tagging software, which couldn’t distinguish 
problem detection and solution suggestions (they are both types of criticism feedback).   

In this paper we will also examine a corpus collected with SWoRD. However, in contrast 
to [3], we first detect the criticism feedback, and then predict the helpfulness of the 
recognized criticism feedback only based on the issue of problem localization. By 
treating criticism feedback as one group, we get around the problematic identification 
between solution suggestion and problem detection. In contrast to both [3] and our own 
prior work in [8], our system also aims to assess reviewing performance at the reviewer-
level, rather than predicting the helpfulness [3] or problem localization [8] of a given 
piece of feedback. In the area of NLP, one related work of identifying criticism feedback 
could be sentiment analysis [4], while problem localization often involves paraphrasing 
[5] partial content of the associated essay. However, in this preliminary study, we take a 
simple approach in addressing these problems.  

3 Data 

The data used for this work is from a previous study [2] of the relationship between 
feedback features and helpfulness. The data was collected using SWoRD in a college 

                                                 

1 Scaffolded Writing and Rewriting in the Discipline. http://www.lrdc.pitt.edu/ 
Schunn/sword/index.html 
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level history introductory class. It consists of textual reviews provided by 76 reviewers 
referring to 24 associated student history essays.  

In the previous study, all the textual reviews were manually segmented into 1405 idea-
units (defined as contiguous feedback referring to a single topic).2 These units were 
further annotated by two independent annotators for various coding categories. For the 
purpose of our work, we automatically predict two of the coding categories, 
feedbackType and pLocalization.   

FeedbackType was coded with three values — criticism, praise and summary. For only 
criticism feedback, pLocalization was then coded as true or false, indicating whether the 
criticism feedback contains problem localization for any specified problems or suggested 
solutions. According to the coding scheme, pLocalization is not applicable to praise or 
summary feedback, thus its pLocalization was labeled as N/A. The reported agreement 
(Kappa) between two annotators on FeedbackType is 0.92, and that on pLocalization is 
0.69.  Relevant statistics are listed in Table 1. From now on, feedback will be used to 
refer to the 1405 annotated feedback idea-units. 

Table 1.  Descriptive statistics of annotations on history peer-review feedback data 

Coding category  Value 

feedbackType criticism praise summary total 
875 388 142 1405 

pLocalization true false N/A total 
462 413 530 1405 

  

In addition to the feedback idea-units, we also have access to the collection of 24 essays 
to which the feedback refers. These essays provide domain knowledge, and are a self-
contained resource that will assist us in mining features from the peer-review feedback 
data using statistical NLP techniques.   

4 System and Features for Classification 

Before diving into details of feature extraction and model learning, we would like to first 
provide an overview of our system, which takes the annotated feedback provided by a 
single reviewer, identifies target features sequentially for each piece of feedback, and 
generates assessment on the reviewer’s reviewing performance with respect to problem 
localization in general (as the flow suggests in Figure 1).  

                                                 

2 In the new version of SWoRD, segmentation is handled automatically through the 
interface which requires users to submit comments separately by idea-unit. 
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Figure 1.  System overview 

 

4.1 System overview 

The system described in Figure 1 can be viewed as an assessment module compatible 
with peer-review software such as SWoRD. The system consists of two binary classifier 
components for identifying problem localization at the feedback-level (part A in Figure 
1), plus an aggregation component (part B in Figure 1), which propagates the prediction 
of problem localization from the feedback-level up to the reviewer-level. 

In pilot work, adding either annotated or predicted feedbackType into the feature set 
significantly improved the model’s performance on identifying problem localization at 
the feedback-level. Therefore, we decompose the task into two concatenated tasks. We 
first use supervised learning to train a classifier for identifying criticism feedback versus 
praise and summary feedback; then we use the same algorithm to train another classifier 
for identifying whether problems are localized (pLocalization = true) for a given criticism 
feedback. Note that although both feedbackType and pLocalization were annotated with 
three values (Table 1), we combined values to create two binary classification tasks. 
Because it is the criticism feedback that is actionable, and focused on in the next step 
(classification for pLocalization), we group the praise and summary feedback together as 
non-criticism. As a byproduct, this binary separation also results in a more balanced data 
set from the perspective of machine learning. Similarly, recall that all non-criticism 
feedback in the data set was labeled N/A for pLocalization; we group N/A with false (vs. 
true), which simplifies our model for handling noisy output of the feedbackType identifier 
(specifically, any non-criticism predicted as criticism and sent to the second component).  

Since our goal is to generate assessment of reviewing performance for each reviewer, we 
add another aggregation step into the system after the two components mentioned above, 
in which we make a binary decision on whether the reviewer provides enough problem 
localization in their reviews in general.  This decision is based on the predictions made by 
the two preceding components on problem localization for all the feedback submitted by 
that reviewer. Since localization at the feedback-level is relatively difficult even for 
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humans (recall Kappa=0.69), we expect to provide more accurate (and hence useful) 
feedback at the aggregate level. 

4.2 Criticism Identifier 

To identify criticism feedback, we develop 3 groups of attributes that are automatically 
derived from the surface of sentences.    

Simple: This set simply contains two attributes, the wordCount and the feedbackOrder in 
the review. WordCount is the number of words in the feedback; feedbackOrder is the 
index of the feedback with respect to its original review before segmentation. Based on 
our brief exploration of the data, we hypothesize that negative feedback is more likely to 
be verbose than positive feedback, and there is a certain pattern in expressing opinions, 
thus the feedbackOrder is useful in detecting criticism feedback. 

Essay: There are four attributes in this group capturing the topic information contained in 
the feedback. To build a domain dictionary, first we preprocess the collection of 24 
essays into bigrams (two adjacent words) and unigrams (single word). In particular, using 
NLTK3 we extract bigrams whose term frequency–inverse document frequency (TF-IDF) 
is above the average TF-IDF of all bigram-collocations to form the bigram-domain 
dictionary. Then we gather all unigrams that constitute the bigrams in the bigram-domain 
dictionary for building our unigram-domain dictionary. Our final dictionary contains 291 
bigrams and 402 unigrams. To capture how much content of the feedback is related to the 
domain, we count bigrams in the feedback that also belong to the bigram domain 
dictionary, and create the attribute Collocation_d. Similarly we create Collouni_d based 
on unigrams. Besides the domain-topics shared by all essays in general, we also 
considered essay-topics, referring to terms that are more frequently used in one specific 
essay rather than all of them. For each piece of feedback, we compute its bigrams and 
unigrams, and then only count (Collocation_e and Collouni_e) those that also appear in 
the associated essay with above-average item frequency of that essay. These four counts 
are normalized with the length of feedback. 

Keyword: Due to the expensive computational cost for building models based on all 
words in the feedback corpus, we semi-automatically learned a set of Keywords (Table 2) 
which has categories based on the semantic and syntactic function of the words.4 We first 
manually created a list of words that are specified as signal words for annotating 
feedbackType and pLocalization in the coding manual; then we supplemented the list 

                                                 

3 Natural Language Toolkit. http://www.nltk.org/ 

4 We also considered Bag-of-Words as well as sentiments that could be easily extracted 
with available software for opinion analysis features, but Keyword turned out to perform 
as well as the combination of these two groups, if not better. We prefer using Keyword in 
our model because it involves considerably fewer attributes thus reducing the complexity 
of our model, and it does not require the need for sentiment analysis software. 
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with the words selected by a decision tree model learned using a feature vector consisting 
of all words in the feedback (Bag-of-Words). As shown in Table 2, we generated nine 
attributes counting the number of words in the feedback that belongs to each tag 
category, respectively. 

Table 2.  Keyword table 

 

4.3 PLocalization Identifier 

For a given piece of criticism feedback, we developed four groups of attributes to capture 
different perspectives of localized expressions. 

Regular Expression: Three simple regular expressions were employed to recognize 
common phrases of location (e.g., ―on page 5‖, ―the section about‖). If any regular 
expression is matched, the binary attribute regTag is true. 

Domain Lexicon: Intuitively, localized feedback tends to use more domain vocabulary. 
Using the domain dictionary that we generated in 4.2 to calculate ESSAY attributes, we 
counted unigram domain-topics (collouni_d) contained in each piece of feedback.  

Syntactic Features: Besides computing lexicon frequencies from the surface text, we 
also extracted information from the syntactic structure of the feedback sentences. We 
used MSTParser [6] to parse feedback sentences and hence generated the dependency 
structure of feedback sentences. Then we investigated whether there are any domain-
topics between the subject and the object (SO_domain) in any sentence. We also counted 
demonstrative determiners (this, that, these and those) in the feedback (DET_CNT).  

Overlapping-window Features: The three types of attributes above are based on our 
intuition about localized expressions, while the following attributes are derived from an 
overlapping-window algorithm that was shown to be effective in a similar task -- 
identifying quotations from reference works in primary materials for digital libraries [7]. 
To match a possible citation in a reference work, it searches for the most likely referred 

Tag Meaning Word list 

SUG suggestion should, must, might, could, need, needs, maybe, try, revision, want 

LOC location page, paragraph, sentence 

ERR problem error, mistakes, typo, problem, difficulties, conclusion 

IDE idea verb consider, mention 

LNK transition however, but 

NEG negative fail, hard, difficult, bad, short, little, bit, poor, few, unclear, only, more,  
stronger, careful, sure, full 

POS positive great, good, well, clearly, easily, effective, effectively, helpful, very 

SUM summarization main, overall, also, how, job 

NOT negation not, doesn't, don't 
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window of words through all possible primary materials. We applied this algorithm for 
our purpose, and considered the length of the window (windowSize) plus the number of 
overlapped words in the window (overlapNum). 

4.4 Example of Attribute Extraction 

To illustrate how these attributes were extracted from the feedback, consider the 
following feedback as an example, which was coded as ―feedbackType=criticism‖, 
―pLocalization=true‖:   

The section of the essay on African Americans needs more careful attention to the 

timing and reasons for the federal governments decision to stop protecting African 

American civil and political rights. 

This feedback has 31 words (wordCount =31) and its index in the review is 2 
(feedbackOrder=2). It has 2 bigram domain-topics (―African American‖ 2), 9 unigram 
domain-topics (―African‖ 2, ―American‖, ―Americans‖, ―federal‖, ―governments‖, 
―civil‖, ―political‖ and ―rights‖), and 2 bigram essay-topics (―African American‖ 2) plus 
8 unigram essay-topics (same as the unigram domain-topics except the ―rights‖). These 
four numbers are then normalized by the count of words in this feedback. As for 
Keyword, it contains 1 SUG (―need‖) and 2 NEG (―more‖, ―careful‖). 

The regTag is true because one regular expression is matched with ―the section of‖; there 
is no demonstrative determiner, thus DET_CNT is zero; ―African Americans‖ is between 
the subject ―section‖ and the object ―attention‖, so SO_domain is true.  

4.5 Aggregation 

To finally generate an overall assessment of appropriate problem localization by each 
reviewer, the system aggregates the relevant predictions at the feedback level, calculating 
a pLocalization% score representing the reviewer’s overall performance, which is the 
percentage of criticism feedback whose pLocalization is ―true‖ submitted by that 
reviewer.  To classify reviewers into ―High‖ and ―Low‖ groups regarding overall 
reviewing performance, we compare their pLocalization% score against a threshold and 
make a binary decision. In this work, we used an intuitive threshold that is the 
pLocalization% of criticism feedback of all reviewers (the number of ―true‖ 
pLocalization criticism over the number of criticism feedback in the training data). This 
threshold performed best among several alternatives explored in a pilot study. 

5 Experimental Setup 

Though the system output is the assessment of reviewer’s reviewing performance, its 
error could be due to any of the predictions made in the three components. To better 
analyze the predictive power of our system, we first evaluate each component separately 
(Section 5.1), then combine them and test its performance in a fully automatic version 
(Section 5.2). We compare our result to a Majority Class baseline for all experiments. 
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5.1 Component Evaluation 

The feedbackType experiment uses all 1405 feedback from 76 reviewers. We use the 
Decision Tree algorithm provided by WEKA5 and conduct 10-fold cross validation for 
evaluation. We chose the Decision Tree learning algorithm not only because it worked 
best in a preliminary study (compared with Naïve Bayes, Logistic Regression, and SVM), 
but also because the learned model (decision tree) is easier to interpret and provides 
clearer insights into how problem localization is recognized. Results are presented in 
Table 3 and explained in Section 6. 

Recall that pLocalization was only coded for criticism feedback (non-criticism feedback 
are directly coded as N/A), thus for the isolated evaluation of this component, we only 
use the 875 criticism feedbacks for training and testing. The learning algorithm and 
evaluation settings are the same as those used for feedbackType (Table 3, Section 6). 

5.2 System Evaluation 

Though there is no annotation of overall problem localization for each reviewer 
(pLocalization at reviewer-level) in the data set, we can generate this by aggregating the 
pLocalization (annotated values) at the feedback-level, as we described in section 4.5. 
Note that when generating binary labels (High and Low) for each reviewer, the 
aggregation is based on annotated pLocalization and the threshold is calculated with 
annotated labels. When predicting, the aggregation is based on all predicted values. Thus 
the threshold would be different correspondingly. 

When all components work together as a system, the pLocalization identifier receives the 
output of the feedbackType identifier. Therefore in the combined version, the 
pLocalization identifier was trained with the 1405 feedbacks, with one new attribute: 
predicted feedbackType. We again use the Decision Tree algorithm provided by WEKA 
for learning, while in this case we conduct leave-one-reviewer-out cross validation for 
evaluation. Results are presented in Table 4. 

6 Results  

Table 3 presents the experimental results of the performance of each component in 
isolation. With respect to the accuracy of our models, both significantly (p<0.05) 
outperform our baselines (79% vs. 62% and 78% vs. 53%) and their Kappa values are all 
greater than 0.5. Because we would like to provide further tutoring for the ―Low‖ group 
of reviewers in the future, we are more interested in precision and recall of predicting the 
―Low‖ group. Thus we also analyze precision and recall for feedbackType=criticism and 
pLocalization=true, which are used to compute the pLocalization% scores.  As listed in 
Table 3, both models achieve precision higher than 0.8, while for identifying criticism 
feedback the model’s recall is even 0.86, though the pLocalization model has 0.73 for 

                                                 

5 http://www.cs.waikato.ac.nz/ml/weka/ 
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recall, which is still acceptable.  Since the Majority class always predicts feedbackType as 
criticism and pLocalization as true, its recall will always be 1, thus we don’t aim to beat 
the baseline for recall. Besides examining the quantitative results, we can also examine 
our results for qualitative characteristics. The learned model (decision tree) for 
pLocalization at the feedback-level is compact, using only 5 attributes (presented in [8]), 
and it suggests that domain-word counts plays an important role. The feedbackType 
model though more complicated, also relies on domain knowledge (Collocation_d and 
Collouni_d appear close to the root).   

When all the components work together, the overall system can successfully predict the 
―Low‖ group of reviewers with both precision and recall higher than 0.8 (Table 4). Table 
4 also presents the confusion matrix for details. Although system performance suffers 
from errors within each component, aggregation does alleviate it and maintains the 
overall performance comparable to the pLocalization model in isolation (M2 in Table 3). 

Table 3.  Performance of identification of feedbackType and pLocalization at feedback-level   

 Model Accuracy Precision Recall Kappa 
feedbackType 

(n = 1405) 
Baseline 62% 0.62 1 0 

M1 79% 0.81 0.86 0.54 
pLocalization 

(n=875) 
Baseline 53% 0.53 1 0 

M2 78 % 0.82 0.73 0.55 

 

Table 4. Performance of the overall system for identifying pLocalization at reviewer-level  

Confusion matrix 
Predict\Label High Low 

High 21 9 
Low 8 38 

 Precision (Low) 0.81 
Recall (Low) 0.83 

 

7 Conclusion and Future Work 

In this paper, we proposed a novel system for generating automatic assessments of 
reviewing performance with respect to problem localization at the reviewer-level. As a 
preliminary study in this new area of automatically assessing reviewing performance, we 
have demonstrated the feasibility of detecting reviewers who have low problem 
localization in reviewing, which is a first step for enhancing peer feedback quality. From 
the perspective of data mining, we successfully mine features of problem localization 
patterns from  free form textual comments using statistical NLP techniques. Though we 
have started with simple methods and our classifiers are based on shallow NLP features, 
our system achieves comparatively high accuracy and precision for identifying reviewers 
who generally fail to provide localization information in their reviews.  
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In the future, we hope to construct a more complete dictionary of domain vocabulary, 
which might provide us with a better result based on our observations from this work. To 
improve the generalization of our system, we would also like to use a data driven 
approach to generate the Keyword list fully automatically (Table 2). Clearly each 
component in our system could be a NLP research topic, so we plan to explore the use of 
more sophisticated models from the NLP community as we discussed in the related work. 
Finally, since our ultimate goal is to help students with reviewing, we would like to 
perform a follow-up study to further evaluate how helpful the assessment generated by 
our system is in term of improving problem localization in future peer-review exercises 
for our ―Low‖ reviewers. 
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Abstract.  Nowadays, it is a common practice to use several 
educational systems in one domain. In this situation, each of the 
systems should be able to provide the best user modeling based on 
the integrated data about the user. However, differences in domain 
conceptualization complicate the ability of the systems to 
understand each other’s user models and necessitate the use of 
labor intensive and time consuming alignment procedures that 
require involvement of knowledge engineers. While the latter are 
best at detecting associative links between the user model items, 
they fail to reliably identify the strengths of these associations. In 
this paper, we are proposing a method to improve the user model 
mapping by using a numerical optimization procedure. Our results 
show that numerical weight optimization helped to decrease the 
amount of manual work and improved the target model accuracy. 

1 Introduction 

Over the recent decade, many state-of-the-art user-adaptive systems evolved from 
research prototypes to real-life production applications. Social interaction, information 
access, and E-Learning are the areas where the user-adaptive content is booming. In some 
fields (educational systems for example), the concentration of user-adaptive systems is 
such that several are available for each topic. Despite their availability, adaptive systems 
do not compete but complete each other, implementing only part of an ideal fully 
functional system. They offer unique features unable to completely replace their rivals. 
This creates a problem in using them together to embrace the full range of features 
offered separately. To enable coherent use, systems should be able to mutually exchange 
and understand collected user data. In an ideal scenario, user models should be integrated. 

There are two major approaches to user model integration. The most widespread and 
popular is translation [15] (or mediation [1]). Here, systems exchange complete snapshots 
of their user models and convert them into local representations. The operation of 
translation is costly. However, since translation/mediation is usually employed when the 
systems are used sequentially, these costs stay insignificant. When systems are used in 
parallel, holistic translation/mediation poses a problem when large chunks of user data 
need to be exchanged and converted (even after minor updates to one of the models). 

In the situation of parallel systems’ use, evidence-based integration is more appropriate, 
because user-adaptive systems do not exchange whole user models. Instead, they share 
results of elementary user actions. When one user model is updated, only the changes are 
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conveyed to the other system’s user model. The cost of conversion is lower as fewer user 
model items require conversion. Although, in the case of the evidence-based approach, 
the problem of user model integration is of a seemingly smaller scale; the question of 
user model conversion is still quite complicated. This is especially true for the field of 
adaptive education systems (AES). In AES, each learning object (problem, example, test) 
is commonly described in terms of constructs of the domain model often called concepts. 
In reality, systems seldom share the representation of the models, even in closely related 
domains. Under these conditions, evidence integration becomes a challenging task.  

Because of the differences in the domain model representations, concepts from one 
system could be related to several concepts from the other; they may feature different 
strengths of relations. To be able to convert user model data between systems, researchers 
often employ domain experts and knowledge engineers who manually identify links 
between domain models of the systems and assign strengths to them. Although human 
experts are known to be able to find related complex relations between domain models 
effectively, they do have problems assigning numerical weights for the strengths [6]. The 
very same expert could change his/her weighting decision if the process is repeated. 

In this paper, we are addressing the problem of evidence-based user model integration for 
two educational systems in the area of databases: SQL-Tutor [11] and SQL KnoT [14]. 
Our prior work on integrating the user models of these systems has shown that expert 
involvement only partially solves the problem of integration [2]. While experts agree on 
the concept associations, assigning weights is extremely time consuming and often leads 
to conflicting results. To solve these problems, we are proposing an optimization 
procedure intended to aid experts in mapping domain models of the two systems. This 
procedure is designed to significantly cut the amount of efforts and time, optimize the 
mapping weights, and potentially refine the structure of the concept mapping links. 

The rest of the paper is organized in the following way. Section 2 addresses related work. 
Section 3 talks about the ongoing integration of the two systems in question, identifies a 
problem, suggests a solution, and lists our hypotheses. Section 4 discusses the 
experimental work. And finally, section 5 finishes with discussion points. 

2 Related Work On User Model Integration 

The task of making two adaptive systems understand each other’s user models is quite 
challenging. It requires aligning the domain vocabulary of one against the other, so that 
both systems can correctly interpret assumptions about the users from the partner system 
and employ user data to improve their own performance. Domain model alignment 
leading to a successful integration requires resolution of multiple inconsistencies. The 
less complex are the inconsistencies at the language-level. Among these are differences 
in syntax, differences in clarity, varying use of semantics, etc. The more complex 
inconsistencies are the model-level mismatches occurring due to the discrepancy in 
structure and/or semantics of the domain models. Resolving these kinds of 
inconsistencies entails dealing with: naming conflicts (the same concept termed 
differently in two models or the same term defining different concepts); different graph 
structure (relevant sets of concepts connected differently); different scopes (e.g. two 
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models covering different parts of the domain); different granularities (a single concept of 
one model covering a portion of domain knowledge represented by several concepts in 
another model); and adherence to different modeling paradigms and conventions. 

Common ontology. User models can be exchanged and mutually interpreted when user 
models of two systems rely on a common domain ontology. A good example of common 
ontology integration is the OntoAIMS project [7]. Here, two separate systems OWL-
OLM and AIMS are deployed with mutual regard for interoperability. Both systems 
represent their domain models in the form of ontologies and user models – as overlays of 
these ontologies. The shared user model is populated and read by both systems. Another 
approach to common ontology integration is to devise a central user modeling server (e.g. 
Personis [10], CUMULATE [4]). Such servers store domain models, perform centralized 
user modeling, and deliver user data to participating adaptive systems. 

The intermediary ontology is used when systems agree on a single ontology. 
Regrettably, the field of user-adaptive systems is far from producing ontologies, which 
would be widely accepted. It is often rather difficult to make an ontological commitment, 
as different research teams design ontologies with different views of the 
conceptualization of the domain. A good example of the use of an intermediary ontology 
is the M-OBLIGE architecture [12]. Here, a common reference ontology of SQL works 
as a multi-translator and facilitates the exchange of the user model information.  

Automatic ontology mapping. The approaches presented above are practical solutions 
for semantic integration of multiple user-adaptive systems. However, their applicability is 
reduced by the need to either adapt to an alternative representation of the domain or to 
perform time-consuming and mostly manual knowledge engineering work. Nevertheless, 
cases exist where the use of ontologies for domain modeling permits automatic alignment 
them [9]. Automation helps to find matching concepts and relies on techniques of natural 
language processing, graph theory, information retrieval, and statistics to discover similar 
lexical patterns, conceptual sub graphs, and regularities in accompanying text. Fully 
implemented ontology mapping solutions are not yet known. But authors of [15], when 
investigating the applicability of automatic ontology mapping, have shown that it has the 
potential to be close to the best possible translation done by human experts. 

Evidence-based integration. To successfully integrate user-adaptive systems, one does 
not have to align entire ontologies each time. Instead, integration could be performed on 
single units of user information: reports of user activity, assumptions about user 
knowledge, preferences, and goals – all described in terms of domain model concepts. 
This data arrives to the user model sequentially as a series of events. Translation is 
applied to one or a set of events as shown in Figure 1. Model values are often exchanged 
as soon as they are produced by one of the systems. An example of the evidence-based 
integration is the work on integrating Ramapo Problets and QuizJET systems [3]. Both 
systems have internal domain ontologies of Java programming and the ontologies are 
different in granularity and focus of modeling. Integration of user data is done on the side 
of QuizJET. QuizJET uses the ontology concepts in the classical descriptive metadata 
sense, while Ramapo Problets uses the concepts-in-a-context paradigm, where each 
concept is accompanied by a descriptor of its situational application (e.g. for-loop vs. for-
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loop-executing-exactly-once). This leads to the situation when each of the Ramapo 
Problets’ concepts-in-context is related to a sizable weighted set of QuizJET concepts. 

 

Figure 1 Evidence-based integration of two user models 

The problem with all of the approaches above is that they heavily rely on time-consuming 
work on the part of experts to produce the mapping function. While experts are best for 
selecting the semantic relations between concepts of the domain models, the quality of 
their assignment of strengths to the inter-concept links is sub-optimal [6]. In our work, we 
are seeking to improve user model integration by utilizing an optimization procedure to 
either refine expert mapping weights or to produce them without human involvement, 
potentially altering the expert-suggested mapping links. 

3 From Manual To Automated Student Model Mapping 

3.1 Model Mapping For Evidence-Based Integration 

In our previous work, we have dedicated a lot of attention to evidence-based integration 
of user models in the SQL domain. This work revolved around two systems: SQL Knot 
and SQL-Tutor. SQL KnoT [14] is an external-loop tutor serving parameterized problems 
testing students’ knowledge SQL. SQL KnoT represents domain model in the form of an 
ontology that has been developed by a team of human experts. Each problem is semi-
automatically indexed with a set of ontology concepts. SQL-Tutor [11] is an ITS that 
presents problems to students and helps them to improve their knowledge of SQL. SQL-
Tutor represents a domain model in the form of constraints. Constraints represent the 
fundamental principles of SQL and must be satisfied in any correct solution. Each SQL-
Tutor problem has a set of relevant constraints. If the student solution violates these 
constraints, the solution is incorrect. The constraint set in SQL-Tutor contains about 700 
constraints that assess the syntactic and semantic correctness of the solution.  

The gist of the user modeling approach in both SQL KnoT and SQL-Tutor is quite 
similar: they construct an overlay of the domain vocabulary of knowledge items 
(constraints or concepts); nevertheless, the fundamental differences between the two 
domain models make the alignment of their models quite challenging. The unique nature 
of SQL-Tutor constraints makes the use of the known automatic ontology mapping 
techniques impossible. A constraint is not directly related to a single concept or a sub-tree 
of the ontology; instead, it models the syntactic or semantic relations between various 
concepts. As a result, the mapping is not one-to-one, but many-to-many. 
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Figure 2 A fragment of constraints-to-concepts mapping with weights 

We charged a number of experts with the task of mapping the two domain representations 
[13]. The resulting mapping contained a set of constraint-concept relations with the 
relevance weights: small (1/3), medium (2/3), or large (3/3=1). A fragment of the 
mapping is shown in Figure 2. The formula for computing the concept knowledge scores 
is shown in Equation (1). Namely, sum of weights between the concept and satisfied 
constraints minus sum of weights between the concept and broken constraints, divided by 
the sum of weights between the concept and all activated constraints. 
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Both systems were deployed in an undergraduate database course at the School of 
Information Sciences, University of Pittsburgh during the Fall 2008 semester. Students 
had access to 300 SQL-Tutor problems and over 50 parameterized SQL KnoT problems. 
The student’s progress was stored in one single long-term user model. SQL-Tutor was 
responsible for nearly a quarter of the students’ problem-solving activity (SQL KnoT was 
responsible for the rest), despite that fact that SQL-Tutor was made available only in the 
middle of the semester and students were already familiar with SQL KnoT. 

3.2 Problems Of Manual Mapping 

Despite tangible progress in integrating the two SQL problem-solving tools, there are still 
open questions pertinent to this particular integration effort and to user model integration 
in general. First, merging the user models leaves the issue of the merger quality 
unanswered. The fusion of the user models does not automatically improve the quality of 
the combined model. Second, we relied on expert opinion to come up with the mapping. 
From the literature, we know that the experts can reliably identify mapping relations 
between items of two domains [8]. However, assigning an appropriate weight – even on a 
simpler categorical scale – often poses a problem [6]. The same person can change 
his/her opinion if the weighting procedure is repeated. This means that, even if all 
relations between concepts and constraints were identified correctly, the assigned weights 
could still be suboptimal; as a result, the quality of the mapped model would be poor. 

3.3 Towards Automated Model Mapping 

To answer these questions, we suggest using an optimization procedure to refine the 
expert-assigned constraint-to-concept weights. The idea is to employ the student logs of 
the source system (SQL-Tutor) to create and fine-tune a custom user model using least 
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square fitting method with the mean squared error as the criterion. Then, using the same 
student logs, we utilize the experts' mapping to compute the mean squared error of the 
now mapped concept-based user model. Performing the search in the weight-space, we 
are minimizing the error of the target model, thus refining the mapping. 

Our hypothesis is that the suggested procedure would be able to, first, improve user 
model integration by optimizing expert weights. Second, starting with constant or random 
weights, produce the weights, without considering expert suggestion. Here, we expect the 
optimization results to be not as good as the one starting with expert mapping. And third, 
change the mapping links structure (by setting weights =0) for a more optimal one. 

4 Experimental Study Of Automated Model Mapping 

To verify the validity of the approach suggested, we conducted a set of experiments. First 
of all, to establish the baseline for mapping, we constructed the source constraint-based 
user model in such a way that modeling parameters minimize the modeling error. Second, 
the optimization was repeated. This time, the variables were the mapping weights and the 
objective function was the mean squared error of the mapped concept-based model. 

Logs of the three database courses offered at the University of Canterbury in the 2006-
2007 term were used for the experiment. We took the logs of the first course that 
contained 3544 transactions of 38 students. Each log entry contained user id, problem id, 
time the solution was submitted, solution correctness, list of confirmed constraints, and a 
list of broken constraints (if the solution is not correct). At the first stage of the 
experiment, we used user modeling approach that was different from the one deployed 
with SQL-Tutor, namely – Bayesian Knowledge Tracing (BKT) [5] – an established user 
modeling method in the area of intelligent tutoring systems. It the second stage, we used 
three sets of weights: supplied by the experts, equal constant weights, and the random 
weights. The details and the results of these procedures are given below. 

