

Development of a Workbench to Address the Educational
Data Mining Bottleneck

Ma. Mercedes T. Rodrigo
Ateneo de Manila University
Loyola Heights, Quezon City,

Philippines
mrodrigo@ateneo.edu

Ryan S. J. d. Baker
Worcester Polytechnic Institute

Worcester, MA USA
rsbaker@wpi.edu

Bruce M. McLaren
Carnegie Mellon University

Pittsburgh, PA USA
bmclaren@cmu.edu

Alejandra Jayme

Ateneo de Manila University
Loyola Heights, Quezon City, Philippines
alejandra.jayme@gmail.com

Thomas T. Dy
Ateneo de Manila University

Loyola Heights, Quezon City, Philippines
thatsmydoing@gmail.com

ABSTRACT

In recent years, machine-learning software packages have made it
easier for educational data mining researchers to create real-time
detectors of cognitive skill as well as of metacognitive and
motivational behavior that can be used to improve student
learning. However, there remain challenges to overcome for these
methods to become available to the wider educational research
and practice communities, including developing the labels that
support supervised learning, distilling relevant and appropriate
data features, and setting up appropriate cross-validation and
configuration algorithms. We discuss the development of an
Educational Data Mining (EDM) Workbench designed to address
these challenges.
Keywords
Educational data mining workbench

1. INTRODUCTION
In recent years, educational data mining methods have afforded
the development of detectors of a range of constructs of
educational importance, from gaming the system [5] to off-task
behavior [3] to motivation [8] to collaboration and argumentation
moves [11]. The development of these detectors has been
supported by the availability of machine learning packages such
as RapidMiner [12], WEKA [15], and KEEL [1]. These packages
provide large numbers of algorithms of general use, reducing the
need for implementing algorithms locally, however they do not
provide algorithms specialized for educational data mining, such
as the widely used Bayesian Knowledge-Tracing [7].
Furthermore, effective use of these packages by the educational
research and practice communities presumes that key steps in the
educational data mining process have already been completed. For
example, many of these detectors have been developed using
supervised learning methods, which require that labeled instances,
indicative of the categories of interest, be provided. Typically,
many labeled instances – on the order of hundreds, if not
thousands – are required to create a reliable behavior detector.
Labeling data is a time consuming and laborious task, made even
more difficult by the lack of tools available to support it.
A second challenge is the engineering and distillation of relevant
and appropriate data features for use in detector development [15].
The data that is directly available from log files typically lacks
key information needed for optimal machine-learned models. For
instance, the gaming detectors of both [5] and [14] rely upon

assessments of how much faster or slower a specific action is than
the average across all students on a problem step, as well as
assessments of the probability that the student knew the cognitive
skills used in the current problem step. This information can be
distilled and/or calculated by processing data across an entire log
file corpus, but there are currently no standard tools to accomplish
this. Feature distillation is time-consuming, and many times a
research group re-uses the same feature set and feature distillation
software across several projects (the second author, for instance,
has been using variants of the same feature set within Cognitive
Tutors for nine years). Developing appropriate features can be a
major challenge to new entrants in this research area. To address
this “data labeling bottleneck” and the difficulty in distilling
relevant features for machine learning, we are working to develop
an Educational Data Mining (EDM) Workbench. A beta version
of this Workbench, now available online at
http://penoy.admu.edu.ph/~alls/downloads, is described in this
paper. The workbench currently allows learning scientists to

1) label previously collected educational log data with
behavior categories of interest (e.g. gaming the system,
help avoidance), considerably faster than is possible
through previous live observation or existing data
labeling methods.

2) collaborate with others in labeling data.
3) automatically distill additional information from log

files for use in machine learning, such as estimates of
student knowledge and context about student response
time (i.e. how much faster or slower was the student’s
action than the average for that problem step).

Through the use of this tool, we hope that the process of
developing a detector of relevant metacognitive, motivational,
engagement, or collaborative behaviors can eventually be sped up.
Just the use of “text replays”, on previously collected log data has
been shown to speed a key phase of detector development by
about 40 times, with no reduction in detector goodness [5].

2. EDM WORKBENCH
Version 1.0 of the EDM Workbench interfaces with some of the
tools discussed in Section 1, filling some of the functional gaps
that, without the Workbench, require manual intervention or
require hand-coding of custom tools and cumbersome and
complex actions by the user in packages such as Excel. Version
1.0 of the Workbench has five functionalities: Log import, feature

Proceedings of the 5th International Conference on Educational Data Mining 152

distillation, data sampling, data clipping and labeling, and data
export. We discuss each of these functions in turn.

