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Preface 
	  
	  
	  

The 5th International Conference on Educational Data Mining (EDM 2012) is held in 
picturesque Chania on the beautiful Crete island in Greece, under the auspices of the 
International Educational Data Mining Society (IEDMS). The EDM 2012 conference 
is a leading international forum for high quality research that mines large data sets of 
educational data to answer educational research questions. These data sets may come 
from learning management systems, interactive learning environments, intelligent 
tutoring systems, or any system used in a learning context. 
	  

We received a total of 50 full papers, 19 short papers and 20 posters from authors of 
30 different countries and these submissions covered the full range of the conference 
topics specified in the call for papers. The papers were distributed to the 56 
international program committee members, who called upon additional 17 external 
reviewers. All papers were reviewed by 3 reviewers and any paper submitted by 
organisers was sent to anonymous reviewers unbeknownst to the involved organisers. 
After receiving a total of 235 reviews, 17 full papers and 15 short papers were 
accepted to be presented at the conference and included in these proceedings, giving 
an acceptance rate of 34% for full papers, and 46% overall. Furthermore, 17 posters 
were accepted and their summaries appear in the proceedings. We have also included 
the abstracts of the 3 invited talks by (i) Professor Myra Spiliopoulou, Professor of 
Business Information Systems, Computer Science, Otto-von-Guericke University 
Magdeburg, Germany,   (ii) Professor Danielle S. McNamara, Learning Sciences 
Institute Psychology Department, Arizona State University and (iii) Dr Bob Dolan, 
Senior Research Scientist, Assessment and Information, Pearson. 
	  

We would like to thank our sponsors Carnegie Learning (Gold Level), Pearson (Gold 
Level) and LearnLab (Silver Level) for their generous support. We would also like to 
thank the program committee members, the additional reviewers, the local committee, 
the  web  chair  and  the  invited  speakers  for  their  invaluable  help  in  putting  this 
program and conference together. 
	  

We hope that the papers contained in these proceedings will be stimulating to most of 
the  readers, provide  thought-provoking  new  ideas  to  motivate  new  research,  and 
prove helpful towards improving the literacy in educational data mining. 

Enjoy the conference. 

Kalina Yacef 
Osmar Zaïane 
Arnon Hershkovitz 
Michael Yudelson 
John Stamper 
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Stream Mining in Education? Dealing with Evolution 
 
 
 
Prof. Myra Spiliopoulou, Knowledge Management and Discovery Lab KMD, Faculty 
of Computer Science, Otto-von-Guericke-University Magdeburg, Germany 
 
 
 
EDM methods that suggest materials to students are based on student models, and/or 
on the behavior of other, similar students. Whenever a recommendation is formulated, 
though, or the similarity between two students is assessed, each of the observed 
individuals is at some, a priori unknown and typically not observable intermediate 
state of the learning process. This process manifests itself as a drifting stream of 
activities. Learning methods that adapt their models to the current state of this stream 
allow the formulation of recommendations aligned to the current learning stage of a 
student, taking into account students that evolve/learn similarly to her. The underlying 
technology is that of stream mining, rather than data mining. 
 
This talk is on the potential and challenges of conventional stream mining and 
relational stream mining for educational purposes. We start with mining over a 
conventional stream of activities, such as the interaction with a platform containing 
learning materials. The typical learning task is predicting the next course material, 
given the changes in the preferences and experience of the individuals. Then, we 
move over to the learning task of discovering groups of individuals that evolve 
similarly over time. Finally, we discuss the supervised task of learning a model of 
performance, taking into account that the performance of each individual may change 
(unexpectedly) during the observation process. 
 
The examples of this talk do not come from the field of Educational Data Mining but 
from closely related fields -- formulating recommendations for products, and model 
adaptation as people's behavior change. 
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From Text to Feedback: Leveraging Data Mining to Build 
Educational Technologies 
 
 
 
Danielle S. McNamara, Arizona State University 
 
 
 
Over the past decade, our research teams have been using data mining techniques 
primarily for the purpose of analyzing text and writing corpora. These analyses 
emerged within three projects, Coh-Metrix, iSTART, and the Writing-Pal.  Coh-
Metrix is a text analysis tool that provides hundreds of linguistic and semantic indices 
on text. Within the context of the Coh-Metrix project, we have analyzed thousands of 
texts with the goal of better understanding the nature of text. Ultimately, our goal has 
been to provide educators with multidimensional information about the difficulty of 
text. iSTART is a reading strategy tutoring system that provides students with 
automated feedback on the quality of their self-explanations of text. The Writing Pal 
is a writing strategy tutoring system that provides strategy instruction to adolescent 
readers as well as practice writing essays with feedback. Within the context of the 
iSTART and Writing Pal projects, we have used Coh-Metrix and other text analysis 
tools to analyze self-explanations and essays.  Our goal has been to better understand 
the linguistic features contributing to their quality as well as to develop and improve 
our automated scoring and feedback systems. All of these endeavors have called upon 
a variety of data mining techniques that serve to analyze the data and in turn drive the 
feedback algorithms that undergird the tutoring systems. This talk will describe how 
data mining supports the development of educational technologies at various levels.    
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Five Aspirations for Educational Data Mining 
  
 
 
Bob Dolan and John Behrens, Pearson 
 
 
  
In this talk we present our disciplinary, methodological, and social aspirations for 
Educational Data Mining. These aspirations are based on broad conceptualizations of 
the nature of education and data analysis as social endeavors.  These aspirations fall 
into five categories which begin with the statement that  “We hope that Educational 
Data Mining will…” 1) Consider the broad range of the social and organizational 
aspects of education and its administration, including informal and ubiquitous 
learning; 2) Consider the broad range of inputs of digital artifacts that feed into the 
design of learning systems (not just the outcomes of system interactions); 3) Consider 
data mining as a human endeavor which is itself a proper topic of psychological, 
sociological and other academic disciplines; 4) Remember the fundamentals of 
quality data analysis regardless of computational techniques (with special fondness 
for John Tukey’s insights); 5) Provide information that celebrates the diversity of 
effective pedagogies and supports learning by the outliers, hidden clusters, and 
otherwise missed special groups of people that are lost in the averages or other 
insensitive aggregations. We have high expectations for the field of Educational Data 
Mining to evolve broadly and contribute broadly to education and society. 
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Assisting Instructional Assessment of Undergraduate 
Collaborative Wiki and SVN Activities 

Jihie Kim, Erin Shaw, Hao Xu, Adarsh G V 
Information Sciences Institute / University of Southern California 

4676 Admiralty Way, Marina del Rey CA 90292 

{jihie, shaw, hxu, agvenkat}@isi.edu 
 
  

ABSTRACT 

In this paper we examine the collaborative performance of 
undergraduate engineering students who used shared project 
documents (Wikis, Google documents) and a software version 
control system (SVN) to support project collaboration. We present 
an initial implementation of TeamAnalytics, an instructional tool 
that facilitates the analyses of the student collaboration process by 
creating dynamic summaries of team member contributions over 
time in. Document content is processed using machine learning 
techniques. We validated the summary’s effectiveness using a 
questionnaire given to instructors and team managers. Team 
managers indicated that summaries of student contribution to 
coding activities influenced their evaluation and coordination of 
team projects. 

Keywords 

Collaborative teamwork, instructor tool, wiki, team projects. 
 

1. INTRODUCTION 
Engineering students participating in collaborative activities 
communicate electronically through a variety of applications, 
most of which are inaccessible to an instructor and thus offer little 
insight into the process of collaboration. The goal of the 
Pedagogical Wiki project is to assist instructors and educational 
researchers in evaluating team and individual student performance 
in the context of computer-supported collaborative learning 
environments. 

In this paper we examine the collaborative performance of 
undergraduate engineering students who used a shared project 
documents, including Wikis and Google documents, and a 
software version control system to support project collaboration. 
Wikis are editable Web sites that support the creation of linked 
pages, archiving of media, revision control, access control, 
searching, and a consistent look and feel. Wikis facilitate 
collaborative learning by allowing groups of laypersons to 
collaboratively create web content [13,1,4]. However, the research 
on the effectiveness of using Wikis for student collaboration has 
been mixed [14,17], and patterns of student collaborative 
documenting and their effect on learning have not been fully 
assessed. 