4.1 Baseline Constraint-Based User Model 

As we have mentioned before, Bayesian Knowledge Tracing (BKT) was used as the 
baseline user modeling approach in SQL-Tutor. BKT assumes a two-state model of 
knowledge items (often called skills or rules) of a particular learning domain. The 
knowledge item (KI) is either in a learned or unlearned state. While interacting with the 
system, knowledge of KI can transition from the unlearned to the learned state. Even if a 
KI is in the learned state, a student can make a mistake. As in the unlearned state, there is 
a chance student can guess correctly. For each of the modeled KIs, BKT model maintains 
four parameter estimates: p(L) – the probability that KI is in the learned state, the 
probability that KI is in the learned state prior to interacting with the tutor is p(L0); p(T) – 
the probability that the KI will transfer to the learned state on next time user practices it; 
p(S) – the probability the student will slip and apply the KI incorrectly even when it is in 
the learned state; and finally p(G) – the probability that the student will apply the KI 
correctly despite it being in the unlearned state. For details on BKT models, refer to [5] 
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We adhered to the usual practice of BKT modeling and kept a unique set of parameters 
p(L0), p(T), p(S), and p(G) for each KI and had a separate running estimate of p(L) for 
each user-KI pair. Counter to the tradition, we didn’t assume conditional independence of 
KIs and obtained estimates for all parameters together. Reason being the special feature 
of constraint-based model: constraints always spanned several domain concepts. One 
other usual BKT practice is using only the first chance to apply the knowledge item per 
problem attempt. This rule is often used in the so-called inner-loop tutors that walk 
students through each step of the problem solving activity. SQL-Tutor is an outer-loop 
tutor: it gives feedback only when a complete problem solution has been submitted. It is 
common to see same constraint both satisfied and broken in the problem several times not 
knowing which came first. We ignored repetitions, and when the constraint was both 
satisfied and broken, set the value of p(L) to the arithmetic mean of p(L)+ (assuming 
correct response came first) and p(L)— (assuming incorrect response came first). 

Table 1 Results of fitting source BKT model of SQL-Tutor constraints. 

Parameter Value Parameter Value 

p(L0) – a priori knowledge level  0.642 p(S) – probability of slip 0.206 
p(T) – probability of transfer 0.523 p(G) – probability of guess 0.187 
Mean Squared Error of modeling 0.248   

Out of about 700 constraints, we selected only those occurring in the user logs. In 
addition, we filtered out constraints that are always satisfied and never broken. This gave 
us 282 constraints with 4 parameters to estimate for each: a total of 1,128 parameters. 
Each constraint was treated as a separate KI. Mean squared error was used as an objective 
function of the optimization. To compute the BKT models, we used Matlab. Fitting was 
done using Matlab’s implementation of linear square fitting procedure using trust region 
reflective algorithm. The parameters of the resulting source BKT model of constraints are 
shown in Table 1. Model parameters given are weight-averaged over all participating 
constraints (the number of constraint occurrences in the log weights its contribution). 

4.2 Mapping Weights Optimization 

To optimize the model mapping weights, we modified the code used to construct the 
baseline constraint-based BKT model. User model parameters were held constant and 
mapping weights were used as variables. Objective function remained the same – mean 
squared error of modeling. The original constraint-based user model was updated as 
before, but for the computation of the user model error it was mapped to concept-based 
model using Equation (1). Since in the previous stage we reduced the number of 
participating constraints, the original number of 1,012 constraint-concept links/weights 
decreased to 576. Three sets of weights were used. The first set contained weights 
produced by experts: low, medium, or high (1/3, 2/3, and 1=3/3 respectively). In the 
second set, all weights were set to 0.5. In the third set, all weights were randomly chosen 
from 0.0 to 1.0. As in the case with BKT modeling of constraints, we did not assume 
conditional independence of sets of weights and all of the 576 weights were fit together. 
Matlab’s constrained nonlinear multivariable optimization procedure was used with an 
active-set algorithm. Table 2 presents the results of the optimization experiments. 
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Table 2 Results of weight mapping refinement 

 Expert 
weights 

Constant 
weight = 0.5 

Random  
0.0 to 1.0 

Mean squared error before refinement 0.454 0.453 .463 
Mean squared error after refinement 0.290 0.270 .463 
Number of weights changed 44 576 0 
Mean absolute weight change 0.031 0.496 0 
Weights decreased / increased 44 / 0 52 / 524 0 
Weights set to zero values 34 52 0 

As we can see, under all three starting conditions the initial mean squared error was 
roughly the same: 45%-46%. However, only the first two conditions (originating from 
expert weights and from constant weights) lead to improved modeling error rate. 
Optimization of the expert-supplied weights ended with a 29% error rate, only 4% worse 
than the original constraint-based BKT model. The mapping originating with constant 
weights of 0.5, counter to our expectations, beat that figure by 2% and reached a 27%. 
Optimization of random weights did not lead to any changes. 

Although expert weights were closer to the found optimum (44 out of 576 weights were 
changed in the process of optimization and all of them were decreased) than constant 
weights (all weights were changed, 524 weights increased and 52 decreased), in both 
cases the optimization procedure arrived at similar results. In the process of optimization, 
34 and 52 mapping links were removed in the expert and constant conditions 
respectively. Despite promising results, our solutions look like local optimums. Mean 
absolute difference of weights between expert-originated and constant-originated sets is 
0.3581 and the number of removed links agreed upon is only 13. 

5 Discussion 

Our experiments have successfully shown the high potential of using numeric 
optimization to refine the expert’s alignment of two user models in general. In our case 
the mapping of the source constraint-based mode of SQL-Tutor to the concept-based 
model of SQL KnoT was significantly improved. The original 45% error of the mapped 
model was reduced to 29%; only 4% shy of the source model’s error. Taking into account 
principal differences between the two domain vocabularies mapped, the achieved result is 
impressive. The refinement of uniformly assigned constant weights, against our 
expectations, was able to achieve an even better 27% error. Although a 2% difference 
does not seem like a tangible one, what counts is that refining constant weights was 
comparable to the original constraint-based model. In the light of these results, in the 
future one could free experts from weight assignment entirely. The only thing left for 
experts to do is to set inter-model relations. The rest could be handled by the procedure 
we proposed. The optimization procedure also demonstrated the ability to not only 
change the weights, but also to drive them to zero as an indication of some of the model 
mapping links to be redundant. This could serve as an additional check of the mapping 
quality and as an aid to human experts in the by-hand iterative process of mapping. 
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Despite its merits, there are several limitations to this work. First, mapping links could 
only be removed, not added as in some automated mapping approaches. A possible 
remedy for this could be changing the link selection procedure when merging the experts’ 
suggestions. Instead of using the relations agreed upon by the majority of experts, all 
suggested links could be considered and then the refinement procedure would do the 
necessary filtering. In general, additional expert verification of the refined mapping might 
be necessary. Computationally optimal mapping might not be pedagogically sound. 
Inappropriate mapping links might be emphasized by the use of maximal weights and 
important links could be removed. Second, we did not assume conditional independence 
of mapping weights and optimized all 576 weights at once. This posed a computation 
challenge for the optimization procedure. Also we used only a part of SQL-Tutor logs, 
one course worth of logs out of three available. A limited number of data points (3544) 
might have been a contributing factor for entrapment in the local minima of the objective 
function and possibly over-fitting. Mining large volumes of user data and enforcing 
conditional independence of the mapping weights could solve both of these issues. Third, 
the user model transformation formula inherently normalizes weights and scaling all 
mapping weights has no effect. For example, a set weights equal to {1, 2, 3} would be 
equivalent to {.1, .2, .3} or {.2, .4, .6}. However, optimization procedure treats scaled 
weights as completely different. Changing the transformation formula or the optimization 
procedure for the ones that don’t suffer from this phenomenon could further improve the 
mapping. And finally, both the proposed procedure and the refined weights it produced 
could possibly be sensitive to a particular user modeling approach employed (Bayesian 
Knowledge Tracing in our case). At this point we cannot confirm whether the obtained 
weights would remain optimal, if modeling formalisms are replaced with alternative 
ones. We plan to continue this work and further investigate the issue. 
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Abstract.   In  this  paper  we  detail  a  preliminary  model  for  reasoning  about 
annotating learning objects and intelligently showing annotations to users who 
will benefit from them.  Student interactions with these annotations are recorded 
and this data is used to reason about the best combination of annotations and 
learning  objects  to  show  to  a  specific  student.  Motivating  examples  and 
algorithms  for  reasoning  about  annotations  are  presented.  The  proposed 
approach leverages the votes for and against an annotation by previous students, 
considering  whether  those  students  are  similar  or  dissimilar  to  the  current 
student,  in  order  to  determine  the  value  of  showing  this  annotation  to  the 
student.

1  Introduction

McCalla's ecological approach to e-learning systems [8] is described as “attaching 
models of learners to the learning objects they interact with, and then mining these 
models for patterns that are useful for various purposes.”  Using techniques inspired by 
collaborative filtering, the basis of this approach is to identify which users in a system are 
similar to each other, to then preferentially recommend learning objects that similar 
students have found useful.  Learning objects are used in the ecological sense, in that 
instead of attaching static ontologies to objects as metadata, models of previous 
interactions (i.e. presenting learning objects to students) are used in their place.  These 
models are then actively interpreted, with the meaning derived by real-time processes, as 
information about the object is needed.

Since McCalla's ecological approach is intended to primarily be a general philosophy for 
designing intelligent systems, individual researchers may then create their own 
algorithms and systems to embody this approach. 

To honour the basic evolutionary approach, we are particularly interested in exploring the 
use of student annotations:  allowing students to leave short comments on learning 
objects they are interacting with.  More than simply tags, this could be a question or a 
commentary about what they're learning.  Subsequent students would identify which 
annotations they found useful, which would then be intelligently shown to similar 
students.  Asynchronous collaboration or, at least, to allowing the interactions of the 
student in the past to inform the interaction with the current student,  honours the 
ecological approach [8]. 

In developing a model for reasoning about which learning objects and annotations to 
show to students, we are thus focused on mining the repository to improve the 
educational data sets of use in the tutoring process.
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2  Background

In McCalla's ecological paradigm for intelligent tutoring system, the basis for tutoring is 
a repository of learning objects (which, for example, could be a chapter from a book, a 
video or an exercise which is completed and evaluated), which are provided to students to 
interact with.  Information about these interactions is used to reason about the best 
learning objects to be shown in the future to other students, based on the utility of past 
interactions of similar students with the various objects in the system.

In previous research, we explored how best to select learning objects to present to 
students by reasoning about the benefits derived by previous students from these learning 
objects [4].  Beyond implicitly reasoning about interactions, in this work we consider 
extending this paradigm so as to allow students to explicitly leave information for future 
students.  This takes the form of “annotations”, or short text messages, which are attached 
to the learning object and intelligently shown to (or hidden from) future students.  As a 
motivating example, suppose a student Carol in a Computer Science 101 course was 
struggling with the concept of procedures.  She suddenly realizes that procedure is 
another name for a function, which is the term her high school teacher had used.  She 
leaves a short annotation (“OMG, I realized half way through the lesson that procedures 
are the same as functions!!!  duh! :-)”) on the learning object she was studying with this 
insight and carries on with her lessons.  Future students are shown this annotation and 
given the option of endorsing it (by clicking on  a “thumbs up”) or denouncing it (with a 
“thumbs down”).  Over time, the system learns that the annotation tends to be useful to 
students with a background that used the term “function” instead of “procedure” (and 
shows it to them), but not to others (and hides it from them).

3  Our Approach

For the actual mechanics of our approach, we use a set of algorithms for dealing with the 
annotations.  Our approach is as follows.  We model the overall reputation of a student, 
initially set as 0.5 and afterwards based on the extent to which the student's previous 
annotations have been found useful by other students.  The authoring student's reputation 
is used as the initial reputation of an annotation, which is afterwards independently 
tracked and modeled with its own reputation.  Students' ratings of the value of the 
annotation serve to adjust the overall reputation of the annotation (and indirectly, the 
annotation author's reputation).  Once a student has provided a set of ratings on 
annotations, it is then possible to reason about their similarity to other students, based on 
mutually rated annotations.  This allows the probability that an annotation be shown to be 
determined by both the overall quality of that annotation, as rated by all students, 
adjusted by the similarity between the current student and the students who have 
previously rated the annotation.

3.1  Annotations Algorithms

Function calculateStudentReputation
Arguments:  Student
if (numberOfAnnotationsCreatedByStudent == 0)

// If the student hasn't made any annotations, 
// assign their reputation to 0.5
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Reputation = 0.5
else

Reputation = 0
// Calculate the average reputation of all annotations
// made by the student 
for each previous annotation left by student

reputation += annotation.reputation
end for 
Reputation /= numberOfAnnotationCreatedByStudent

Return:  Reputation (0.0:1.0)
Endfunction

Example:

Bob has left his first annotation (a question asking for the definition of a term on 
the slide) on a CS 115 slide and no one has rated it yet.  His reputation is 0.5.  

Carol has left three annotations, two on slides and one on a video of the CS 115 
instructor explaining Scheme structures (each one discussing how the concepts relate to 
more advanced concepts she has read independently).  After receiving ratings from 
students presented with the learning object these annotations have reputations of 0.476, 
0.551 and 0.704.  Carol has a reputation of  0.577 (the average of these 3).
Function makeAnnotation

Arguments:  Student, Learning Object, Annotation
student.reputation =calculateStudentReputation(student)
annotation.reputation = student.reputation
// The annotating student will be considered to implicitly give 
// their own annotations a positive recommendation
evaluateLearningObjectAnnotation(student, annotation)
learningObject.attach(annotation)
Return:  nothing

Endfunction

Example:

Allison and Carol each leave an annotation on a new set of example exercises that 
have been posted (Allison asks if the solutions have been posted, and Carol replies that 
they will be posted on the March 18th after the assignment due date).  Allison's new 
annotation starts with a reputation of 0.5 (no one has rated his first annotation yet – Carol 
didn't bother) and Carol's has a reputation of 0.557 (there haven't been any additional 
ratings to her annotations since her reputation was calculated).
Function similarity1

Arguments:  Current Student, Annotation Student
votedTogether = 0
votedAgainst = 0
for each annotation both students voted on

if (currentStudent.vote == annotationStudent.vote)
votedTogether += 1

else
votedAgainst += 1

1 Students are considered “similar” to one another if they tend to benefit in the same way from the same 
learning objects.  This straightforward comparison can be expanded as future work.

233



end for
similarity = (votedTogether – votedAgainst)
similarity /= (votedTogether + votedAgainst)
Return:  Similarity [-1.0:1.0]

Endfunction

Example:

Bob has given a “Thumbs up” (indicating approval) to annotations A, B, F & G and a 
“Thumbs down” to annotations D, M & Y.  Carol has given a “Thumbs up” to 
annotations F, M, N, and Z and a “Thumbs down” to C, G, and Y.

Bob and Carol's similarity is:

 
2  they agreed on their assessment of F,Y −1  they disagreed on their assessment of G 

21  the number of annotations both have rated 
or 0.5

Function show annotation
Arguments:  learning object, student
for each annotation attached to learning object

// base chance of showing is based on author's 
// reputation AT THE TIME THEY MADE the annotation.
votes_for = annotation.votes_for
votes_against = annotation.votes_against
for each vote on annotation

sim = similarity(currentStudent,
  annotationStudent)

if vote.for
votes_for += 1 * sim

else
votes_against += 1 * sim

AT = arctan(votes_for – votes_against) / pi
chanceToShow = 0.5 + AT
randomNumber = generateRandomNumber[0.0 : 1.0]
if (randomNumber < chanceToShow)

show annotation to student
// implicit in showing an annotation is that
// any parent annotations will also be  
// shown, this is applied recursively up to 
// a root annotation

Return:  boolean
Endfunction

Example:

Bob is viewing the learning object annotation Z is attached to.  It has a reputation 
of 0.670 and Carol is the only other student he has a similarity rating with who has 
previously rated it.  She gave it a thumbs up, which leads to the annotation being given a 
reputation of 0.670 * (1+ (0.05 * 0.5)) = 0.687 for Bob.  This means there is a 68.7% 
chance that this annotation will be shown to him when he uses the learning object.
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In the above example, Bob's annotation has a (1 – (1 * 0.5 * 0.453)) or 0.774 (since it 
may be shown on its own, or will be shown if Carol's reply is shown).
Function evaluate learning object annotation 

Arguments:  Learning object, student
if (student votes on some annotation)

votedAnnotation.attach(vote, student)
votes_for = tallyOfForVotes(annotation)
votes_against = tallyOfAgainstVotes(annotation)
AT = arctan(votes_for – votes_against) / pi
annotation.current_reputation = 0.5 + AT

end if
Return:  nothing

Endfunction

Example:

While Bob uses the learning object, he gives the annotation Z a “Thumbs Down” 
(he doesn't find it useful).  This lowers the annotation's reputation from  0.670 to 0.638. 
His similarity to Carol is also lowered (now that they disagree on 2 annotations) and they 
will now have a similarity of 0 (their preferences will no longer influence one another). 
If either gives another rating that conflicts with the other, they will begin to negatively 
recommend annotations for one another (what one likes will be less likely to be shown to 
the other).

The formula which determines whether an annotation is shown or not: 

Probability Annotation is Shown=
1
2


arctan votes for−votesagainst 
π

(1)

has a number of attractive properties.

3.2  Larger Number of Votes Given Greater Weight than Smaller Number

Consider 3 students as voting in favour of an annotation and 5 against it and contrast this 
with 30 students voting in favour and 50 voting against it.  In each case, 37.5% of the 
student found the annotation useful.  However, given that 10 times as many students have 
voted on the annotation in the second case, we want to take into account the greater 
certainty in the outcome given the larger number of voters.

Contrast m votes for and n votes against and k⋅m votes for and k⋅n votes against.

Formula (1) is a linear scaling of arctan(votesfor – votesagainst).  Given that arctan is a 
strictly increasing monotonic function, arctan(k (m – n)) > arctan (m – n) and our 
approach will give a greater weight to larger groups of voters.

3.3  Probability Approaches But Doesn't Reach 0 and 1

Consider:

lim
x∞

f x =
1
2
lim

x∞

arctanvotes for−votesagainst 

π
=1
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lim
x−∞

f x =
1
2
 lim

x−∞

arctan votes for−votesagainst 

π
=0

Given that arctan is a strictly increasing monotonic function, we know that the probability 
that an annotation will be shown or not approaches, but never reaches 0 and 1.  This is 
worthwhile as the usefulness of an annotation may be discovered at a later date, and it is 
then given a chance to be promoted.  Conversely, if a well-regarded annotation is shown 
to be vacuous, the community has a chance to immediately begin decreasing its 
prominence.  

Consider the example of a clarifying annotation where a student made the connection, in 
a video that explains parameters, that procedure another name for a function.  After this 
annotation was given high ratings, a new article was added which explained functions 
and clearly presented the various terms such as routine, function, procedure or method. 
After having read this article, students begin finding the previously useful annotation 
redundant and it begins to receive negative ratings from current students.  The system is 
immediately responsive to this and each negative vote decreases the probability that this 
(once highly-regarded) annotation is shown to current students.

4  Validation of Approach

Our intention is to validate this work using simulated students.  

Let knowledge be defined as the known concepts in the domain under consideration (the 
course the ITS endeavours to educate the student on).  

k = { set of known concepts }

After an interaction between student s and learning object l, there will be a set of 
relationship such that:

if k s∈k l then k s =k s∪k new with probablity p  

e.g. suppose learning object abc had the relationship:

if k s∈ {B,J,U } then k s =k s∪ {M }with probablity 0 .25

This would imply that if a student using this learning object had attained concepts B, J 
and U, then upon completion of using this object he would have a 25% chance of 
attaining concept M.

Let overall knowledge (K) be represented as a percentile, considered roughly analogous 
to the student's expected mark given their current understanding.

K = 
 Known Concepts 

 All Concepts 

e.g. suppose an ITS had 26 concepts, each represented by a letter the alphabet.  Given a 
student who had obtained concepts B, J, M and U, their overall knowledge would be:

K = 
 { B,J,M,U } 

 A,B,C, .. . Z 
= 

4
26

= 15%
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The goal of the system is to maximize the average K of student's using the system.

5  Annotation

An annotation will modify the relationships of a learning object in one of two ways.

1. Create a new relationship with a substitute, removed concept

2. Increase or decrease the probability of attaining the new concept for an existing 
relationship

5.1  Example

Student Amy annotates a chapter from a text book that was assigned to her by the system. 
Her annotation has the effect of creating a new relationship, based on the above example 
but instead of requiring an understanding of variables, constants, and functions it will 
now require an understanding of variables, constants and procedures (in order to 
understand the concept of recursion).  Students who use this new learning object with the 
annotation attached, have two “paths” to obtaining the concept of recursion.

From a “real life” perspective, this could be viewed as Amy relating the learning object to 
an alternative background (in some way showing that functions are analogous to 
procedures and the annotation allows students with this alternative background to 
comprehend the chapter).

Student Bob annotates a video about data structures.  His annotation (incorrectly claiming 
a B+ tree is a B tree written in C++) has the effect of adjusting the probability of an 
existing relationship.  This annotation makes it 10% less likely that students seeing the 
learning object with Bob's annotation will attain the new concept compared to student 
who experience the learning object without Bob's annotation.  Bob has confused students 
and prevented them from properly understanding what the video is trying to convey.  The 
system should stigmatize this annotation and prevent it from being shown. 

The system will run, and use the reputation and previous ratings to determine which 
annotations are shown to a student.  

6  Related Work

Peer tutoring has been explored by a number of previous researchers.  Some work, such 
as [10] and the COMTELLA project of [11], have investigated annotation techniques 
such as folksonomies and user tagging.  While on the surface, this may seem similar to 
our work, there are important distinctions.  With tagging, the purpose it to have users 
categorize items in ways that are meaningful for them, with the goal of sidestepping 
many of the problems inherent with ontologies (as articulated in [8]).  In contrast, our 
approach endeavors to not just help students find an appropriate learning object, but to 
actually clarify that object and allow students to share insights with one another.  Other 
works, such as [9][10], have been more explicit about arranging peer-tutoring.  In their 
COPPER system, they arrange for students to practice conversations with one another, 
taking into account each student's level of proficiency, previous interactions and how 
they can best learn from one another.  While our approach is a far less intense interaction 
than peer-tutoring that reasons about groups and gives them task in order to learn from 
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one another, our approach has the benefit of allowing asynchronous learning.  Students 
may be able to benefit from annotations left by students who are no longer even in the 
course.

Other work [11][12] has been done considering text produced by learners, specifically the 
notes they take.  They used these notes and text retrieval techniques to implicitly derive 
information about the student and to build a profile and social network about them.  In 
contrast, we take an intensely pragmatic view of annotations and don't try to decipher the 
meaning.  Instead, our approach reasons directly about which annotation will help a 
student learn, and ignores the actually underlying content of the annotations.

iHelp [2] is a project related to COMTELLA that involves reasoning about matching 
stakeholders (such as students, markers, tutorial assistants and instructors) in order to get 
the right information to the right person (both in public and private discussions).  In [3] 
the authors extend iHelp to explore the value of tools such as chat rooms where learners
are automatically drawn when using learning objects, shared workspaces where multiple 
learners can edit the same source code while discussing it and visualization tools for 
indicating a particular student's degree of interaction with her classmates.  All of this 
done to encourage "learner collaboration in and around the artefacts of learning".  In 
contrast, our work seeks to provide repositories of useful information from past students, 
rather than provide tools to assist in the interactions between current students.  In many 
cases these “past students” may be a classmate who used the learning object the day 
before, while in others it might be a former student who has since graduated and left the 
school.

The work of John Lee et al. on the Vicarious Learner project [7], investigates how to 
automatically identify worthwhile dialogs to show to subsequent students, by determining 
the “critical thinking ratio” of a dialog, generated using a content analysis mark-up 
scheme.  This ratio is determined from the positive and negative aspects within a 
discussion, with the assumption that discourse patterns provide signs of deeper levels of 
processing by learners and lead to a “community of enquiry” which benefits students. 
Dialogs with higher ratios could then be considered as valuable to show to new students. 
Our work differs from theirs in that we are interested in  messages that have been 
explicitly left for future students and tied to a particular part of the course, rather than 
data-mining past interactions between students.  Additionally, our approach is able to 
leverage similarities between students, in order to have a user-specific process for 
deciding which annotation should be shown.  It may be interesting to integrate Lee et al.'s 
automated analysis of the critical thinking of text, as a component of deciding whether an 
annotation should be shown to a student.

6.1  Incentives

A criticism may be leveled that students won't be interested in helping their classmates 
(or admitting their ignorance) and therefore won't leave annotations.  In the case that the 
intrinsic benefit aren't enticing to a group of students, various approaches, such as [5][6] 
could be used to encourage participation.  The authors' feeling is that such explicit 
systems for coercing participation will not be needed in many learning contexts. 
Learning could be considered an inherently social process that naturally develops as 
sharing information with other student.  Intrinsically this can be thought of as developing 
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social capital by sharing information, leading to greater trust and respect within the 
community.

7  Conclusion and Next Steps

We have demonstrated in this work the foundation for an approach for allowing students 
to explicitly share insights from their educational experiences to similar students going 
through the same process.  Our next step will be to validate this approach, using 
simulated students following our approach, compared with both random and ideal 
provision of learning objects to students.  Following this, we intend to corroborate our 
results with a study on real students.

There are various directions as well for extending our current model for reasoning about 
the annotations to be shown to students.  Currently, which annotation is shown to a 
student is sensitive to the reputation of the annotation and the similarity of the current
student to those who have rated this particular annotation.  For future work, it is 
worthwhile to be modeling more extensively the student providing the annotation, 
assigning a greater weight to those annotations provided by students with greater learning 
proficiency.  It may also be useful to be examining the level of achievement of the 
student who provided the annotation, considering as more valuable those students who 
are at a higher level of learning.

In our previous work [4], we presented an algorithm to determine which learning object 
to present to a student, based not only on their similarity to previous students but also on 
the extent to which those students benefited in their learning, when using that object.  The 
methods proposed in that model for capturing the gains in learning of students could form 
a useful starting point for determining how to incorporate the learning proficiency of 
students into our algorithms for determining which annotations to show.

Another direction for future work is to examine alternative formulae for managing the 
votes for and against (beyond our current proposal to employ an arctan function). One 
possibility would be to examine alternative methods for converting the interval to a [0,1] 
range. Another direction would be to examine in more detail the statistical confidence 
between the votes that are being registered, as a method of determining the importance of 
the votes towards the decision of showing a particular annotation.  In addition, we are 
currently troubleshooting the proposed arctan function, as it is desirable to better 
incorporate the annotator's reputation and still maintain the desired [0,1] range.

It is also worthwhile to be exploring more sophisticated metrics for determining the 
similarity between two students. Current research in collaborative filtering approaches for 
recommender systems has suggested more sophisticated techniques for making a 
recommendation, such as: statistical collaborative filtering, cluster models, and Bayesian 
networks[1].  We intend to examine whether these techniques may be applicable to our 
approach to annotations.

Finally, it would be useful to consider our proposal for presenting annotations to learning 
objects together with other algorithms for determining which learning objects should be 
presented, as part of the overall tutoring of that student. Our own investigations into
curriculum sequencing [4] and peer-based development of the corpus of learning objects 
[5] would be particularly relevant, here.
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Abstract.  In the past few years, Iranian universities have embarked to use  
e-learning tools and technologies to extend and improve their educational 
services. After a few years of conducting e-learning programs a debate took 
place within the executives and managers of the e-learning institutes concerning 
which activities are of the most influence on the learning progress of online 
students. This research is aimed to investigate the impact of a number of  
e-learning activities on the students’ learning development. The results show 
that participation in virtual classroom sessions has the most substantial impact 
on the students’ final grades. This paper presents the process of applying data 
mining methods to the web usage records of students’ activities in a virtual 
learning environment. The main idea is to rank the learning activities based on 
their importance in order to improve students’ performance by focusing on the 
most important ones. 

1 Introduction 

During the past decades, because of the significant benefits it brings for all participants, 
the use of information and communication technologies in the educational domain has 
become widespread all around the world. Particularly in Iran, according to the effective 
role of education in the national development plan, these types of training drew more 
attention from the major and prestigious universities. Thus, they began to set up  
e-learning departments one after another. Due to the shortcomings and deficiencies of the 
e-learning platforms in the early years, there were lots of unresolved problems which 
affecting both students and teachers performance. First of all, lack of collaboration and 
communication facilities caused students to feel lonely and unsupported. In addition, 
their educational tendency to instructor-led learning caused them face new challenges 
understanding self-paced learning materials. These problems inspired e-learning 
departments to use web conferencing and virtual collaboration tools to satisfy the 
students’ demands. This paper presents the major findings that resulted from studying the 
e-learning activities and their impacts on students’ final grades. The structure of the paper 
is organized as follows: Section  2 outlines a literature review and the related works. 
Section  3 presents a background of the e-learning platform and the students’ learning 
activities. Section  4 describes the methodology used to conduct the study and analyses 
the results using a decision tree. Finally, conclusions and future works are presented in 
Section  5. 

2 Related Work 

Sometimes the term Virtual Classroom is referred as the whole e-learning process or all 
the teacher-student interactions. However, in this paper the term is used for online 
synchronous virtual meetings which are conducted by the participation of the teacher and 
students using audio and video conferencing technologies. There is a limited amount of 
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research concentrating on the impact of these technologies upon the learning 
effectiveness. In contrast, there are a significant numbers of studies which have examined 
the role of other activities in the process of learning using data mining methods. In what 
follows a review on the most prominent studies is presented. 

Bower and Richards [3] studied the impact of virtual classroom laboratories in computer 
science education. The main purpose of this research was to study the pedagogical 
aspects of these technologies; as a result they showed that such virtual laboratories are 
helpful particularly in the field of computer science. Also, another research by Redferm 
and Naughton [11] discusses and approves the positive role of video conferencing 
technologies in online education. This study particularly concentrates on the creation of 
brainstorming style-discussions and small group meeting which are fundamental to many 
of modern educational techniques. 

From another perspective, some researchers have used web usage mining to look into 
students’ activities in online learning environments. One of the leading studies conducted 
by Zaïane and Lou [18], employed these methods to improve the features of an e-learning 
environment. In [16], web usage data of students is used to cluster them based on 
‘Expectation Maximization’ (EM) algorithm. Each cluster represents a group of students 
with similar behavior. Moreover, the results are used to give the students suitable advices 
according to their group. The EM algorithm is also used in [15] to extract similar 
behavioral pattern of students in a collaborative unstructured e-learning environment.  

