
 

Interleaved Practice with Multiple Representations: 
Analyses with Knowledge Tracing Based Techniques 

Martina A. Rau 
Human-Computer Interaction Institute 

Carnegie Mellon University 
marau@cs.cmu.edu 

 Zachary A. Pardos 
Department of Computer Science 

Worcester Polytechnic Institute 
zpardos@wpi.edu 

ABSTRACT 
The goal of this paper is to use Knowledge Tracing to augment 
the results obtained from an experiment that investigated the 
effects of practice schedules using an intelligent tutoring system 
for fractions. Specifically, this experiment compared different 
practice schedules of multiple representations of fractions: 
representations were presented to students either in an interleaved 
or in a blocked fashion. The results obtained from posttests 
demonstrate an advantage of interleaving representations. Using 
methods derived from Knowledge Tracing, we investigate 
whether we can replicate the contextual interference effect, an 
effect commonly found when investigating practice schedules of 
different task types. Different Knowledge Tracing models were 
adapted and compared. A model that included practice schedules 
as a predictor of students’ learning was most successful. A 
comparison of learning rate estimates between conditions shows 
that even during the acquisition phase, students working with 
interleaved representations demonstrate higher learning rates. This 
finding stands in contrast to the commonly found contextual 
interference effect when interleaving task types. We reflect on the 
practical and theoretical implications of these findings.  

Keywords 
Knowledge tracing, intelligent tutoring system, practice 
schedules, multiple representations, contextual interference. 

1. INTRODUCTION 
Educational data is highly complex, not only because learning is a 
complex process, but also because educational materials are 
complex. Learning materials in realistic educational settings 
generally cover a number of educational topics and use multiple 
representations. There is a substantial amount of evidence 
demonstrating that the use of multiple representations has a 
significant impact on students’ learning [2,12]. When designing 
educational software that uses multiple representations, designers 
must decide how to temporally sequence the representations. In 
particular, it may matter whether representations are presented in 
a “blocked” manner (e.g., A – A – B – B) or in an interleaved 
manner (e.g., A – B – A – B). Research on contextual interference 
shows that interleaving task types leads to better learning results 
than blocking task types [7]. When working with multiple 
representations, a relevant question is whether practice with the 
different representations should be blocked or interleaved.  
In the present paper we use log data obtained from an in vivo 
experiment (i.e., a rigorously controlled experiment in a real 
educational setting) that uses a successful type of intelligent 
tutoring system to help students learn about fractions while 
varying the practice schedule of multiple graphical 
representations. The experiment investigated the effect of practice 
schedules of graphical representations on students’ knowledge of 
fractions assessed by posttests after they worked with the tutoring 
system. The goal of the present paper is to augment the findings 

from the traditional analysis of posttest data by applying a 
Knowledge Tracing algorithm to the log data. Analyzing student 
performance during the acquisition phase is particularly 
interesting when investigating the effects of practice schedules: a 
common finding is that interleaved practice schedules lead to 
better long-term retention and to better transfer than blocked 
schedules, but they often lead to worse performance during the 
acquisition phase [7]. Knowledge tracing, which tracks student 
knowledge over time, can be used to investigate learning 
differences between conditions during the acquisition phase [9].  
In order to analyze the effect of practice schedules of multiple 
graphical representations on students’ performance during the 
acquisition phase, we use a Bayesian Network model based on 
Knowledge Tracing [5]. Knowledge Tracing uses a two state 
Hidden Markov Model assumption of learning which uses correct 
and incorrect responses in students’ problem-solving attempts to 
infer the probability of a student knowing the skill underlying the 
problem-solving step at hand. Previous research has demonstrated 
that extensions of knowledge tracing can be used to analyze 
effects of experimental conditions [9]. We combined this model 
with several other extensions to Knowledge Tracing to each of the 
four experimental conditions of the experimental study to 
investigate differences in model learning rates between the 
conditions in the Fractions Tutor. 
The findings from the present paper are applicable to many other 
settings. Multiple graphical representations are used in a large 
variety of domains including science and mathematics. Whether 
to block or interleave representations is an important practical 
question in all of these domains.  