2.1 Log import
The EDM Workbench allows users to import logs in DataShop
text format [9] and CSV. The data is assumed to be stored in a flat
file, organized in rows and columns. The first row of the import
file is assumed to contain each column’s name. Each succeeding
row represents one logged transaction, usually between the
student and tutor but possibly between two or more students as in
the case of collaborative learning scenarios. If the user specifies
that the imported data is in DataShop text format, the Workbench
will check whether the table contains the columns it requires to
distill 26 pre-defined features (discussed in 2.2). The successfully-
imported logs may be saved in the Workbench’s format for work
files—a compressed file containing the data in CSV format plus
metadata specific to the EDM Workbench.
The Workbench can also import nested folders of data, where
each folder level represents a meaningful subset of the data. For
example, if data from a section of students is collected several
times over a school year, the researcher may have one folder for
the school year, one subfolder for each section within the school
year, one subfolder for a session within each section, and finally
one file or folder for each student within a session. The
Workbench allows users to label each level of subfolder, creating
new columns for these labels, appending them to the data tables
during importation process.

2.2 Feature distillation
Assuming the necessary columns exist in the imported file, the
Workbench can automatically distill 26 features from the data.
The Workbench also has capacity for defining new features for
future analyses. The 26 features distilled come from features used
in past automated behavior detectors using DataShop data and
related intelligent tutoring system data [2, 5, 13, 14]. The features
include (but are not limited to) estimates of the student’s
knowledge of the current skill [7]; the time the student spent on
the problem (both in absolute and relative terms); and the types,
number and proportion of correct, wrong, or help actions for the
current skill for the last n steps, for the skill, or for the student.
The current EDM Workbench uses 21 generic functions to
compute the 26 automatically distilled features. Some functions
correspond directly to a single feature while others are reusable,
i.e. users can vary input parameters to compute for different
features. Figure 1 is an excerpt of the EDM Workbench
configuration file that specifies the features to be distilled and the
functions used to distill them. It shows the specification of two
features: timeSD and timelastnSD. These features have
been used in several behavior detectors [2, 3].
The first example in the excerpt is the specification for the feature
timeSD, which makes use of a generic function also named
timeSD. <group_col> refers to a sub-grouping criterion. In
this case, the data is grouped by type of step, as specified in the
Step Name column. The <range_col> is the column that
contains the duration values that will be used to compute
timeSD. Finally, <out> specifies the feature and output column
name.
The second example in the excerpt is the specification for
timelastnSD. It uses the function sumLastN.

<sort_col> refers to the column by which the data should be

sorted before computing the feature. The two sets of
<group_col>s imply that data sub-grouping in this case is
based on two criteria, the Anon Student Id and the
Problem Name. The <range_col> refers to the timeSD
column, computed earlier. The <n> refers to the number of steps
to be used in the computation. As with the first example, <out>
specifies the feature and output column name.

Figure 1. Excerpt from the EDM Workbench configuration
file.

<feature_set>

 <timeSD>

 <group_col>Step Name</group_col>

 <range_col>Duration</range_col>

 <out>timeSD</out>

 </timeSD>

 <sumLastN>

 <sort_col>Row</sort_col>

 <group_col>Anon Student Id</group_col>

 <group_col>Problem Name</group_col>

 <range_col>timeSD</range_col>

 <n>3</n>

 <out>timelastnSD</out>

 </sumLastN>

</feature_set>

At the moment, adding new features for distillation requires some
programming: If the feature can be computed by using one of the
21 existing functions, the user can modify the EDM configuration
file to define the new function and how it is derived. If a feature
requires a new function, the user can add the new function to the
EDM Workbench’s source code, after which the new feature can
be defined in the configuration file. It is our long-term objective to
foster a user community that will eventually make new features
available for others to use, similar to the open source software
community, increasing the EDM Workbench’s usefulness to the
broader research community.

2.3 Clip generation
In different projects, text replays have been implemented in
several different ways [5, 10, 13]. Two of the key ways that text
replays have differed has been in terms of the information and
grain-size of the data presented to the coder. For coding, data is
subdivided into smaller units, termed clips — subsets of student-
tutor transactions defined based on criteria for when they begin
and end, and what information is included. For example, in
various projects, clips have been defined as 20-second intervals
[5], segments of 5 or 8 actions [10], and in terms of defined
“begin” and “end” events in the learning software [13].
The EDM Workbench allows the user to define the set of features
by which the data should be grouped, so that clips do not contain
rows from different groups. For example, if the data should be
grouped by student, a single clip will contain data from only one
student and not multiple students. The workbench also specifies
the clip size, either by time or by number of transactions.
Delineation of clips by beginning and ending events is not yet
possible, but is a feature planned for future implementation. The
Workbench then generates the clips for analysis, according to a
sampling scheme discussed in the next section.