Minaei-Bidgoli and Punch [8], used genetic algorithms and a combination of multiple 
classifiers to predict students’ final grades. In [5] and [9], several machine learning and 
classification techniques were applied in order to predict the students’ final score; the 
relevance of each feature is also assessed. This work was extended in [4] and Artificial 
Neural Networks were used to predict students’ final grades. Beck and Mostow [2], had a 
different approach toward studying the students’ performance data. They used a method 
called ‘Learning Decomposition’ to evaluate students’ success ratio based on the amount 
of pedagogical support they received. The most important point in all the studies is that 
predicting students’ final score based on their online activities is the leading approach to 
examine the effectiveness of e-learning. 

3 The Platform 

The E-Learning Department of Iran University of Science and Technology (IUST) started 
its services in the spring semester of 2004 with about 700 students and is currently 
serving about 1,800 students in two Bachelors’ and three Masters’ programs. The 
instructional plan in this department is designed in a way that the learning materials are 
mainly developed in the form of multimedia courseware which can be accessed by 
students in a weekly manner. In addition, the teacher can add supplementary resources to 
the learning content and evaluate the process of learning by providing the students with 
assignments and online quizzes. Having gained proper perception about the course 
concepts, the students participate in a virtual classroom session so as to discuss the 
lessons with the teacher and other students. The teacher can also present complementary 
information and gain feedback about the students’ learning progress.  
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After the three years of using commercial products as virtual learning environment, the 
E-Learning Department of IUST started to build its own e-learning platform based on 
Moodle, a free open-source Learning Management System (LMS). Moodle is designed to 
support the learning style of Social Constructivism, in which the process of learning is 
performed by a set of interactions between students, teacher, and learning materials [12]. 
This style is not mandatory in Moodle but is what it supports best. There are several 
kinds of activities which students can perform in a course such as: viewing courseware, 
uploading assignments, posting messages in forums, writing messages to teachers and 
other students, etc. The system keeps detailed information about the way students interact 
with the system which have inspired lots of researchers to use these data to apply 
knowledge discovery and data mining methods to extract useful information about the 
students learning behavior [7,13,14]. 

Although there are several activities such as messaging, forums, and text chat to support 
collaboration of teachers and students, a sophisticated synchronous collaboration tools in 
Moodle is still missing. Consequently, the e-learning center of IUST added a new module 
to its Moodle to conduct virtual classrooms. The module was developed based on Adobe 
Flash Platform [1] considering its attractive interface and low bandwidth requirements, 
making it suitable for students connecting from small towns in different parts of the 
country. For each course there are 16 two-hour online sessions in a semester which are 
conducted on the specified time every week. During the session, different levels of 
interaction such as using video, audio, document sharing, whiteboard, and text chat can 
be used depending on the requirements of the lesson. For example, the teachers can share 
a power point slide or simply use a virtual whiteboard to present the content as well as 
broadcasting their own voice and video. Students primarily use text chat to interact with 
the teacher and ask questions. It is also possible for teachers to permit the students send 
their voices. To support the “any-time, any-where” promise of e-learning, all the sessions 
are recorded and archived for the students who cannot participate online sessions. The 
students who attend the class can also review the parts of lessen they didn’t follow or 
understand. In fact, these recorded sessions can be used as a permanent learning resource 
and the students can review them as many times they want. 

4 Methodology Design 

4.1 Main Idea 

Although Moodle presents several reports on the students’ activities, they are not flexible 
enough to satisfy the instructors’ needs for observing their interactions with the system 
[6]. Additionally, there is no way for educational technologists and training managers to 
indicate the value of each activity in success of students. As it was mentioned before, this 
research aims to rank online learning activities based on their impact on the students’ 
final grades. For this reason, some variables have been defined as key performance 
indicators (KPIs) of students. Then the impact of each variable has been evaluated based 
on its influence on the score of students in the final exams. Particularly, data mining 
techniques have been employed to analyze the web usage logs of the virtual learning 
environment to infer some rules about the importance of each activity in the performance 
of students. 
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4.2 Participants 

The current study have been conducted on the web usage logs of the system in Fall 
Semester 2008, when about 1,300 students were enrolled in almost 100 courses. 
However, the research is limited to 824 students in 11 courses; the instructors used most 
of the learning activities; and, the final grades of students were also available. The total 
population of students under investigation for this research is larger than similar studies. 
In addition, the students were completely remote from the university and had to learn 
most of the concepts and practices just by using the system via the Internet. In previous 
studies [8,13,14] the e-learning platform was used to facilitate teacher-student 
interactions and the online activities of students were not assumed as the most essential 
part of the learning process. 

4.3 Procedure 

The general process of educational data mining consists of four steps: Collecting Data, 
Preprocessing, Applying data mining, and Interpreting the results [13]. Here, a similar 
process has been used which follows slightly different methods in data collection and 
preprocessing steps. The two steps are integrated into a single extended stage of building 
a data warehouse from the activity logs of students. This approach makes it possible to 
monitor and study the learning behavior of the students and its relevant trends more in 
depth. The use of Data Warehouse and On-Line Analytical Processing (OLAP) tools in  
e-learning is gaining popularity among educational institutes and virtual universities [19]. 
In this section the whole process of applying data mining methods on the students’ usage 
information is described. 

4.3.1 Building the Data Warehouse 

As it was mentioned before, Moodle keeps detailed records of students’ activities. The 
teacher has access to summarized reports about students such as the date of their first and 
last logins, and the number of pages visited by them. The information about each learning 
activity is also available according to the categories specified by the system, not by the 
professor. Consequently, we designed a model and built a data warehouse to monitor the 
students’ activities in precise detail. The activities are classified into nine categories: 
resource view, virtual classroom participation, archive view, assignment view, 
assignment upload, forum read, forum post, discussion read, and discussion post. In 
addition, according to our interviews with instructional technologists and training 
managers of IUST, a list of data elements and analytical dimensions along with the 
students’ KIPs have been defined. Then, corresponding information was extracted from 
the Moodle database to answer their questions. Anyhow, the details of the dimensional 
modeling are beyond the scope of this paper. 

For this study an information model is being used which gathers the information about 
the identified business requirements in the form of a summary table. Each column of the 
table represents a dimension important according to our objectives. Table 1 shows the 
design of the summarized table. A brief description of each dimension is also included. 
The structure is quite similar to the one which was used in [13] but it contains some other 
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attributes based on the KPIs extracted. To promote the level of interpretation and to 
facilitate the comprehensibility, the grades are stored in a discrete format. There are four 
categories of grades: A, if the value is equal or above 16.6; B, if the value is between 13.3 
and 16.6; C, if the value is between 10 and 13.3; and F, if the value is less than 10. 

Table 1: Summarization table of students activities 
Name Description 
UserName Name of User 
CourseName Name of the Course 
ResourceView Number of Coursware and Other Supporting Materials Views 
VirtualClassroom Number of Virtual Classroom Participations 
ArchiveView Number of Archive Views 
ForumRead Number of Forum Reads 
ForumPost Number of Forum Posts 
DiscussionRead Number of Discussion Reads 
DiscussionPost Number of Discussion Responses 
AssignmentView Number of Assignments Views 
AssignmentUpload Number of Assignment Answer Uploads 
FinalGrade Final Grade 

4.3.2 11BApplying Data Mining Methods 

The main group of data mining algorithms used in this study is ‘Feature Selection’. These 
methods, also known as ‘Attribute Evaluation’ algorithms, try to select the most relevant 
features according to a target concept. Several feature ranking and attribute selection 
methods have been proposed in the machine learning literature which use different 
metrics to discard irrelevant features and select the important ones including: information 
gain, gain ratio, symmetrical uncertainty, relief-F, one-R, and chi-squared. Each metric 
has its own bias. For example, the information gain measure is biased toward attributes 
with many values. Here, we use gain ratio [10] as the main evaluation metric since there 
are various number of records in the table regarding to each activity. The results of 
ranking based on the other methods are also presented and can be compared.  

In this project, the data mining software package used to rank the attributes is Weka [17]. 
The reasons are that it is a free open-source application which implements several 
methods for attribute evaluation. Table 2 presents the results obtained from applying gain 
ratio attribute evaluation method on the summarized table of students’ activities. As the 
table shows the virtual classroom participation plays the most prominent role in this 
ranking while the second place belongs to the archive views. 

Table 2: The results of ranking activities based on gain ratio metric 
Attribute Gain Ratio 
Virtual Classroom 0.0839 
Archive View 0.0694 
Forum Read 0.052 
Assignment View 0.0517 
Assignment Upload 0.0497 
Discussion Read 0.0364 
Resource View 0.0324 
Forum Post 0 
Discussion Post 0 
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To confirm the results obtained from this evaluation some other methods are applied on 
the dataset and the attributes are ranked using other metrics. The results are outlined in 
Table 3. It can be perceived from the table that virtual classroom participation is the most 
influential feature affecting students’ final grades among all other attribute evaluation 
methods. 

Table 3: The The results of ranking activities based on other methods 
Attribute χ2 Info-Gain Symmetric 

Uncertainty 
One-R Relief-F SVM 

Virtual Classroom 1 1 1 2 2 2 
Archive View 3 3 2 1 3 7 
Forum Read 2 2 3 4 7 1 
Assignment View 7 7 6 5 4 6 
Assignment Upload 4 4 4 3 5 5 
Discussion Read 5 5 5 7 6 4 
Resource View 6 6 7 8 1 9 
Forum Post 8 8 8 9 9 8 
Discussion Post 9 9 9 6 8 3 

4.3.3 12BInterpreting the Results 

To illustrate and explain the results obtained from the research, a decision tree was 
created based on the C4.5 algorithm [10]. This algorithm uses the gain ratio metric to 
select the attributes and to build the tree. Figure 1 shows the first two levels of the tree. 
As depicted, the number of virtual classroom participation comes in the first level 
separating the students into two groups. Students who have participated fewer than 11 
virtual classroom sessions, will probably (with the probability of about %55) fail in their  
exam. In contrast, Students with more than 11 participations might (with the probability 
of about %42) pass the exam with a C.  

In addition, each node of the tree can be used to extract a rule to predict students’ final 
grades based on their activities. For example, as highlighted in the figure, students with 
more than 11 virtual classroom participation and 17 archive views would get an A in the 
final exam. The coverage of this rule is about %25 and the accuracy is almost %41. These 
rules may help the teachers to identify the most important activities to focus on in order 
to improve their teaching style. The rules can also be employed by training managers and 
executives to provide with helpful information in resource planning and decision making. 

Students Final Grades
(Coverage, Accuracy)

Virtual Classroom <= 11 
Mode: F

(0.796, 0.544)

Forum Read <= 14 
Mode : F

(0.669, 0.603)

Forum Read > 14
Mode : C

(0.171, 0.423)

Virtual Classroom > 11
Mode : C

(0.489, 0.416)

Archive View <= 17
Mode : C

(0.455, 0.444)

Archive View > 17
Mode : A

(0.257, 0.409)

Figure 1: The first two levels of the decision tree model generated to predict students’ final grades 
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5 Conclusions and Future Work 

In this work we described the process of applying data mining methods in order to rank 
the students activities based on their impact on the performance of students in final 
exams. We used a number of ‘Feature Selection’ and ‘Attribute Evaluation’ methods 
together with real usage data of students picked up from the Moodle LMS in order to 
perform the case study. The results indicated that participation in virtual classroom 
sessions has the greatest impact on the effectiveness of learning in the particular settings 
of the IUST e-learning center. As a result, this fact motivated the managers and 
instructors to pay more attention to virtual classrooms and encourage the students to 
participate in these sessions. In the future, the effect of virtual classroom will be studied 
more profoundly considering some variables other than just the number of participation 
and archive views. It is also possible to analyze the students’ behavior in virtual 
classrooms more deeply considering the activities performed by students. Finally, the 
teachers’ instructional model in the virtual classroom will be studied in order to find the 
best methods that fulfill students’ demands which might have a great impact on their 
learning performance. 
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Abstract.  In this paper we utilising some popular educational data mining 
(EDM) methods to explore and mine educational data resulted from a system 
that supports reflection for learning called Reflect. Our objective is to study 
whether using the Reflect helps students learn better in the subject.  
First, we explore data by means of statistical analyses. Then, we used clustering 
and classification techniques to identify learning behaviours associated with 
positive or negative outcomes. The results suggest that there is a positive 
correlation between reflection and student performance characterised by the 
level of activities carried out in the Reflect and the exam mark. We claim that 
our approach has resulted in the identification of some behaviour that leads to 
the increase in the students’ performances. 

1 Introduction 

Literature suggested that reflection defined as “individuals engage to explore their 

experiences in order to lead to a new understanding and appreciation” [1] improves 
learning.  Learning by reflection is considered important since one's learning 
effectiveness can increase when learners adapt to their learning experiences by reflecting 
on their learning process and the state of their knowledge [1, 2, 3]. The same researchers 
also suggested that self-assessment helps learners to develop the ability to identify their 
strengths and weaknesses and focus their study to the area that is need for improvement. 
However, most of the existing work that suggested this theory was not utilising education 
data mining (EDM) methods to draw their conclusion. In this paper, we explore the use 
of EDM methods on data gathered from an online learning system that support learning 
by reflection called Reflect (more discussion on Reflect presented in Section 2). In 
particular our goal was to evaluate the effectiveness of EDM methods for: (1) extracting 
knowledge about the impact of reflection on learning, (2) gaining knowledge about 
students’ learning behaviour, and (3) identifying which behavioural patterns lead to 
positive or negative outcomes. This knowledge can be useful for teachers to better 
understand their students' learning behaviour and to inform students if their current 
behaviour was associated with negative outcomes in the past. The information can also be 
benefited if presented to students in which they can reflect on how effective their learning 
habits are against their current performances.  

In section 2, we describe Reflect and how it supports student’s self-assessment, followed 
by section 3 that outlines the subjects and data. Section 4 presents data pre-processing, 
the main data exploration, application of two educational data mining methods: clustering 
and classification techniques, we present the results and discussion. Section 5 summarises 
our conclusion.     
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2 Reflect  

The Reflect system is a web-based educational learning system used for learning, practise 
and testing one's programming knowledge. This system is not intended as a sole mean for 
learning a topic but it serves as an additional learning medium to face to face teaching. 
The Reflect system was used by students as an alternative source of learning and 
practices of the topic Software Construction I (SOFT2130/2830) at School of IT, the 
University of Sydney. Reflect can offers a great flexibility in learning experience. It 
offers extra attributes that differ and not commonly found in other LMSs or ITSs such as 
when students assess an example solution, they can view the tutor's assessment that are 
comparable against the students' assessment. It will show a discrepancy table if the 
student's assessment differ from the tutor's ones. Students may also view their progress in 
a graph showing how close they are getting to the tutor's assessment.  

The Reflect system is unique because it aims to promote learner reflection and student 
self-assessment through scrutable learner model that shows the learner a model of their 
progress [4]. Kay et al. [4] suggested that there are two key elements of self-assessment: 
(1) identification of criteria and standards to be applied to their own work and (2) 
evaluation of their work compared to these criteria and standards. In Reflect, these two 
key elements of self-assessment were carried out by students when they performed the 
following steps in order to solve the problems:  

1. Students read a task and assess example solutions made available in the system. 
2. Students provide their own solutions to solve the problem and  
3. They self-assess those solutions compared to the criteria teachers defined for the 

task.  
By performing these steps, the students had practised to self-assess themselves and their 
state of knowledge of a particular task. Thus, they carried out learning by reflecting to 
their learning experiences. 

3 Subject and Data 

3.1 Subjects 

The subjects used in this research are the students who undertook the Software 
Construction I (SOFT2130/2830) course at School of Information Technology, the 
University of Sydney in the second semester of 2007. There were 175 students enrolled 
for the course, however only 156 (89.1%) students managed to completed it. Out of 156 
students who completed the course, 109 (69.9%) students passed and 47 (30.1%) of them 
failed the course. 

3.2 Data 

The data used in this research are coming from two sources: (1) students' activities data 
gathered from Reflect system and (2) students assessment data gained from the lecture. In 
experiments both of data were used. Student activity data are gathered from Reflect 
database in the form of XML format. The data are organised in a hierarchical structure 
i.e. each task consists of a task name and a number of learning objectives. The numbers 
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of learning objectives for each task are varying from one to five learning objectives. 
Moreover, a learning objective may appear in one or more task. The student assessment 
data are spread over several worksheets of Microsoft Excel format. These include lecture 
quiz marks, homework and labs marks (including practical exam marks on week 4, 8 and 
12), quizzes marks, and the final exam mark of students who enrolled for Software 
Construction I topic for the year of 2007. These data are obtained from the lecturer who 
taught and organised the course.  

4 Process of EDM: Results and Discussion 

4.1 Data pre-processing 

Data pre-processing tasks consist of cleaning the data from incomplete or inconsistence 
data and errors and also integrating and transforming the data to an appropriate format for 
mining.  

Cleaning the Data 

After data extracted from the Reflect database in XML format, the next step is to clean 
the data from inconsistencies and errors before they are ready to be mined. We did the 
process of data cleansing manually by searching for incomplete data or errors and 
removed them from database. The errors may come from unintended users who did not 
enrol for the topic. These users include Reflect system administrator who used the system 
for testing and other students who did not enrol for the course but used the system for 
learning and practising their C programming skills. The error may also come from a user 
who had a double user logins. This could happen when a student changed their user login 
at some points during the semester.  

Integrating and Transforming the Data 

Data integration is a process of integrating or merging the data from multiple tables or 
databases into a coherent data store [5]. Educational data mining processes often involve 
retrieving and analysing multiple data attributes that spread across several tables or 
databases. The data, therefore, needs to be summarised into a new summarisation table 
consisted all necessary attributes for mining. As mentioned earlier in Section 3.2, our data 
sources are coming from: the students' activity data gathered from the Reflect database 
and students assessment spreadsheet obtained from the course coordinator. To perform 
the data mining out of these data, we are required to merge necessary data attributes into 
a summary table. Table 1 shows the data attributes of this summary table. 

Data transformation may involve a number of techniques including smoothing i.e. to 
remove noise from the data; aggregation i.e. summary operation applied to the data; 
generalisation where the low level data are replaced by higher-level concepts and 
normalisation where the attributes data are scaled thus they fall within a small range i.e. 
0.0 to 1.0. [5]. In regards to the Reflect data, we used a smoothing technique to remove a 
noise from a student with an excessive self assessment input. We also used aggregation 
and normalisation techniques to smooth our data. We used aggregation to summarise the 
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weekly Homework/Lab marks and quiz marks into Total Homework/Lab and Total 
quizzes marks, while we used normalisation to normalise the attribute values of Total 
Lecture quizzes and Lecture quiz attendances.  Finally, we transformed our data into 
ARFF and csv for mining with Weka.  

Table 1. List of data attributes in summary table 

Attribute Name Description 
L2_mem_diagram  Week 2 lecture quiz mark (numeric) 
L5_pointers Week 5 lecture quiz mark (numeric) 
L8_scope Week 8 lecture quiz mark (numeric) 
Tot_Lec_qz  Total lecture quiz marks (%) 
Lec_qz_attd Total lecture quiz attendances (%) 
Tot_HWL Total homework/lab marks (%) 
HWL_attd Total homework/lab attendances (%) 
Tot_qz Total quiz marks (%) 
qz_attd Total quiz attendances (%) 
Exam Final exam mark (numeric) 
exam_cate Categorical final exam mark (ordinal) 
n_task Number of tasks done in the Reflect (numeric) 
n_lo Number of learning objectives done in the Reflect  (numeric) 

 

Constructing Dataset for Experiments  

From the list of data attributes showed in Table 1, we constructed two sets of data: (1) a 
data set that consist only numerical data and percentages, and (2) a data set that consist of 
numerical data, percentages and categorical final exam mark. The first data set is used for 
statistical and clustering analyses while the second data set is mainly used for 
classification analyses. 

4.2 Data Exploration   

The statistical analyses are often providing a starting point for data analyses. Therefore 
we carried out a number of correlation analyses to study the relationships and to measure 
if one data attribute is significantly correlated to another  In addition, a statistical analysis 
can be used to determine which variable is best explain the differences between two or 
more groups, that is a variable that can distinguish one group from another. Our objective 
is to utilise statistical analyses to find the relationships and correlation analyses between: 
(1) lecture quizzes score and final exam mark, and (2) lecture quizzes attendances and 
final exam mark. 

Discussion 

Statistical analyses suggested that although there were positive correlations for both 
attending (Lec_qz_attd) and performing quizzes (Tot_Lec_qz) set by the teachers in the 
lectures and the final exam mark, these correlation are not considered high enough. The 
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correlation score (r) between Lec_qz_attd and exam is only 0.462 (p<0.01) and 
correlation (r) between Tot_Lec_qz and exam mark is 0.413 (p<0.01).  

Meanwhile, another analyses suggested that correlation score between Total 
Howework/Lab (Tot_HWL) and exam is reasonably high (r=0.618; p<0.01). However, 
the correlation between Homework/Lab attendances (HWL_attd) and exam is not high 
enough (r=0.354; p<0.01).  

The results indicated that Homework/Lab performance is considered significantly 
important toward achieving a good mark in the final exam. However, this is not 
necessarily the case for lecture quiz and its attendances as their correlation with the exam 
mark are not significantly high. Nevertheless, the results showed positive correlations 
that indicated the importance of attending both and performing well in both lecture 
quizzes and Homework/Lab activities. 

4.3 Clustering Students 

Clustering is an unsupervised classification used for grouping objects into classes of 
similar objects [6]. A number of researchers have implemented clustering techniques for 
mining e-learning data with various purposes such as for finding groups of students who 
have similar learning characteristics, to encourage group-based collaborative learning and 
to provide incremental learner diagnosis [7].  

Our work utilised a K-means clustering algorithms to cluster group of students based on 
their similar behaviour in using the Reflect system. We choose K-means clustering 
algorithm because it is considered as one of the most popular and mostly used clustering 
algorithm in broad data mining research community [8]. Another reason for choosing K-
means is because it is available and ready to use in Weka system.  

Lecture quizzes versus final exam score  

We utilised both numerical data and a combination of numerical and nominal data set. 
Before running the K-means algorithm, the data set are transformed into comma 
separated value (csv) format. The reason is because, a csv file format is easy to use and it 
is one of file format acceptable in the Weka system. Here, our objectives are first, to 
distinguish stronger group of students from the weaker ones and then to study learning 
characteristics that differentiate each group. To achieve this objective, we utilised 
numerical data set with categorical exam mark.  

Discussion 

Clustering analyses are able to provide more detailed information about students beyond 
what simple statistical analyses may offer. Based on the clustering results, we are able to 
categorise students into several clusters based on their performances and attendances in 
the lecture quizzes. Each group is characterised by how often their attended the lecture 
quizzes and their performance on those quizzes.  
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Table 2. Student cluster using K-means (k=4) 

Cluster size and 
(percentages)  

Lecture quizzes 
Mark  

Lecture quizzes 
attendance  

Exam Mark*  Cluster label  

52 students 
(33%)  

Average High 
mark of all 
lecture quizzes  

Very high % of 
lecture quizzes 
attendances (99%)  

High Moderate 
(highest among 
other clusters) exam 
mark  

Strong 
group  

14 students (9%)  Average Low 
mark of the 
lecture quizzes  

High % of lecture 
quizzes attendances  

Moderate exam 
mark  

Moderate 
group  

47 students 
(30%)  

Average Low 
mark of the 
lecture quizzes  

Medium % of 
lecture quizzes 
attendances  

Low exam mark  Lower 
Moderate 
group  

43 students 
28%)  

Lecture quiz 
marks not 
available  

Very low % of 
lecture quizzes 
attendances (15%).  

Very Low (almost 
failed) exam mark  

Weak group  

*Exam mark: fail < 40, Low >=40 and <55; Moderate >=55 and <70; Good >=70 and < 80; 

Very Good >=80. 

The results summarised in the Table 2, suggested that 33% of students who achieved 
higher exam mark had at least average high mark on lecture quizzes and its attendances. 
In the other hand, 28% students who achieved very unsatisfactory (very low) exam 
results had not attended enough lecture quizzes (very low attendances). 

These results highlighted the important of every lecture quiz toward the increasing of 
students' understanding to the topic. In other words, attending and performing tasks and 
exercises in the lecture quizzes may have a direct impact on student's knowledge of the 
topic and may affect their performance in the exam. This is maybe because attending and 
completing tasks and exercises in the ”exam-like” environment, such as in a lecture quiz, 
during the lectures may make the student familiar and well prepared with the type of 
question being asked in the final exam. Meanwhile, the students with poor class 
attendances would miss the opportunity to familiar themselves to the type of question that 
may appear in the exam. This result supports our hypothesis that “students who attended 

and have good marks on all lecture quizzes (week 2, 5 and 8) performed well in the final 

exam”. 

4.4 Classifications 

Classification is a supervised classification in which the labels of pre-classified patterns 
are identified. This pre-classified pattern is known as training data set. Within the training 
data set there is a class attribute that will be used to label a newly encountered, still 
unlabelled pattern [HanK06_Data_mining]. Our approach is to use a well known C4.5 
(J48) algorithm from Weka data mining tools. The J48 algorithms would generate 
decision trees that might be used to extract classification rules. In our case, the objective 
is to classify students into different groups or branches with almost equals final exam 
mark. The model resulted from the experiments can be used to predict the final exam 
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mark of new students. . The J48 decision tree algorithm required that the label in this case 
is exam mark, must be in the categorical or nominal form. We, therefore, grouped the 
exam mark into the following category: Fail if the exam mark is <40; Low if the exam 
mark >=40 and <55; Moderate if the exam mark >=55 and <70; Good if the exam mark 
>=70 and <80; and Very Good if the exam mark >=80. This categorisation is different to 
the categorisation of the final grade students received at the end of semester. The final 
grade which is determined by the course coordinator at the end of the semester integrated 
not only the final exam mark but also other assessment components including quizzes 
marks, homework/lab marks and assignments scores. The categorisation for the final 
exam mark is fixed by the course coordinator and agreed by students at the beginning of 
the course. Some rules were generated from classification analyses. These rules are 
summarised as follow:  

IF (Tot_qz <= 0.67) AND (n_task <= 6) THEN exam = Fail  
IF (Tot_qz <= 0.67) AND (n_task > 6) AND (HWL_attd <= 0.8) AND 
   (Lec_qz_attd <= 0.33 ) THEN exam = Low 
IF (Tot_qz <= 0.67) AND (n_task > 6) AND (HWL_attd <= 0.8) AND  
   (Lec_qz_attd > 0.33 ) THEN exam = Moderate 
IF (Tot_qz between 0.67 and 0.96) AND (n_lo <= 12) THEN exam = Low 
IF (Tot_qz between 0.67 and 0.96) AND (n_lo > 12) THEN exam =  
    Moderate. 
IF (Tot_qz >= 0.96) THEN exam = Good 
 
Discussion 

The results suggested that the total quizzes mark (Tot_qz) was the main discriminator of 
the final marks followed by the number of task students done in the Reflect system. The 
rules generated by J48 algorithm revealed the characteristics of each group of students. 
For example, a student should at least complete six tasks or more in the Reflect system 
and achieved more that 67% of total quizzes mark to reduce the risk of fail in the final 
exam. Meanwhile a student who can achieved 96% of the total quizzes marks are directly 
classified as Good, meaning he/she will be among students who are likely to achieve a 
good mark in their final exam. The other groups of students are classified based on some 
other activities including homework/lab (HWL_attd) and lecture quiz attendances 
(Lec_qz_attd).  

As we can see from the results, there are set of critical separation point for each class, for 
example 67% or 96% of total quizzes, 6 or 12 tasks done in Reflect, 33% of lecture quiz 
attendances (Lec_qz_attd) and 80% of homework/lab attendances (HWL_attd). These 
separation points are set automatically by J48 classifier.  

Using J48 algorithm, our first experiment did not produce a good result. The accuracy 
level recorded for the first experiment is only 51.28%. This means that out of 156 data, 
only 80 instances were correctly classified into their classes. Other 76 instances were 
incorrectly labelled into the other classes.  

In the second experiments, the accuracy level increased although not much. The accuracy 
level for the classifier model became 56.41%. This means that out of 156 instances, 88 of 
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them are correctly classified into their classes while remaining of 68 instances were still 
not correctly classify or labelled into their classes. 

This information would be very useful for a course coordinator for example the classifier 
can be used to predict the final exam marks of new students or to promote some types of 
activities to obtain higher marks. 

5 Conclusions 

We have demonstrated how EDM methods have been utilised to extract some valuable in 
formation from the Reflect data. We have discussed how the users of Reflect can perform 
self-assessment by following certain procedures as described in the section 2. These 
include to rate their understanding of each learning objectives related to the task, 
providing answers to the tasks, self assess their answers and sample solution against 
certain criteria defined by the teacher and comparing the discrepancies between their 
answers to the teacher's assessment.  

A number of issues have emerged during the study either related to the data or the 
interpretation of the results. First, the present study only used one semester data, hence 
the analyses is limited. For the further work, it would be more interesting if data mining 
is conducted for data that have been collected for many years. Secondly, the current data 
used was not designed in the first place to be suitable for mining. Therefore, the data are 
complex, contain noise, and heterogeneous. 

The results of EDM analyses suggested that the Reflect system helps users to self assess 
themselves and thus satisfied the aims indentified in the introduction of section that is 
students learnt more by using system that support learning by reflection such as the 
Reflect system.  
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Abstract.  Writing, particularly collaborative writing is a commonly needed skill. 
Investigating how ideas and concepts are developed during the process of 
writing can be used to improve not only the quality of the written documents but 
more importantly the writing skills of those involved. In this paper, process 
mining is used to analyze the process that groups of writers follow, and how the 
process correlates to the quality and semantic features of the final product. 
Particularly, we developed heuristics to extract the semantic nature of text 
changes during writing. These semantic changes were then used to identify 
writing activities in writing processes. We conducted a pilot study using 
documents collected from groups of undergraduate students writing 
collaboratively in order to evaluate the proposed heuristics and illustrate the 
applicability of process mining techniques in analyzing the process of writing.  