In addition to Wikis, students used Google documents, a popular 
team document generation and sharing environment that allows 
synchronous document editing, and Subversion (SVN), a version 
control system that is commonly used for software management. 
Version control systems track revisions that are made to files over 
time, usually by a group of authors. Wikis, Google documents and 

SVN all provide revision “histories”, which can, in theory, be 
used to analyze student performance. For example, Ben-Zvi [1] 
notes that while logs can be used to evaluate each student’s Wiki 
contribution, the number of contributions is enormous and new 
techniques and tools are needed to track them efficiently. Without 
proper tools, the analysis of document histories would place a 
considerable burden on instructors, who rarely have the skills or 
time to analyze the data for assessment purposes.  

This paper presents a new instructional tool called TeamAnalytics 
that summarizes collaboration via online team activities. It 
dynamically processes student shared document edits and code 
management actions, summarizes both the overall team and 
individual contributions in each week, and presents the summary 
to the team managers and the instructor.  For processing Wiki 
content data, we use natural language processing (NLP) 
techniques and machine learning approaches to generate topic-
based summary of the documents. We report a study of 
PedSummary based on team manager ratings and a small survey.  
The initial results with two undergraduate courses with large team 
projects indicate that individual code contribution summary is 
useful for team managers and such summary can influence how 
the managers coordinate the team project. 

1.1 Teamwork summary categories  
Table 1. Current categories of team work summaries. 

Category Summary Description 

1 View 
Docs 

A tree view of 
Wiki docs 

Hierarchical view of the docs, 
organized based on links and 

topics 

2 Wiki- 
Group 

Total Wiki 
contributions 
by members 

Number of docs (and number of 
words) created, frequencies of 

accesses/views, and topic-based 
document distribution 

3 Wiki-
Individual 

Individual 
Wiki 

contributions 

Number of docs, words, 
access/view of others’ docs and 
topic-based distribution of the 

docs 

4 SVN- 
group 

Total SVN 
contributions 
by members 

Number of files 
added/modified/deleted by the 

team, and weekly totals	  

5 SVN- 
Individual 

Individual 
SVN 

contribution 

Number of files 
added/modified/deleted by the 

student, and weekly totals 
 

As engineering researchers, we (the authors) use Wikis 
extensively, primarily as a knowledge repository for project 
documentation and media. It is clear that, for Wikis, the benefit of 
democratic use is also its downfall, with its lack of structure and 

Proceedings of the 5th International Conference on Educational Data Mining 10



 

oversight.  Student Wiki sites often do not scale well, and tracking 
text and asset contributions becomes frustrating. Our goal was to 
provide finer-grained measurements and user-friendly interfaces 
for understanding instructional shared Wiki use. 

In order to alleviate the problem of viewing student documents 
with existing Wiki systems, TeamAnalytics clusters documents 
according to the link hierarchy within the Wiki system (Category 
1 in Table 1). They are also organized based on document topics 
that are automatically identified from topic models. 

The primary instructor for the undergraduate course we studied 
also teaches an upper level course in which the students take on 
the role of team managers for the undergraduate project teams, 
and the instructor delegates most of the assessment tasks for the 
project teams to the team managers. A needs assessment was 
performed for both the course instructor and the team managers. 
Although the team managers participate in student group meetings 
and help the students as needed, often times they had difficulty in 
documenting who is doing what and how much. Such manager 
documentation is used in reporting teamwork to the instructor and 
tracking the teamwork throughout the project.  In some cases, the 
members in the same team receive similar grades depending on 
the team performance. The instructor and the managers wanted to 
see individual contributions as well as the total contributions by 
all the team members (Categories 3 and 5 vs. 2 and 4 in Table 1). 
Identifying patterns of student activity relative to student 
performance was also discussed.  In order to support an analysis 
of activity patterns, we broke up the contributions into weekly 
activities so that the managers can see how students work towards 
the deadlines over time. 
 

2. ANALYSIS REPORT GENERATION 
This section describes how collaborative Wiki and Google 
document activities are captured into a summary that is viewable 
by team managers and instructors. Although we show results for 
Moodle’s Wiki, Google documents and SVN, most of the data 
processing steps do not depend on the course management system 
or particular document tools. For example, our topic classification 
functions are being used for other Wiki (e.g. Brainkeeper) content. 

2.1 Participating Courses 
The TeamAnalytics system was integrated into Moodle’s [10] 
virtual learning environment during the Spring 2011 and Fall 
2011 semesters. During each of these semesters, two 
undergraduate software engineering courses were combined for a 
large team-based project assignment. The study took place at the 
University of Southern California. 

Students in a freshman level software development course 
(CSCI200) teamed up with students in a sophomore level course 
(CSCI201) for a large-scale programming project.  Students in 
both courses learned team management, software engineering 
principles, and operating system principles and used the concepts 
to build “authentic” applications that solved new problems. 
Because second year students had already completed the first year 
course, they were able to mentor the first year students. The 
project team had students from both classes. Each team had about 
four freshmen and four sophomore students.  The first year course 
(CSCI200) emphasized user-interfaces and the second year course 
focused on architecture (CSCI201). Additionally, a team manager 
was assigned to each team to assesses team co-ordination and 

leadership skills, and provide help throughout the project. Our 
work focused on assisting the team managers and the instructors.  

There were ten teams of between ten and fifteen students each 
semester. The teams used their collaborative workspaces 
(Moodle) in myriad ways. Some teams used the Moodle Wiki and 
some used Google documents that they then linked to the Moodle 
courses. Some used a combination of both, e.g. Wikis for meeting 
notes and Google for documents. The choice was theirs. The 
workspace for team M2, is shown in Figure 1.  

 
Figure 1. The collaborative workspace for a combined USC 

freshman/sophomore engineering team M2   

2.2 Data processing  
The TeamAnalytics architecture is shown in Figure 2. All team 
activity data is stored in the Student Group Activity database.  The 
system fetches SVN activity data from the SVN server used by 
the courses. Students’ actions including addition, modification 
and deletion of files are retrieved every 24 hours.  

The system also dynamically accesses the student Wiki history 
including addition, deletion and modification information from 
the course management system. Each team provided edit 
permissions to allow us to access to the content and edit history of 
the shared Google documents through a Google API. After re-
formatting the data, the Wiki data processing functions were used. 

 
Figure 2. Generating teamwork summary using data from SVN 

and Wikis and Google documents. 
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For topic modeling, whenever a new page or a revised page is 
saved, a backend program is invoked to parse the content of the 
page and generate topic distributions using the automatic topic 
classifier, which is described in detail in subsequent sections.  

The dynamically generated summaries were sent to the team 
managers and instructors by weekly email. The summaries were 
also viewable from within the team’s Moodle course environment. 
The team manager of M2 could access the summary by clicking 
the ‘USC CSCI200/201-M2 Wiki Summary’ link (Figure 1).  The 
instructor and the team managers could view all the teams’ 
activities as shown in Figure 3. The content of the summaries is 
described in Section 3. 

 
Figure 3 Summaries of all the participating teams available for 

the instructors and team managers. 

2.3 Automatic topic classification 
The Wiki pages and Google docs are classified based on the page 
title and the content using Labeled LDA. 

2.3.1 Background on Labeled LDA 
Because we wanted to develop a topic modeling approach that 
could be easily applied to different courses, supervised 
approaches requiring a large amount of labeled data were not 
appropriate. And because discussion datasets are noisy, we needed 
a model that could capture semantic meanings behind the words 
rather than words themselves. LDA (Latent Dirichlet allocation) 
32] is very powerful in analyzing latent topics of documents, but it 
has all the disadvantages inherent to any unsupervised model. The 
topic distribution of LDA depends on the word distribution in the 
documents and cannot be controlled even if we have a prior 
knowledge to guide topic generation. Thus many topics are just a 
cluster of words that co-occur in many documents and do not have 
a semantic meaning in real data. Ramage et al [13] introduced a 
semi-supervised algorithm, called Labeled LDA, a novel model 
that uses multi-labeled corpora to address the credit assignment 
problem. Unlike traditional LDA, Labeled LDA constrains topics 
of documents to a given label set. We have V number of unique 
vocabularies and D number of documents, and K number of 
topics. For each document d, which consists of a list of word 
(w1(d),…,wN(d)), we have k dimensional binary topic indicators. 
Unlike using symmetric Dirichlet distribution with a single hyper 
parameter α as a Dirichlet prior on the topic distribution θ(d), 
Labeled LDA restricts θ(d) to only over the topics that correspond 
to observed labels. The key task was to select a label set that could 
generate meaningful topic results. 