Feature
timeSD

Feature
timelastnSD

Proceedings of the 5th International Conference on Educational Data Mining 153

2.4 Data sampling
The data sampling feature of the Workbench allows the user to
specify how clips are sampled from the data set. (It can also be
used to sample at the action/transaction level). The user can
specify the sample size, and whether the Workbench will
randomly take the sample across the entire population or whether
the workbench will stratify the sampling based on one or more
variables.
Note that the Workbench allows the user to sample the data at any
point of the process — after importing, after clipping, or after
labeling – depending on the user’s analytical goals.

2.5 Labeling
Once the sample has been taken, the user must then specify a
subset of the clip columns that should be displayed in the text
replay. It is possible that the user does not want all the clip
columns displayed in the text replay. In the example shown in
Figure 2, the user specified that only three columns will be
displayed: COMPILE_SUCCESSFUL, MSG_MESSAGE and
MSG_LINE_NUMBER. The user also specifies the labels that the
observer or expert will use to characterize each clip. Figure 3
(bottom) shows that expert or observer will have three labels to
choose from: Confused, Not Confused or Bad Clip – the coding
scheme from [10]. The circumstances under which an expert or
observer labels a clip as “bad” changes depending on the data set,
but typically indicate cases that should not be coded. For example,
in the case of [10], a clip was labeled “bad” if the transactions
contained instructor-supplied programming examples rather than
programs that the students had written themselves.

Figure 2. Specification of clip columns and labels.

The Workbench then displays text replays of the clips together
with the labeling options (Figure 3). A coder reads through the
text replay and selects the label that best describes the clip. The
labels are saved under a new column in the data set.
Because a coder may have to label tens of thousands of clips [5],
the coder may save his or her work and can continue the labeling
process in a later session.

2.6 Feature distillation and export
Once data labeling is complete, the user can create clip-level data
features to associate with the clips, facilitating later development
of detectors. The user first selects the feature or column of
interest. The user then specifies whether he/she would like the
Workbench to compute for the minimum, maximum, average or

standard deviation of that feature [13]. The Workbench will add
the new column and corresponding computed value results to the
clip dataset

Figure 3. Text replay and label options.

Finally, once processing is complete, the Workbench allows the
user to save the logs in CSV format, for re-importation into an
appropriate data mining tool, such as RapidMiner or WEKA. The
user is then able to use that tool to build a detector of the construct
they labeled, using the features they distilled.

3. FUTURE WORK
In this paper, we have presented the Educational Data Mining
Workbench, a tool that researchers can use to facilitate the
development of detectors of varying forms of student behavior.
Version 1.0 of the Workbench supports two key steps of the
detector development process that are relatively difficult and time-
consuming to do with existing tools: data labeling and feature
distillation. By scaffolding users in conducting either or both of
these steps, the tool may make it easier and quicker for a wider
range of learning scientists and educational software developers to
develop and use automated detectors of student behavior.
It is worth noting that the current version of the Workbench is still
limited. Each of the limitations discussed here are scheduled for
implementation in the coming months. (1) The automatically-
distilled features are hard-coded; future releases will make it
easier to alter the feature list. (2) The process of amending XML
to create new features will be made more user-friendly. (3) The
coders cannot change the way in which the text replays are
displayed; future releases will support configuration of different
ways to pretty print the text replays, towards highlighting the most
important information for the coder’s specific current purpose. (4)
Users can currently only sample data and assemble it into clips in
a limited number of fashions; we intend to implement more
sophisticated sampling and clip-creation strategies [13].
A final direction for future work is to add support for researchers
creating and validating models appropriately. Within the
educational data mining community, there has emerged
considerable know-how about how to set up tools such as
RapidMiner to afford appropriate validation. (For example,
batching data in order to support k-fold student-level cross-
validation, and then using a BatchXValidation operator in
RapidMiner to implement it). We plan to add support for
automatically creating appropriately stratified batches to realize
several common cross-validation strategies, and automatically
export RapidMiner code that is set up to read in the correct data
and use appropriate cross-validation to build a detector of the
construct that was labeled.

Proceedings of the 5th International Conference on Educational Data Mining 154

Development of the EDM Workbench remains ongoing, and we
look forward to collaborating with a range of EDM researchers
and learning scientists in making this tool as useful as possible for
the EDM community. We welcome comments and suggestions –
as well as contributions – from any interested colleague.