1. Introduction   

Nowadays, Computer-Supported Collaborative Learning, particularly Collaborative 
Writing (CW) is widely used in education. Students often use computers to take notes 
during lectures and write essays for their assignments. Thanks to the availability of the 
Internet, students increasingly write collaboratively by sharing their documents in a 
number of ways. This has led to increased research on how to support students’ writing on 
computers.  

Our research motivation is to investigate ways to support these collaborative writing 
activities by providing feedback to students during the collaborative writing process. We 
have built a prototype which, based on the text written by students, can automatically 
perform analysis on text changes in order to discover types of semantic changes and 
identify writing stages.  

In order to develop a tool supporting CW, understanding how ideas and concepts are 
developed during writing process is essential. The process of writing consists of steps of 
writing activities. These steps of writing activities can be considered as the sequence 
patterns comprising of both time events and the semantics of changes made during those 
steps. Therefore, process mining, which focuses on extracting process-related knowledge 
from event logs recorded by an information system, can be used to extract sequence 
patterns of writing activities that lead to quality outcomes. 
  
In this paper, a process mining technique is used to detect semantic changes in writing 
activities in order to gain insight on how student write their documents. Our work used a 
taxonomy of writing activities, proposed by Lowry et al. [4]. In addition, we used a 
model developed by Boiarsky [2] for analyzing semantic changes in the writing process.  

257



 

Although process mining techniques have been successfully applied to extract process-
related knowledge from event logs recorded by information systems [3] for two decades, 
the techniques have only recently applied to educational data. For example, in 
Pecheniskiy et al [8], the authors utilized process mining tools to analyze data from 
online multiple choice examinations and demonstrated the use of process discovery and 
analysis techniques. They were interested in individual students' activities of answering 
online multiple-choice questions during assessment, not in activities where students write 
and edit texts collaboratively. In addition, there has been abundant research for improving 
the support of quality writing in education such as automatic scoring of essays [10], 
visualization [6], and document clustering [1]. However, these approaches, unlike ours, 
focus on the final product, not on the writing process itself.  
 
The remainder of the paper is organized as follows. In Section 2, the framework for 
supporting CW is presented. The heuristics for extracting semantic changes and writing 
activities during writing process are proposed in Section 3. A pilot study mining student 
writing processes is discussed in Section 4. Finally, Section 5 concludes and outlines and 
our future work planned in this area.  
 
2. WriteProc  

The framework, WriteProc for exploring collaborative writing processes was introduced in 
[12]. It integrates a front-end writing tool, Google Docs, which not only supports 
collaborative writing activities, but also stores all revisions of documents created, shared, 
and written by groups of authors. WriteProc uses two process and text mining tools, ProM 
[9] and TML [13]. ProM provides a way to extract knowledge about writers' activities and 
collaboration. In [12], process mining was used to extract only patterns of students' 
interaction and collaboration for peer review. In this paper, the process analysis is used for 
identifying sequence patterns of writing activities that lead to a positive outcome and 
indicate patterns that may lead to problems. TML analyzes text changes between 
individual revisions of documents. This analysis can provide semantic meaning of changes 
in order to gain insight into how writers develop ideas and concepts during their writing 
process. Full details about WriteProc can be found in [12].  

In our pilot study, WriteProc retrieves some revisions from Google Docs of all the 
documents written by the students, using Google Document Data API. Google Docs 
automatically saves documents every few seconds. Authors can also deliberately save 
their documents. In Google Docs, every saving command (either auto or committed) 
produces one revision for each document. WriteProc does not retrieve all revisions of the 
documents, as many of them do not contain any changes. For a particular document, it 
first obtains the revision history (log) containing information, such as revision number, 
timestamp of auto and committed saving, and author id. The revision history is then 
analyzed to identify writing sessions for individual writers. From this analysis, for each 
session WriteProc downloads a revision after each minute of writing. These downloaded 
revisions are then pre-processed to extract and index paragraphs and sentences for further 
analysis. Using predefined heuristics (defined in the next section), WriteProc performs a 
text-based analysis on the indexed revisions of each document which extracts semantic 
meaning of text changes and identifies writing activities. Sequences of writing activities 
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are then analyzed using process mining. In the next section, we propose the heuristics and 
explain how they will be used to detect writing activities. 

Table 1. Heuristics for determining collaborative writing activities: Brainstorming (B), Outlining (O), 
Drafting (D), Revising (R), and Editing (E) based on text change operation (C1 – C8), text structure 

(S1 – S2), and functions (F1 – F3).  

Abbreviation: An operation is allowed (Y) or not allowed (N), List (L), Structured List (SL), Sections and 
Paragraphs (Sec. & Par.), Number of Sentences (S), Number of Paragraphs (P), Changing/Fluctuating (F), 
Constant(C), Improving (I), and Not applicable (N/A). 
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 C1 C2 C3 C4 C5 C6 C7 C8 S1 S2 F1 F2 F3 
B Y Y Y Y Y Y Y Y L S � P F N/A N/A 

O Y Y Y Y Y Y Y Y SL S � P F N/A N/A 

D N N N N Y Y N** Y Sec. & Par. S > P F F F 

R N Y Y Y N* N* Y N* Sec. & Par S > P F F I/C 

E Y N N N N N N N Sec. & Par. S > P C C C 

3. Heuristics for determining collaborative writing activities  

Writing activities in collaborative writing can be categorized into 6 common activities: 
brainstorming, outlining, drafting, reviewing, revising, and editing. The definition of 
these activities is described in [4]. It is important to note that in general these six 
activities do not occur in a linear sequence. In a document writing process, we consider 
reviewing activities made not only by the writers (owners) of the document, but also by 
instructors or editors or peers who read and annotate the document for content, grammar, 
and style improvements. In this work, we concentrate on automatically identifying the 
five collaborative writing activities: brainstorming (B), outlining (O), drafting (D), 
revising (R), and editing (E).  

In order to identify the five collaborative writing activities in the writing process of a 
particular document, basic heuristics are proposed. Particularly, our heuristics are based 
on text changes, text structures, topic changes and cohesion improvement in the 
document from one revision to another. The heuristics utilized in our analysis are 
presented in Table 1. Each writing activity can be identified using text change operations 
(C1 to C8), text structures (S1and S2), and functions (F1 to F3), which are explained 
below. 
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3.1 Text structures  

The writing activities can be determined by the structure of the written texts (S1) and the 
number of sentences and paragraphs (S2). During brainstorming, authors normally write 
in bullet-point lists consisting of single words or phrasal words (compound nouns). 
Consequently, the number of paragraphs (the number of lines) is approximately equal to 
the number of sentences (the number of words or items). Although during an outlining 
phase the number of paragraphs and sentences are still the same, the text structure is more 
organized into sections and subsections. When writers start drafting their documents, 
number of sentences and paragraphs change dramatically. During this phase, the number 
of sentences is expected to be higher than the number of paragraphs. This is also truth for 
revising and editing phases. 

3.2 Text change operations 

Eight types of text change operations (C1 – C8) were used in our heuristics. These text 
change operations were based on the revision change functions proposed by Boiarsky [2]. 
Writers use the text change operations in their writing activities for different purposes in 
order to produce final pieces of writing. We developed basic assumptions for our pilot 
study as following: 

• During brainstorming, writers can reorder, adding, or deleting items of lists of 
brainstorming ideas. They can also format the lists, alter the whole items of the 
lists, or change some items. Similarly, during outlining, writers can add, delete, 
reorder, format, and change some or the whole sections of their organized list.  

• During drafting, revising and editing, text change operations become more 
complicated. Drafting activities start when the structure of the written text 
changes from bullet-point or structured lists to paragraphs. In other words, 
alteration of form (C7) usually indicates the start of drafting activities (as depicted 
by N** in the table). During drafting, information is added and removed all the 
time. Therefore, expansion of information (C5), deletion of information (C6), and 
micro-structure change (C8) imply drafting activities. 

• However, if C5, C6 and C8 happen after reviewing activities, we consider them as 
revising activities (as noted by N* in the table). Particularly, peer review was 
incorporated in our pilot study. We assumed that after getting feedback from their 
peers, students may add, delete, and alter texts in their documents. Also students 
may completely erase the whole written text and rewrite the text from scratch 
after getting feedback from their peer review. This operation is C7.  

• In addition, common revising activities are reordering (C2), consolidating (C3), 
and distributing texts (C4). These changes occur after writers start drafting and 
reoccur many times in the writing process. Our assumption is that during drafting 
writers may stop writing and revise their own written texts in order to improve the 
cohesion and effectively convey information and ideas to readers.  

• For simplicity, all surface change operations (C1) including formatting, spelling 
and punctuation corrections are consider to be editing activities. Similar to C2 - 
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C4, editing activities are considered to be common and reoccur many times in the 
writing process.  

3.3 Number of words  

The ratios between the number of words of two consecutive revisions are computed (F1). 
The ratio was used in conjunction with topic overlap and cohesion measurement 
discussed below to determined writing activities.  

3.4 Topic overlap 

Our heuristics also used a topic overlap measurement (F2). We analyze the change in 
topics (concepts) for two consecutive revisions of documents. Our intuition is that when 
people write about something, they usually repeat the subject (topics) to keep readers’ 
attention. By identifying concepts and comparing them between two consecutive 
revisions of pieces of writing, we gain information on how writers develop their idea and 
concept during writing process. Intuitively during drafting and revising, topics overlap 
(F2) changes dramatically. However, during editing F2 should be constant. The method 
for computing the topic overlap (F2) is described in Section 4.1. 

3.5 Cohesion Changes 

Another measurement used in our heuristics to detect writing activities is the cohesion of 
the text. We measure cohesion of each individual revision of documents. Particularly, we 
calculate the distance between consecutive sentences and paragraphs in the written texts 
in order to gain an insight on how paragraphs and the whole texts have been developed. 
Our assumption is that during a drafting phase, the cohesion of the written text fluctuates 
a lot. After authors revise the text, the cohesion of the text is usually improved. There 
should be no change in the cohesion of the written text during editing phase.  

We use the Latent Semantic Analysis (LSA) technique to measure the cohesion of the 
text. In particular, for each revision of documents we compute average sentence and 
paragraph similarities using LSA for single documents as described in [14] and compare 
the result with the former revision of the same documents in order to determine if there is 
an improvement in cohesion for these two revisions.   

4. Pilot study  

As a way of evaluating the proposed heuristics and illustrating how process mining can 
be used to analyze writing activities, we conducted a pilot study to investigate writing 
processes of students in the course of E-business Analysis and Design, conducted during 
the first semester of 2009 at the University of Sydney.  In this course, students were 
organized in groups of two and asked to write Project Specification Documents (PSD) of 
between 1,500 and 2,000 words (equivalent to 4-5 pages) for their e-business projects. 
They were required to write their PSD on Google Docs and share them with the course 
instructor. The course also used peer review in which each PSD was reviewed by other 
two students who were members of different groups. After getting feedback from their 
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peers, students could revise and improve their documents if necessary before submitting 
the final version one week later. 

In addition, the marks of the final submissions of the PSD (as presented in [12]) together 
with a very good understanding of the quality of each group through the semester was 
used to correlate behaviour patterns to quality outcomes. In particular, to be able to give 
insight into how students wrote their own documents, we performed a process diagnostic 
to give a broad overview of students' writing activities.  

4.1 Pre-processing  

In this section, we describe the document pre-processing method used in our study. We 
analyzed 21 documents in this study. As discussed in Subsection 3.4, LSA was used for 
measuring the changes in cohesion in the written text. The pre-processing step for LSA 
involved the extraction of the terms from all concerned revisions of the documents. First, 
each revision of documents was split into paragraphs using a simple matching to the 
newline character. Then, each paragraph was divided into sentences using Sun’s standard 
Java text library. After that, each sentence, paragraph and the whole text were indexed 
using Apache’s Lucene, which performed the tokenization, stemming, and stop word 
removal. We used Porter’s stemmer algorithm (Snowball analyzer integrated in Lucene) 
for stemming words. Next for each revision, a term-document matrix was created. Term 
frequency (TF) and document frequency (DF) were selected as weight terms. We 
discarded terms that only appear once in each revision of documents. The space of term-
document matrix was reduced using Singular Value Decomposition (SVD).  We adopted 
the method of Villalon et al. [14] to reduce the dimension of the LSA space to 75% of the 
total number of sentences. 

In order to compute the topic overlap discussed in Subsection 3.3, we first extracted 
topics from each revision of documents. Our approach in extracting topics from each 
revision of documents was based on Lingo clustering algorithm developed by Osinski et 
al. [7]. Especially, we extracted frequent phrases from each revision (we use the 
assumption and definition of frequent phrase discussed in detail in [7]). Next, by using 
the reduced term-document matrix calculated for LSA above, for each revision we 
discovered any existing latent structure of diverse topics in a particular revision. After 
discovering topics of each revision of documents, we compared topics of two consecutive 
revisions to calculate the topic overlap between the two revisions. As a baseline measure, 
we selected a simplistic word overlap measures. This measure was used for sentence-
level similarity such as in the work of [5].  

The final step in our data preparation was to create a writing activity log of all documents 
in the format used by a process mining tool like ProM. First, for each revision (except the 
first revision) we compare it to the former revision and obtain the types of text change 
operations between the two using a file comparison utility like diff tool. Then, we applied 
the proposed heuristics using the obtained types of text changes, the results of LSA 
cohesion and topic overlap calculated above. In conjunction with timestamp and user 
identification obtained from the revision history discussed in Section 2, we can create an 
event log of writing activities, in which process analysis can be performed. 
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4.2 Writing process analysis 
 
After preprocessing, the resulting event log consisted of 8,233 events in total. Each 
process case represented one document. The mean number of events per document was 
392, with a minimum of 77 events per document and a maximum of 705 events per 
document. There were 6 different types of events corresponding to 6 types of writing 
activities. We performed process analysis in order to gain insight into how students wrote 
their documents.  
 
The Dotted Chart Analysis utility of ProM [9] was used to analyze students' writing 
activities. The dotted chart was similar to a Gantt chart [11], showing the spread of events 
over time by plotting a dot for each event in the log. Figure 1 illustrated the output of the 
dotted chart analysis of students writing their PSD documents. All instances (one per 
document) were sorted by start time. In the figure, points represented writing activities 
occurring at certain time. There were six writing activities as mentioned above. They 
were represented with different colors and shapes: white circles denoted brainstorming, 
brown circles were outlining, black triangles represented drafting, black squares depicted 
reviewing, brown squares were revising, and white diamonds denoted editing activities.  
  

 
Figure 1. Dotted chart of 21 groups of students writing collaboratively (from ProM tool). White 
circles denoted brainstorming, brown circles were outlining, black triangles were drafting, black 

squares were reviewing, brown squares were revising, and white diamonds were editing activities. 
 

From the figure, we observed that most students started their writing approximately two 
weeks before the due date for the submission of peer review (27th March 2009). 
Exceptionally, there existed 6 groups starting their writing activities quite early. Group 19 
(received the final mark of 9/10) and 21(10)1 started their outlining and brainstorming 
activities very early in the first week of the semester. Group 13(9), 18(9), 23(8), and 
24(8) also commenced their writing tasks early in the second week of the semester. 

                                                 
1 Group X(Y) denotes the group number X receives the final mark of Y out of 10. 

263



 

Therefore, we noticed that students who performed brainstorming and outlining started 
their writing quite early and received quite good marks. In addition, as we expected, there 
were many writing activities during a week before the due date for peer review 
submission. Interestingly, there were 5 groups commencing their writing tasks few days 
before the due date. They were Group 9 (10), 15 (9), 22 (9), 25 (9), and 26 (9). These 
groups also received quite high marks for their writing, although they started writing 
quite late. Actually students of these groups did not use Google docs to perform outlining 
and brainstorming. They also started their writing using other word processing 
applications such as MS Word because all of them commenced their writing on Google 
Docs with substantial amount of texts (containing sections and paragraphs). During the 
one-week of peer review, we expected to have no writing activities since students were 
waiting for the feedback from peer review. However, Group 22, who just started their 
writing on Google Docs, performed some activities during this time. We checked the 
revisions of the document of Group 22 and found that there were substantial text changes 
performed by these activities. At the end they received a good mark of 9/10. Furthermore, 
after getting feedback from their peer review (3rd April 2009), students started revising 
and editing their documents before the final submission (10th April 2009). We observed 
that Group 16(9), 18(9), and 24(7) started working on their documents soon after getting 
feedback. They were among top groups in the class. 

In addition, we were naturally interested in finding out more about writing activities of 
each group and the path each group was following in the process of writing. ProM 
provides a Performance Sequence Analysis (PSA) plug-in to find the most frequent paths 
in the event log [3]. Figure 2 illustrates a sequential diagram of students' writing activities 
in our pilot study. The patterns were ordered by the number of groups generating them. 
From the analysis above, we learned that not all groups of students performed their 
brainstorming and outlining before actually drafting their documents. The PSA also 
confirmed this. In addition, from the PSA we checked each individual group’s activities 
in order to determine which groups did not conduct brainstorming and/or outlining for 
their writing tasks. From Figure 2, there were seven distinct patterns of activities. Pattern 
0 and 5 indicated groups that started drafting without brainstorming and outlining. Pattern 
0 was originated from 8 groups: 2, 9, 13, 14, 15, 22, 25, and 28. For Pattern 5, there was 
only one group: 26. Pattern 1, 3 and 4 involved all activities except brainstorming. There 
were 7 groups belonged to Pattern 1: 1, 4, 7, 10, 16, 17, and 27. For Pattern 3 and 4, each 
of them was generated by only one group namely 19 and 23, respectively. Clearly, more 
than half of the class did not conduct outlining and one third of the class did not bother 
performing brainstorming (at least on Google Docs) before drafting. We discussed this 
matter with the course instructor who was aware that most students performed their 
writing plans offline. Finally, there were 3 groups whose their writing activities 
generating Pattern 2 and 6: 18, 21 (for Pattern 2), and 27 (for Pattern 6). These groups 
planed their writing tasks with brainstorming and outlining. Consequently, all of them 
received high marks.  
 
The process model of all 21 documents was discovered by using the Heuristic miner 
algorithm [15] with default threshold parameters (implemented in ProM). Figure 3 
depicts a transition diagram of the model. The numbers in the boxes indicate the 
frequencies of the writing activities. The decimal numbers along the arcs show the 
probabilities of transitions between two activities and the natural numbers present the 
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number of times this order of activities occur. In addition, we also extracted the process 
model of each individual group in order to gain an insight on how the group conducting 
its writing. 
 

                           

Figure 2. Sequence patterns of 21 groups of 
students writing collaboratively. The patterns 
are ordered by the number of groups 
generating them (from ProM tool).  

Figure 3. A transition diagram of the process 
model for 21 documents. The natural 
numbers refer to frequencies (of events and 
transitions), and the decimal numbers 
represent probability of the transitions.

5. Conclusion and future work  

The work presented in this paper is a work in progress. The pilot study described in the 
previous section provides fundamental work for us to develop basic heuristics to extract 
semantic meaning on text changes and determine writing activities. Based on the 
heuristics, we were able to analyze student's writing activities using a process mining and 
discover 7 patterns on writing activities of 21 groups of students. However, correlated 
with final assessment, we could not distinguish clearly the better from the weaker groups.  

This preliminary work gives us direction for the next step of our work. In the future, the 
discovered patterns, process snapshots provided by performance sequence and dotted 
chart analysis can be used for providing feedback to students during their writing so that 
they are aware of their writing activities and can coordinate effectively.  
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One way to improve our understanding of what writing processes lead to better outcome 
is to improve our heuristics. In our current work, the surface change operation indicates 
only changes in spelling, number, punctuation, and format. We did not include 
grammatical correction in the current work yet. In addition, one of text change operations 
proposed by Boiarsky is the improvement in vocabulary [2]. We did not detect the 
improvement in vocabulary in our current analysis. These two text change operations will 
be cooperated in the heuristic in the future. In addition, we already measure the change in 
topics (concepts) which represent word repetition. Although word repetition is common 
in writing, good writers usually utilize synonymy and pronouns to avoid annoying 
repetition. This issue was not considered in this paper and will be cooperated in the future 
work. 
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Abstract. Intelligent tutoring systems adapt to users’ cognitive factors, but 
typically not to affective or conative factors. Crowd-sourcing may be a way to 
create materials that engage a wide range of users along these differences. We 
build on our earlier work in crowd-sourcing worked example solutions and offer 
a data mining method for automatically rating the crowd-sourced examples to 
determine which are worthy of presenting to students. We find that with 64 
examples available, the trained model on average exceeded the agreement of 
human experts. This suggests the possibility for unvetted worked solutions to be 
automatically rated and classified for use in a learning context. 

1 Introduction 

Intelligent tutoring systems have made great progress on adapting instruction to match 
students’ cognitive needs. They match instructional content to the learner’s changing 
state of knowledge, the cognitive variables. There is little work, however, on matching 
instruction to the learner’s interests, motivations and identity, the affective and conative 
variables [5], which can improve student engagement and test scores [4]. Personalizing to 
these other factors may require a large set of socially and topically varied problems and 
worked example solutions. Our previous work demonstrated that crowd-sourcing is a 
feasible approach to covering the gamut of learners with many worked examples [1]. 
However, it is important to determine which of the contributions are worthy of presenting 
to learners, which need more work, and which should be discarded. In the current paper 
we assess the feasibility of using data mining to automatically classify crowd-sourced 
worked example solutions by their readiness to present to learners. 

Machine rating of quality has been studied in many domains (e.g. Wikipedia articles [2], 
student essays [3]). The strongest predictors are often simple, and sophisticated features 
add little. The 1960s Project Essay Grader using just word count, average word length, 
counts of punctuations and prepositions, etc. achieved 0.78 correlation with teachers’ 
scores, almost as strong as the 0.85 correlation between two or more trained teachers [3]. 

Our data set comes from a corpus of worked examples to practice the Pythagorean 
Theorem. Each example consists of problem statement and a series of steps to solve it. 
The 278 examples were contributed by 10 math teachers, 20 non-math teachers and 110 
amateurs. Each solution was coded manually by three experts on a 4 point scale: Useless, 
Fixable, Worthy, or Excellent. The ratings of the three coders  (Cronbach’s !=.71) were 
averaged to create a single solution quality measure, for which the models were trained. 

2 Results 

Model accuracy is evaluated as the correlation of the machine prediction with the 
solution quality measure. Because a subsequent analysis on human correlations requires 
unseen instances, a test set was made holding out a stratified random sample of 28 
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instances.  The remaining 250 worked examples were used to train a model evaluated by 
10-fold cross-validation. The attribute space was restricted to features of the example 
(e.g. count of the word “solve”) and whether the contributor agreed to be further 
contacted. The learning algorithm selected was REPTree and was enhanced through a 
Bagging meta-classifier using Weka. 

To see how the performance is affected 
by the number of instances, we trained on 
random subsets each of size 8, 16, 32, 64, 
128 and 250. Twenty subsets were 
created with random sampling with 
replacement. Training on all 250 
instances the mean accuracy (correlation 
with solution quality value) over the 20 
runs was r=.67. 

For the examples in this data set, the machine-based rater correlated better with the 
human experts than they did with each other (humans pair-wise average r=.53 and model 
average r=.67). We found that 64 training examples were enough to beat the human 
raters on average and that with 128 examples the machine outperformed consistently. For 
domains in which these results hold therefore just 64 rated examples are needed to create 
a model that can automatically rate future contributions. Because it can do this instantly 
and on-demand, such models could be used to facilitate a peer-produced worked example 
system. Anyone could contribute a solution, and learners would only be shown those of 
the highest quality. This work supports the scalability and sustainability of such a system. 
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In the Science Assistment project (http://users.wpi.edu/~sci_assistments/) we provide 
students with rich and dynamic opportunities to engage in inquiry while researchers and 
teachers use performance data as assessment indices of scientific inquiry skills and 
domain knowledge. Activities in the Science Assistment Project follow a pedagogical 
model known as the inquiry cycle, namely, explore, hypothesize, experiment, and 
analyze. Figure 1 shows this cycle as a graph and the transitions that can be made 
between states. State “Comp” represents completion of the activity. 

 
Figure 1. The Inquiry process as modeled by our activity. 

 
Important to researchers and developers are ways to assess students’ inquiry 

process within microworlds, as well as a rigorous method for providing scaffolding to 
students who struggle with inquiry during the activity. The method presented here utilizes 
a Markov chain to track a student’s path through the various inquiry activities. 

The data were collected from 148 eighth grade students, ranging in age from 12-
14 years, from a public middle school in Central Massachusetts. Students engaged in 
inquiry using our learning environment including a microworld simulating the phase 
changes of water and a series of inquiry support tools for making a hypothesis, collecting 
data, and analyzing data.  
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 Based on the logging features of these microworlds, we track the path students 
take through the activity by counting the transitions students make and create a Markov 
model of their inquiry process (Figure 1). This potentially affords researchers a way of 
grouping students based on their path through the activity. The rationale for this is that 
some paths are more effective representing systematic inquiry [1] and, in turn, lead to 
positive learning gains while other inquiry paths do not. Using this Markov model, 
researchers hope to eventually be able to develop scaffolds for students whose path 
corresponds to less effective inquiry. However, in order to do this we need have models 
that can diagnose a students’ inquiry path. The current work seeks to develop such a 
student model. 

The first attempt at breaking up different groups of students used the scores 
students obtained on the multiple choice pretest: those in the top third on the pre-test, and 
those in the bottom third. The middle third was not used for this analysis. Based on these 
two groups of students, we generated two transition models. To validate these models we 
computed the log likelihood of each model given each student. A paired samples t-test on 
the log likelihoods of the intended models (the model generated from the group which the 
student belonged) versus the unintended models (a model generated from students from a 
different group) found the models to be distinct (t(98) = 3.385, p < .001). Using a sign 
test (log likelihood of intended model - log likelihood of unintended model) for each 
student, we found that the intended model had a higher log likelihood 68% of the time. 
Although this disaggregation was somewhat successful, 68% accuracy in terms of 
classification is not a great improvement over a baseline of 50% generated by random 
guessing. 

 For our next attempt, rather than picking some measure and using that to 
disaggregate the models, we looked at the models themselves and attempted to 
disaggregate them by applying a K-means cluster analysis using Weka (version 3.6.2), 
which generated two  models each of which was based on a cluster. The major difference 
between the two models is that students in model 1 tended to return to the observe state 
of the inquiry cycle (see highlighted portion of Figure 1).  
 The next steps going forward are to try to use our models along with other learner 
characteristics we have about our participants to predict what cluster the students fall 
into. We also need to find if the clusters fit into categories of high and low performance 
in the activity. 
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1 Introduction 

We describe new work in using dialogue annotation for tutorial tactic discovery. When 
analyzing a tutorial dialogue session, surface features such as ratio of student to tutor 
speech, average delay between turns, and speech disfluency rates can serve as 
approximate measures for student participation, certainty, and affective state – factors 
critical to the success of an ITS.   While these data are relatively easy to extract directly 
from a transcript and do provide insight into the nature of instruction, they are too coarse 
to give directed feedback to tutors and tutorial dialogue authors.    Instead, an 
intermediate representation that summarizes the exchanges within a dialogue may be 
useful such as provided by a new annotation scheme for tutorial tactic representation 
called the Dialogue Schema for Unifying Speech and Semantics (DISCUSS), which we 
briefly describe here and detail in [1]. 

2 Background and Related Work 

A variety of previous research has employed tutorial dialogue annotation for both 
general-purpose educational analyses as well as for more directed goals of optimizing 
ITS behavior.  Graesser and Person [4] used tutorial dialogue annotation to determine the 
aspects of a dialogue that correlate statistically with learning gains.  Boyer et al. [2] 
applied Hidden Markov Models to a corpus tagged with dialogue acts to discover patterns 
in tutorial dialogue strategies.  Chi et al. [3] utilized smaller, more specific annotation to 
learn when a tutor should elicit rather than tell an answer to students.  Collectively, these 
cases illustrate how dialogue level analysis requires richer representations than can be 
derived from transcripts alone.  We are currently collecting a corpus of one-on-one 
ITS/WOZ led tutorial dialogues for inquiry-based instruction of FOSS science materials 
[5]. When complete, we will have nearly 1000 transcripts spanning 4 domains and 16 
sub-domains of elementary school science.  Preliminary observations from the WOZ 
transcripts suggest that the semantic entailments between student utterances and the goals 
for a lesson are the driving force behind tutor behavior.   

3 The DISCUSS Annotation Scheme 

Based on our analysis, we developed DISCUSS to reflect the relationships between 
learning goals and the dialogue.  It does this in multiple layers, which capture the 
pragmatics, semantics, and structure of a conversation.  Together, these layers yield a 
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comprehensive, yet domain-independent, description of the tutorial dialogue.  Figure 1 
illustrates how DISCUSS can be used to represent these relations.  

Goal1:	  Batteries	  provide	  electricity	  
Semantic	  Parse:	  [Agent].batteries,	  [Predicate].provide,	  [Theme].electricity.	  
S1:	  It	  looks	  like	  the	  battery	  is	  giving	  electricity	  to	  the	  light	  bulb	  
Semantic	  Parse:	  [Agent].battery	  [Predicate].giving	  [Theme].electricity	  [Beneficiary].light	  bulb	  
Answer/Describe/Process	  [Goal1]	  
T2:	  	  Giving	  electricity.	  	  Interesting.	  	  Tell	  me	  more	  about	  that.	  
Mark/Null/Null	  [S1.Predicate,	  S1.Theme],	  	  Feedback/Positive/Null,	  	  Ask/Elaborate/Process	  [S1]	  

Figure 1: Sample snippet of DISCUSS annotation 

4 Discussion 

This annotation will allow extraction of more detailed features that can give better 
indication of conversation cohesiveness, student understanding, and tutor pedagogical 
style.  The shallow semantics that DISCUSS captures will allow us to investigate how 
tutorial tactics vary and agree across domains and concept types as well as between 
tutors, and it will allow us to identify relations between student populations and 
instructional styles.  Most importantly, this more detailed representation will allow us to 
map specific aspects of the dialogue onto the general patterns of tutorial dialogue 
strategy. 
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Abstract:  Our poster presentation illustrates how to include wrong answers in 
test analyses using Response Spectrum Evaluation (RSE) procedures to track 
answer patterns on an answer-by-answer basis.  