2. THE FRACTIONS TUTORING SYSTEM   
The Fractions Tutor used in the experiment was a type of 
Cognitive Tutor. Cognitive Tutors are grounded in cognitive 
theory and artificial intelligence. Cognitive Tutors have been 
shown to lead to substantial learning gains in a number of studies 
[6]. We created the tutors used in the present experiment with the 
Cognitive Tutor Authoring Tools (CTAT [1]. The design of the 
interfaces and of the interactions students engage in during 
problem-solving are based on a number of small-scale user studies 
that we conducted in our laboratory, as well as on Cognitive Task 
Analysis of the learning domain [3].  
The Fractions Tutor included three interactive graphical 
representations of fractions (circles, rectangles, and number lines) 
and covered a comprehensive set of task types ranging from 
identifying fractions from graphical representations, creating 
graphical representations, reconstructing the unit of unit fractions 
and of proper fractions, identifying improper fractions from 
graphical representations, and creating graphical representations 
of improper fractions. Students solved each problem by 
interacting both with fractions symbols and with the interactive 
graphical representations. As is common with Cognitive Tutors, 
students received error feedback and hints on all steps. In 

Proceedings of the 5th International Conference on Educational Data Mining 168



 

addition, each problem included conceptually oriented prompts to 
help students relate the graphical representations to the symbolic 
notation of fractions. These prompts were shown to be effective in 
an earlier study with the Fractions Tutor [12]. 

3. EXPERIMENT AND DATA 
T Blocked Moderate Interleaved Increased 
1 c-c-c-c-c-c c-c-c-r-r-r c-r-n-c-r-n c-c-c-c-c-c 
2 c-c-c-c-c-c r-r-r-n-n-n c-r-n-c-r-n c-c-c-c-c-c 
3 c-c-c-c-c-c c-c-c-r-r-r c-r-n-c-r-n r-r-r-r-r-r 
4 c-c-c-c-c-c r-r-r-n-n-n c-r-n-c-r-n r-r-r-r-r-r 
5 c-c-c-c-c-c n-n-n-c-c-c c-r-n-c-r-n n-n-n-n-n-n 
6 c-c-c-c-c-c c-c-c-r-r-r c-r-n-c-r-n n-n-n-n-n-n 
1 r-r-r-r-r-r r-r-r-n-n-n c-r-n-c-r-n r-r-r-n-n-n 
2 r-r-r-r-r-r n-n-n-c-c-c c-r-n-c-r-n n-n-n-c-c-c 

… … … … … 
1 n-n-n-n-n-n n-n-n-c-c-c c-r-n-c-r-n c-r-n-c-r-n 
2 n-n-n-n-n-n c-c-c-r-r-r c-r-n-c-r-n c-r-n-c-r-n 

… … … … … 
Table I. Practice schedule for each condition for all six task types 
(T). Each T was revisited three times. Students worked on nine 
problems per T. Each letter stands for one tutor problem and its 
representation: circle (c), rectangle (r), or number line (n). 
The data used in this paper is based on an experimental study 
conducted with the Fractions Tutor during the end of the school 
year of 2009/2010. A total of 527 4th- and 5th-grade students 
from six different schools (31 classes) in the Pittsburgh area 
participated in the study during their regular mathematics 
instruction. We excluded students who missed at least one test 
day, and who completed less than 67% of all tutor problems (to 
ensure that students in the blocked condition encountered all three 
representations). This results in a total of N = 230 (n = 63 in 
blocked, n = 53 in moderate, n = 52 in fully interleaved, n = 62 in 
increased). Students worked with the Fractions Tutor for about 5h. 
Table I illustrates the practice schedules of task types and 
representations for the experimental conditions. In all conditions, 
students worked on the same sequence of task types and revisited 
each task type three times. Students were randomly assigned to 
one of four conditions. In the blocked condition, students 
switched between the graphical representations after 36 problems. 
In the moderate condition, students switched representations after 
every three or six problems. In the fully interleaved condition, 
students switched representations after each problem. In the 
increased condition, the length of the blocks was gradually 
reduced from twelve problems at the beginning to a single 
problem at the end. To account for possible effects of the order of 
graphical representations, the order in which students encountered 
graphical representations was also randomized. 
For the experiment, students’ knowledge of fractions was assessed 
at three test times: before their work with the Fractions Tutor, 
immediately after, and one week after students finished working 
with the Fractions Tutor. The tests included four knowledge types: 
area model problems (i.e., problems that involved circles and 
rectangles), number line problems, conceptual transfer, and 
procedural transfer. The results from the test data (described in 
more detail by [11]) showed that the fully interleaved condition 
performed significantly better than the blocked condition, the 
moderately interleaved, and the increasingly interleaved 
conditions on conceptual transfer at the delayed posttest. 
Furthermore, there was a marginally significant advantage for the 
increasingly interleaved condition compared to the blocked, 
moderately interleaved, and fully interleaved conditions on 
number line items at both the immediate and the delayed posttests.  