4. ACKNOWLEDGMENTS
We thank Jessica Sugay, Alipio Gabriel, and John Paul Contillo.
We also thank John Stamper, Alida Skogsholm, and Ken
Koedinger for helpful comments and suggestions. This research
project was made possible through a grant from the Philippines
Department of Science and Technology’s Engineering Research
and Technology for Development program entitled “Development
of an Educational Data Mining Workbench.”

5. REFERENCES
[1] Alcala-Fdez, J., Sanchez, L., Garcia, S., de Jesus, M.J.,

Ventura, S., Garrell, J. M., Otero, J., Romero, C., Bacardit, J.
& Rivas, V.M. (2009). KEEL: A software tool to assess
evolutionary algorithms for data mining problems. Soft
Computing: A Fusion of Foundations, Methodologies and
Applications, 13(3), 307-318.

[2] Baker, R.S.J.d., Corbett, A.T., Aleven, V. (2008). More
Accurate Student Modeling Through Contextual Estimation
of Slip and Guess Probabilities in Bayesian Knowledge
Tracing. Proceedings of the 9th International Conference on
Intelligent Tutoring Systems, 406-415.

[3] Baker, R.S.J.d. (2007). Modeling and Understanding
Students' Off-Task Behavior in Intelligent Tutoring Systems.
Proceedings of ACM CHI 2007: Computer-Human
Interaction, 1059-1068.

[4] Baker, R.S.J.d., Corbett, A.T., Koedinger, K.R., & Wagner,
A.Z. (2004). Off-Task Behavior in the Cognitive Tutor
Classroom: When Students “Game the System.” Proceedings
of ACM CHI: Computer-Human Interaction383-390.

[5] Baker, R.S.J.d. & de Carvalho (2008). Labeling Student
Behavior Faster and More Precisely with Text Replays. 1st
International Conference on Educational Data Mining, 38-
47.

[6] Cetintas, S., Luo, S., Yan Ping Xin, & Hord, C. (2010).
Automatic detection of off-task behaviors in intelligent
tutoring systems with machine learning techniques. IEEE
Transactions on Leanring Technologies, 3(3), 228-236.

[7] Corbett, A.T., & Anderson, J.R. (1995). Knowledge Tracing:
Modeling the Acquisition of Procedural Knowledge. User
Modeling and User-Adapted Interaction, 4, 253-278.

[8] de Vicente, A., Pain, H. (2002). Informing the detection of
the students’ motivational state: an empirical study.
Proceedings of the 6th International Conference on
Intelligent Tutoring Systems, 933-943.

[9] Koedinger, K., Cunningham, K., Skogsholm, A., Leber, B.
(2011) An data repository for the EDM community: The
PSLC DataShop. In c. Romero, S. Ventura, M. Pechenizkiy
and R. S. J. d. Baker, Handbook of Educational Data Mining.
Boca Raton, FL: CRC Press, 43-55.

[10] Lee, D. M., Rodrigo, M. M. T. R., Baker, Ryan S. J. D.,
Sugay, J. O., & Coronel, A. (2011). Exploring the
relationship between novice programmer confusion and
achievement. In S. D’Mello & A Graesser (Eds.): ACII 2011,
Part I, LNCS 6974, (pp. 175-184), Berlin Heidelberg:
Springer-Verlag.

[11] McLaren, B.M., Scheuer, O., & Mikšátko, J.
(2010). Supporting collaborative learning and e-Discussions
using artificial intelligence techniques. International Journal
of Artificial Intelligence in Education (IJAIED) 20(1), 1-46.

[12] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M. & Euler,
T. (2006). YALE: Rapid Prototyping for Complex Data
Mining Tasks. In Proc. of the 12th ACM SIGKDD Int’l
Conference on Knowledge Discovery and Data Mining
(KDD 2006), (pp. 935-940), ACM Press.

[13] Sao Pedro, M., Baker, R., Gobert, J., Montalvo, O., &
Nakama, A. (in press). Leveraging Machine-Learned
Detectors of Systematic Inquiry Behavior to Estimate and
Predict Transfer of Inquiry Skill. User Modeling and User-
Adapted Interaction.

[14] Walonoski, J. & Heffernan, N.T. (2006). Detection and
Analysis of Off-Task Gaming Behavior in Intelligent
Tutoring Systems. In Ikeda, Ashley & Chan (Eds.).
Proceedings of the 8th International Conference on
Intelligent Tutoring Systems. Springer-Verlag: Berlin. pp.
382-391.

[15] Witten, I. H. & Frank, E. (2005). Data Mining: Practical
Machine Learning Tools and Techniques, Second Edition,
Morgan Kaufmann.

Proceedings of the 5th International Conference on Educational Data Mining 155