RSE is a statistical procedure adapted from the multinomial [3] that bypasses the linear 
dependency problem so that alternative (wrong) answers can be included in data-mining 
analyses. Thus, the study of the dynamics of learning events can be conducted on an 
answer-by-answer basis.  

Previous investigations [3] using this procedure have revealed: 

1. The selection of answers is the result of the way students interpret the test questions. 

2. These interpretations are directly inferable from the answers selected (or presented). 

3. Selection procedures involve a number of strategies that are characteristic of each 
student, providing diagnostic information that can inform teaching. 

4. This information is of more value to teachers who focus upon teaching how to think 
and how to learn instead of reproducing course content.  

5. Some students show systematic development similar to the sequence described by the 
clinical observations of Piaget [1], while others show deterioration in the reverse 
direction. 

6. Some students systematically shift from the right answer on the easy questions to 
particular types of “wrong” answer when their ability breaks out of “all” or “nothing” 
thinking (without considering other options) into more intellectually flexible mind-
sets. RSE is the only procedure with this detection capability. 

7. The focus upon the right answers in the psychology of test-taking reinforces closed-
minded thinking on the part of students taking the test, meaning that if the objective 
of teaching is profound understanding, the focus upon “right” answers is 
psychologically invalid. 

8. The dynamics of learning revealed by the RSE procedures are non-linear and 
multichotomous, meaning that the use of total-correct scores to assess student 
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performance is mathematically invalid because the normal distribution requires 
dichotomous data to be utilized. 

Our study considers two tests, mathematics and science, given to the same students at 
three school levels, years 4, 6 and 8. It presents three examples from each test, showing 
the patterns of answer selection transitions on these items and the interactions among 
them.  

In our study, we draw implications for using RSE to add important diagnostic and 
interpretive information for teachers. This information can often be derived by direct 
analysis of each answer to each item. The ways in which these behaviors aggregate, 
however, requires determining the associations among answers with all answers in the 
test (both right and wrong), requiring that the analysis bypasses linear dependency. 

We are grateful to Educational Initiatives Pvt. Ltd. (India) for sharing raw response data 
and questions from the ASSET test used in their study “Student Learning in Metros 
2006.” 
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School-based intelligent tutoring systems present a unique, largely untapped, teacher-

development opportunity. Research on teacher content knowledge has shown that effective 

teachers develop a specialised 'pedagogical content knowledge' for teaching mathematics. School-

based tutors provide a rich record of the student learning process. This record can be mined for 

insights that contribute to teacher’s ‘pedagogical content knowledge’. By situating this 

knowledge in the context of an active teaching-learning process occurring in the school, these 

insights contribute to a continuous data-driven teacher development exercise. 

1. Introduction 
School-based intelligent tutoring systems are designed to assist teachers in meeting learning 

objectives by providing personalised learning opportunities to students. Such systems 

embody expert pedagogical knowledge as well as student models which are used to guide 

students through content so as to maximise learning. Mindspark®, developed by Educational 

Initiatives, is a mathematics tutoring system being used as a part of the school curriculum by 

nearly 7000 students in more than 13 schools across India. 

While most tutoring systems aim to provide comprehensive learning opportunities within the 

tutoring environment, a school-based tutoring system presents a unique, largely untapped 

teacher-development opportunity. Research on teacher content knowledge in the past 3 

decades has brought to the table and refined the notion of ‘pedagogical content knowledge’ 

[1] and provided empirical measures of the subject knowledge that is required for 

teaching[2]. Insights mined from tutoring systems can be used to inform teachers about the 

nature of the learning process students go through in specific content domains and thus 

provide a source of continuous teacher development.  

2. Data   
The Mindspark® system consists of a sequence of specially designed learning units 

(clusters), which contain finely graded questions on concepts that make up the topic. Students 

learn through feedback and by going through specific remedial clusters, which help address 

specific problems. The questions are MCQs, ‘fill-in-the-blank’ type, multiple-select or 

interactive. Student response, the time taken in making the response, the time spent reading 

the feedback, the no. of repetitions of each learning unit and other data is recorded in a 

database.  

3.1 Detecting misconceptions and common errors 
The Mindspark system helps teachers identify specific misconceptions or learning gaps 

prevailing at the grade or school level. Mindspark consists of distractor-driven MCQs that are 

capable of trapping common errors.  
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Figure 1 – Example of a common error/misconception highlighted and a table 

showing the use of standard deviation of wrong answer % as a sorting criterion. The 

correct answer is marked in green, common wrong answers in red/pink. 

A measure that directly picks up questions where a large proportion of students have been 

drawn to a particular wrong answer (thus indicating a common error pattern) is the standard 

deviation of the % of students choosing the various wrong answers. A higher SD identifies 

clustering of response in particular options. Tutor data from across grades can then be used to 

inform teachers about how misconceptions evolve with age and ability.  

3.2 Identifying ‘speed-breakers’ in learning 
The Mindspark learning units contain very finely graded learning units based on conceptual 

progression as determined by curriculum and content experts.. However, students sometimes 

treat closely related question-types very differently and such a situation often represents a 

‘kink’ in the curriculum and a mismatch between student understanding and teacher’s 

perception of how difficult different related tasks are. Such potential kinks in the curriculum 

represent specific points where student learning may be derailed, both in the tutor 

environment as well as in the classroom.  

3.3 Identifying and gaining from difficult learning situations 
Students using the Mindspark system occasionally get trapped in difficult learning situations. 

They make no progress and repeatedly fail to clear particular learning units despite feedback. 

By using correlation-based measures to classify student trajectories, we provide useful 

information to teachers on the student’s experience and make it possible for these situations 

to be fruitfully utilized to systematically improve teacher’s pedagogical content knowledge. 

4. Conclusion 

School-based intelligent tutoring systems provide a rich record of the student learning 

process. This record can be mined for insights that contribute to teacher’s ‘pedagogical 

content knowledge’. By situating this knowledge in the context of an active teaching-learning 

process occurring in the school, these insights contribute to a continuous data-driven teacher 

development exercise. 
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Question. 

Code 

Question 

No. 

Option 

A (%) 

Option 

B (%) 

Option 

C (%) 

Option 

D (%) 

Std. Dev. 

Of Wrong 

Answer % 

27E09 9 4.56 27.94 6.64 59.45 31.10 

27E13 13  27.42 7.11 14.86 49.09 22.33 

27E31 31  3.37 48.11 41.95 5.72 21.62 

27E34 34  24.78 8.073 18.62 46.68 19.95 

27E20 20  5.29 42.01 40.53 10.93 19.77 
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Abstract. We show a variety of ways to cluster student activity datasets using 

different clustering and subspace clustering algorithms. Our results suggest that 

each algorithm has its own strength and weakness, and can be used to find 

clusters of different properties.   

1 Background Introduction 

Many education datasets are by nature high dimensional. Finding coherent and compact 

clusters becomes difficult for this type of high dimensional data. Subspace clustering was 

proposed as a solution to this problem [1]. Subspace clustering searches for compact 

clusters embedded within subsets of features, and it has proven its effectiveness in 

domains that have high dimensional datasets similar to educational data. In this paper, we 

will show that different clustering and subspace clustering algorithms produce clusters of 

different properties, and all these clusters help the instructor assess their course outcomes 

from various perspectives.  

2 Clustering Student Activity Data 

We assume that datasets are in the following format: each row represents one student 

record, and each column measures one activity that students participate in. Our test data 
contains 30 students with 16 activities, and 7 students failed this class. The final grade is 

the weighted average from the scores in all 16 activities.  

2.1 Student clusters 

Student clusters consist of groups of students who demonstrate similar learning curves 

throughout the whole course. These clusters are helpful to identify key activities that 

differentiate successful students from those who fail the course. We applied the 

SimpleKMeans from Weka [2] to the test dataset with k being set to 2. The results show 

that cluster1 contains 6 out of 7 students who failed the course, and cluster2 contains 24 

students among whom 23 passed the course. One student who failed was clustered into 

cluster2, and we found out that this student’s composite final score is 58%, which lies 

right on the boundary of passing/failing threshold.  

2.2 Activity clusters 

Here we focus on finding groups of activities in which all students demonstrate similar 

performance. For example, we may find a group of activities where all students show 
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worse than average performance. This suggests that the instructor may want to spend 

more time on these activities to cope with the difficulty. To find this type of clusters, we 

need to transpose the original data matrix. We applied SimpleKMeans to the transposed 

test dataset. We tried different k values and found out the best clustering results was 

obtained at k =4 by looking at the curve of within group variance as a function of k. 

Among these four clusters of activities, cluster4 is the most challenging group of 

activities because its cluster centroid is consistently lower than the other three clusters.  

2.3 Subspace clusters  

We only report the results from PROCLUS [3] algorithm due to limited space. 

PROCLUS needs to set the number of clusters (k) and the average subspace 

dimensionality (l).  

SC_0: [0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 ] #13 {2 5 7 8 10 13 14 15 17 21 23 27 29 } 

SC_1: [0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 ] #11 {0 1 4 12 16 19 20 24 25 26 28 } 

SC_2: [0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 ]  #4  {3 6 9 22 } 

SC_3: [0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 ]  #2  {11 18 } 

For k=4 and l=3, the four clusters identified are shown as above. The first subspace 

cluster (SC_0) lies in a subspace that contains two features: activity 8 and activity 12. 

SC_0 contains 13 students, and they are: stu2, stu5, stu7, and etc. A simple investigation 

shows that SC_2 and SC_3 contain all students who failed the class. SC_2 suggest that 4 

out of 6 students who failed this class had difficulty with activities 6 and 7, and SC_3 

shows that the other two students who failed had difficulty with activities 2, 8, 9 and 10. 

We can also see that SC_1 and SC_3 are two clusters that are best contrasted by activities 

6, 7 and 8. Since all students in SC_1 passed the course while SC_3 students failed the 

course, these three activities may be crucial for students to pass the course.  

3 Conclusions  

All three types of clusters provide us with different perspectives. Since not all students 

experience the same difficulty in all activities, subspace clustering seems to be well 

suited for this purpose.  
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Abstract. It is argued that the analysis of the learner’s generated log files during 
interactions with a learning environment is necessary to produce interpretative 
views of their activities. The analysis of these log files, or traces, provides 
"knowledge" about the activity we call indicators. Our work is related to this 
research field. We are particularly interested in automatically identifying 
learners’ learning styles from learning indicators. This concept, used in several 
Educational Hypermedia Systems (EHS) as a criterion for adaptation and 
tracking, belongs to a set of behaviors and strategies in how to manage and 
organize information. In this paper, we validate our approach of auto-detection 
of student's learning styles based on their navigation behavior using machine-
learning classifiers. 

1 Motivation 

Several studies are currently being done on measuring Learning Styles (LS) by the 
analysis of learners’ interaction traces (eg. DeLeS [6], Welsa [7], and Chang et al. [5]). 
Their general criticism is related to the use of a specific environment, and therefore 
specific traces and indicators. Our ambition is to develop an approach and interpretable 
indicators as independently as possible from the learning environment. What leads us to 
deal with Web-based learning environments widely used by EHS. The problem is to infer 
automatically high-level information about the learner preferences (behaviors and LS) 
from low-level ones: the navigation traces (visited URLs, clicks, etc.).  

2 Approach 

To validate our assumption that it is possible to deduce LS from navigational behavior, 
we made an experiment with 45 graduate students at the Higher National School of 
Computer Science (ESI-Algiers). They worked on machines equipped with a trace 
collection tool, with a web-based learning course. Based on their navigation traces, we 
calculate the five indicators we propose [2] to describe the learner’s browsing behavior, 
to identify two attributes of the learning process layer of our LS model [1]: information 
processing and understanding. Their values correspond to two dimensions of the FSLSM 
[3]: active/reflective, and sequential/global. We used supervised classification methods to 
compare the psychological questionnaire ILS [4] results to those of four classifiers (K-
Nearest Neighbor, decision trees, Bayesian Networks, and neural networks). We used the 
Weka tool and the cross validation method using 10 partitions, to address the sample size 
problem. Table 1 summarizes the obtained results, using the recall metric (number of 
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correctly classified participants by the classifier over the number of participants that it 
should find according to ILS). 
 

Table 1.  LS Classification results 

Information Processing Understanding                           LS Attribute 
Classification Method Active Reflective ACT/REF Sequential Global SEQ/GLO
K-NN (K=3) 78.6% 41.2% 64.4% 47.4% 84.6% 68.9 % 
Decision Trees C4.5 92.9% 0% 57.8 % 63.2% 73.1% 68.9 % 
Bayesian Networks 82.1% 11.8% 55.6 % 42.1% 65.4% 55.6 % 
Neural Networks 60.7% 64.7% 62.2% 63.2% 80.8% 73.3 % 

Through Table1, we notice that for the information processing LS’ attribute, all the 
classifiers learn the active style better than the reflective one, except for Neural 
Networks. This is due to the stronger presence of active learners than reflective ones. 
Concerning the understanding LS’ attribute, the global style was better learned by all 
classifiers than the sequential one for the same reason as the first attribute, where neural 
networks give the best total results. We observe that the total results are all over 50%. 
Thus, we can strengthen the hypothesis of the possibility to deduce information about 
learner preferences using simple navigational information that we can apply on any 
learning environment on the Web, without having to consider evaluation scores or the 
communication tool traces that allow us to give more details. We plan to continue the 
development of other indicators to improve the LS’ identification results. 
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Abstract.  While Intelligent Tutoring Systems (ITSs) are often informed by the 
data extracted from tutoring corpora, coding schemes can be time consuming to 
implement. Therefore, an automatic classifier may make for quicker 
classifications. Dialogue from expert tutoring sessions were analyzed using a 
topic model to investigate how topics mapped on to pre-existing coding schemes 
of different granularities. These topics were then used to predict the 
classification of words into moves and modes. Ultimately, it was found that a 
decision tree algorithm outperformed several other algorithms in this 
classification task. Improvements to the classifier are discussed. 

1 Introduction 

While expert human-to-human tutoring is considered to be the most effective form of 
tutoring [2], human tutors are costly and in short supply. Therefore, researchers strive to 
understand their pedagogical techniques and implement them in an Intelligent Tutoring 
System (ITS). To understand what these techniques are and how they are implemented, 
corpus analysis is often used to study tutors. These data are noisy and complex by nature, 
but coding schemes are one method of understanding the data in a corpus. However, 
coding schemes take time and manpower to implement, and are not always cost-effective. 
Automatic tools are quicker and can also provide some information about a corpus. One 
automatic tool is the Latent Dirichlet allocation (LDA) model [1], or a topic model. This 
method is unsupervised and easily interpretable, and the output can be used to “tag” 
words as belonging to a certain semantic category. This makes the topic a possible 
feature that could be used in either a larger classifier or a manual coding scheme. In this 
study, we examine the possibility of using a word’s topic as derived from a topic model 
to predict its label in two coding schemes of differing grain sizes. 

2 Methods 

We used a previously collected corpus of tutoring sessions conducted by expert tutors 
(see [3]). 40 tutoring sessions were recorded and transcribed, then coded according to two 
coding schemes. The move coding scheme (with 43 components) is a fine grained coding 
scheme, usually taking less than 1 conversational turn. It tends to capture small 
pedagogical and motivational phrases. The mode coding scheme (with 8 components) is a 
coarse-grained coding scheme, usually taking 10 or more turns, and it captures the overall 
structure of the tutoring session. 

The transcripts were cleaned of common high-frequency words, i.e. “stop words”, so that 
only content words remained. Each conversational turn was made into a single document. 
These transcripts were input to topic modeling software of our own design, with the 
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number of topics set to 100, the prior for topics appearing in a document (α) set to 1, and 
the prior for words appearing in a topic (β) set to 0.01. The topic model assigned each 
word in the corpus to a topic which was then paired with the move and mode category 
associated with each word. Preliminary explorations of the data revealed that three 
dialogue moves were highly gregarious; therefore, words from these categories were not 
used in either the move or the mode analyses. After every word’s topic was paired with 
its corresponding move or mode, it was then formatted for the Weka machine learning 
toolkit. Weka allows comparison of several machine learning algorithms on a variety of 
dimensions such as percent classified correctly. We used Weka to answer the following 
question: given the topic, can the mode or move be predicted? 

3 Results & Discussion 

Five machine learning algorithms were chosen to classify the data, and one algorithm was 
selected to serve as the baseline for comparison (for further information on each 
algorithm, see [4]). They are: ZeroR (baseline algorithm, chooses the majority class), J48 
(decision tree algorithm), IBk (k=10; nearest-neighbor learner), LogitBoost (boosting 
algorithm) and SMO (support vector machine algorithm). Ultimately, all algorithms 
performed better than the ZeroR baseline algorithm for both the move (baseline: 10.05% 
correct) and mode (baseline 50.15% accurate) coding scheme (p < .05). Although many 
algorithms post similar results, J48 has the advantage that its associated decision tree is 
easily interpretable. Its accuracy is 19.19% for the move coding scheme, and 52.30% for 
the mode coding scheme. 

In conclusion, it seems that topics alone are a viable predictor for modes and moves, but 
they do not provide a full picture by themselves. A confusion matrix of each coding 
scheme’s results reveals that moves and modes with high entropy (where the content 
relies heavily on the domain rather than a formulaic saying) are harder to predict than low 
entropy categories. Additionally, it seems apparent that modes are harder to predict than 
moves, which may be due to their context-dependent nature. These results may be useful 
first steps in building an online classifier for an ITS. 
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1  Introduction

McCalla's ecological approach to e-learning systems [2] is described as “attaching 
models of learners to the learning objects they interact with, and then mining these 
models for patterns that are useful for various purposes.”  The starting point of our 
research is to honour McCalla's ecological approach by identifying which users in a 
system are similar to each other, to then preferentially recommend learning objects1 that 
similar students have found useful. 

We classify learning objects as atomic or non-atomic.  An atomic learning object would 
be something that is indivisible, such as a simulation or a flash quiz that would need to be 
reprogrammed to break it into smaller parts.  A non-atomic learning object would be 
something like a book, which could be broken into chapters, which in turn could be 
broken into sections, paragraphs, sentences or phrases.  

Our approach in this work is to provide students with tools to (optionally) divide non-
atomic lessons, turning a single learning object into multiple learning objects (at least one 
of which they feel is more valuable than the previous whole).  

2  Corpus Algorithm

A function is needed that will divide the learning object, based on the student's 
suggestion, into two or more learning objects.  Of these objects, the student will specify 
which are worthwhile (and implicitly, the remainder will be determined to be less 
worthwhile).  The worthwhile objects are considered to have a good interaction with the 
dividing student, while the others are considered to have had a bad interaction with her. 
The newly created learning objects are then available to be assigned to students using the 
ITS.

For example, Carol has been watching a supplemental video about Scheme for her CS 
101 class, and found it to be not very useful except for one part that gave a very clear 
analogy for recursion which she found useful.  Within the ITS (at the completion of the 
lesson), she uses the clipping functionality to designate the beginning of this useful 
section and the end.  Three new learning objects are added to the system, the beginning of 
the lecture, the section she found useful, and the end of the lecture.

In order to determine which learning object is shown to a student, the initial assignment 
can be done in a number of ways.  In previous work [1] this was done by assigning 
learning objects which were beneficial to similar students.  If a learning object that has 
been divided is assigned, the system will consider the student's history and whether or not 

1 Learning objects can be considered anything that teaches a student something and can include, for 
example, chapters from a book, video, podcast, set of practice questions or training simulator.
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he has already experienced one of the parts of the object already.  If he has, then the 
learning object as a whole will be rejected (and another object assigned to the student). 
Conversely, if he has experienced one of the pieces, the learning object as a whole will no 
longer be a candidate.

As an example, Bob has watched the section of the lecture that Carol highlighted above 
and found it useful.  Because it is similar to the original learning object, the system next 
recommends the complete lecture to him.  Since he has already watched part of this, it 
isn't worthwhile to show him the entire lecture again and the system silently replaces this 
selection.  It shows him the final part of the lecture instead. If no students found a certain 
object worthwhile, eventually that object would be ejected from the system.

This algorithm will be used to consider the set of all learning objects in the ITS and 
reason about which learning objects should be retained and which add little instructional 
value to any of the students who use the system.  In its simplest form this can be 
considered a threshold of performance, below which a learning object is no longer shown 
to students.

At the same time, the system would track interactions so that the highest recommended 
objects may then be shown to other students. For example, if three "worthwhile" chapters 
are highlighted as recommended by one student, these pieces can be more useful than the 
whole. As a result of this positive interaction, these learning objects can be provided to 
similar students.

3  Validation

We are interested in validating this work first with simulated students and ultimately with 
real students.  Previous work [1] has used simulations of students to demonstrate the 
effectiveness of techniques on groups of students that would be unfeasibly expensive to 
arrange for human trials.

In such an experiment, the effectiveness of this approach will be contrasted with a 
simulation where learning objects are randomly divided and to a simulation where the 
effectiveness of divisions is pre-calculated and only worthwhile refinements are made. 
This will allow us to position our approach between the base and optimal cases. 
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For tutorial dialogue systems, selecting an appropriate dialogue move to support learners 
can significantly influence cognitive and affective outcomes. The strategies implemented 
in tutorial dialogue systems have historically been based on handcrafted rules derived 
from observing human tutors, but a data-driven model of strategy selection may increase 
the effectiveness of tutorial dialogue systems. Tutorial dialogue projects including 
CIRCSIM-TUTOR [1], ITSPOKE [2], and KSC-PAL [3] have utilized corpora to inform the 
behavior of a system. Our work builds on this line of research by directly learning a 
hierarchical hidden Markov model (HHMM) for predicting tutor dialogue acts within a 
corpus.  The corpus was collected during a human-human tutoring study in the domain of 
introductory computer science [4]. We annotated the dialogue moves with dialogue acts 
(Table 1).  The subtask structure and student problem-solving action correctness were 
also annotated manually.  

Table 1. Dialogue act annotation scheme 

Dialogue Act Tag Description 
ASSESSING QUESTION (AQ) Request for feedback on task or conceptual utterance. 
EXTRA-DOMAIN (EX) Asides not relevant to the tutoring task.  
GROUNDING (G) Acknowledgement/thanks. 
LUKEWARM CONTENT FEEDBACK (LCF) Negative assessment with explanation. 
LUKEWARM FEEDBACK (LF) Lukewarm assessment of task action or conceptual utterance.  
NEGATIVE CONTENT FEEDBACK (NCF) Negative assessment with explanation. 
NEGATIVE FEEDBACK (NF) Negative assessment of task action or conceptual utterance. 
POSITIVE CONTENT FEEDBACK (PCF) Positive assessment with explanation. 
POSITIVE FEEDBACK (PF) Positive assessment of task action or conceptual utterance. 
QUESTION (Q) Task or conceptual question. 
STATEMENT (S) Task or conceptual assertion. 

 

We trained first-order Markov (bigram) models, HMMs, and HHMMs on the annotated 
sequences. In ten-fold (five-fold for the HHMMs due to data sparsity) cross-validation, 
the HHMM (partially depicted in Figure 1) predicted tutor dialogue acts with an average 
57% accuracy, significantly higher than the 27% accuracy of bigram models (p<0.0001) 
and better than the 48% accuracy of HMMs without hierarchical structure (p<0.05).3   

                                                
3 p-values reported are from one-tailed two sample t-tests for equality of means with pooled variance 
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Figure 1. Subset of learned HHMM 

Because of HHMMs’ capacity for explicitly representing hidden dialogue structure and 
hierarchical task structure, they perform better than bigrams and HMMs for predicting 
tutor moves in our corpus. The models’ performance points to promising future work that 
includes utilizing additional lexical and syntactic features along with fixed student 
characteristics within a hierarchical hidden Markov modeling framework. More broadly, 
the results highlight the importance of considering task structure when modeling a 
complex domain such as those that often accompany task-oriented tutoring. Finally, a key 
direction for data-driven dialogue management is to learn unsupervised dialogue act and 
task classification models.  
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Abstract:  Students interacted with an Intelligent Tutoring System called 
Operation ARIES!,which involves two agents interacting with the human in 
natural language trialogs. We investigated the conditions in which the length of 
the students’ contributions is correlated with learning. Word count and the 
proportional learning gains scores were correlated, especially in the later phases 
of the curriculum. The link between student contribution length and learning 
supports previous findings in human one-on-one tutoring. 

 1   Introduction 

 Previous research investigating one-on-one human tutoring sessions have reported a 
positive correlation between the amount of information a student contributes and learning 
gains [1,5].  Intelligent Tutoring Systems (ITS) with natural language interaction are 
often designed to use the same pedagogical techniques as human tutors [2]. Therefore, 
the present research will use an ITS to investigate the hypothesis that the more 
information the students contribute, the more they will learn. The students will interact 
with Operation ARIES! (Acquiring Research Investigative and Evaluative Skills), which 
teaches twenty-one topics related to scientific inquiry skills and requires the students to 
have three-way conversations (trialogs) with two animated pedagogical agents.  

2    Description 

2.1 Procedure 

 The experiment used a within-subjects design in which each college student completed 
the same task of learning about science inquiry skills through interacting with ARIES. 
The participants were 11 undergraduates enrolled in three diverse colleges, who were 
paid $100 for participating in the study which occurred over several weeks lasting 6-12 
hours total. They were given a pretest on the ARIES material, followed by a video that 
explains the plot of the game aspects of ARIES, followed by training over multiple 
sessions and finally a posttest.  During interaction with ARIES, the subjects are scaffolded 
by two artificial agents in order to teach the topics presented within ARIES. For each 
chapter the students read an electronic text of approximately 8 pages, answer 6 multiple 
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choice questions, and hold trialogs with agents on content related to the questions. Upon 
completion of interaction with ARIES, the students completed a posttest consisting of 
seventeen open-ended questions designed to cover the topics presented and were scored 
using a rubric which allowed for a maximum score of 34 points.  

2.3 Analysis 

 The pretests and posttests were graded by a rubric which was designed to score the open-
ended questions based off of the expectations presented within the trialogs. In order to 
account for the varying levels of prior knowledge, proportional learning gains scores 
(PLG) were calculated using the formula (posttest-pretest/(1-pretest) [4] allowing for the 
students to be clustered into different levels of learning. Among the 11 students, there 
were a total of 1755 human turn contributions. These turn contributions were entered into 
Coh-Metrix [3] in order to extract the word count index as well as other characteristics of 
language that will be reported at the conference. An analysis of variance was performed 
on word count as a function of chapters, with the PLG clusters held as a random factor. 
There was a significant increase in words as a function of chapter number 
[F(19,1693)=3.032, p<.01], a significant effect of PLG cluster [F(2,1693)=5.291, p<.01], 
as well as significant Chapter X PLG interaction [F(37,1693)=1.659, p<.01]. The pattern 
of interaction showed that students with higher PLG scores had more words per turn, 
particularly for later chapters whereas students with lower PLG scores had fewer words 
and no change over chapters. We conclude that the size of the student’s contribution 
positively correlates with learning, but only in later phases of the curriculum.  

[1]Chi, M.T.H., Siler, S., Yamauchi, T., Jeong, H. & Hausmann, R. Learning from  
Tutoring. Cognitive Science, 2001, 25, p 471- 534. 
 
[2]Graesser, A. C., D’Mello, S., Cade, W. Instruction based on tutoring. In R.E.  
and P.A. Alexander (Eds.) Handbook of Research on Learning and Instruction, 2009.  
London: Routledge Press.   
 
[3]Graesser, A.C., McNamara, D.S., Louwerse, M.M., & Cai, Z. Coh-Metrix: Analysis of 
text on cohesion and language. Behavioral Research Methods, Instruments, and 
Computers, 2004, 36,    p 193-202. 
 
[4]Jackson, G.T., Graesser, A.C., & McNamara, D.S.   What students expect may have more 
impact than what they know or feel.  In V. Dimitrova, R. Mizoguchi, B. Du Boulay, B., & 
A.C. Graesser (Eds.) Artificial Intelligence in Education: Building Learning Systems that 
Care: From Knowledge Representation to Affective Modelling, 2009.  Amsterdam: IOS 
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[5]Litman, D.J, Rose, C.P., Forbes-Riley, K., VanLehn, K., Bhembe, D., and Silliman, S.  
Spoken versus typed human and computer dialogue tutoring. International Journal  
in Education, 2006, 16, p145-170.  
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1 Introduction 
 
Educational data mining and knowledge engineering methods have led to increasingly 
precise models of students’ knowledge as they use intelligent tutoring systems. The first 
stage in this progression was the development of Bayes Nets and Bayesian frameworks 
that could infer the probability that a student knew a specific skill at a specific time from 
their pattern of correct responses and non-correct responses (e.g. errors and hint requests) 
up until that time [cf. 2, 4, 5]. 
 
However, while the extensions made in recent years to educational data mining have 
created the potential for more precise assessment of student knowledge at a specific time, 
these models do not tell us when the knowledge was acquired. Baker, Goldstein, and 
Heffernan proposed the idea of a model that can infer the probability that a student 
learned a skill at a specific step during the problem-solving process. This model, P(J) for 
JustLearned, was shown to be a consistent predictor of high eventual Ln values if a spike 
in P(J) is seen. This ability can potentially allow for engineering intelligent tutoring 
systems to bias content in a way that can induce these moments of learning. The prior 
approach achieved a correlation coefficient of 0.446, which leaves considerable room for 
improving accuracy towards achieving more effective use. Below we will discuss the 
application of P(J) to multiple intelligent tutoring systems as well as our most recent and 
more accurate attempt at creating a P(J) model in the ASSISTment tutoring system. 
 
2 The P(J) Model 
 
The original analysis of P(J) used data from 232 students’ use of a Cognitive Tutor 
curriculum for middle school mathematics [3], during the 2002- 2003 school year. These 
students made 581,785 transactions (either entering an answer or requesting a hint) on 
171,987 problem steps covering 253 skills. In [1] it was demonstrated that a model as 
described above can be created. This model calculates P(JustLearned), P(J) for short, 
which is the probability that a student just learned a skill after a certain problem step. 
This concept can be expressed in terms of BKT as P(~Ln ^ T | A+1+2). For each problem 
step, [1] used a set of 25 features describing the first action on problem step N. These 
features had in turn been used in prior work to develop automated detectors of off-task 
behavior [2] and gaming the system. This attempt at a P(J) model achieved a correlation 
coefficient of 0.446 when running Linear Regression, which provides an acceptable level 
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of prediction, but is recognizably limited. 
 