The analyses presented in the current paper are based on the tutor 
log data obtained from the Fractions Tutor. The log data provide 
the number of correct steps at a student’s first attempt at solving a 
step in the tutor, the number of attempts until a step was correctly 
solved, the number of hints requested per step, and the time 
students spent per attempt. 

4. BAYESIAN MODEL 
We evaluated four Bayesian models based on the experiment log 
data. Two of the models were created for the purpose of analyzing 
the learning rates of the conditions in the experiment while the 
other two were used as baseline models to gauge the relative 
predictive performance of the new models.  

4.1 Learning Analysis Models 
One of the simplifying assumptions made by the standard 
Bayesian Knowledge Tracing model [5] is that there is a 
probability that a student will transition from the unlearned to the 
learned knowledge state at each opportunity regardless of the 
particular problem just encountered or practice schedule of the 
student. Our model hypothesis corresponds to the hypothesis of 
the experiment that different practice schedules within a task type 
may be more or less effective at allowing students to acquire the 
skill being practiced. Thus, we depart from the Knowledge 
Tracing assumption of a single learning rate per skill and instead 
fit a separate learning rate for each of the four different practice 
schedule conditions defined in the experiment.  
To model different learning rates within Knowledge Tracing, we 
adapted modeling techniques from prior work which evaluated the 
learning value of different forms of tutoring in (non-experiment) 
log data of an intelligent tutor [9]. Different representations of 
fractions are expected to result in different degrees of difficulty in 
solving the tutor problem [4]. In our condition and representation 
analysis model we used techniques from KT-IDEM [10] to model 
different guess and slips for problems depending on the 
representation used in the tutor problem. 
We employed two models which served as benchmarks for model 
fit and designed two novel models for evaluating learning 
differences among the experiment conditions. We compared four 
Bayesian models all of which were based around Knowledge 
Tracing. Figure 1 provides an overview of the different models 
that we compared. The Prior-Per-Student Model [8] includes the 
students’ individualized prior knowledge, the Condition-Analysis 
Model includes students’ prior knowledge and models the effect 
of experimental condition (C). Finally, the Condition-
Representation-Analysis Model incorporates students’ prior 
knowledge (S), condition (C), and the graphical representation 
encountered by each student in each problem (R). 

4.2 Model Fitting Procedure 
In order to determine model fit by task type, we analyzed the log 
data by tasks type. For the evaluation of predictive performance, 
reported in the next section, a 5-fold cross-validation at the 
student level was used. For the reporting of learning rates by 
practice schedule, all data was used to train the model. 
The parameters in all four models were fit using the Expectation 
Maximization algorithm implemented in Kevin Murphy’s Bayes 
Net Toolbox. For the Condition-Representation-Analysis Model 
the number of parameters fit per task was 12 (2 prior + 4 learn rate 
+ 3 guess + 3 slip). Probabilities of knowledge are fixed at 1 if the 
skill was already known,  (    ) = 1, to represent a zero chance 
of forgetting, an assumption made in standard KT.  
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Fig. 1. Overview of the four different Bayesian Networks tested, with observed (o.) and hidden (h.) nodes. 

5. EVALUATION RESULTS 
 Model RMSE AUC 

1 Condition-Representation-Analysis Model  0.3427 0.6528 

2 Standard-Knowledge-Tracing Model  0.3445 0.6181 

3 Condition-Analysis Model 0.3466 0.5509 

4 Prior-Per-Student Model 0.3469 0.5604 

Table II. Cross-validated prediction results summary of the four 
models using RMSE and AUC metrics 
To evaluate the predictive accuracy of each of the student models 
mentioned in section 2, we conducted a 5-fold cross-validation at 
the student level. By cross-validating at the student level we can 
have greater confidence that the resulting models and their 
assumptions about learning will generalize to new groups of 
students. The metric used to evaluate the models is root mean 
squared error (RMSE) and Area Under the Curve (AUC). Lower 
RMSE equals better prediction accuracy. For AUC, a score of 
0.50 represents a model that is predicting no better than chance. 
An AUC of 1 is a perfect prediction.  
As shown in Table II, the Condition-Representation-Analysis 
Model has the lowest RMSE with .3427 as well as the best AUC. 
We conclude that the Bayesian Network that includes students’ 
prior knowledge (S), experimental condition (C), and 
representations used for a certain problem (R) provides the best 
model fit. All predictions were statistically significantly different 
from one other by a paired t-test of squared errors. 
Table III provides the learning rates obtained from the Condition-
Representation-Analysis Model for each condition for each of the 
task types that the tutoring system covered. Overall, the learning 
rate estimates align with the results obtained from the posttest 
data: the interleaved condition demonstrates higher learning rates 
than the blocked condition. The task types were as follows: (1) 
identifying fractions from representations, (2) making 
representations of fractions, (3) reconstructing the unit from unit 
fractions, and (4) reconstructing the unit from proper fractions. On 
task type (5) identifying improper fractions from representations 
and (6) making representations of improper fractions. 