2.3.2 Wiki Topic Modeling with Labeled LDA 
The topic categories for the software engineering team wiki 
documents are shown in Table 2. This was generated after manual 
analyses of the course curriculum and the content of the wiki 
documents across all the project groups in the class. The topic 
categories represent the major types of the documents generated 
by the students over the course. The two main topic classes are 
team management categories (Team Organization and Progress 
Summary). The rest of them represent software engineering 
principles documents that show Initial Planning, Design, Coding, 
Testing and System Analysis. 

Table 2. Topic categories for team work document. 

Topics Description Kappa 

Team 
Organization 

Team contact information, availability for 
meetings, allocation of project modules to 
members, milestones and their target dates. 

0.83 

Initial 
Planning 

Initial research and Q&A discussions on the 
project. Some use external links and 

reference materials. 
0.82 

Design 
Design documents describing frontend, 

backend, Interfaces. Also includes 
interactive diagrams. 

0.73 

Implementatio
n and Coding 

Describes implementation method, using 
pseudo code or java code.	   0.91 

Testing Describe code testing including unit test 
cases, bugs or Junit. 

0.73 
 

System 
Analysis 

 

Analysis of implemented system; system 
issues, setbacks and fixes in system design.	   0.74 

Progress 
Summary 

Document discussions, meetings, email and 
phone conversations on the status of project 

modules. 
0.81 

A Kappa measure [5] was used to verify agreement. Table 2 
shows the Kappa values between two annotators for 263 
documents sampled. Kappa values take into account agreement 
that can occur by chance. 
                        Observed agreement - Chance agreement   
    Kappa =   ---------------------------------------------------------  
                            Total observed - Chance agreement   

Table 3. Sample label set and LLDA classification results. 

Topics Sample Labels  % Prec/re
call 

Team 
Org 

rxgui,rxnub,part,kit,on,panel,gantri,rxnub_rxnub,r
xfunction,object,return,user,factori,move,can 14.8 0.4 

/0.29 

Planning rxquestionmark,custom,=,{,},messag,if,rxfunctio
n,order,state,list,check,action,customer,timer 3.5 0.0 

/0.0 

Design kit,part,public,rxnub,rxfunction,int,void,on,stand,
rxquestionmark,type,public_void,call,=,at 28.3 0.43 

/0.35 

Coding rxfunction,=,part,{,rxnub,},if,void,int,public,kit,s
et,bin,rxgui,feeder 19.0 0.69 

/0.82 

Testing },{,part,=,kit,rxfunction,if,nest,int,return,rxquesti
onmark,lane,void,true,list 9.4 0.0 

/0.0 

Analysis rxgui,you,panel,rxnub,food,cook,on,ar,when,anim
,should,do,if,all,your 6.3 0.54 

/1.0 

Progress rxnub,rxnub_rxnub,i,test,meet,task,rxday,my,inte
gr,code,on,rxgui,done,design,panel 16.7 0.65 

/1.0 

Sample label sets used for LLDA are show in Table 3. We 
evaluated the model distributions using the manual annotations as 
the gold standard. Since documents can contain multiple topics, 
we evaluated them by selecting and comparing the top 2 topics 
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from the manual annotations and model results. Precision is 
defined as the ratio of the number of correct topic annotations 
generated by the model to the total number of topic annotations 
generated by the model. Recall is defined as the ratio of the 
number of correct topic annotations generated by the model to the 
total number of correct annotations specified by the gold standard.  
The table also shows the % of the topics within 314 annotated 
documents. The current model provides limited accuracies for 
some topic categories due to limited examples. We are currently 
improving the LLDA model by adding more dataset. 
 

3. ANALYSIS REPORT PRESENTATION 
This section describes how document-based and code-based 
activity summaries were presented to team managers and 
instructors. As described above, the dynamically updated 
summaries and statistics were viewable from within Moodle. We 
also generated and sent team summary reports to each team 
manager by email. 

3.1 Document Summary 
This section describes the content of the document summaries. 

3.1.1 Tree view of document with topic labels 
A tree view of the documents created or modified by students on 
team W3 is shown in Figure 4. Each team generated more than 
hundred documents and uploaded many additional files such as 
design diagrams. Wiki pages, plan text pages, and upload 
documents of any type were stored within the virtual learning 
environment. Wiki pages were related using hyperlinks. Google 
documents were also used and linked within Moodle. In order to 
help students and team managers navigate through various 
documents, TeamAnalytics compiled document links and 
generated a hierarchical view of the team documents. A general 
API (application programming interface) was developed so that 
other types of links could be captured within the structure.   
The tree view also shows who created the document, how many 
students edited the document, how many edits were made, how 
long the document was edited, how many words were included, 
and how many links were present in the document. We also 
organized the documents based on the content topics, using the 
above-mentioned LLDA models. Without reading the individual 
document details, team managers could evaluate who was 
contributing on what topic and how often.  

 

Figure 4.Tree view of documents based on document links 

 

3.1.2 Topic based document distribution 

 
(a) Topic distribution of all the team documents. 

 
(b) Weekly document topic distribution of documents. 

Figure 5.Topic distribution of team documents. 

Document topics were summarized into a bar graph like the one 
shown in Figure 5-(a). The accumulated number of documents per 
each topic, based on the LLDA topic distribution, is shown.  
Using this view, the team managers could estimate the distribution 
of topics in the team documents.  We also highlighted increments 
within a given week so the viewer could evaluate the topics of 
focus during that week. A weekly distribution of the document 
topics is shown in the heat map in Figure 5-(b).  The headings 1-9 
depict the nine weeks that the project runs. The cells with high 
frequency values are highlighted with darker colors. 

3.1.3 Participation frequency per student 
Wiki contributions by individual students are shown in Figure 6. 
For each student the left (blue) bars show number of documents 
viewed and the right (green) bars show the number of documents 
edited by the student. The portions contributed during the current 
week are highlighted with lighter colors, and the counts at the tops 
of the bars show the current week’s numbers of edits and views. 
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Figure 6. Individual student contributions to Wiki 

3.2 SVN Summary 

 
(a) Number of files added by each student weekly. 

      

 
(b) Number of files modified by each student weekly. 

Figure 7. Weekly student contributions to SVN 

Students used the Subversion (SVN) version control system to 
manage changes to their team’s programming files. SVN allowed 

team members to add new program files, or modify or delete 
existing ones. Figure 7 shows individual student contributions to 
SVN for adding and modifying files.  The weekly total numbers 
of file additions and modifications by all the team members are 
shown at the bottom of the table.  The team managers were able to 
track the degree of SVN activity using this summary. 
 

4. USER STUDY  
TeamAnalytics was integrated into Moodle’s virtual learning 
environment during the 2011 Spring and Fall semesters. A total of 
278 students participated in the projects (42 freshmen and 67 
sophomores in the Spring implementation, and 90 freshmen and 
57 sophomores in the Fall implementation). There were ten teams 
each semester, and a manager was assigned for each team. The 
system was introduced to the classes and team managers before 
the project started. The dynamic summary was available to team 
managers on Moodle, and also sent weekly by email.   

Table 3. Team manager ratings of the TeamAnalytics 
components. 

Team Manager Rating (average) Spr 2011 
(N=7) 

Fall 2011 
(N=7) 

Viewing: 1=never, 2=occasionally, 3=often 

Document activity viewed 2.0 1.71 

Topic activity viewed -- 1.57 

SVN activity viewed 2.7 2.29 

Helpfulness: 1=minimal, 2=moderate, 3=very 

Document activity helpful/ 
influence manager 1.9 2 

Topic activity helpful/ influence 
manager -- 1.6 

SVN activity helpful/ influence 
manager 2.4 2.8 

Survey responses for the team managers are shown in Table 4. 
Survey participation was voluntary and the response rate for both 
semesters was seven out of ten. Team managers were asked to rate 
the document (Wiki and Google Docs) activity views, topic-based 
document summaries and SVN activity summaries separately.  
The topic-based document summary was developed later and 
introduced to the Fall 2011 classes only. 