3 Refinements to P(J) 
 
Although the original P(J) model was capable of identifying potential moments where 
learning opportunities happen, the features set constructed for the model did not have an 
optimally high correlation coefficient. This can perhaps can be attributed to features that 
were designed to detect guessing and slipping rather than moments of learning, as well as 
the model only involving the first action of the step whereas learning may occur in 
subsequent actions. 
 
To improve accuracy, and to demonstrate the ability to create a more accurate model of 
P(J), we redesigned our feature set and used data from ASSISTments, an intelligent 
tutoring system led by Professor Neil Heffernan at WPI. This new data set is pulled from 
4187 students from New England middle and high schools that were using the system 
from 2008-2010. This data includes 55 unique skills and 418,513 logged actions. One 
benefit of using ASSISTments is the fact that it has extensive information about 
scaffolding problem steps, as well as – importantly – subsequent actions after a student’s 
first attempt at answering. Our new feature set includes 40 features, including 
information about time spent on scaffolding, number of hints used in scaffolding, and so 
on. This new model achieves a correlation coefficient of 0.61 when running Linear 
Regression in Rapid Miner with 6 fold student-level cross validation. 
 
The additional correlation shows our ability to more accurately predict P(J), a construct 
which has been shown to have potential to recognize moments of student learning. 
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We present a data-driven model for predicting task completion in Project LISTEN’s 
Reading Tutor, which takes turns picking stories and listens to the child read aloud [1].  
However, children do not always finish stories, and we would like to understand why, or 
at least detect when they are about to stop.  So our EDM challenge is to learn a model to 
predict task completion – a widely used metric of dialogue systems’ performance.  Such a 
model could help detect imminent disengagement in time to address it, and identify 
factors that influence task completion, including tutor behaviors, thereby providing useful 
guidance to make tutors engage students longer and more effectively. 

The richness of multimodal tutorial interaction over time makes the space of possible 
features to describe it large relative to the amount of data.  When the number of features 
is large compared to the amount of data, classifier learners tend to overfit the data, so we 
need a method that learns robust models from few training examples with many features. 

Consider the supervised learning problem with training data S = {(x(i) , y(i) )}, i = 1…n, 

where each data point is a p-dimensional vector x(i)
, and y(i) is its label. The number of 

features p may exceed the number of data points (p >> n).  A binary logistic regression 

model has the following form, where the vector θ contains the p parameters of the model: 

€ 

p(y =1 | x;θ ) =
1

1+ exp(−θ T x)
    (1) 

ℓ1-regularized logistic regression [2] finds the vector θ* that maximizes this expression:  

€ 

θ *
=

θ

argmax log p(y( i)

i

n

∑ | x( i)
;θ) − λ ||θ ||

1
 (2) 

Here the term in the first box represents how well the model fits the training data 
according to Equation (1), and the second term penalizes the model by the sum of its 

parameters’ absolute values (||θ||1).  By discouraging non-zero parameters – which select 
the features actually used – this penalty can prevent overfitting.  The hyper-parameter λ 
controls the trade-off between bias and variance, and can be set by internal cross-
validation using a held out set of training data.  For λ = 0,  Equation (2) reduces to 
conventional logistic regression.  As λ increases, the model’s complexity is penalized 
more strongly, reducing the number of features it uses. 

Our data points to test this method are 2112 story readings by 161 children, lasting four 
or more sentences.  We want to distinguish completed readings from unfinished readings.  
We truncate each positive example to match the number of sentences to the one of a 
negative example, so as to sample potential stopping points, not just the end of the story.  
Negative examples are the entire unfinished readings, which can end anywhere. 
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We use both static and dynamic features.  Static features, e.g. student grade (K-6) and 
story length, remain static over a story reading.  Dynamic features, e.g. number of 
sentences read, words read per minute, or clicks logged, change throughout a reading, so 
we compute separate values for 1, 2, 3, and 4 sentences from the beginning and end of the 
reading.  To avoid cheating, we exclude features of the last sentence read, e.g. whether 
the child clicked to exit. Altogether we have 17,163 raw, squared, and threshold features. 

Figure 1 shows classification accuracy for balanced subsets of different sizes, with the 
same number of positive and negative examples drawn randomly from the 2112 readings.  
We used 10-fold cross-validation splitting data randomly.  We also tried splitting across 
students, but this doesn’t affect accuracy on the full set, yet it is noisy for small subsets 
due to students with sparse data. The error bars represent the 90% confidence interval. As 
Figure 1 shows, the method achieves 60% accuracy by training on only 500 examples, 
increasing to 70% with 600 examples, and asymptoting at 78% above 1500 examples. 
The three most predictive features are derived from the percentage of the story completed 
so far, consistent with the intuition that children are likelier to finish shorter stories. 

 
Figure 1:  Classification Accuracy on Data Sets of Different Sizes 

This paper has presented a novel model to predict students’ task completion in a 

multimodal tutor, using a method that can train models from data with many dimensions 

but few examples.  The method, used successfully elsewhere, should interest the EDM 

community because of its potential to cope with the curse of dimensionality inflicted by 

the richness of tutorial interaction. 
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Of the many applications enabled by new technologies, the most commonly used in 

higher education are Learning Management Systems (LMSs), e.g, Moodle, BlackBoard, 

which enable a wide range of Web-supported courses. LMSs enable the instructors to 

develop websites for their courses to support face-to-face teaching by means of different 

tools. Although most of the LMSs offer an enriched environment that goes beyond the 

usual content management tools (including communication tools and course management 

modules), these systems are mainly used for transferring information and increasing 

accessibility of learning materials [1-3]. Usually, the content modules in these systems 

enable the construction of a hierarchical repository of information items; consequently, 

the instructor is able to create folders and upload files creating variety of repository 

structures, which are presented to students in the course site. 

The main purpose of this research is to empirically study the types of online hierarchical 

structures of content items presented to university students in Web-supported courses. 

Three research questions are addressed in the study: 1) What is the extent of content items 

presented to university students in online repositories within Web-supported courses? 2) 

Which types of hierarchical structures of content items are empirically revealed? 3) What 

are the associations between the types of structures and Number of Items, Course Size, 

and Content Consumption? Three groups of variables were defined, describing 

characteristics of each course, as following: 

Repository Size Variables 

A. Number of Items: total number of content items in the repository 

B. Number of Folders: total numbers of folders in the repository 

Repository Structure Variables 

C. Average Folder Size: Number of Items divided by Number of Folders (=A/B)  

D. Largest Folder: number of items in the largest folder in the repository 

E. Largest Folder Share: ratio of Largest Folder to Number of Items (=D/A) 

F. Hierarchical Depth: maximal repository depth (i.e., length of a path from the root) 

G. Visible Width: number of folders located immediately under the root; this number 

represents the width of the repository as presented to the students. 

H. Width-depth Proportion: ratio of Visible Width to Hierarchical Depth (=E/F).  

Course Characteristics (Independent) 

I. Course Size: number of registered students  

J. Content Consumption: average consumption of content item per student 
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The research was carried out on a full sample of Fall term courses in Tel Aviv University 

(academic year 2008/9) which were accompanied by a Website within the HighLearn 

LMS (by Britannica Knowledge Inc.), N=1,747. Raw data was extracted using SQL 

queries on HighLearn databases. In this data file, each row corresponds to a single content 

item within the system, and documents the unique ID of the course to which the item 

belongs and its full path within the repository. The data file consisted of 72,753 rows (i.e., 

content items) of 1,747 courses. Revealing types of repository structures was done using 

Two-step Cluster Analysis on a reduced population which included only courses the 

repositories of which consisted of 15 content items or more, N=1,203.  

Results suggest that Number of Items is largely varied between 1 and 1,029, with an 

average of 41.64 files (SD=69.10). The mean of Number of Folders was found to range 

between 1 and 185, with an average of 10.69 (SD=16.78). This average demonstrates a 

large growth in content items delivery at Tel Aviv University, comparing to earlier 

studies of the very same LMS [1,4].  

Regarding the repository hierarchical structures, five types were found: 1) Main-folder 

Structure: no depth, almost all files piled, large folders (n=67); 2) Extensive Filing: high 

depth, small folders (n=120); 3) Flat Small Folders: flat hierarchy, small folders 

(n=222); 4) Pile in Hierarchy Filing: pile exists, small folders (n=354); 5) Pile in Flat 

Filing: flat hierarchy, big pile exists (n=440). 

Association was found between the repository structure and Number of Items, according 

to which large repositories are associated with extensive filing. It was also found that 

Course Size is statistically significantly different between courses demonstrating Main-

folder and Extensive Filing structures: The average Course Size took the highest value in 

the Extensive Filing courses (63.49, SD=61.95), and the lowest in the Main-folder 

courses (34.78, SD=34.43). In addition, association was found between the repository 

structure and its consumption, as measured by Content Consumption. On average, lowest 

Content Consumption was demonstrated in the Extensive Filing courses (0.77, SD=0.51), 

and the highest – in the Pile in Flat Filing courses (1.46, SD=0.72).  

LMSs are often being studied using usage analysis for various purposes [5]. In this study, 

we used automatically collected data describing the structures of content items presented 

in Web-supported courses. However, it is not clear that this research falls into one of the 3 

classical categories of Web mining (usage mining, content mining, and structure mining) 

[6]. As EDM research widens its horizons and examines a wide range of data originated 

in many different learning contexts, the categorization of Web mining studies might be 

re-examined.  
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Introduction. The most common method of blending the Internet in higher education 

today is by implementing Web-supported instruction, in which traditional face-to-face 

courses have auxiliary materials, usually using Learning Management Systems 

(LMS), e.g. WebCT, Moodle. Research of LMS in higher education has barely 

involved the examination of the individual's behavior over the learning period. 

Furthermore, although a large body of research exists regarding persistence in fully 

online learning configurations, only little was studied regarding the online persistence 

in Web-supported configurations. When empirically examining usage of Web 

learning environments, it has been noticed that two phenomenon are repeatedly 

occurring regarding volume and trends of activity: a) Many are little active, while 

some are extensively active; b) Overall decrease in visiting (usually with some 

spikes of access immediately before exams, assignment submission deadlines, or any 

other important events during the course) [1-4]. 

This study aims on identifying individuals' over-time patterns of online activity in 

Web-supported courses, both by volume and trends of activity. As our examination of 

patterns of persistence crosses courses, it might also promote the revealing of 

differences between courses regarding students' persistence within them. 

Population. Log files of 58 Moodle one-semester-course websites offered by Tel 

Aviv University (TAU) in the academic year 2008/9 were analyzed (a full sample of 

the Moodle-supported courses; only logged activity from during the calendared term 

period were taken). Moodle's log files consist of actions taken within the course 

websites' modules, including: text pages, resources, forums, and users. Actions might 

be: viewing, adding, updating, or deleting. In total, 163,685 records of 1189 students 

were logged, and there were 1897 student enrollments which served as the basic 

analysis units (interdependence in the population was found to be insignificant). 

Variables and Process. Five measures were calculated to describe students' activity 

in volume (Cumulative Activity, Total Activity) and trend (First Tertile Proportion, 

Second Tertile Proportion, Activity per Day). The main procedure involves the 

application of a Decision Tree algorithm on the trends-related variables, for finding 

patterns of persistence in students' behavior, and for defining rules of belonging to 

these patterns. We choose the variable Activity per Day as the independent variable 

the prediction of which should be given by the tree, and the two other variables – i.e., 

First/Second Tertile Proportion – as the variables according to which the tree will be 

constructed. CHAID method was used as an attribute selection measure based on the 

statistical chi-square test for independence, with a significance level of 0.05 for 

splitting nodes and merging categories, and a 10-fold cross validation. 

Results and Discussion. Analyzing Total Activity, it was re-demonstrated that most of 

the students present low activity, while only a little are very active. Regarding the 
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activity by tertiles, it was found that on average, First Tertile Proportion is 0.28 

(STD=0.36), and Second Tertile Proportion is 0.62 (STD=0.34). For a consistent 

student, the activity of whom is equally distributed over the term, we would expect 

values of these two variables to be 1/3, 2/3, respectively. T-tests for comparing the 

means of the tertile-related variables with those of a consistent user's behavior 

confirmed that the differences are statistically significant, with t(1896)=6.65, p<0.01, 

for First Tertile Proportion, and t(1896)=5.63, p<0.01, for Second Tertile Proportion. 

Running the Decision Tree algorithm, we got seven patterns of learners' activity: a) 

Persistent Users, active occasionally throughout the term; b) High-extent Persistent 

Users, active often throughout the term; c) Mid-Late Users, active during second, 

last thirds of the term; d) High-extent Mid-Late Users, active during second, last 

thirds of the term with high intensity; e) Late Users, active almost only during last 

third of the term; f) Retain Users, active almost only during first third of the term; 

and g) Low-extent Users, with overall low volume of activity. The largest groups 

were Late Users (with 23% of the students), Retain Users (20%) and High-extent 

Persistent Users (19.8%). 

The three most prominent groups found are consistent with research about online 

learning: 1) Late Users behavior corresponds to the phenomena of students visit 

courses' websites towards the term-end exams (or other important dates during the 

semester) [3]; 2) Retain Users' rate of about twenty percents might be compared to 

studies which examined retain from online learning configurations. However, 

retention rate in online learning is largely varied between studies, and can get up to 

84% [5]; 3) High-extent Persistent Users is a behavior which might be associated with 

high motivation (either internal, i.e., to learn as much as they can from this 

engagement, or external, e.g., to gain more points in the exam) or satisfaction, as was 

previously demonstrated regarding online courses [6]. 

Currently, as universities provide instructors and students with LMS for facilitating 

blended learning, it is important to understand how these systems are being used in 

practice. Instructors may use these results for making their teaching more efficient; 

education researchers might clarify the large interpersonal differences among students 

regarding online persistence; and university policy-makers may deepen their 

knowledge of the cost-effectiveness ratio of these systems. 
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Abstract.  This poster describes a visualization tool for educators that allows the 
exploration of educational data. We display an entire classes sequence of actions 
to the user using a tree-graph. Our preliminary results suggest that EDM 
visualization tools are a promising area for future research in EDM. 

Introduction 

This poster describes a visualization tool that allows educators to visualize the process in 
which students solved procedural problems, in logic, using an intelligent tutoring system. 
The purpose of this tool is to allow educators to be able to navigate, explore and gain 
insights about student performance. This allows educators to better understand the 
strengths and deficiencies of students, so that lectures or homework adjustments can be 
made to better aid student learning. 

The field of InfoVis has much to offer educators and data repositories of educational 
data, like Carnegie Mellon's Data Shop. Fekete et. al. shows us that InfoVis is well 
equipped for exploring data to learn more, make new discoveries, and gain insight[3]. 
Card et al. defines the purpose of visualization to “amplify cognition” about data [2]. In 
our case amplifying an educator's cognition about the way their students solve problems, 
a main advantage Intelligent tutoring systems have over traditional homework methods. 

Related Work 

This work is an extension of the work of John Stamper and Tiffany Barnes [6,1]. We 
extend their work to include an interactive visualization tool which centralizes and 
streamlines their data processing, and adds exploration and navigation interactions. In our 
visualization we made use of Shneidermans's seven tasks of visualization[5]: overview, 
zoom, filter, details-on-demand, relate, history and extract; often considered standard in 
information visualization. 

Romero and Ventura surveyed EDM techniques in [4] “...information obtained from 
usage statistics is not always easy to interpret to the educators and then other techniques 
have to be used...Infovis techniques.” They also concluded that educational data mining 
tools require “good visualization facilities to make their results meaningful to educators 
and e-learning designers”. 

EDM Visualization Tool 

The EDM Vis tool is a software tool that presents student work to educators in a simple 
way. First, students use a logic tutor where each 'state' of the user is recorded, along with 
each action, common in intelligent tutoring systems. Actions take the user from one state 
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to another. In the case of Tic-Tac-Toe an action would be placing your 'X' or 'O' piece on 
the board, the state would be the resulting configuration of X's and O's. These states and 
actions are then displayed as a tree-graph of nodes and edges respectively. 

We use logic tutor data which stores the set of premises as a single state, in a root node. 
Consecutive states are generated based upon the actions that were taken by the student(s). 
The depth of each node represents the number of steps taken. Edge width is based on the 
frequency of students who performed the same action(s). Filtering and other interactions 
allow educators to observe trends, common mistakes and gain insights into their students' 
ways of thinking. 

Results & Future Work 

The EDM Vis tool is still in development but unofficial results show we can gain insights 
about student progress. Our first insight was that only ten percent of students were able to 
find the shortest solution, or expert path. We also noticed problematic areas that we were 
not previously aware of. Next we will make a standard file format that can support data 
from the Data Shop at Carnegie Mellon, allowing acces to more people and data. Also we 
will allow annotations to be made in the Vis tool which will export separate files, to be 
read into our logic tutor. This will extend the visualization tool to creation, allowing 
educators to gain insights then act using their new knowledge. Lastly, the EDM Vis tool 
is built for visualizing sequential data, so single step problems, like short answer 
questions, are unsupported. Developing other visualization tools to support other data 
types seems to be a meaningful avenue for future research. 
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Abstract.  In this paper we aim to estimate the differential student knowledge 

model in a probabilistic domain within an intelligent tutoring system. The 

suggested algorithm aims to estimate the actual student model through the 

student answers to questions requiring diagnosing skills. Updating and 

verification of the model are conducted based on the matching between the 

student and model answers. Two different approaches to updating namely coarse 

and refined model are suggested. Results suggest that the refined model, 

although takes more computational resources, provides a slightly better 

approximation of the student model. 

1 Introduction 

The student model is a core component in any intelligent or adaptive tutoring system that 

represents many of the student features such as knowledge and individual traits [1]. 

Differential model is one from several models that have been suggested for the student 

knowledge modeling [5]. The differential model represents both the student knowledge 

and the differences between student and expert knowledge, which represents the gap in 

the student's knowledge [2].  

We propose a method to build a differential student model in a probabilistic domain 

based. A Bayesian network is used to represent both the domain and the student model. 

Based on the domain structure we generate problems that require diagnostic skills to be 

solved. The discrepancies between the answers generated by the student model and the 

answers provided by the student are used to update the student model. 

2 Estimating of the Student knowledge Model 

A diagnostic question is generated and presented to the student. Subsequently, the answer 

provided by the student to the question is compared to that generated by the initial 

student model using an abduction inference through the Bayesian network [3,4]. If the 

answers match the student model doesn't require regulation. On the other hand, if there is 

a discrepancy between the answers the student model is adjusted. Since the answer is a 

ranked list of hypotheses, the difference between the two answers can be either (i) 

missing or (i) adding or (iii) incorrect order hypotheses or (iv) any combinations of these 

differences. The addition or absence of a hypothesis is related to difference in the 

relations between domain items, On the other hand, the difference between hypotheses 
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order is referred to the differences in the weight of theses relations. Upon identifying the 

type of difference, the student model should be updated accordingly. Two different 

approaches are used to update the student model, namely (i) coarse model update and (ii) 

refined model update. The coarse model update is conducted by adding or removing 

relations of the differences in the hypotheses and swapping between relations weights for 

the differences in the hypotheses order. Refined model update, on the other hand, is 

performed using successive increase or decrease in the weights of the different 

hypotheses according to the nature of the differences. Model verification is evaluated to 

verify that the new model generates answer which matches the answer provided by the 

student. 

Simulated students and different groups of questions are used to evaluate the algorithm. 

The questions are evaluated against the initial student model, generating the original 

match. The performance of the algorithm is evaluated after each question. Moreover, the 

set of questions are all tested against the new adjusted model for verification. The 

performance of the algorithm is evaluated using the accuracy of estimating the student 

answers to the questions. Coarse and refined updating model approaches are successful in 

estimating the student model with an accuracy of over 84% for individual match, and 

70% for verification match.  

3 Discussion and Conclusion 

An experimental evaluation of the approaches has been conducted. The results suggested 

that the refined model updating exhibits similar performance with respect to accuracy 

compared to the coarse updating. However, it estimates models that are closer to the 

actual model by at least 8% compared to the coarse updating model. Applying the 

questions in any order doesn't have a significant effect on the overall performance of the 

algorithm. On the other hand, the proximity of the initial model selected to that of the 

student, or to the knowledge model improves the performance of this approach 

significantly.  
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Abstract. This poster will describe the Learner Interaction Monitoring System 
(LiMS), designed to capture data demonstrating learner online engagement with 
course materials. The poster presentation will explain how the LiMS ‘event 
capture model’ collects detailed real-time data on learner behavior in self-
directed online learning environments, and interprets these data by drawing on 
behavioral research. We believe that LiMS offers education and training 
managers in corporate contexts a valuable tool for the evaluation of learner 
performance and course design. By permitting more detailed demonstration of 
ROI in education and training, LiMS allows managers to make the case for web 
based courseware that reflects appropriate and evidence-based instructional 
design, rather than budgetary constraints. 

1 Introduction 

Businesses are increasingly recognizing the need to support continuous professional 
development in their workforce, and many have recognized the benefits of online training 
and education. Well-designed online training courses promise to make education and 
training available in ways that fit the busy work and life schedules of employees, and 
almost two decades of research into online learning has demonstrated that there is no 
measurable significant difference in learning outcomes between face to face and online 
learning modalities [1]. In the corporate context, where exam results and course grades 
rarely exist as measures of learner achievement or effective online course design, it falls 
to training and education managers to identify reliable and valid approaches to evaluating 
both course design and learner performance, in order to demonstrate a significant return 
on the sizable investments needed to implement high quality online learning. 
Unfortunately, few easily implementable approaches exist. As [2] notes, “in spite of the 
best efforts of organizations and the professional trainers’ associations, there are 
significant problems in evaluating the true impact of [online] training”. Similarly, while 
the value of feedback from and to learners in educational settings is well-established (see, 
for example, [3]), most corporate training departments lack the tools to gather accurate 
learner feedback (direct or indirect) about their online learning experience or activities. 
Such information is critical in evaluating whether training courses are meeting corporate 
educational needs and goals. In the absence of evaluative tools that return meaningful and 
easily interpretable data, corporate training departments are most likely to deliver web 
based courseware that simply reflects budgetary restrictions. 
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2 Description 

To meet this need, we have developed the LiMS application. LiMS is a two-part web-
based plug-in application that can interface with any web-based course delivery platform 
to transform the online learning environment into an active observer of learner 
engagement with course materials. Unlike the minimalist tracking tools packaged with 
standard Learning Management Systems (LMSs), LiMS purposely captures fine-grained 
data on learner activity and behaviors within the learning environment, turning the course 
itself into an active receiver of indirect learner feedback. By collecting user course 
engagement events, such as mouse clicks or movements acting upon individual page 
elements such as buttons, checkboxes and lists, LiMS ensures that a learner’s detailed 
course interaction data is captured. Going far beyond the capture of simple event 
sequencing, LiMS also captures data reflecting the variable behavioral characteristics of 
those actions such as duration, timing and response latency. Importantly, LiMS 
implementation and continuing development builds on existing research to permit 
pedagogically meaningful interpretation of captured data. At the completion of each 
online training experience, LiMS assigns a ‘behavioral grade’ to the learner reflecting 
their approach to the training material when compared to a standard established by LiMS 
itself. LiMS adjusts the learner’s grade using an algorithm that computes a final assigned 
‘grade’ reflecting their behavioral approach to online training materials. A descriptive 
profile of the learner is generated based on the course grade and the behavioral data, and 
is posted on the student’s report page. LiMS implementation can then be customized to 
allow educational designers to ask targeted questions about learner choices within a 
course, or to track learner behavior in relation to key course material items or events of 
interest. In relation to learner behaviors, for example, educators may wish to ask 
questions such as: Are learners spending sufficient time reading particular core course 
text materials? Do my learners display differential response latency to key questions, and 
can this provide insight into comprehension or decision making style? Additional 
comparison measures permits benchmarking against peers or course norms.  

LiMS therefore offers education and training managers in corporate contexts a valuable 
tool for the evaluation of learner performance and course design. By allowing more 
detailed demonstration of ROI in education and training, LiMS allows managers to make 
the case for web based courseware that reflects appropriate and evidence-based 
instructional design, rather than budgetary constraints. 
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Abstract.  Curriculum planning is perhaps one of the most important tasks 
teachers must perform before instruction.  While this task is facilitated by a 
wealth of existing online tools and resources, teachers are increasingly over-
whelmed with finding, adapting and aligning relevant resources that support 
them in their planning.  Consequently, ripe research opportunities exist to study 
and understand online planning behavior in order to more generally characterize 
planning behavior.  In this paper, we introduce a web-based curriculum planning 
tool and study its use by middle and high school Earth science teachers.  We ex-
amine the web analytics component of the tool and apply clustering algorithms 
to model and discover patterns of the use within the system.  Our initial results 
provide insights into the use of the tool over time and indicate teachers are en-
gaging in behavior that show affinity for the use of interactive digital resources 
as well as social sharing behaviors.  These results show tremendous promise in 
developing teacher-centric analysis techniques to improve planning technologies 
and techniques to study online curriculum planning patterns. 

 

The use of the Internet in the classroom, applied either as a direct instructional tool or as 
a student learning tool for research and self-directed learning, has become essential to 
teachers and learners alike. Much empirical research indicates that Americans in general 
and K-12 students in particular are using technology in their day-to-day lives more than 
ever before; communication technologies that leverage the Internet are particularly popu-
lar with young people [2]. A large body of education research indicates that the best 
learning experiences are those that make direct connections to students’ existing know-
ledge and life experiences [1]. Thus, it is vital that K-12 education leverage Internet tech-
nology not only because it offers instructional benefits in and of itself but because it can 
bridge students’ in-class experiences with their out-of-class lives, thus making learning 
personally relevant. 

Tools supporting teachers through planning, organizing and integrating instruction 
around the complexities of individual student skill, curriculum goals, district-wide stan-
dards, etc. lack maturity, perhaps because the fluid nature of planning in general or the 
changing demands of the classroom. Despite the myriad of teacher resources in the form 
of shared ideas and re-usable lesson plans, activities, etc., successfully integrating these 
resources yet requires a fair amount of customization. Teachers often become over-
whelmed by the customization task that it becomes more time consuming to re-use and 
re-purpose existing materials than develop their own. 

This poster describes the application context, research questions, initial experiments and 
results of an online curriculum planning and development tool called the Curriculum 
Customization Service (CCS). The tool was deployed for use by 6th and 9th grade middle 
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and high school teachers within the Denver Public School system, and usage observations 
were made over the course of a semester of tool use. We detail the tool : its motivation, 
interface and content, as well as the web analytics data generated by the end user interac-
tions. We describe the initial exploration and selection of data features and the applica-
tion of clustering algorithms to analyze system usage. Our research focuses on develop-
ing and applying tools and techniques for observing and classifying teachers’ online be-
havior in educational applications, offering a unique view port into educators’ online 
usage patterns and behaviors. 

 

Figure 1 : The CCS Interface 
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1    Introduction

Learning Management Systems (LMS) are web-based systems that are increasingly used 
in education. If lecturers want to gain a deeper insight on whether and how students use 
the learning resources they put at their disposal in a course, user data stored by the LMS 
needs to be explored. To help explore these data, we have designed and implemented an 
application called ExtractAndMap [1] that structures and exports all data stored at various 
places and under various forms by a LMS into a consistent data base that can be used for 
numerous queries and further data mining. Using queries on the data base it is possible to 
answer questions like:  “how many students have attempted self-evaluation exercise of 
week 1?”, “how many students have attempted self-evaluation exercise of week 2?” and 
so on, till the end of the semester. When looking at the results it may well be that these 
numbers diminish as shown in Figure 3 p. 7 in [1].  
An experienced lecturer will read in those figures the following familiar experience: at 
the beginning of the semester students are enthusiastic and are not yet overloaded with a 
lot of homework in different courses. Therefore, many of them attempt self-evaluation 
exercises. As the semester progresses, always less students attempt the exercises till a 
stable group remains that sticks to its working habits and consistently attempt all 
evaluation-exercises. Is this hypothesis correct? The sole answers to the above questions 
tackling each exercise separately cannot tell for sure. In this contribution we show that a 
deeper exploration with queries handling several exercises together like “how many 
students have attempted exercise A and exercise B?” can be enough to infer the 
association rule “if students attempt exercise A, then they also attempt exercise B”.

2    Inferring Association Rules from Data Exploration

For definitions about association rules and interestingness measures like confidence, lift 
and cosine the reader is  referred to [2]. Data exploration involves quite often simple 
counting, like how many transactions contain X , Y  or X  and Y , thus, giving ( )XP , 

( )YP  or ( )YXP , . If exploration shows that ( )XP  and ( )YXP ,  are equal, the  we have: 

conf  X →Y =1 , lift  X → Y =
P  X , Y 

P  X  . P Y 
= 1

P Y 
 and 

cosine X →Y =P  X 
P Y 

, where YX →  is the association rule “if X, then Y”. In 

practice ( )XP  and ( )YXP ,  are going to be almost equal, not exactly equal. Table 1 

1 This work is partially supported by the European Social Fund for the state Berlin.
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shows how confidence, lift and cosine evolve. The rows show  ( )YXP ,  as a fraction of 
( )XP . P X ,Y =0.97 P  X   means that ( )YXP ,  equals 97% of ( )XP . ( )YP  is taken 

to be 0.8 in the third column and 0.7 in the fourth column.  ( )XP  is taken to be first 2/3 
of ( )YP  in column 5 and 3/4 of ( )YP  in the last column. We recall that confidence is a 
number between 0 and 1 (highest is 1), that lift rates a rule as interesting if its value is 
above 1, and that cosine is a number between 0 and 1 and rates a rule as interesting if its 
value is above 0.66. 

Table 1.  Evolution of confidence, lift and cosine

conf. lift 

 ( )YP =0.8

lift 

 ( )YP =0.7

cosine

2/3 ( )YP
cosine

3/4 ( )YP

P X ,Y =P X  1 1.25a 1.43a 0.81 0.87

P X ,Y =0.97 P  X  0.97 1.21a 1.39a 0.79 0.84

P X ,Y =0.95 P  X  0.95 1.19a 1.36a 0.77 0.82

P X ,Y =0.90 P  X  0.90 1.12a 1.29a 0.65 0.78

Summing up, when ( )XP  is almost equal to ( )YXP , , data exploration is enough to infer 
the association rule YX → , there is no need to use a data mining algorithm for 
association rules extraction in such a case.