TT Blocked Moderate Interleaved Increased 

1 0.0061 0.0061 0.0080 0.0072 

2 0.0019 0.0032 0.0065 0.0036 

3 0.0149 0.0059 0.0337 0.0030 

4 0.0037 0.0022 0.0035 0.0014 

5 0.0108 0.0220 0.0124 0.0130 

6 0.0043 0.0107 0.0078 0.0090 

Overall 0.0062  0.0056 0.0120 0.0062 

Table III. Learning rates by task type (TT) and condition from 
the Condition-Representation Analysis Model. 
The learning rates by task type provide more specific information 
on the nature of the differences between conditions in learning 
rates. For all but the fourth task type, the fully interleaved 
condition demonstrates a higher learning rate than the blocked 
condition. This difference was statistically significant for tasks 1, 
2 and 3 (p < 0.05) and moderately significant for task 5 (p = 0.06). 
The same binomial test as was used in [9] was employed here to 
test for significance. The interleaved condition achieved the 
highest overall learning rate which was twice that of any other 
condition. This was despite having the second lowest percent 
correct among responses in the acquisition phase. 

6. DISCUSSION 
The findings from the Bayesian Networks support and augment 
the findings from the posttest data in several ways. First, the 
finding that the Condition-Representation Analysis Model 
provides the best fit to the log data confirms the overall finding 
from the posttest data of the experiment that practice schedules of 
multiple representations matter. It also highlights that per item 
level parameters are greatly beneficial, especially when the 
problem opportunities involve different cognitive operations, such 
as solving problems with different representations. Furthermore, 
the finding that the representation used in a tutor problem is a 
useful predictor of learning confirms that different graphical 
representations provide different conceptual views on fractions in 
a way that influences how students understand fractions [4].  
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Second, the learning rate estimates per condition support the 
finding from the posttest data that interleaved practice schedules 
of multiple graphical representations of fractions lead to better 
learning than blocked practice schedules. This finding is 
interesting, because the literature on contextual interference shows 
that interleaved practice schedules often impair performance 
during the acquisition phase [7]. It is assumed that temporal 
variation between consecutive problems interferes with immediate 
performance since students have to adapt their problem-solving 
procedures each time they encounter a new task. This interference 
leads to higher processing demands and lower performance during 
the acquisition phase, but results in better long-term retention and 
transfer performance later on. Hence, one might expect that higher 
learning gains in the interleaved condition become apparent only 
in the posttest data, but not during the acquisition phase, because 
they might be “masked” by impaired performance due to 
interference. Our findings show, however,  that an intervention 
that is assumed to lead to impaired performance during the 
acquisition phase nonetheless leads to a learning advantage that is 
not only detectable in higher posttest performance but also during 
the acquisition phase using our experiment adapted Bayesian 
model. Bayesian Network analyses allowed us to detect learning 
gains that may be too subtle to detect during the acquisition phase 
when relying on performance. We believe this was able to be 
achieved thanks to the item level modeling that distinguished 
learning from variation in problem difficulty. 
Finally, the differences between learning rate estimates between 
task types yield important insights into the effectiveness  of the 
tutor task types that will help improve the tutoring system in 
future iterations. Bayesian Network analysis provides us with a 
useful tool that can help us evaluate this iterative improvement of 
the tutoring system at a much finer grain size than through the 
traditional analysis of posttest data. This technique also allowed 
for analysis to be accomplished without pre or post test data. 
The results from the Bayesian Network analysis presented in this 
paper yield interesting insights that are both of theoretical and 
practical significance. Our results confirm the finding from our 
previous experiment [18] that interleaving representations leads to 
better learning than blocking representations and extend the 
finding by demonstrating that the advantage of interleaved 
practice is apparent also during the acquisition phase. This finding 
is of practical relevance as it demonstrates that face-value 
methods, such as percent correct during the acquisition phase, do 
not provide sufficient information to evaluate an educational 
intervention. Since many domains use multiple graphical 
representations to augment instructional materials, we believe that 
our findings have the potential to generalize across a wide range 
of learning materials. Furthermore, the analysis of learning rates 
by condition allows us to identify parts of the Fractions Tutor 
curriculum that need to be improved as they do not seem to help 
students learn. Bayesian Network analyses can help us make sense 
of the complex educational data that we obtain from the rich 
settings in which education takes place, and hence, help us 
understand complex learning processes.   
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