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ABSTRACT 

In recent years, machine-learning software packages have made it 
easier for educational data mining researchers to create real-time 
detectors of cognitive skill as well as of metacognitive and 
motivational behavior that can be used to improve student 
learning. However, there remain challenges to overcome for these 
methods to become available to the wider educational research 
and practice communities, including developing the labels that 
support supervised learning, distilling relevant and appropriate 
data features, and setting up appropriate cross-validation and 
configuration algorithms. We discuss the development of an 
Educational Data Mining (EDM) Workbench designed to address 
these challenges. 
Keywords 
Educational data mining workbench 

1. INTRODUCTION 
In recent years, educational data mining methods have afforded 
the development of detectors of a range of constructs of 
educational importance, from gaming the system [5] to off-task 
behavior [3] to motivation [8] to collaboration and argumentation 
moves [11]. The development of these detectors has been 
supported by the availability of machine learning packages such 
as RapidMiner [12], WEKA [15], and KEEL [1]. These packages 
provide large numbers of algorithms of general use, reducing the 
need for implementing algorithms locally, however they do not 
provide algorithms specialized for educational data mining, such 
as the widely used Bayesian Knowledge-Tracing [7]. 
Furthermore, effective use of these packages by the educational 
research and practice communities presumes that key steps in the 
educational data mining process have already been completed. For 
example, many of these detectors have been developed using 
supervised learning methods, which require that labeled instances, 
indicative of the categories of interest, be provided. Typically, 
many labeled instances – on the order of hundreds, if not 
thousands – are required to create a reliable behavior detector. 
Labeling data is a time consuming and laborious task, made even 
more difficult by the lack of tools available to support it.  
A second challenge is the engineering and distillation of relevant 
and appropriate data features for use in detector development [15]. 
The data that is directly available from log files typically lacks 
key information needed for optimal machine-learned models. For 
instance, the gaming detectors of both [5] and [14] rely upon 

assessments of how much faster or slower a specific action is than 
the average across all students on a problem step, as well as 
assessments of the probability that the student knew the cognitive 
skills used in the current problem step. This information can be 
distilled and/or calculated by processing data across an entire log 
file corpus, but there are currently no standard tools to accomplish 
this. Feature distillation is time-consuming, and many times a 
research group re-uses the same feature set and feature distillation 
software across several projects (the second author, for instance, 
has been using variants of the same feature set within Cognitive 
Tutors for nine years). Developing appropriate features can be a 
major challenge to new entrants in this research area. To address 
this “data labeling bottleneck” and the difficulty in distilling 
relevant features for machine learning, we are working to develop 
an Educational Data Mining (EDM) Workbench. A beta version 
of this Workbench, now available online at 
http://penoy.admu.edu.ph/~alls/downloads, is described in this 
paper. The workbench currently allows learning scientists to  

1) label previously collected educational log data with 
behavior categories of interest (e.g. gaming the system, 
help avoidance), considerably faster than is possible 
through previous live observation or existing data 
labeling methods.  

2) collaborate with others in labeling data.  
3) automatically distill additional information from log 

files for use in machine learning, such as estimates of 
student knowledge and context about student response 
time (i.e. how much faster or slower was the student’s 
action than the average for that problem step).  

Through the use of this tool, we hope that the process of 
developing a detector of relevant metacognitive, motivational, 
engagement, or collaborative behaviors can eventually be sped up. 
Just the use of “text replays”, on previously collected log data has 
been shown to speed a key phase of detector development by 
about 40 times, with no reduction in detector goodness [5].  

2. EDM WORKBENCH 
Version 1.0 of the EDM Workbench interfaces with some of the 
tools discussed in Section 1, filling some of the functional gaps 
that, without the Workbench, require manual intervention or 
require hand-coding of custom tools and cumbersome and 
complex actions by the user in packages such as Excel. Version 
1.0 of the Workbench has five functionalities: Log import, feature 
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distillation, data sampling, data clipping and labeling, and data 
export. We discuss each of these functions in turn. 