3    Conclusion and Future Work

We have used this result while analyzing the data of the course “Programming 1” in our 
university, see [1]. The associations found show that a group of students emerges that 
keep doing self-evaluation exercises during the semester. A future work is to continue 
conducting case studies with courses taught in different topics and designed in different 
ways to further enhance our catalogue of questions  that can be interesting for teachers, 
and investigating further connections between data exploration and data mining.
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Abstract.  This paper describes an implemented method to generalize an 
example tutor interaction into a query to retrieve similarly related sets of events.  
It infers WHERE clauses to equate repeated values unlikely to match by accident.  

The Session Browser [1] shown in Figure 1 is an EDM tool to view data retrieved by 
querying a database of events logged by a tutor.  It displays retrieved events in a context 
tree of enclosing events, with a 1-line summary of the database record for each event. 

Figure 1:  Event context tree highlighting two events selected by the user to AutoJoin 

This brief example occurred in an activity to teach children to ask themselves questions 
about the text they read.  The first highlighted event summarizes a child’s multiple-choice 
response to a prompt to fill in the rest of a question about the text.  The second event 
describes the child’s spoken response to a prompt to speak the completed question aloud. 

Often we want a query to retrieve examples similar to a current example.  Complex 
queries are hard to construct, so we developed AutoJoin to generate them automatically. 
AutoJoin generalizes the two highlighted events into a query that finds “similar” cases, in 
this case a multiple choice step immediately followed by a free-form response step: 
SELECT * FROM 

  multiple_choice_question mcq, 

  sentence_encounter se 

WHERE mcq.activity_directory = se.activity_directory     

    /* '..\data\stories\PROTOTYPE Country Mouse auto-questions new  

    split screen' */ 

AND mcq.end_time = se.step_start_time /* '20090331103359' (03/31/2009  

    10:33:59 AM) */ 

AND mcq.machine_name = se.machine_name /* 'LISTEN07-211' */ 

AND mcq.story_encounter_start_time = se.story_encounter_start_time  

    /* '20090331102336' (03/31/2009 10:23:36 AM) */ 

AND mcq.user_id = se.user_id /* 'mKJ9-5-2001-07-23' */; 

 (The example here is simple for brevity; AutoJoin can generalize from more events too.) 

AutoJoin constructs a query as a join of the tables where the selected events were logged.  
It abbreviates each table by its initials, e.g. multiple_choice_question as mcq 
and infers WHERE clauses by equating field values that show up more than once in those 
events.  The comments, in green, show which values it abstracted into variables; they 
help the user understand the query and fix over-generalizations easily by uncommenting. 
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AutoJoin assumes that (1) unlikely matches matter, but (2) their specific values do not, so 
it (1) infers that the variables must be equal, but (2) abstracts away their specific values.  
When (1) is wrong, it under-generalizes; when (2) is wrong, it over-generalizes.  To 
avoid under-generalizing, it uses heuristics to prevent meaningless matches.  It gauges the 
likelihood of accidental match from how often the matching value occurs in each field. 
For instance, NULL values are frequent in many fields due to various reasons, one of 
which is its use as a no-value indicator.  Thus NULL values in two such fields are likely 
to match by accident.  In contrast, data types such as strings and dates have a large range 
of possible values.  Assuming that they are unlikely to match by accident saves time by 
not bothering to estimate the frequency of the matching value in the two table columns. 
 
Computing how often a given value occurs in a table column takes time for a large table, 
so AutoJoin estimates it from a sample of 400 rows.  This sample is fast to retrieve but 
may be unrepresentative, especially if the column is sorted.  Sampling blocks of 20 rows 
at 20 randomly chosen offsets is more reliable, but slow enough to be worth caching. 

Another heuristic to avoid under-generalizing classifies certain columns as “non-cross-
match” and compares them only with columns of the same name in other tables.  For 
example, the table story_encounter has non-cross-match column story_count, 
and sentence_encounter has non-cross-match columns sentence_count and 
word_count.  Since story_count, sentence_count, and word_count count 
different types of things, we assume it does not make sense to compare them.  In contrast, 
comparing start_time and end_time from different tables does make sense. 

The “non-cross-match” heuristic eliminates additional spurious matches, but relies on the 
naming convention it exploits, and on the user’s knowledge of which fields make sense to 
compare.  In contrast, estimating the frequency of matching values does not depend on 
column names or knowledge of the database schema, so it’s a more general method. 

We have identified the EDM task of generalizing from a single example of tutorial 
interaction, described AutoJoin’s simple but powerful heuristics, and reported their 
implementation in the Session Browser.  By systematically generating clauses we might 
omit or mistype, it helps us build complex joins much faster than by hand.  It’s limited in 
what it can notice, and it sometimes generalizes accidental matches, so we check its 
output, but checking is faster than writing queries.  AutoJoin may also apply to many 
non-EDM domains.  It seems too simple to be novel, but we have not found it elsewhere. 
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Abstract.  Conceptualizing procedural knowledge is one of the most challenging 
tasks of building systems for intelligent tutoring. We present a novel algorithm 
that enables teachers to accomplish this task (semi)automatically. Furthermore, 
it is desired to adapt the level of conceptualization to the skill level of particular 
students. We argue that our algorithm facilitates such adaptation in a straight-
forward fashion. We demonstrate this feature of the algorithm with a case study. 

1 Conceptualization of Procedural Knowledge 

In symbolic problem solving domains (like physics, mathematics, or games like chess), a 
particular domain is defined with a basic domain theory and a solution to be achieved. 
The task is to find a sequence of steps that bring us from the beginning state of the 
problem (definition of the problem) to the goal state (the solution). The basic domain 
theory (or basic declarative knowledge of the domain) is usually simple and easy to 
remember and, in principle, sufficient for solving problems; e.g. knowing rules of chess 
could in theory enable optimal play. However, finding a solution using only declarative 
knowledge would require far too extensive searching. A human student is incapable of 
searching very deep, therefore we need to teach him also the procedural knowledge – 
how to solve problems.  

The “complete” procedural knowledge would be a function mapping from each problem 
state to an action that leads to the solution. For example, in chess endgames a tablebase 
specifies best moves for all possible positions. Tablebases can be used easily because 
they only require trivial amount of search. But now the problem is the space complexity – 
it is impossible for humans to memorize such tablebases that typically contain millions of 
positions. There is a way, however, that enables humans to solve problems in such chess 
endgames quite comfortably. Humans use some intermediate representation of the 
domain that lies between the basic domain theory and the ‘”complete” procedural 
knowledge. We call such an intermediate representation a “conceptualized domain”.  

We propose a goal-oriented conceptualization of domains. A goal-oriented rule has the 
following structure: IF preconditions THEN goal (depth). The rule's preconditions and 
goal are both expressed in terms of attributes used for describing states. The term 
preconditions specifies applicability of the rule, while a goal specifies the values of 
attributes in the state to be achieved. The depth property of a rule is the maximum 
allowed number of steps in achieving the goal. We developed an interactive algorithm 
that combines specialized minimax search with the ABML principle [2] for (semi) 
automatic construction of such rules, where the teacher and the algorithm in turns 
improve the model. The depth parameter is set prior to learning and can be used to dictate 
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1The complete rule-based model for KBNK and example games containing automatically generated 
instructions can be found in a web appendix at http://www.ailab.si/matej/KBNK/. 
 

the complexity of learned rules. A higher depth will result in fewer rules with more 
general goals and vice-versa. Due to space limitations, we will skip the description of the 
algorithm (for details see [1]) and demonstrate its idea on a case study.  

2 Case Study: KBNK Chess Endgame 

KBNK (king, bishop, and knight vs. a lone king) is regarded as the most difficult of the 
elementary chess endgames. Most books mention only a basic strategy, however, it is 
hardly enough for successfully checkmating the opponent. Our aim was to conceptualize 
procedural knowledge in this domain for chess players at club level. Our chess teacher 
evaluated that they are able to calculate chess variations about 3 moves (6 plies) ahead.  

 

Computer: “I suggest the following goal: the distance between 
black king and the edge of the board should decrease. However, 
it does not seem to work well in this position. What goal would 
you suggest for white in this position? What are the reasons for 
this goal to apply in this position?” 

The teacher gave the following answer: “Pushing black king to 
the edge of the board is fine. However, I find the following goal 
to be more instructive for the student: Build a barrier and 
squeeze the defending king into the corner. Currently such 
barrier is not yet established. The move expected from the 
student is 1.Ne5-d3 achieving the goal.” 

Figure 1: Interaction between computer and teacher: explanation of a critical example. 

An example interaction between the method and the teacher is shown in Fig. 1.  The 
teacher is presented with a critical example, i. e., the example where the current set of 
rules suggested a bad goal (“push black king to the edge of the board” can be achieved, 
but is not leading to solution). The teacher was therefore asked to provide a better goal 
for this position, which was then used in the construction of a new set of goal-based rules. 
The process was completed when all critical examples were explained by the expert. 

The final rules1 were presented to three chess teachers (among them a selector of 
Slovenian women's squad and a selector of Slovenian youth squad) to evaluate their 
appropriateness for teaching chess-players. They all agreed on the usefulness of the 
presented concepts and found the derived strategy suitable for educational purposes at the 
level targeted for. Among the reasons to support this assessment was that the instructions 
“clearly demonstrate the intermediate subgoals of delivering checkmate.” 
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Abstract. Modern learning science researchers are facing a flood of data as it 
becomes easier and easier to collect multiple streams of information from 
students before, during, and after learning experiments. While oftentimes these 
experiments do experimentally manipulate specific variables to improve 
responses on a posttest, these experiments are also interested in how the many 
related student factors explain who responds to the treatment and why. This 
poster introduces a recent experiment and explains how the data were analyzed 
using a combination of exploratory factor analysis (using SPSS) and exploratory 
structural equation modeling (using Tetrad) to partially refute a theoretical 
hypothesis and reveal a new explanation for further testing.  

1 Introduction 

A recent line of experimentation with the FaCT System [1] for vocabulary drill practice 
in Chinese is focusing on how metacognitive and motivational factors may be important 
in various aspects of student learning. Specifically, this line of research is trying to dig 
deeper into various reliable correlations that were uncovered in earlier work. In this 
earlier work students were ask for self reports of strategy use (e.g. forming verbal 
linkages rather than just repeating items). A consistent finding in 2 experiments was that 
students in the less difficult conditions (higher percent correct) reported using more of 
these verbal strategy links rather than using a more repetitive strategy [2]. My initial 
hypothesis was that this pattern of results suggested that higher percent correct (more 
review practice of the same flashcards) reduces the cognitive load on the user, thereby 
allowing the individual to better use learning strategies. Since strategy use for learning 
paired-associates has often been a successful way to improve learning [3], I wanted to 
test whether the process based explanation above was correct, since if it should be 
supported, it would indicate that any further ways we could decrease cognitive load might 
encourage further strategy use by students thereby leading to further learning gains. 

The data we collected before the study included the full Motivated Strategies for 
Learning Questionnaire (MSLQ). During the vocabulary practice we gathered all data on 
recall and performance, and also surveyed students on a 5-point Likert scale to ask them 
to rate how difficult practice was recently, how useful practice was recently, and how 
much they were able to use strategies for learning recently. Further, during this middle 
portion they were randomized into either easier or more difficult practice conditions 
(more or less review). Following practice they responded to a 32-item questionnaire that 
specifically addressed their reactions to the practice sessions. 

2 Analysis and Results 

Analysis began with exploratory factor analysis on both questionnaires. Because I had a 
limited sample size (49 students) it was clear that we would not be able to meaningfully 
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discover all the MSLQ factors found in prior research [4], which suggests that 15 
subscales can be differentiated from the 81 items. I used principal components FA (SPSS 
factor analysis procedure) with oblimin rotation (which allows correlated factors to be 
found) to initially reduce the MSLQ data, and then maximum likelihood FA (which 
produces fit statistics) to find a best fitting model of the MSLQ factors that included 
mostly high communality items. Four factors were found. Data from the post-
questionnaire was similarly reduced to 3 factors. The factor scores for the 4 MSLQ and 3 
post-questionnaire along with all the other relevant data (performance data, Likert survey 
averages during practice, difficulty condition the student was in) were entered into the 
GES (greedy eliminative search) algorithm in Tetrad software program. This particular 
structural equation modeling (SEM) algorithm was ideal for my purposes because it 
provided a theoretically unmotivated way to search for a best way to reduce the patterns 
of the data into something understandable. Our hypothetical model (easiness leads to 
strategies) which required only a single edge from difficulty during learning to strategies 
during learning fit more poorly (d.f. = 81, Χ2 = 87.6, p = 0.298) than an identical model 
with no requirements on this edge in the model (d.f. = 80, Χ2 = 81.83, p = 0.422). 

The SEM results in the poster will show the differences between the competing models 
and also illustrate the power of this approach for drawing hypotheses from large sets of 
poorly organized data or from data without strong preexisting theoretical relations. In 
particular this sort of analysis reveals one way contextual data about student data in 
repositories such as DataShop can be used to make conclusions about learning.  
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1 Introduction 

This paper explores the application of causal models to understanding data generated from a 
computer tutor. Mily’s World (http://users.wpi.edu/~dovan/coordinates.html) is a flash-based 
learning environment for coordinate geometry and featuring game-like properties such as a 
cover story and pictures. We were primarily interested in what class of students benefitted 
from this type of intervention, as well as which students preferred this style of instruction to 
traditional materials. Fifty eight students used the tutor and we collected survey data and their 
log records from the tutor. We analyzed the data using Tetrad 
(http://www.phil.cmu.edu/projects/tetrad), free software designed for causal modeling.   

2 Causal model search  

We used the PC algorithm in Tetrad, which is designed to search for causal explanations of 
observational or mixed observational and experimental data. The causal model thus obtained 
is shown in Figure 1 where the rectangular nodes are the data of each student. 

 

Figure 1 Search Model: causal model after making PC search 

Based on our domain knowledge, we hand-crafted a causal model shown in Figure 2, where 
we added four latent nodes (oval nodes) that we believe are influencing the observables. 

 

Figure 2 Hand-crafted model (latent variables are ovals) 

We also generated a correlation graph where a link between two nodes indicates they are 
reliably correlated with P<0.05.  We then compared the PC causal model and the correlation 
graph with our hand-crafted model. For each link in the hand-crafted model, if the 
automatically generated model had it it was a true positive; if the link was missing it was a 
false negative.  Similarly, if the model has correctly identified the absence of link, that would 
be a true negative. The causal model is more stringent than correlation graph as it would put a 
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link between nodes only if they retain their association after controlling for all other nodes. 
We found that the correlation graph has more false positives whereas the causal model is 
more susceptible to false negatives. 

2.1 True positive with correct direction and true negatives 

By exploiting conditional dependencies, the PC model correctly identifies true positives with 
correct direction (LikeStory&picturesOfMily likeMily  realWorld ExamplesHelpful) and 
true negatives (link likeMath–avgHints is gone once controlled for “% correct”).  This ability 
to automatically partial out other influences is difficult, at best, to replicate in traditional 
statistics packages. 

2.2 False negatives: weaker statistical power due to small sample size 

When we have small sample size, doing partial correlations can give false negatives due to 
limited statistical power. Having more samples reduces false negatives without adding false 
positives. Multicollinearity is an extreme case, where we might falsely conclude that there is 
no linear relationship between an independent and a dependent variable. For example: 
picturesHelpfulForMath is correlated with both likeMily and LikeStory&picturesOfMily. But 
since, likeMily and LikeStory&picturesOfMily are highly correlated between themselves 
(.471**), picturesHelpfulForMath is conditionally independent to both of them (see Figure 1).  

2.3 Search with domain knowledge 

To overcome the problem of multiple “Markov equivalent” graphs that can be built from the 
same data, we add domain knowledge to direct our search to pick the most compatible model.  

 

Figure 3 Causal model with domain knowledge 

We see from Figure 2 and Figure 3 that adding domain knowledge not only fixes the arrow 
orientations (likeMath %correct), but also adds new edges such as likeMathgamingTutor.  
One interesting finding is that adding domain knowledge has fixed the problem of 
multicollinearity (picturesHelpfulForMathLikeStory&picturesOfMily) as adding temporal 
knowledge restricts nodes to only influence things which occurred later. 

3 Conclusions 

In this paper, we have presented a case study of applying causal modeling, using the Tetrad 
software, to understand what factors influence how students respond to our educational 
intervention.  We found that a problem that arises from having a small sample results in more 
false negatives in our causal model.  That is, there are true relationships that we lack the 
statistical power to detect.  We also found that by adding domain knowledge, we are not only 
able to correct the arrow orientations but we can also overcome issues such as 
multicollinearity to come up with the most plausible model from the set of equivalent models. 
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Abstract.  This paper describes methods for collecting user activity data in a peer 
production educational system, the Instructional Architect (IA), and then takes a 
social network perspective in analyzing these data. In particular, rather than 
focusing on content produced, it focuses on the relationship between users 
(teachers), and how they can be analyzed to identify important users and like-
minded user groups. Our analyses and results provide an example for how to 
select the most important factors in analyzing the dynamics of an online peer 
production community using social network analysis metrics, such as in-degree, 
out-degree, betweenness, clique, and community.  

1 Introduction 

The increased pervasiveness of networked computing coupled with a vibrant 
participatory web culture has spawned new models of innovation and creation. In 
education, the scalable deployment of media-rich online resources supports peer 
production in ways that promise to radically transform teaching and learning. Recent 
research, however suggests these peer production models may only succeed when they 
are aimed at focused tasks, coupled with incentives to harness the work of the best 
collaborators. More is not simply better, and for educational peer production models to 
succeed, we need more nuanced understandings of how people participate in such 
environments to efficiently and effectively collaborate around learning resources.  

Social network analysis (SNA) is a well-established method for studying interactions 
among human organizations [1]. It has also been applied in educational research. In 
particular, patterns of social relationship revealed by SNA, coupled with results from 
other qualitative evaluation methods such as content analysis, interviews, survey, reports, 
and sociometry, are frequently used in longitudinal study of the participatory aspects of 
computer-supported collaborative learning (CSCL).  

In our own work, we have developed a simple, web-based authoring tool, called the 
Instructional Architect (IA.usu.edu

2 The Instructional Architect and its Social Networks 

), which supports teacher peer production. In this 
study, we examine the teacher users in the IA system and conduct a social network 
analysis to begin to characterize teachers’ networked relationships.   

The Instructional Architect allows teachers to freely find, gather, and produce 
instructional activities for their students using online learning resources. Teachers can 
share these resulting activities, called IA projects, by making them publically available on 
                                                 
1 For full paper, graphs, and references, please visit http://edm.usu.edu/publications/sna.pdf 
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the Web. These IA projects can then be viewed, copied, and adapted by other IA users, in 
ways that support innovative teacher peer production.  

For each registered user, we determined the networks between users based on the 
following two pairs of relationships: 1) user A viewed user B’s IA project, and user B’s 
IA project was viewed by user A, 2) user A copied user B’s IA project, and user B’s IA 
project was copied by user A. Thus, the vertices in each network represent IA users, and 
the link directions and values represent the number of viewer/viewed or copier/copied 
actions between two users. These two networks (termed viewer network and copier 
network respectively) are represented as weighted, directed graphs.  

3 Data Analysis 

The present study consists of the view and copy actions occurring between September 
2008 and February 2010. The view and copy networks were represented within the 
freely-available SNA software Visone, which also computes key SNA measures for each 
network. The graph of viewer network is much denser than the copier network. From a 
user perspective, viewing represents an action with a much lower “cognitive” cost (a 
simple click) compared to a copy action (which represents a decision to use/adapt the 
content). Not surprisingly, this difference is reflected in the number of participating users 
and the density of the two networks.  

We studied the relationship between user production of IA projects, and viewing and 
copying actions. Users with a large number of views are not necessarily those who create 
a large number of IA projects. Conversely, the mean number of IA projects created does 
not saturate and exhibits an increasing trend as the function of copy action. Thus, the 
number of copies is a more accurate signal than the number of views in estimating project 
creation magnitude, serving as a better metric for describing meaningful user’s activity 
within the IA network.  
 
Finally, we applied a clique analysis on the copy network – the more important network 
of the two. A clique is a subgraph in a network in which every two vertices are connected 
by an edge. When the number of vertices in such a subgraph is k, it is called a k-clique. A 
clique represents closely tied subset of the network. A k-clique-community is defined as 
the union of all k-cliques that can be reached from each other through a series of adjacent 
k-cliques. We detected 11 k-cliques inside the copy network. These cliques suggest that 
some small subsets of users share common interests such that they could make use of 
each other’s IA projects. The largest community in the copy network is a 6-clique-
community formed by four adjacent 3-cliques. Since this community represents a closely 
tied subset of the copy network, not surprisingly, all six users teach the same subject area 
– language arts, and five of them teach both math and science, and four of them teach 
social studies. In sum, the clique analysis helped identify teachers with shared interests. 
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Abstract.  In this paper we propose the use of a special type of association rules 
mining for discovering interesting relationships from the students’ test data 
collected in our case with Moodle learning management system (LMS). 
Particularly, we apply Class Association Rule (CAR) mining to different data 
matrices such as the score-matrix, the relationship-matrix and the knowledge-
matrix. These matrices are constructed based on the data relate to students’ 
performance in the test and on the domain knowledge provided by the instructor. 
We describe how to obtain these matrices and then we have applied a CAR 
mining algorithm. 

 Department of Computer Science, Eindhoven University of Technology, The Netherlands 

1 Introduction 

A Class Association Rule (CAR) is a special type of Association Rule (AR) that 
describes an implicative co-occurring relationship between a set of items and a pre-
defined class, expressed in the form of an “IF antecedent (input-attributes) THEN 
consequent (class)” rule [1]. AR mining finds all rules that satisfy some minimum 
support and minimum confidence constraints, that is, the target of mining is not 
predetermined. However, in CAR mining there is one and only one pre-determined 
target, i.e., the class. So, CAR is a type of target-constraint association rule. Such kind of 
focused rules mining results in a set of independent and comprehensible rules having one 
(desired) element in the consequent. Such rules usually represent discovered knowledge 
at a high level of abstraction and can be used directly in the decision making process. 

Modern assessment tools and testing systems in particular allow accumulating a lot of 
useful performance and usage related data (possibly at different levels of granularity). 
This may include (but is not limited to) actual students’ answers and their correctness, 
final scores, used/execution time (total and for each question) and some statistics about 
items/questions such as Facility Index or % Correct (F.I.), Standard Deviation (S.D.), 
Discrimination Index (D.I.), etc. Although in many cases, still only the final scores are 
used by an instructor to evaluate students’ knowledge or performance [2], with recent 
developments in educational data mining research different ideas for intelligent analysis 
of assessment data were proposed. In this paper, we show the potential utility of applying 
CAR mining over the test-related data for providing an instructor interesting relationships 
discovered from these data presented in the score-matrix and knowledge-matrix. This 
information can be turned by an instructor into valuable knowledge for making decision 
on how to improve both the test and the course.  
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2 Experimentation 

We have used data collected with Moodle’s quiz module tool. Starting from these data 
and some background information provided by the instructor we have created three 
different data matrices (see Figure 1). 

 

Figure 1.  Matrices created from test’s data.  

We have applied the Apriori-CAR mining algorithm over the previously described data 
matrices. In the first experiment, we have used the score-matrix, and we have 
selected/filtered as input-attributes (antecedent) only the item answers, and as class the 
final score. In this way, we can see the relationships between items and how they can 
predict/determine the final score obtained by students. In the second experiment, we have 
used the knowledge-matrix, and we have selected the knowledge of concepts as input-
attributes (antecedent) and the final score as a class attribute. In this way, we can discover 
the relationships between concepts and between the level of knowledge of these concepts 
and the final score obtained by students.  

3 Conclusions and Future Work 

In this paper, we proposed to use a special type of association rules over the assessment 
data in a particular scenario. We mined different test data matrices rather than only the 
typical score-matrix. Particularly we used an item-concept relationship matrix created by 
the instructor and a student-concept knowledge level matrix automatically created based 
on the information from the other two matrices. Finally, it is important to notice that 
concepts themselves may need to be presented as a hierarchy rather than a 'flat' set of 
independent concepts. Mining interesting patterns in such settings is one of the directions 
of our further work.  
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Epistemic games have been developed in recent years to help players develop domain-
specific expertise that characterizes how professionals in a particular domain reason, 
communicate, and act [1]. For example, learners may learn what it is like to think and act 
like journalists, artists, business managers, or engineers by using digital learning 
technologies to solve realistic complex performance tasks. This is accomplished by 
designing the game in such a way that completing it mimics the core experiences that 
learners outside the gaming environment would have in a professional practicum in the 
field. As one might expect, traditional measurement models with latent variables 
designed for traditional large-scale assessments struggle to jointly accommodate the 
complexities of the data that arise from these games. Thus, there are currently no off-the-
shelf statistical models that can be applied directly to epistemic games to satisfy the 
desired scaling and reporting purposes; alternative modeling approaches grounded in 
non-parametric methods appear to be more promising in this regard.  
 
In this poster, we report on a comprehensive simulation study for investigating one 
candidate method that has recently been proposed in the literature called epistemic 
network analysis (ENA) [3]. The method is purely descriptive at this point and has been 
applied to real data collected in several different epistemic games. However, it has not 
been thoroughly investigated using simulation studies that use conditions representing a 
wide variety of realistic game-play scenarios. In our work we specifically investigate the 
sensitivity of different ENA statistics to capturing the different learning trajectories of 
players who play different types of epistemic games.  
 
In order to simulate data we used principles from modern latent variable models, 
specifically models in item response theory (IRT) and diagnostic classification models 
(DCMs) [2]. In these models, contributions of learner and task characteristics to response 
probabilities are statistically separated by specifying separable parameters for each. The 
following table provides an overview of the simulation design for our study. Note that we 
are specifically investigating various ENA outcome statistics on different metrics. For 
example, we are using the raw ENA statistics as well as the percentage overlap of 
empirical confidence bands, computed using the 100 replications, across the entire game 
play of ENA statistics. The latter approach in particular provides us with a non-
parametric approach for sorting learners according to their learning trajectory profiles 
that can be adapted for real-data analyses. 
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The simulation design further helps us to quantify the relative influence of different 
design factors on the variation in the raw ENA statistics or secondary derived statistics 
such as percentage overlap of ENA statistics. For example, the following table shows 
how most of the variation in one global statistic, the weighted density, is accounted for by 
the similarity of the underlying learning trajectories independent of the different game 
conditions as captured by the task parameters.  

    

The research is currently ongoing with the goal of having completed results submitted for 
publication by the end of the summer. 
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Abstract.  This paper proposes a new construction method of multiple test forms 
that applies a Bees Algorithm and a parallel computation technique to improve 
the computational costs of the traditional methods. 

1 Introduction 

Educational assessments occasionally need “multiple test forms” in which each form 
consists of a different set of items but still has qualities that are equivalent to the others. 
In order to construct multiple test forms, e-testing, which accomplishes automated test 
construction, has recently become popular in research areas involving educational 
measurement. In order to construct multiple test forms, several methods have been 
proposed to construct all forms of a test to satisfy the same test constraints to ensure that 
all forms have equivalent qualities. However, the main problem with traditional methods 
of constructing multiple test forms to maximize the equivalent between test forms is the 
trade-off between the fitting errors to test constraints and computational costs. The main 
purpose of the research discussed in this paper is to solve this problem.  

2 Method of Constructing Multiple Test Forms Based on Bees 
Algorithm in Parallel Computing  

The main idea behind this research is to alleviate the trade-off by applying a parallel-
computing technique that divided the computational costs between multiple processors 
without increasing the differences in fitting errors.  
It is possible to effectively install a parallel-computing technique into random-search 
methods. Several studies have used random-search methods in parallel computing to 
solve optimization problems [1] [2]. 
Furthermore, some studies have compared the efficiencies of random-search algorithms 
[3] [4]. The results of these studies revealed Bees Algorithm (BA) performed the high 
performances in searching for optimal solutions. Moreover, the problems in [3] [4] and 
the multiple test construction are combinatorial optimization problems which are 
classified as NP-hard as the multiple test construction. Therefore, we propose a method 
of constructing multiple test forms based on BA in parallel computing to alleviate the 
trade-off between computational costs and differences in fitting errors. This method 
constructs multiple equivalent test forms by minimizing the difference in fitting errors 
between test forms.  
The construction of multiple test forms has a time complexity of )2!( fmcO ⋅⋅ , where c is 
the number of test constraints, m is the number of items in an item bank, and f is the 
number of constructed test forms that satisfy all test constraints. To reduce the 
computational time, we divided the construction of test forms into two steps:  
Step A: Construct test forms only to minimize the fitting errors of each form to test 
constraints without taking into consideration the equivalence of test forms. Therefore, the 
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time complexity of this step is )!( mcO ⋅ . Here, the constructed test forms are still not 
equivalent. 
Step B: Extract the most equivalent set of test forms from the constructed test forms in 
Step A that minimizes the difference in fitting errors between test forms. The time 
complexity in this step is )2( fO .  
The time complexity for constructing test forms is reduced from )2!( fmcO ⋅⋅  
to )2!( fmcO +⋅ . The BA is applied as a search algorithm to both steps.  

3 Evaluation 

We compared the proposed method (BA) with the Big-Shadows Test (BST) method [5] 
and a genetic algorithm for multiple test construction (GA) to demonstrate its accuracy 
and speed in constructing multiple test forms. BA, BST, and GA construct multiple test 
forms to minimize the fitting errors indicted by the differences between the expected test 
information function and the test information function of the constructed test forms at 
five levels of abilities and to minimize the difference in the fitting errors. Before 
constructing test forms, we define the target values of the expected test information 
function. We used three actual item banks from the Japan Information Technology 
Engineers' Examination that had total numbers of items of 517, 978, and 2385.The total 
numbers of test constraints corresponding to each item bank were 32, 57, and 112 and the 
total numbers of test items were 20, 50, and 80. The results obtained from this experiment 
indicate that the proposed method improves the traditional construction of multiple test 
forms.  
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Abstract.   Learning management systems capture student’s interactions with the course 
contents in the form of event logs, including the order in which resources are accessed. We 
build on past research which indicates there are learning benefits if students determine their 
own ordering of use of learning materials. We report our exploration of sequential data mining 
that aims to help teachers determine whether some patterns of access to learning resources are 
predictive of performance, especially where this may signal the need for remediation. We 
report first explorations of the data in a graphics course and these indicate that sequence of 
resource access varied between the low, medium and high achieving student groups.  