The team managers viewed the SVN activity summaries more 
often than the document and topic summaries, and found the SVN 
summaries between moderately and very helpful. The documents 
summaries were rated moderately helpful and the topic summary 
was rated between minimal and moderate.  It is evident that the 
team managers were most interested in student coding activities.  

Team manager responses to other survey questions are shown in 
Table 5. The managers liked how they could keep track of coding 
work progress using TeamAnalytics. Several managers raised 
issues about the user interface (UI) especially comparing the old 
and new Moodle UIs. Recent upgrades and our own improvement 
of the interface design reduced some of the concerns. Individual 
managers show different preferences for how the information 
should be presented. We are investigating alternative approaches 
for showing the results.  The managers also wanted to see more 

!
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details on student coding activities such as the numbers of lines 
added or deleted by individual students.  We plan include such 
coding activity information and provide a drill-down view where 
end users can choose to see such details 

Table 5. Team manager answers for survey questions. 

Question Responses 

How did 
the 
summary 
influence 
your work? 

s
p 
 

showed me the progress of the team 
It did influence the way I saw the member 
and the team as I knew who was putting in 
more effort. This is definitely better than the 
views and edits 
I will review and evaluate team members' 
performances for their projects. 
Frequency of SVN commits does not map to 
work done on the project, but low commits 
CAN be a reason for concern 
Allowed for me to monitor which members 
were contributing to code. 

Can you 
think of 
additional 
activity 
information 
that you 
want to 
see? 

s
p 

Perhaps the time of the last edit or view 
Member wiki contribution statistics 
I like it how it is 

f
a 

If it's possible, analysis showing number of 
lines of code affected, number of files 
touched, whether the commit is a merge.  
Any of those would be helpful for analysis 

I collected activity data by being at the 
meetings, so no. 

Meeting set up and attendance checking. 
Individual doc revision statistics for each 
document 
The question of are we behind, maybe by 
comparing with SVN commits of previous 
semesters? 

Whether someones work has actually been 
productive 

Do you 
have any 
suggestions 
for 
improving 
the 
summary, 
including 
how the 
information 
is 
displayed? 

s
p 

The current way is good enough as it serves 
the purpose, The UI should be improved 

In graph instead of tables. Better interface 

moodle's UI sucks  
 you guys were great with feedback this 
semester and the moodle was FAR more 
useful than it was in the fall of 2010. I like it 
how it is. 

In a dashboard format where priority is given 
to certain issues. Bug tracking. 
Information would be more easily shared if it 
was in more of a forum type setup. 

f
a 

Allow more detail in the SVN log, like 
separate it by day or hour (on a graph) 
instead of week.  Also stronger analysis like 
graph of SVN activities for each person. 

Less colored charts, more bar graphs 

 

5. RELATED WORK 
Our work is situated in the research domain of context modeling 
and activity awareness to support group performance on complex 
tasks (e.g., [3,18]). Of particular relevance is Upton and Kays’ 
Narcissus system [16], which graphically models user and group 
behavior to support team collaboration. Also related is Suthers, 
Dwyer and Medina’s [15] Uptake Analysis Framework for 
conceptualizing and representing distributed interaction, in which 
contingency graphs are used to transcribe activity in the temporal 
space, distributed across multiple documents, to enable 
researchers to (possibly) identify the influence of prior activity on 
ongoing activity.  Our work extends existing research by 
automatically generating summaries of group work in 
collaborative knowledge building and team programming 
environments, and by combining NLP techniques to support 
topic-based analysis of contribution content. 

Our work builds on Activity Theory [6,9], which we used 
previously as a framework for analyzing wiki activity [7].  The 
presented work significantly extends the scope of activity analyses 
and presents an evaluation with team managers. Glassman and 
Kang [8] propose that learning via Wikis and Web browsing is 
best explained as an abductive logic process, consisting of 
discovery and hypothesis generation, which would call for a 
model that reasons about prior activity to explain ongoing activity.  
The TeamAnalytics effort facilitates analysis of student online 
work contributions and how they progress over time by instructors 
and team managers. 

TeamAnalytics also extends our prior work on workflow-based 
analysis of student online discussions [11,12]. We plan to make 
use of the computational workflow framework to support more 
efficient and robust approaches for assessing student online 
activities. 
  

6. SUMMARY AND FUTURE WORK 
This paper presents our initial implementation of TeamAnalytics 
that provides a summary of member contributions over time in 
Wiki space and SVN. Our initial study with team managers 
indicates that a summary of how individual students contribute to 
coding can influence how the managers evaluate and coordinate 
the team project.  We plan to trace how the managers use the 
information in team coordination and assisting students.  We will 
also explore opportunities to assist grading student teamwork with 
the TeamAnalytics report. 

Based on the team manager comments collected so far, we plan to 
add more details on student coding activities including whose files 
were modified by whom. We are also investigating additional 
topic categories that can help instructors and managers track 
student activities. In order to receive more feedback while the 
team managers view the summaries, we plan to add feedback 
fields in the summary page so that we can capture team manager 
input regularly.  Although the instructors do not directly manage 
teamwork, they can also provide input on how to make the 
summary more useful using such function. 

Regarding the presentation of the summary results, we will follow 
suggestions from the instructors as well as the team managers in 
developing effective ways to show the summary information. 
 

Proceedings of the 5th International Conference on Educational Data Mining 15



 

7. ACKNOWLEDGMENTS 
The authors are indebted to USC Computer Science Professors 
Drs. David Wilczynski, Michael Crowley and William Cheng for 
their assistance. This research is supported by a grant from the 
National Science Foundation (Award #0941950). 
 

8. REFERENCES 
[1] Ben-Zvi, Dani (2007) Using Wiki to Promote Collaborative 

Learning in Statistics Education. In Technology Innovations 
in Statistics Education, vol 1, issue 1, article 4, 2007. 

[2] Blei, D.M. and Ng, A.Y. and Jordan, M.I. Latent dirichlet 
allocation (2003). The Journal ofMachine Learning 
Research. Vol 3, 993—1022. 

[3] Carroll, J., Neale, D., Isenhour, P., Rosson, M., Scott & 
McCrickard, D. (2003). Notification and awareness: 
synchronizing task-oriented collaborative activity. Int. J. 
Hum. Comput. Stud. 58(5), 605–632. 

[4] Chen, H.L., Cannon, D.M., Gabrio, J., &Leifer, L. (2005, 
June). Using Wikis and Weblogs to Support Reflective 
Learning in an Introductory Engineering Design Course. 
Paper presented at the 2005 American Society for 
Engineering Education Annual Conference & Exposition. 

[5] Cohen, J., (1960). A coefficient of agreement for nominal 
scales. Educational and Psychological Measurement, 20, 37-
46. 

[6] Engeström, Y. (1993). Developmental studies of work as a 
testbench of activity theory. In S. Chaiklin, S. and J. Lave, 
eds., Understanding Practice: Perspectives on Activity and 
Context (pp. 64–103). Cambridge: Cambridge University 
Press.  

[7] Ganapathy, C., Shaw, E. & Kim, J. (2011) Assessing 
Collaborative Undergraduate Student Wikis and SVN with 
Technology-based Instrumentation: Relating Participation 
Patterns to Learning, Proceedings of the American Society of 
Engineering Education Conference, 2011. 

[8] Glassman, M. & Kang, M. J. (2011) The logic of wikis: The 
possibilities of the Web 2.0 classroom. Computer-Supported 
Collaborative Learning (2011) 6:93–112. 

[9] Kaptelinin, V., &Nardi, B. A. (2006). Acting with 
technology: Activity theory and interaction design. 
Cambridge: MIT. 

[10] Moodle. http://www.moodle.org/ 

[11] Ma, J., Shaw, E. and Kim, J. (2011) Workflow-Based 
Assessment of Student Online Activities with Topic and 
Dialogue Role Classification, Proceedings of the AI in 
Education Conference, 2011.  

[12] Ma, J., Shaw, E. and Kim, J. (2010) Computational 
Workflows for Assessing Student Learning, Proceedings of 
the International Conference on Intelligent Tutoring Systems 
Conference, 2010. 