2.1 Log import  
The EDM Workbench allows users to import logs in DataShop 
text format [9] and CSV. The data is assumed to be stored in a flat 
file, organized in rows and columns. The first row of the import 
file is assumed to contain each column’s name. Each succeeding 
row represents one logged transaction, usually between the 
student and tutor but possibly between two or more students as in 
the case of collaborative learning scenarios. If the user specifies 
that the imported data is in DataShop text format, the Workbench 
will check whether the table contains the columns it requires to 
distill 26 pre-defined features (discussed in 2.2). The successfully-
imported logs may be saved in the Workbench’s format for work 
files—a compressed file containing the data in CSV format plus 
metadata specific to the EDM Workbench.  
The Workbench can also import nested folders of data, where 
each folder level represents a meaningful subset of the data. For 
example, if data from a section of students is collected several 
times over a school year, the researcher may have one folder for 
the school year, one subfolder for each section within the school 
year, one subfolder for a session within each section, and finally 
one file or folder for each student within a session. The 
Workbench allows users to label each level of subfolder, creating 
new columns for these labels, appending them to the data tables 
during importation process. 

2.2 Feature distillation 
Assuming the necessary columns exist in the imported file, the 
Workbench can automatically distill 26 features from the data. 
The Workbench also has capacity for defining new features for 
future analyses. The 26 features distilled come from features used 
in past automated behavior detectors using DataShop data and 
related intelligent tutoring system data [2, 5, 13, 14]. The features 
include (but are not limited to) estimates of the student’s 
knowledge of the current skill [7]; the time the student spent on 
the problem (both in absolute and relative terms); and the types, 
number and proportion of correct, wrong, or help actions for the 
current skill for the last n steps, for the skill, or for the student. 
The current EDM Workbench uses 21 generic functions to 
compute the 26 automatically distilled features. Some functions 
correspond directly to a single feature while others are reusable, 
i.e. users can vary input parameters to compute for different 
features. Figure 1 is an excerpt of the EDM Workbench 
configuration file that specifies the features to be distilled and the 
functions used to distill them. It shows the specification of two 
features: timeSD and timelastnSD. These features have 
been used in several behavior detectors [2, 3].  
The first example in the excerpt is the specification for the feature 
timeSD, which makes use of a generic function also named 
timeSD. <group_col> refers to a sub-grouping criterion. In 
this case, the data is grouped by type of step, as specified in the 
Step Name column. The <range_col> is the column that 
contains the duration values that will be used to compute 
timeSD. Finally, <out> specifies the feature and output column 
name.  
The second example in the excerpt is the specification for 
timelastnSD. It uses the function sumLastN. 

<sort_col> refers to the column by which the data should be 

sorted before computing the feature. The two sets of 
<group_col>s imply that data sub-grouping in this case is 
based on two criteria, the Anon Student Id and the 
Problem Name. The <range_col> refers to the timeSD 
column, computed earlier. The <n> refers to the number of steps 
to be used in the computation. As with the first example, <out> 
specifies the feature and output column name.  

Figure 1. Excerpt from the EDM Workbench configuration 
file. 

<feature_set> 

 <timeSD> 

  <group_col>Step Name</group_col> 

  <range_col>Duration</range_col> 

  <out>timeSD</out> 

 </timeSD> 

 <sumLastN> 

  <sort_col>Row</sort_col> 

  <group_col>Anon Student Id</group_col> 

  <group_col>Problem Name</group_col> 

  <range_col>timeSD</range_col> 

  <n>3</n> 

  <out>timelastnSD</out> 

 </sumLastN> 

</feature_set> 

 
At the moment, adding new features for distillation requires some 
programming: If the feature can be computed by using one of the 
21 existing functions, the user can modify the EDM configuration 
file to define the new function and how it is derived.  If a feature 
requires a new function, the user can add the new function to the 
EDM Workbench’s source code, after which the new feature can 
be defined in the configuration file. It is our long-term objective to 
foster a user community that will eventually make new features 
available for others to use, similar to the open source software 
community, increasing the EDM Workbench’s usefulness to the 
broader research community. 

2.3 Clip generation 
In different projects, text replays have been implemented in 
several different ways [5, 10, 13]. Two of the key ways that text 
replays have differed has been in terms of the information and 
grain-size of the data presented to the coder. For coding, data is 
subdivided into smaller units, termed clips — subsets of student-
tutor transactions defined based on criteria for when they begin 
and end, and what information is included. For example, in 
various projects, clips have been defined as 20-second intervals 
[5], segments of 5 or 8 actions [10], and in terms of defined 
“begin” and “end” events in the learning software [13].  
The EDM Workbench allows the user to define the set of features 
by which the data should be grouped, so that clips do not contain 
rows from different groups. For example, if the data should be 
grouped by student, a single clip will contain data from only one 
student and not multiple students. The workbench also specifies 
the clip size, either by time or by number of transactions. 
Delineation of clips by beginning and ending events is not yet 
possible, but is a feature planned for future implementation. The 
Workbench then generates the clips for analysis, according to a 
sampling scheme discussed in the next section. 