Introduction 

The sequence in which learners should make use of learning materials is important in 
designing online courses. Learning management systems (LMS) provide one-size-fits-all 
solution where every student is presented with the same set of learning materials in one 
particular order. Previous research [1] indicates that the order in which the online learning 
materials are accessed may have an important relationship with student learning.  

Our research study explores the order in which resources students access as they solve set 
assessment tasks, such as tests, assignments and Exams. The presentation order of the 
problems (for instance easy questions followed by difficult ones) in these activities 
determines the sequence in which resources will be assessed in order to solve them. For 
instance, in a study by Pardos and Heffernan [2], the relationship between the sequence 
of problem order and learning in Intelligent Tutoring systems was explored using 
Bayesian methods. We explore the use of data mining techniques to analyse patterns of 
such access. While Pardos and Heffernan explored the relationship between problem 
order and performance, we analyse the order of resource usage and its links with learning.  

Approach 

The context of our work is a graphics course delivered in mixed mode. Each week 
students complete activities after reviewing the resources online. The resources consisted 
of a comprehensive tutorial guide and additional video and text based tutorial guides 
.Skills acquired during the weekly activities are tested using a mid-semester test and final 
exam. Student log data for file accesses during each week are extracted. Students were 
grouped, based on their achievement on the mid-semester test into high, medium and low 
achievement groups. The patterns within each group were analysed to identify distinctive 
sequences associated with each group. A key goal of the approach is to identify sequences 
that are more frequent among the weak students since such patterns might be used as an 
“early warning sign” by instructors. 
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Our dataset comprises 66 students taking a Multimedia system course in Semester, 2010, 
using the Blackboard learning management system. As an indicator of initial knowledge, 
students completed an eighteen question self assessment questionnaire at the start of the 
semester. Event logs(1421) over two weeks were analysed to obtain the patterns. 

Preliminary results: Distinctive patterns of access were found for each group and patterns 
showed that high and medium groups frequently accessed the compressive tutorial in 
order to complete their tasks successfully. 
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Abstract.  Cognitive models composed of knowledge components are an integral 

part of intelligent tutors and drive many of the instructional decisions that these 

systems make. Most of these models are designed by educators and subject 

experts. Today vast amounts of data, collected from many intelligent tutors,  

allow us to analyze and improve the current cognitive models through 

educational data mining.  In this research, we show how we identified, in the 

tutor data, potential improvements to existing cognitive models and then 

evaluated those improvements using statistical analysis and cross validation. 

1 Introduction and Experiment 

Educational data mining provides a great opportunity to discover better cognitive models. 

A correct cognitive model is one that is consistent with student behavior. It predicts task 

difficulty and transfer between instruction and test. Multiple algorithms have been 

developed for automated discovery of the attributes or factors that make up a cognitive 

model. This research provides the basis for an infrastructure for automatically applying 

such algorithms to data sets and discovering better cognitive models. We show how data 

analysis tools such as those in the PSLC DataShop [2] can be used to identify areas for 

improvement, and then discuss how to quantitatively evaluate the new models. 

We tested a number of Knowledge Component (KC) models on the Geometry Area ’96 

data set (from DataShop), which indicate how well 59 students performed (i.e., how often 

they were correct without tutor help) on 139 unique geometry task items, that is, steps in 

multi-step problems presented by the Geometry Cognitive Tutor. Two measures of 

quality, the Bayesian Information Criteria (BIC) and the root mean squared error (RMSE) 

on the held-out test data in a 3-fold cross validation were calculated for each KC model. 

The KC models represent different ways of sorting the 139 items into groups that 

measure student acquisition of the same KC, like all items requiring application of the 

circle area formula.  In all cases, predictions of student performance are based on 

Additive Factors Model (AFM). It is important to point out that both BIC and cross-

validation adjust for over-fitting, which can result from unnecessary addition of model 

parameters. Thus, the differences between the models are likely to be of practical 

significance. A new model was discovered using the visualization and analysis tools 

provided by the PSLC DataShop. This model is better (lower BIC and lower RMSE) than 

the “original” production rule cognitive model in Geometry Cognitive Tutor, which was 

created by cognitive scientists and domain experts [3].  It is also better than any of the 

models discovered by our existing automated approach to KC model discovery called 

Learning Factors Analysis [1]. The DataShop tools show that most of the KCs have 

appropriate learning curves, like circle-area and trapezoid-area, where the error rate starts 

high and then goes down. The curve for compose-by-addition curve, however, is flat. 
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This kind of curve suggests that this KC may not be correctly defined – some task items 

it summarizes may require different knowledge than others. The compose-by-addition 

KC characterizes the step in complex geometry area problems where the student must 

find an irregular area, like the area of a sidewalk around a pool by subtracting the area of 

the pool from the whole area. Closer inspection of such problems reveals that some of 

them provide “scaffolding” by indicating that the student should find the component 

areas first (whole area and pool area) before finding the target irregular shape (the 

sidewalk) and other problems do not provide this hint. The new model distinguishes steps 

in such problems where such decomposition planning is required and ones where it is not.  

Using data to discover and confirm the existence of such “hidden” planning knowledge is 

an interesting cognitive science achievement – such a hidden or cognitive component is 

not directly apparent in student behavior, in contrast with the original compose-by-

addition KC, which is adding or subtracting two numbers. It is also important for 

instructional design. We have used this insight to redesign this unit of the cognitive tutor 

to better help students acquire this difficult and important problem decomposition skill 

(such non-trivial problems are frequently seen on standardized tests). A ‘close-the-loop’ 

in vivo experiment is being run this spring to test whether these designs yield improved 

robust learning as compared to the existing tutor. 

2 Conclusion and Future Work 

This work demonstrates the use of tools in the DataShop to discover a better cognitive 

model, even in a domain (Geometry) where there has been considerable attention and 

prior cognitive analysis. The approach described here to discover cognitive models has a 

heavy component of human expertise. Using data to optimize cognitive models and 

improve instructional systems is a tremendous opportunity for EDM. The achievement 

will be greater to the extent that the discovered models involve deep or integrative KCs 

not directly apparent in surface task structure, like the problem decomposition skill we 

identified in Geometry.   In addition, future work should compare the statistical model 

structure of competing discovery algorithms to shed new light on the nature or extent of 

regularities or laws of learning, like the power or exponential shape of learning curves 

and whether or not there are systematic individual differences in student learning rates.  
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Abstract.  A Bayesian Knowledge Base is a generalization of traditional 

Bayesian Networks where nodes or groups of nodes have independence. In this 

paper we describe a method of generating a Bayesian Knowledge Base from a 

corpus of student problem attempt data in order to automatically generate hints 

for new students. We further show that using problem attempt data from systems 

used to teach propositional logic we could successfully use the created Bayesian 

Knowledge Base to solve other problems. Finally, we compare this method to 

our previous work using Markov Decision Processes to generate hints. 

1 Introduction and Method 

One goal of our research has been to provide help and feedback to students with as little 

human intervention as possible. Our hint generation methods using MDPs have been 

successful in fulfilling this goal [1], but are limited to individual problems with 

previously collected data. We believe that extracting information from multiple problem 

MDPs and create a corpus of knowledge that can be used to solve new problems would 

inherently incorporate student preferences and bias hints toward the rules that students 

actually use. To accomplish this solution we extracted individual model components 

(MCs) from each of the MDPs to create a large Bayesian Knowledge Base (BKB) which 

can then be applied to any problem in the domain.  A MC represents a piece of 

knowledge in the BKB, and in our case this will contain all or part of a student step. A 

BKB is a generalization of a BN where each node has independence from the others [3]. 

In our implementation each node in the BKB represents a group of individual model 

components where each component consists of a state, actions, and new states. We know 

that our data contains certain patterns that we can exploit. We would expect that some 

level of background knowledge will be needed in order to generalize overall knowledge 

in a domain. The logic domain is a good candidate for study since there are actual rules 

that we can discover. In fact, logic proof solvers already exist [2], but it is difficult for a 

solver to use the work that a student has already done as a basis for the remainder of a 

proof.  Our goal is to determine hints that would lead students from where they are to a 

valid proof solution, and also to show the potential uses of such hints in other domains. 

Model components (MCs) in the BKB can be at various levels of granularity. We have 

identified three levels from which the data from the MDP can be transformed. Level 3 

MCs are simply all the state, actions, new state pairs extracted from the MDP. Level 2 

MCs contain only one action, but can contain multiple new states. Level 1 MCs contain 

the smallest knowledge component that can be extracted and consist of the specific part 

of a state used by an action, the action, and the resulting part of the new state. In practice 
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in the logic domain, a level 1 MC represents a logic rule application. Level 3 MCs 

contain the most context specific information, but will be the hardest to match. For our 

experiments we use only the level 1 MCs. The level 1 MCs have only have the original 

state  information needed for the specific action, and only the new state information that 

is derived from this action. Again, this information is normalized such that any 

combination of letters in a problem can be matched to the state features.  

2 Experiment and Conclusion 

We create a BKB from 12 problems in our logic data sets and verify that the level 1 MCs 

correspond to valid rules in the logic domain. These MCs can be combined to make a 

general rule set that can be used to solve a new proof problem.  We show this by deriving 

a BKB from a set of problems and testing the MCs on a new problem to see if we could 

select rules in such a way that the problem can be solved. This is done with a leave-one-

out cross validation where all but one problem is used to make the BKB and then the 

remaining problem is the test case for the BKB. To provide hints with the BKB method, 

the current state in the new problem will be selected against the BKB and all matching 

model components will be returned. Based on the specificity of the states and the overall 

value of the returned items a hint can be given using the model component that is selected 

as the best for that step. To test if the BKB method is able to give hints we used all the 

MCs from other problems to solve the current problem. For each of the problems the 

BKB could solve the new problem with the exception of one problem. This is the only 

problem in the set that requires the “Equivalence” rule in order to reach a solution. This 

shows that we would be able to give hints using the BKB with most new problems unless 

they contained rules that had not previously occurred in a problem data set.  

The primary findings of this research suggest that we can generalize the MDP method 

into a Bayesian Knowledge Base, which contain MCs that can be used to solve new 

problems. The structure of the MCs can be stated in an “if-then” format that is very 

similar to the production rules used in the cognitive tutors. This is extremely encouraging 

since the ability to automate some or all production rules for a cognitive tutor would save 

a tremendous amount of time in tutor development. 
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Abstract. The goal of this review is to use business theories in student retention 
research, which has so far been informed by economics, organizational 
behavior, psychology, sociology. Relationships in business networks are 
compared to these between students and universities, putting forth relevant 
characteristics for student churn/retention research. Theories regarding a 
taxonomy of customer churn, its determinants and consequences are also viewed 
in this context and implications for educational data mining (DM) are put forth. 

The relationship between entities is traditionally either following a strict hierarchical fiat 
(HF) – if the parties belong to the same organization –, or it’s essentially an arm’s length 
transaction (ALT) – if there is a market relationship between the entities. Recent business 
theories describe a more nuanced reality. In the light of wider changes in research, 
today’s corporations are found to be heterarchical; other authors speak of autonomous 
strategic initiatives that take place in corporations violating the principles of hierarchy. 
The relationships between companies are neither of ALT type. The works of Uppsala 
school [1] show that not only is a corporation essentially a network of units (as is 
elsewhere described both from multinational corporation (MNC) and its subsidiary 
perspective), but it is also embedded in a business network of its own. The picture is 
further complicated by the individualism-collectivism dimension. Big MNCs are 
comprised of internal markets (within one firm!) with an ongoing internal competition for 
world product mandates, centers-of-excellence, etc. between the subsidiary units; 
whereas the supply chain relationships that a firm belongs to, have been described as 
coevolving systems.  Concentrating our attention on the relationships in business 
networks, we see that two firms gradually increase their commitment, as they do business 
with each other. A process of learning about each other’s capabilities, needs and 
strategies takes place, as well as a formation of routines for undertaking transactions. 
Sides adapt to each other incrementally. Knowledge transfer is inherently present – with 
organizational learning taking place – the results being often tacit and intangible.  

The relationship between a student and the university varies on the HF-ALT dimension. 
A student can simply purchase single classes from the Open University; one may be a full 
time student with an opportunity to call the university his alma mater after graduation; 
within the university’s administrative framework, the studies can also in part be paid for 
by giving consults to one’s peers; during the post graduate studies becoming a teaching 
assistant and teaching simultaneously with the studies is even more common; and finally 
– it is a goal of universities to populate the ranks of its faculties with the best graduates, 
in which case the student would administratively become a part of the organization. 
Entering studenthood comprises of overcoming various entry barriers. The curriculum is 
substantially different from that of a high school and the university studies are 
qualitatively harder as well – as the amount of independent work is greater, the tempo in 
the classes faster and as in some universities general courses can be amongst the most 
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difficult in the undergraduate curricula. At the same students have to learn scheduling, 
budgeting, develop their EQ and career. The steep entry barriers underline the 
commitment it takes to enter the university relationship. Therefore sunk costs are formed, 
which are reflected in the fact that student churn lessens considerably later on. The 
mutual commitment and adaption is evident in the following: the student will be able to 
pursue further career goals after graduation; the student becomes familiar with the 
university life, procedures and administrative system; the youth helps to keep the 
university abreast of times; the university assesses its employees based on student 
feedback. And perhaps most importantly – the students adapt to the university and their 
academic mentor’s profile. For both sides knowledge transfer and (organizational) 
learning ensue and as ties with the industry are created, so are the intangible assets.  

Student churn taxonomy as a basis for further work 

Customer churn is the propensity of customers to cease doing business. The cost of 
acquiring new customers is many times higher than that of retaining the existing ones. 
Customer (monetary) lifetime value(CLV) has been linked to customer tenure and is also 
something that previous research has considered in educational settings, although 
misinterpreting the NPV term. The most important determinants of customer churn are 
switching costs, satisfaction and future usage. The switching costs are transaction costs 
(while transferring from one university to another), learning costs (differences in 
curricula) and artificial costs (a scholarship keeping a student at the university). It can be 
inferred from the discussion above that satisfaction is a key determinant of student churn 
and that future usage plays an important role in the relationship. Bringing a parallel from 
business, according to a taxonomy [2], involuntary external churn occurs in the case of 
exmatriculation or accrued debt; voluntary external churn in case of relocation, switch to 
another university or alternative career path, for family considerations (this type can 
furher be classified as either deliberate or incidental according to whether the locus of 
origin lies with the student); internal churn takes place inside the university framework  – 
such as moving between full time and part time study plan; churn can furthermore be 
either customer or competitor initiated, the one at hand being mainly the former. 

This review has resulted in an identification of a need to develop a classification model 
for several student churn definitions, which will additionally be informed by the student-
university relationship information. Performance, demograhpic, high school and 
satisfaction data is available. DM and visualization will use seriation, matrix reordering, 
clustering and feature selection. As research has combined social network analysis with 
DM, student network data (the classes taken with the peers; the supervisors; the 
specialization; but also in the mid-term the facebook data) will be utilized. The retention 
effort is pinpointed by „quantifying” the students (CLV). In Estonia, projects analyzing 
the global effectiveness of students allocation, further reducing churn, are possible.   
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Abstract.  Remote Patient Management Systems (RPM), besides monitoring the 
health conditions of patients, provide them with different information services 
that currently are predefined and follow a one-size-fits-all paradigm to a large 
extent. In this work we focus on the problem of knowledge discovery and 
patient modeling by mining educational data, motivational and instructional 
feedback provided to patients within RPM system. 

Philips Research Laboratories 

1 Introduction 

Chronic diseases are the leading cause of death and healthcare costs in the developed 
countries. Healthcare systems are undergoing a paradigm shift from patient care in the 
hospital to the patient care at home [2]. It is believed that RPM systems, by providing 
adequate patient monitoring, instruction, education and motivation can facilitate 
normalization of the patients’ conditions and prevent re-hospitalization. Recently, a 
possible architecture of the next generation personalized RPM systems was introduced, 
and a general process of knowledge discovery from RPM data, leading to identification 
of potentially useful features and patterns for patient modeling and construction of 
adaptation rules, was considered [1]. 

In this work we focus on the design of an EDM framework aimed at facilitating the 
adaptation and personalization of information services by discovering actionable patterns 
from educational material usage data as well as motivational and instructional feedback, 
and linking those with the conditions and quality of life of the home-monitored patients. 
We sketch a conceptual framework how EDM in RPM can be implemented and provide 
motivating examples based on our preliminary study of one real RPM dataset. 

2 EDM for Personalization in RPM: First Steps and Further Work  

Figure 1 (top) gives an insight how EDM technology can become an integral part of RPM 
systems. The output of knowledge discovery process will be utilized for patient modeling 
and providing input for the adaptation engine. One type of practically relevant questions 
related to patient modeling and adaptation includes e.g. “what kinds of patients are likely 
to weigh themselves regularly if they review their weight charts”; “what is the 
relationship between the patients reviewing the charts and watching educational videos 
or reading motivational messages”, “do the patients (or what kind) restart weighting 
after receiving a message that they forgot to do so”. Two examples drawn from the real 
RPM dataset, collected during a clinical trial, are shown at the bottom of Figure 1. 
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“Is the patient who reviews his weight charts also 

more likely to weight himself regularly?” 
“Do the patients restart weighting after receiving 

a message that they forgot to weight?” 

Figure 1.  The role of EDM in RPM (top) and motivating examples (bottom)   

The preliminary results of our exploration study suggest that there is potential for EDM 
to facilitate data-driven patient modeling and motivate the shift from the one-size-fits-all 
approach currently employed in the development of RPM systems to personalization in 
providing educational materials, motivational support and informational content to their 
users. Our further work includes the many-sided analysis of the RPM usage database with 
the focus on the educational content and usage data. The particular focuses include 
subgroup discovery and identification of signatures describing well-doing home-
monitored patients and those who require more assistance of the medical staff. 
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Abstract. One of the main problems faced by university students is deciding the right 
learning path based on available information such as courses, schedules and professors. 
In this context, this paper presents a recommender system based on data mining. This 
recommender system intends to create awareness of the difficulty and amount of 
workload entailed by a chosen set of courses. For the purpose of building the underlying 
model, this paper describes the generation of domain specific variables that are capable of 
representing students’ past performance. The objective is to improve students’ 
performance in general, by reducing the rate of misguided enrollment decisions. 

1. Introduction 
University Curricula allow students great flexibility and freedom of choice in terms of which and 
how many courses they can sign up for each term. The amount of workload and their ability to 
balance it successfully depends on these choices. Their results are also dependent on their own 
ability for a particular area of knowledge. 

The main objective of this paper is to propose an enrollment recommender system to assist 
students in their decision making. The main contribution is the generation of two domain specific 
variables, namely the potential of student and the difficulty of courses. 

A similar study was conducted by Al-Radaideh [1], in which he uses classification algorithms to 
evaluate the performance of students who studied the C++ course in Yarmouk University in 
2005. To build a reliable classification model, it adopts the CRISP-DM methodology. 

2. Domain Specific Variables 
Domain specific metrics increase the representativeness of models. In this particular case we 
used two variables: the course difficulty and ability of a student towards a course; the latter is 
referred to as potential. 

The course difficulty is represented by the average of the grades obtained by students. On the 
other hand, the potential is calculated per student for each course he may take. It is represented 
by the average of the grades a student has obtained in the prerequisites of a course and in 
previous attempts to pass the course; each grade is divided by the course difficulty.  

3. Recommender System 
The model that supports the recommender system was built using the Knowledge Discovery in 
Databases Methodology [2] using the C4.5 algorithm as classification engine [3]. It included the 
domain specific variables presented in Section 2 in order to improve its effectiveness. This 
system is integrated into the current Enrollment System. 
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During enrollment students choose a set of courses and obtains a forecast for each of them: 
PASS/FAIL. This enables them to make informed and conscious decisions hence indirectly 
improving their performance. (Figure 1) shows the sequence of this process in detail. 

 

Figure 1. Recommendation Sequence Diagram 

4. Conclusions and Future Work 
The main benefit of the proposed system is the awareness created in students about the 
enrollment process: they will be aware of the fact that they are not currently skilled enough to 
success in courses in a particular area; it will also help them appraise the difficulty of courses 
and realize the possibility of unbalanced workloads. In the long run, these positive effects will 
lower failure rate of students hence improving their learning process and their learning paths. 

Future works should strive to improve data cleaning to remove noise from the model. The model 
itself could be enhanced by improving the C4.5 pruning method or by adding significant 
attributes. 
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1 Introduction 

The educational data mining community has not been paying much attention to how 
much assistance a student needs. Feng and Heffernen[1] showed that we can predict 
student performance better by accounting for amount of assistance, but didn't reduce it to 
a value that could be shared with students. In this paper we want to see if we can better 
model student performance by replacing traditional binary measures (correct/ incorrect) 
with continuous partial credit, which is assigned based on the details in the student 
responses. The data we use is from ASSISTment, a web-based math tutoring system for 
7th-12th grade students. The system helps the student learn the required knowledge by 
breaking the problem into sub-questions called ‘scaffolding’ or by giving the student 
hints on how to solve the question. 

2 Partial Credit Algorithm & Evaluations 

In the algorithm, students get a maximum score of ‘1’ for responding correctly on the 
first attempt; otherwise, we assign partial credit by penalizing them for hints, wrong 
attempts and asking for scaffolding. We use 1 / (# of total_hints) as the penalty for each 
hint; (# of correct_answers) / (# of total_answers - i ) as the penalty for the i th  wrong 
attempt in multiple choice problems; 0.1 as the penalty for each wrong attempt in open 
response problems and for asking for scaffolding. Table 1 shows an example of two data 
records, in which two students get the same binary performances but very different partial 
credit (only some of the features are shown because of limited space). 

Table 1.  Example of different Partial Credit 

 … #hints 
#total 
 hints 

#wrong 
 attempts 

#correct 
 answers 

#total 
 answers 

Binary 
performance 

Partial 
 credit 

1 … 1 5 0 1 5 0 0.8 

2 … 1 5 2 1 5 0 0.22 

 

We conducted two analyses on 52,529 data records from 72 students in order to 
evaluate the predictive power of partial credit in comparison to traditional binary 
performance. 

The first analysis compares the predictive power of the mean value of all the 
previous performances. As a baseline we used a logistic regression model with binary 
performance as the dependent, and student id as an independent. We then compare using 
mean previous partial credit vs. mean previous binary performance as independents in the 
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model. The results are shown in Table 2. The model with mean previous partial credit 
gets a 0.0019 better R-squared than the one with mean previous binary credit. The 
absolute numerical improvement is small, which indicates that it is difficult to 
substantially improve student modeling. On the other hand, because knowing mean 
previous binary performance only brings 0.0046 better R-squared over baseline, knowing 
mean previous partial credit brings a relative 41.3% better R-squared compared to it. 

Table 2.  Comparison between partial credit and binary performance 

 
R2 

(analysis 1) 
accuracy 

(analysis 1) 
R2 

(analysis 2) 
accuracy 

(analysis 2) 

baseline 0.1857 0.6846 0.1893 0.6721 
binary 0.1903 0.6871 0.1979 0.6757 

partial credit 0.1922 0.6884 0.1999 0.6791 
 

In the second analysis, instead of the mean value of previous performances, we 
compare the predictive power of the trends of these two measures of performance. We 
choose data in which students have 5 opportunities in one skill and use the previous 4 
performances to create a trend line to predict the value of the 5th performance. To smooth 
the result and generate a bounded prediction between 0 and 1, we also apply a logistic 
regression model to this prediction. The result is shown in the fourth and fifth column of 
Table 2. Using partial credit improves R-squared by about 0.002 compared to using 
binary performance. This result is consistent with analysis 1. 

3 Conclusions and Future work 

In this paper we present a naïve algorithm to assign partial credit given detailed student 
responses. Partial credit performance contains much more information than binary 
performance, which is currently used in almost all researchers in the educational data 
mining field. Evaluations show that partial credit improves student model fitting by only 
a small absolute value but a high relative value compared to the binary performance. 

One question we are interested in is how to refine the algorithm to better fit 
student data and infer student knowledge. Also, we are interested in finding out in which 
situations partial credit does better than binary performance, so we can use it as an 
efficient complement to all the current models that use only the binary performance.  
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Abstract. Standard webmetrics tools record the IP address of users’ computers, 
thereby providing fodder for analyses of their geographical location, and for 
understanding the impact of e-learning and teaching. In this paper, we describe 
how two web-based educational systems were engineered to collect geo-
referenced data. This is followed by a description of joining these data with 
demographic and educational datasets for the United States, and mapping 
different datasets using geographic information system (GIS) techniques to 
visually display their relationships. We conclude with results from statistical 
analyses of these relationships that highlight areas of significance. 

RS/GIS Laboratory, Utah State University 

1 Introduction 

Web-based learning environments can be engineered to collect detailed data about their 
users and their activities (generally called webmetrics). In addition, standard webmetrics 
tools record the IP address of users’ computers, thereby providing fodder for analyses of 
their geographical location, and for understanding the impact and the effectiveness of e-
learning and teaching. In our study, we used two web-based learning environments – the 
Instructional Architect (IA) and the Exploratorium Learning Resources Collection 
(ELRC) – to explore how to collect geo-referenced data, and analyze such datasets by 
joining them with the demographic and national educational datasets, and using 
geographic information system (GIS) to visually display the relationships. 

2 Collecting Geo-Referenced Data 

The IA is an educational digital library service developed to support the instructional use 
of the online learning resources. With the IA, teachers are able to create web-based 
instructional activities, called IA projects, and give their students exclusive access to 
them. The ELRC is a digital library of over 700 teacher-tested science activities and 
instructional resources inspired and created from the Exploratorium’s exhibits, public 
program events, and teacher professional development programs. Both websites have 
been engineered to collect detailed online usage data using Google Analytics (GA). As 
part of their standard reporting tool, GA estimates the visitors’ location using the client 
computers’ IP addresses, in a process called geo-location [1]. 

                                                 
1 For full paper, figures, and references, please visit http://edm.usu.edu/publications/demo.pdf.  
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3 Results 

The GA reporting tool generates geographic maps of website visitors. The IA’s map has 
darker shades in Utah, New York and Michigan, three areas that have received IA’s 
teacher development programs; similarly, the ELRC’s map has darker shade in 
California, where the ELRC library locates. The maps show that both groups are 
successful in local dissemination activities.  

GA location data can be joined with other demographic and geographical datasets. In this 
study, we extracted population, number of schools, number of school districts, per capita 
income, and median family income from the ESRI 9.3 GIS software, and the National 
Center for Education Statistics. These were then overlayed with our GA location data. 
For example, Figure 1 shows IA traffic overlayed on one of the datasets –median family 
income. Such maps can help visually reveal relationships between site usage and 
demographic or school characteristics. 

 

Figure 1. U.S. map showing IA visits (darker dots indicate more visits)  
overlayed with median family income over 1 year. 

 
We also examined statistical relationships between the demographic predictors and the 
number of site visits per location as reported by GA. Due to the high correlation between 
some of the predictors, only three out of the five were selected, which were population, 
number of school districts, and per capita income. A negative binomial regression (to 
handle the skewed data) showed that population, and per capita income were statistically 
significant predictors of site visits to both the IA and the ELRC, and number of school 
districts was also a significant predictor for the ELRC. 

We interpret these results to mean that online visitors to these sites came from, not 
surprisingly, more densely populated areas. In addition, the relationship with per capita 
income may be a function of the amount of resources (i.e., computing) available in the 
local schools and communities.  
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Abstract. In this paper the authors describe Pundit, a course recommendation and search tool 
at Teachers College, Columbia University. The alpha prototype employs a novel combination 
of data retrieval and data mining approaches to recommend courses to users based on a match 
between their profiles and course contents. We utilize course management system and library 
e-reserves data to collect information about course content that is indexed and then matched 
with user profiles. In conclusion, we define an evaluation function that was used to determine 
the quality of recommendations.   

1   Introduction 
 
Pundit was developed as a course search and recommendation system for students at 
Teachers College (TC), Columbia University. The following data sources were used to 
design the Pundit database: 1) the TC Library e-reserve system (DocDel), 2) the TC 
course management system (Classweb), and 3) the TC Directory. We utilized a content-
based approach [5] and information retrieval techniques [4] to build the recommendation 
system. A ranked list of recommended courses was generated for each user based on: 1) 
user profiles (e.g., degree status, program of study), 2) user behavior (e.g., courses taken), 
and 3) an inverted index [2] created for all TC courses.  

2   Methodology 
 
Using key words from user profiles [3], we queried the inverted index of all TC courses. 
Profiles include user's scholarly interests, academic background, employment history, 
resume, publications, and additional documents provided by users. In this alpha version 
of Pundit, we used over 150 user profiles from Netposse [1], an academic social 
networking tool at Teachers College, that helps users to identify student, faculty, and staff 
who share similar interests and backgrounds. 

Pundit first takes extracted keywords from user's Netposse profile. Then the 
application generates bi-grams that correspond to the extracted keywords. Afterwards, 
Pundit eliminates those words that are part of bi-grams from the keyword list. Then it 
issues an OR query containing all the bi-grams and remaining keywords to the index. 
Apache Lucene's ranking function was used to calculate a score for each course. Lastly, 
Pundit removes all courses that were previously taken or taught by the user.  
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3   Evaluation 

Our evaluation strategy links every user in the system with every course, s/he has taken at 
Teachers College. We compared this information with recommendations from Pundit to 
determine the number of intersections. Before doing this, we removed transcripts and/or 
other course related information from user profiles to eliminate any bias towards the final 
results. The data used for evaluating the Pundit methodology consisted of 45,713 course 
files, 3,403 courses, 35,215 student & faculty, 40 user profiles, 74 degree programs, and 
247 department. Figure 1 below shows the results we obtained when 200 recommended 
courses for 40 faculty member profiles were compared against the courses faculty 
previously taught. 
 

 

Figure 1. Courses Recommended Vs. Courses Taught 
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