[13] Ramage, D. and Hall, D. and Nallapati, R. and Manning, 
C.D. Labeled LDA: A supervised topic model for credit 
attribution in multi-labeled corpora. Proceedings of the 2009 
Conference on Empirical Methods in Natural Language 
Processing. 

[14] Rick, J. & Guzdial, M. (2006) Situating CoWeb: a 
scholarship of application, Computer-Supported 
Collaborative Learning (2006) 1:89-115. 

[15] Suthers, D., Dwyer, N. and Medina, R. (2010) A framework 
for conceptualizing, representing, and analyzing distributed 
interaction Vatrapu Computer-Supported Collaborative 
Learning (2010) 5:5–42 

[16] Upton, K. and Kay, J. (2009). Proceedings of the User 
Modeling, Adaptation and Personalization Conference, 
Narcissus: Group and Individual Models to Support Small 
Group Work, UMAP 2010. 

[17] Wang, H.-C., Lu, C.H., Yang, J.-Y., Hu, H.-W., Chious, G.-
F., Chiang, Y.-T. & Hsu, W.L. (2005) An Empirical 
Exploration of Using Wiki in an English as a Second 
Language Course, In Proceedings of the Fifth IEEE 
International Conference on Advanced Learning 
Technologies. 

[18] Zimmerman, A., Lorenz, A. & Oppermann, R. (2007). An 
operational definition of context. In: CONTEXT 2007, 
Lecture Notes in Artificial Intelligence n. 4635, pp. 558–
6571. Springer-Verlag, Berlin. 

 
 
 

 

Proceedings of the 5th International Conference on Educational Data Mining 16



 

Automated Student Model Improvement 
Kenneth R. Koedinger 

Carnegie Mellon University 
5000 Forbes Avenue 
Pittsburgh, PA 15213 

koedinger@cmu.edu 

Elizabeth A. McLaughlin 
Carnegie Mellon University 

5000 Forbes Avenue 
Pittsburgh, PA 15213 

mimim@cs.cmu.edu 

John C. Stamper 
 Carnegie Mellon University 

5000 Forbes Avenue 
Pittsburgh, PA 15213 

john@stamper.org 
 

ABSTRACT 

Student modeling plays a critical role in developing and 
improving instruction and instructional technologies. We present a 
technique for automated improvement of student models that 
leverages the DataShop repository, crowd sourcing, and a version 
of the Learning Factors Analysis algorithm. We demonstrate this 
method on eleven educational technology data sets from 
intelligent tutors to games in a variety of domains from math to 
second language learning. In at least ten of the eleven cases, the 
method discovers improved models based on better test-set 
prediction in cross validation. The improvements isolate flaws in 
the original student models, and we show how focused 
investigation of flawed parts of models leads to new insights into 
the student learning process and suggests specific improvements 
for tutor design. We also discuss the great potential for future 
work that substitutes alternative statistical models of learning 
from the EDM literature or alternative model search algorithms.  
Keywords 

Student modeling, model discovery, model comparison. 

1. INTRODUCTION 
Student models drive the great many instructional decisions that 
automated tutors currently make, whether it is how to organize 
instructional messages, sequence topics and problems in a 
curriculum, adapt pacing to student needs, or select appropriate 
materials and tasks. Student models also appear critical to 
accurate assessment of self-regulated learning skills or 
motivational states. A better student model yields better 
instruction, which leads to improved learning. More accurate skill 
diagnosis leads to better prediction of what a student knows which 
provides better assessment. Better assessment leads to more 
efficient learning overall. 

Cognitive Task Analysis (CTA) has been shown to lead to better 
instruction [2], and CTA is currently the best strategy for creating 
cognitive models. Unfortunately, CTA is an expensive and time 
intensive process that is fundamentally driven by human experts. 
The main goal of this research is to accelerate the process of 
improving student models. Educational data mining and machine 
learning techniques can be used to improve these models in an 
automated fashion. In this research, we combine an automated 
search algorithm with existing proposed student models in the 
DataShop repository in a crowd sourcing fashion. Using this 
process, we have been able to make improvements in the models 
that lead to important focused insights into ways to improve the 
instruction of the tutoring systems that use these models. 

1.1 Background and Related Work 
A number of studies have demonstrated how detailed CTA can 
result in dramatically better instruction [2; 7; 9]. Cognitive Task 
Analysis clearly works in creating cognitive models but as it 
currently exists, CTA has several limitations. First, CTA is more 

of an art than a science involving many subjective decisions. 
Second, the most successful CTA approaches are heavy in human 
effort. Approaches like structured interviews, think alouds, or 
developing cognitive model simulations all require high level of 
psychological expertise and significant time investment. 

It may be possible to achieve similar outcomes using more 
automated techniques that utilize educational data mining and 
machine learning on large sets of student data. These techniques 
can reap many of the benefits of CTA, but with less effort and 
expertise than currently required. CTA typically produces a 
symbolic representation of a student model, for instance, a rule-
based production system of the skills in a domain. An alternative 
is to use data and statistical inference to create a student model 
involving continuous parameters over latent variables with links 
to observed student performance variables. 

In domains where cognitive models have been created, the 
learning curves derived from these models are a source for data- 
driven model revision. Others have applied learning curve 
analysis in the improvement of tutors. In one study of a constraint-
based tutor for teaching database programming [10], learning 
curve analysis was used to analyze log data and make student 
model improvements. Creating models of student performance is 
useful both for student assessment and for better student 
instruction. With respect to assessment, use of such models in on-
line systems might in fact be just as good at the job that 
standardized tests are intended to perform [5]. With respect to 
better instruction, such models are the basis for the kind of 
student-customized adaptive instruction that intelligent tutoring 
systems can provide [6]. Cognitive Tutors for mathematics are 
now in use in more than 2600 schools across the US for some 
600,000 students per year. While these systems have been quite 
successful, there is room for improvement in the student models 
that drive their behavior. 

The DataShop repository at the Pittsburgh Science of Learning 
Center (http://learnlab.org/datashop) provides a resource for 
educators and researchers to create, modify, and evaluate student 
models [8]. DataShop is an open data repository for educational 
data with associated visualization and analysis tools. DataShop 
has data from thousands of students derived from interactions 
with on-line course materials and intelligent tutoring systems. The 
data is fine-grained, with student actions recorded roughly every 
20 seconds, and it is longitudinal, spanning semester or yearlong 
courses. As of December 2011, over 300 datasets are stored 
including over 70 million student actions, which equates to over 
190,000 student hours of data. Most student actions are “coded” 
meaning they are not only graded as correct or incorrect, but are 
categorized in terms of the hypothesized competencies or 
“Knowledge Components” needed to perform that action. 

In DataShop terminology, Knowledge Components (KCs) are 
used to represent pieces of knowledge, concepts or skills that 
students need to solve problems. When a specific set of KCs are 
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mapped to a set of instructional tasks (usually steps in problems) 
they form a KC Model. A KC model is a specific kind of student 
model. DataShop provides an easy interface for exporting, 
modifying, and importing KC models, allowing researchers to 
evaluate and compare alternative KC models. 

1.2 Student Model Improvement 
A number of automated and hand search methods of exploring the 
cognitive model space have been proposed [1; 4; 10; 11; 13; 14]. 
These approaches create alternative models that are scored against 
existing models using one of several metrics for model prediction 
of student performance and how it changes over time. These 
include Akaike information criterion (AIC), Bayesian information 
criterion (BIC), and cross validation [12]. A statistical model is 
needed to make predictions about changes in student performance 
and DataShop uses an extension of item response theory that 
incorporates a growth or learning term [cf., 3; 14]. We refer to this 
model as the “Additive Factors Model” (AFM) [1; 13] and it is 
shown in Figure 1. In this statistical model, the discrete portion of 
the student model is represented by qjk, the so-called “Q matrix” 
[16], which maps hypothesized difficulty or learning factors (the 
knowledge components or skills) to steps in problems. These 
factors are hypothesized causes for difficulty (βk) or for learning 
improvement as students practice (γk). AFM gives a probability 
that a student i will get a problem step j correct based on the 
student’s baseline proficiency (θi), the baseline difficulty (βk) of 
the required KCs (qjk), and the improvement (γk) in those KCs as 
the student gets practice opportunities (Tik). 