Feature 
timeSD 

Feature 
timelastnSD 
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2.4 Data sampling 
The data sampling feature of the Workbench allows the user to 
specify how clips are sampled from the data set. (It can also be 
used to sample at the action/transaction level). The user can 
specify the sample size, and whether the Workbench will 
randomly take the sample across the entire population or whether 
the workbench will stratify the sampling based on one or more 
variables.  
Note that the Workbench allows the user to sample the data at any 
point of the process — after importing, after clipping, or after 
labeling – depending on the user’s analytical goals.  

2.5 Labeling  
Once the sample has been taken, the user must then specify a 
subset of the clip columns that should be displayed in the text 
replay. It is possible that the user does not want all the clip 
columns displayed in the text replay. In the example shown in 
Figure 2, the user specified that only three columns will be 
displayed: COMPILE_SUCCESSFUL, MSG_MESSAGE and 
MSG_LINE_NUMBER. The user also specifies the labels that the 
observer or expert will use to characterize each clip. Figure 3 
(bottom) shows that expert or observer will have three labels to 
choose from: Confused, Not Confused or Bad Clip – the coding 
scheme from [10]. The circumstances under which an expert or 
observer labels a clip as “bad” changes depending on the data set, 
but typically indicate cases that should not be coded. For example, 
in the case of [10], a clip was labeled “bad” if the transactions 
contained instructor-supplied programming examples rather than 
programs that the students had written themselves. 

Figure 2. Specification of clip columns and labels. 

 
The Workbench then displays text replays of the clips together 
with the labeling options (Figure 3). A coder reads through the 
text replay and selects the label that best describes the clip. The 
labels are saved under a new column in the data set.  
Because a coder may have to label tens of thousands of clips [5], 
the coder may save his or her work and can continue the labeling 
process in a later session. 

2.6 Feature distillation and export 
Once data labeling is complete, the user can create clip-level data 
features to associate with the clips, facilitating later development 
of detectors. The user first selects the feature or column of 
interest. The user then specifies whether he/she would like the 
Workbench to compute for the minimum, maximum, average or 

standard deviation of that feature [13]. The Workbench will add 
the new column and corresponding computed value results to the 
clip dataset 

Figure 3. Text replay and label options. 

 
Finally, once processing is complete, the Workbench allows the 
user to save the logs in CSV format, for re-importation into an 
appropriate data mining tool, such as RapidMiner or WEKA. The 
user is then able to use that tool to build a detector of the construct 
they labeled, using the features they distilled.  

3. FUTURE WORK 
In this paper, we have presented the Educational Data Mining 
Workbench, a tool that researchers can use to facilitate the 
development of detectors of varying forms of student behavior. 
Version 1.0 of the Workbench supports two key steps of the 
detector development process that are relatively difficult and time-
consuming to do with existing tools: data labeling and feature 
distillation. By scaffolding users in conducting either or both of 
these steps, the tool may make it easier and quicker for a wider 
range of learning scientists and educational software developers to 
develop and use automated detectors of student behavior. 
It is worth noting that the current version of the Workbench is still 
limited. Each of the limitations discussed here are scheduled for 
implementation in the coming months. (1) The automatically-
distilled features are hard-coded; future releases will make it 
easier to alter the feature list. (2) The process of amending XML 
to create new features will be made more user-friendly. (3) The 
coders cannot change the way in which the text replays are 
displayed; future releases will support configuration of different 
ways to pretty print the text replays, towards highlighting the most 
important information for the coder’s specific current purpose. (4) 
Users can currently only sample data and assemble it into clips in 
a limited number of fashions; we intend to implement more 
sophisticated sampling and clip-creation strategies [13].  
A final direction for future work is to add support for researchers 
creating and validating models appropriately. Within the 
educational data mining community, there has emerged 
considerable know-how about how to set up tools such as 
RapidMiner to afford appropriate validation. (For example, 
batching data in order to support k-fold student-level cross-
validation, and then using a BatchXValidation operator in 
RapidMiner to implement it). We plan to add support for 
automatically creating appropriately stratified batches to realize 
several common cross-validation strategies, and automatically 
export RapidMiner code that is set up to read in the correct data 
and use appropriate cross-validation to build a detector of the 
construct that was labeled. 
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Development of the EDM Workbench remains ongoing, and we 
look forward to collaborating with a range of EDM researchers 
and learning scientists in making this tool as useful as possible for 
the EDM community. We welcome comments and suggestions – 
as well as contributions – from any interested colleague. 
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