	  
Figure 1. In the Additive Factors Model (AFM), the probability 
student i gets step j correct (pij) is proportional to the overall 
proficiency of student i (θi) plus for each factor or knowledge 
component k present for this step j (indicated by qjk), add the base 
difficulty of that factor (βk) and the product of the number of 
practice opportunities this student (i) has had to learn this factor 
(Tik) and the amount gained for each opportunity (γk). 

Previous efforts to evaluate cognitive models have used BIC as 
the evaluation criteria [1]. BIC reduces the chances of over-fitting 
the data by penalizing for increasing the number of parameters in 
the model. It is much faster to compute than cross validation and 
reasonably predicts the results of cross validation. When time is 
not an issue, cross validation is preferred. There is currently no 
consensus on how to perform the folding process in cross 
validation for student model comparison and we discuss three 
alternatives below (which are in use in DataShop). 

2. THE CREATION AND EVALUATION 
OF STUDENT MODELS IN DATASHOP 
Before discussing automated generation of student models, we 
first describe how DataShop supports researchers in creating and 
evaluating alternative knowledge component-based student 
models (represented as Q matrices). The log data collected in 
DataShop is composed of student attempts on problem steps in a 
given set of instruction. Each of these problem steps can be tied to 
one or more skills or knowledge components. This linking of 
problem steps to knowledge components is called a KC model in 
DataShop and represents a student model for that set of 
instruction. Researchers can export KC models from DataShop, 

modify them using Excel or another editor, and then import a new 
model into DataShop for comparison. 

KC models in DataShop are fit to data using the AFM equation in 
Figure 1, and metrics for AIC, BIC, and three versions of cross 
validation are provided to evaluate and compare different models. 

We illustrate the modification of a KC model to produce an 
improved model with implications for tutor redesign. The 
example data comes from a data set called Geometry9697 and can 
be found in the DataShop repository under Public Datasets. Figure 
2 shows a screen shot of (a more recent version of) the tutor used 
in generating the data. 

In this example, the best hand-generated model divides the 
ALT:COMPOSE-BY-ADDITION KC of the original in-use 
model into three KCs: Subtract, compose-by-addition, and 
decompose. The original ALT:COMPOSE-BY-ADDITION KC 
labels steps where the student must find the area of an irregular 
shape that may be the sum or difference of two regular shapes 
(e.g., what’s left when a circle is cut from a square). This KC was 
targeted for improvement because, as shown in the top of Figure 
3, it was found to have a non-smooth learning curve (a large 
difference between actual and predicted values) and although it is 
relatively difficult (26% error rate), the learning curve does not 
indicate any learning (the error rate does not go down with 
opportunities) and, correspondingly, the AFM slope estimate (γj) 
is zero. As described in [15], these features of a learning curve 
(not smooth, not low, and not declining) are indicators of a poorly 
defined KC. A KC may be improved by investigating the problem 
steps it labels, usually focusing on those where the error rate is 
much higher (or lower) than normal as in opportunities 12, 15-18, 
etc., shown in the curve at the top of Figure 3. The analyst seeks a 
feature of these problem steps that may change the difficulty of 
performing or learning that step (i.e., a difficulty or learning 
factor) that is not shared by the other problem steps. In this case, 
almost all of the hardest problem steps required students to 
identify the two regular shapes that make up a target irregular 
shape (i.e., to visually “decompose” and set subgoals to find the 
area of these regular shapes first). These problem steps were 
relabeled with a KC called decompose. In other problems, the 
ALT:COMPOSE-BY-ADDITION steps came after an explicit 
scaffold given to students to find the area of the regular shapes 
(e.g., a prompt to find the square and circle areas before finding 
the leftover). These remaining problem steps were relabeled 
compose-by-addition. We say that ALT:COMPOSE-BY-
ADDITION was “split” by the decompose factor to produce a 
new “decompose” KC and a modified “compose-by-addition” KC 
with fewer steps associated with it. 

By inspecting a subset of particularly easy problem steps, another 
factor was identified (repeated steps in the same problem) and 
these steps were labeled Subtract. That is, ALT:COMPOSE-BY- 
ADDITION was further split into a third set of steps. In sum, the 
new KC model splits the ALT:COMPOSE-BY-ADDITION KC 
in the Original model (which labels 20 steps) into three different 
KCs: compose-by-addition (6 steps), decompose (8 steps), and 
Subtract (6 steps). 

The bottom of Figure 3 shows, for all three new KCs, the resulting 
learning curves and the parameter estimates for the difficulty 
intercepts (in both logit terms, βk, and converted to a probability) 
and for the KC learning slopes (γk). Inspecting the empirical 
learning curves (red lines), all three look smoother than the 
original ALT:COMPOSE-BY-ADDITION, thus meeting the 
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Figure 2. A screen shot of the problem Circle N present in the area unit of the Geometry Cognitive Tutor. In Question 1, students are 
given the area of the circle and must find the radius, diameter, and circumference. In Question 2, students are given the circumference 
and must find the radius, diameter, and area. The Hint message is in response to a student hint request for the highlighted cell. 

“smoothness” criteria. The decompose KC learning curve appears 
to be declining in error rate and, correspondingly, the slope 
parameter is greater than zero indicating an improvement in the 
model. The Subtract KC curve is not declining but it is already at 
a low error rate from the start, so this also indicates an 
improvement in the model. Such a pattern indicates the KC is 
already known and mastered, therefore, little to no learning is 
expected. The story for the new compose-by-addition KC is mixed 
– while smoother, it is not declining and not already low. It might 
be possible to make further improvements in this KC. 

The decompose KC results are quite different from the other two 
newly labeled KCs and the original KC (ALT:COMPOSE-BY-
ADDITION) with a much higher initial error rate (57%) and a 
declining curve (intercept = .36, slope = .15). Given these results 
and the lack of mastery on the decompose KC after six 
opportunities, we recommend a higher concentration of 
decomposition problems with additional instructional aids such as 
worked examples, specific hints, and problems that isolate 
practice on this skill [15]. These results also indicate less practice 
is needed on the Subtract KC and corresponding problem steps 
could be reduced or even eliminated from the curriculum. 

The statistical fit (shown in the blue lines in Figure 3) is based on 
the Additive Factors Model described above. Models are 
evaluated using AIC, BIC, and 10-fold cross validation. We report 
the root mean-square error (RMSE) averaged over the ten test sets 
in the cross validation. 

For this dataset, the best models according to BIC and cross 
validation are ones that incorporate the distinction between 
unscaffolded (decompose) and scaffolded problem steps. More 
complexity, (e.g., models with 12 and 13 KCs) pays off relative to 
a simpler model with 10 KCs. But more complexity is not always 

better. The Original production rule model in the tutor had 15 
skills, yet according to BIC and cross validation measures the 
simpler models with 12 and 13 skills are better predictors. 

 
Figure 3. A knowledge component (KC) with a non-smooth 
learning curve (see top half of the figure) is replaced in an 
improved student model with three new KCs with smoother 
curves (see bottom half of the figure). 

There are a couple instructional consequences of the fact that the 
decompose skill was confounded with performing scaffolded 
decomposition and, even, with simple subtraction. First, students 
were able to give the appearance of mastery because they were 
essentially given credit for this more complex skill when they 
successfully performed the two simpler skills. It is possible for 
students to graduate on the merged skill by only getting scaffolded 
decomposition and subtraction steps correct and never or rarely 
getting an unscaffolded decompose step correct (the tutor’s 
knowledge tracing algorithm allows for an occasional slip). 
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Second, because there was no differentiation of these skills, there 
was no way to provide any isolated or extra practice on the tough 
unscaffolded decompose skill. Thus, for both of these reasons, 
there was not enough practice of decompose. 

We have illustrated how new KC models can be produced and 
evaluated within DataShop. This process has produced many 
different models across a variety of datasets. For instance, the 
Geometry9697 dataset had at least 10 KC models associated with 
it. These models range in number of KCs from 1 to 15 with a 
median of 12 KCs. The KC models vary on factors including the 
shape of a figure, the formula involved, whether a formula is 
applied forward or backward, whether or not this step repeats an 
analogous one in the same problem, etc. 

We next present the use of the LFA algorithm to perform an 
automated search for better models. A key trick is to use, in a 
crowd-sourcing fashion, existing models entered by DataShop 
users as the basis for input to this search algorithm 

3. APPLYING LEARNING FACTORS 
ANALYSIS (LFA) ACROSS DOMAINS 
3.1 Adapting LFA for use in DataShop 
Learning Factors Analysis (LFA) [1] is an algorithm that 
automatically finds better student models by searching through a 
space of KC models, represented as Q matrices, to find the one 
that best predicts student-learning data. The input to LFA includes 
a dataset of records that indicate a student, a step identifier (i.e., 
part of a problem or activity for which there is an observed and 
gradable student action), the order in which each student 
experiences each step, and whether the student was successful or 
not on the step (usually whether the students first action on a step 
is correct, that is, neither a hint request nor an incorrect action). 
The LFA input also includes a matrix, in the same form as the Q 
matrix described above, that indicates for each unique step (the 
rows) what candidate features or factors may affect student 
performance and learning on that step (the columns). This so-
called P matrix is used, along with a set of operators, to determine 
the space of possible Q matrices that LFA searches over. 
The output of LFA is a list of Q matrices (KC models) rank 
ordered (using either AIC or BIC) by how well they predict the 
student data. In the search process, new Q matrices are created 
from the current Q matrix by applying operators (split, merge, or 
add in the complete LFA) using a factor in the P matrix to modify 
some aspect of the current Q matrix. 

Figure 4 provides a simple example of the search process 
beginning with the mapping of problem steps to Q and P matrices. 
In this example, a Q matrix with factors for multiplication (Mult) 
and subtraction (Sub) is modified by applying a split operator to a 
column in the Q matrix (Sub) using a column in the P matrix 
(Neg-result).  The outcome is a new Q matrix (called Q’ in Figure 
4) that has the steps of Sub partitioned into two subsets (Sub-Pos 
and Sub-Neg) according to the values of Neg-result. 

An important challenge in a broad application of LFA is 
determining how the P matrix gets created. In early applications 
of LFA, a human user (a single domain expert) created the P 
matrix. In the spirit of crowd sourcing, we have used the multiple 
hand-created KC models in DataShop as an alternative way to 
create the P matrix. The P matrix is automatically derived by 
combining all of the hypothesized KCs in the pre-existing KC 
models for that dataset. More specifically, the P matrix maintains 
the same rows (one for every step in every problem), but the 

columns (the hypothesized factors or KCs) are the union of all the 
columns in the pre-existing KC models (such that the number of 
columns is the sum of the number of columns across the existing 
models minus any duplicate columns). 

 
Figure 4. Example of a Q matrix and P matrix mapped to problem 
steps and the resulting Q’ matrix when Sub in the Q matrix is 
“split” by Neg-result from the P matrix. 

LFA implements a best-first search. In each iteration of the 
search, the best Q matrix so far (as measured by AIC or BIC) is 
chosen for expansion. The LFA search process begins with the 
simplest possible Q-matrix where all steps involve one and only 
one KC. New candidate Q matrices (KC models) are generated by 
applying operators to the columns in the P matrix and the selected 
Q matrix. In the version used here, we only used the split 
operator: LFA creates new candidate Q matrices by splitting KCs 
in the current Q matrix using relevant factors in the P matrix. The 
search stops either after a pre-set number of iterations or when 
model improvements diminish (see below). 

The search process results in the creation of machine-generated 
KC models that are usually more predictive (as measured by cross 
validation) than any of the starting models. Because the current 
implementation is only using LFA’s split operator, which only 
generates single KC codes for each problem step, it is possible a 
starting model that includes multiple KCs per step could be better 
than any LFA model generated. Although cross validation is 
arguably the best way to test the predictive efficacy of a model, it 
is too computationally expensive to run inside the LFA search. 
Instead we have used BIC and, more recently, AIC as the heuristic 
to guide the search. After the search is complete, we test the best 
models using cross validation. 

3.2 Method: Apply LFA across 11 datasets 
In order to examine the LFA search process across a variety of 
datasets, we used eleven datasets representing five domains 
(geometry, algebra, fractions, English articles, and statistics) from 
the DataShop repository. Each dataset had from 1-16 KC models 
previously created by content specialists or researchers and most 
(65%) of these models coded a single KC per step. The number of 
knowledge components within models ranged from 1-48 and the 
number of student users ranged from 41-318. In addition to a 
variety of dataset characteristics, we have a wide group of 
researchers/authors represented: Lovett (statistics), Wiley (English 
articles), Booth (equation solving), Lomas (fractions), Koedinger 
(symbolization), Stamper, Ritter and Koedinger (geometry area). 

To each dataset, we applied a version of LFA that: 1) used only 
the split operator, 2) started with a Q matrix with a single KC 
labeling all problem steps, and 3) started with a P matrix made up 
of the union of all existing KC models. We ran the search process 
twice on each dataset, once using BIC as the search heuristic and 
once using AIC. The search continues until a streak of 5 iterations 
does not produce a model with an improved heuristic value. We 
compared the two best models from each of the AIC and BIC runs 
(4 models total) with all the existing models using root mean 
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square error (RMSE) as determined by 10-fold cross validation. 
Three different cross validations were run: 1) student stratified 
(SSCV), 2) item stratified (ISCV), and 3) no stratification 
(NSCV). For student stratified and item stratified cross validation, 
students or items (i.e., problem steps), respectively, were 
randomly chosen for the folds. No stratification cross validation 
selects the 10 folds randomly from the dataset as a whole, 
irrespective of student or item. We chose item stratified cross 
validation as the primary metric (the one used in Tables), because 
we are concerned with improving tutors and item stratified cross 
validation corresponds most closely with a key tutor decision of 
what next problem to select. 

3.3 Results: Better Models Found 
Table 1 summarizes the results. Analysis of the datasets using 
RMSE from a 10-fold item stratified cross validation (ISCV) 
shows a machine-generated model is the best predictor of student 
performance across all eleven datasets and all four domains. This 
can be seen in Table 1 by noting that the RMSE values in the 
Best-LFA column (representing the results of machine-generated 
models) are all lower than those in the columns for the best model 
found by hand (Best-hand) and for the original model in use by 
the tutoring system or game (Orig-in-use). 

The results from both SSCV and NSCV were mostly similar in 
that in 10 of 11 datasets, an LFA model was best. For the DFA-
318 dataset, the Best-hand model was better on SSCV and NSCV 
(but not on ISCV). That model involved some steps being coded 
by more than one KC – such multi-KC coding is not a model that 
the LFA version we used (which only incorporates the split 
operator) can produce, however, a version with LFA's add 
operator could, in principle, produce such a model. 
Besides reducing prediction error, the LFA-discovered models 
tend to better capture student learning in that the typical slopes on 
learning curves are steeper. The last columns in Table 1 show a 

comparison of the median learning slope (γk) for the Best-hand 
and Best-LFA models. In all but a couple of cases, the median 
learning slope is larger for the Best-LFA model than it is for the 
Best-hand model (e.g., 0.11 vs. 0.07 for Geometry9697).  

4. INTERPRETING STUDENT MODEL 
IMPROVEMENTS 
We have shown how an automated process, such as an LFA 
search, discovers new and improved student models. But, are 
these improvements substantial and interpretable? Can they be 
used to propose plausible improvements in a tutoring system?  

One method to evaluate newly discovered machine models is to 
investigate when and how much each KC in the original model is 
changed in the transformations that produced the best-hand and 
best-machine models. By isolating improvement in knowledge 
components, areas of student difficulty can be uncovered and 
automated systems can be redesigned to more efficiently address 
student learning by focusing better instruction and more practice 
on more difficult skills and less practice on easier skills. 

We use the Geometry9697 dataset as an example of a proposed 
strategy for interpreting LFA results toward model and tutor 
improvement. That strategy starts with inspecting the impact of 
model improvements on specific aspects of the original model. A 
key observation is that while the overall prediction error (RMSE) 
reductions in Table 1 may seem small, LFA is likely to make 
significant changes in the KC model only in a few isolated places, 
that is, only for some of the original KCs. Although those changes 
may be practically significant, they are obscured in the overall 
RMSE change given much of the model remains the same.  

Thus, we suggest trying to identify which of the KCs in a base 
model are most substantially changed in the creation of a new 
model. One way to do so is to compute the reduction in RMSE 
between models for each of the KCs in the base model.

 
Table 1. The root mean square error (RMSE) for the best KC models as determined by item stratified cross validation. 

	  

RMSE Median Learning 
slope (logit) 

	  

	  
Dataset 

	  

	  
Content area Orig 

in-use 
Best- 
hand 

Best- 
LFA 

Best- 
hand 

Best- 
LFA 

Geometry9697 Geometry area 0.4129 0.4033 0.4011 0.07 0.11 

Hampton 0506 Geometry area NA 0.4022 0.4012 0.03 0.04 

Cog Discovery Geometry area NA 0.3250 0.3244 0.16 0.16 

DFA-318 Story problems 0.4461 0.4407 0.4405 0.07 0.17 

DFA-318-main Story problems 0.4376 0.4287 0.4266 0.09 0.17 

Digital game Fractions 0.4442 0.4396 0.4346 0.17 0.14 

Self-explanation Equation solving NA 0.4014 0.3927 0.01 0.04 

IWT 1 English articles 0.4262 0.4110 0.4068 0.10 0.12 

IWT 2 English articles 0.3854 0.3854* 0.3806 0.12 0.16 

IWT 3 English articles 0.3970 0.3965 0.3903 0.05 0.15 

Statistics-Fall09 Statistics 0.3648 0.3527 0.3353 ** 0.09 
NA: Original models (or statistics on them) were not available in some cases. 
* IWT 2 dataset only has 1 model, therefore the original-in-use and best-hand models have the same RMSE. 
**The best-hand model for Statistics-Fall09 dataset has only 1 KC. 
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More specifically, for each data point labeled by a base model 
KC, we find the RMSE based on the predictions of the base model 
and compare it with the RMSE based on the predictions of the 
new model. We compute the percent reduction in RMSE ((base - 
new)/base). 

Table 2 summarizes the results of this analysis on the 
Geometry9697 dataset by comparing each pair of the Original, 
best hand, and best LFA models in terms of the Original model 
KCs. As anticipated, the last row shows that for most of the 
Original KCs (12 of 15), there is little to no improvement in the 
best hand and best LFA models. However, for three of the KCs, 
there are large reductions in prediction error. The TRIANGE- 
SIDE KC has the largest RMSE reduction from Original to LFA 
model (11.1%); however, the decrease is mostly caught in the 
improvements made to the best hand-model from the Original 
model (10.0%). The COMPOSE-BY-ADDITION KC is also 
improved (as described in section 2) just in the original to hand- 
model transition. The CIRCLE-RADIUS KC, on the other hand, 
realizes an almost 6% reduction of RMSE from the Original 
model to the best hand-model, and then another sizeable reduction 
of almost 4% from best-hand model to the best LFA model. This 
discovery of LFA represents a genuine machine-based discovery 
not directly anticipated by human analysts. 

Table 2. Improvement in knowledge components in the 
Geometry9697 dataset measured by the percent reduction of root 
mean squared error (RMSE) from item-stratified cross validation. 

 
% reduction in RMSE Original model 

KCs orig->hand       hand->LFA     orig-LFA 
CIRCLE-RADIUS 5.8% 4.0% 9.5% 
COMPOSE-BY- 
ADDITION 5.2% 0.3% 5.5% 

TRIANGLE-SIDE 10.0% 1.2% 11.1% 
Range of the 12 
other KCs -.5 to 3.4% -.3 to 1.0% -.2 to 3.1% 

 
A closer look at the CIRCLE-RADIUS KC from the Original 
shows it is coded as three separate KCs in the best hand-model: 
(1) circle area, (2) circle-diam-from-given, and (3) circle-diam- 
from-subgoal. In all three of these KCs, computing a radius is the 
target skill but how it is computed depends on what component 
measure is provided. For example, in the Circle-N problem (see 
Figure 2), area is given in the first row of the table (and in the text 
as Question 1) and students must compute the remaining values 
including radius; this is labeled as the circle-area KC. In the 
circle-diam-from-subgoal KC, circumference is given (row 2 or 
Q2) and in the circle-diam-from-given KC, diameter is given. As 
can be seen in Figure 5, the LFA model further changes these 
same KCs by either combining (e.g., circle-diam-from-given 
combines with three other KCs to form Geometry) or splitting 
(e.g, circle-area splits to form a reduced version of itself and a 
new KC called radius-from-area). Circle-diam-from-subgoal 
remains the same from best hand to best machine. We use the 
circle-area split as an illustration of how the machine-model 
uncovered a useful improvement in the original model that was 
not anticipated by humans generating hand models. 
 

	  
Figure 5. The splitting and combining of circle-radius and other 
related hypothesized knowledge components in going from the 
original-model to the best hand model to the best machine model. 
In Figure 5, we see the circle-area KC in the best hand-model has 
22 problem steps but after the LFA algorithm is applied this one 
KC is divided into two KCs – one with 19 problem steps and the 
other with 3 problem steps. What is unique about these three 
problem steps that they split from the original 22 to form a “new” 
KC? 

A careful examination of the three problem steps in the new 
radius-from-area KC reveals a backward strategy is necessary for 
a correct solution (e.g., finding radius when area of circle is given) 
unlike the other nineteen problem steps, which require a forward 
strategy. Although using a backward strategy is not uncommon in 
the dataset (about 27% of the problem steps require it), none of 
the other KCs were split between backward and forward by the 
search algorithm. In fact, eight of thirteen KCs in the best hand- 
model label backward steps but only circle-area benefits from 
being split into forward and backward versions. 

Figure 6 is analogous to Figure 3 and shows the effect of the LFA 
discovery to split circle-area in the best hand-model (called 
DecompArithDiam) into circle-area (labeling fewer steps) and 
radius-from-area. Both resulting learning curves are smoother 
than the original and they have steeper slopes (.105 and .165, 
respectively, as compared to .068). 

Performance on the circle-area backward problems (called radius-
from-area) is lower (54%) than performance on the circle-area 
forward problems (80%), which is perhaps not a surprise. 
However, in this context, it is surprising that the difference in 
backward vs. forward performance on the other KCs is small and 
statistically negligible. For example, pentagon area does not split 
from apothem or side (backward = 66%, forward = 62%), 
parallelogram area does not split from parallelogram side 
(backward = 89%, forward = 91%), trapezoid area does not split 
from base or height (backward = 54%, forward = 55%), and 
triangle area does not split from base or height (backward = 68%, 
forward = 78%). 

In addition to not finding a backward split for any of the area 
formulas for other shapes, there was no forward-backward split 
for other circle formulas (circumference = pi*diameter and 
diameter = 2*radius). A unique feature of working the circle area 
formula backwards is that it requires a square root operation to 
find the radius (after dividing the given area by pi). Thus, the 
uncovered knowledge component appears to be about learning 
when and how to employ a square root operation rather than about 
a general ability to apply a backward strategy, for instance, by 
using algebra (as suggested in the hint in Figure 2). Note, the need 
to employ a square root is also required in backward application 
of the square area formula, however, this tutor unit did not have 
any such problems where only the area of a square is given and 
the side must be found. 
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Figure 6. Learning curves and model values of circle area 
knowledge component in best hand-model and after splitting to 
circle area and radius-from-area KCs in best LFA model. 

The consequences for tutor changes based on this automated 
discovery of LFA are significant. We recommend the tutor 
distinguish area-to-radius problems while merging all other 
forward/backward area combinations (e.g., pentagon side and 
pentagon area). The current unit in the Geometry Tutor only has 
three problem steps associated with the area-to-radius KC, not 
enough to lead to mastery on a difficult skill. Thus, more such 
problems should be created. The skill tracking, which is done with 
skill bars in the tutor, should be modified to maintain the forward- 
backward distinction for the circle area formula, but merge the 
forward-backward distinctions for other formulas (including the 
other circle formulas for circumference-diameter and the 
diameter-radius relationships). This change should substantially 
reduce the time students currently take to separately (and 
unnecessarily) demonstrate mastery of both the forward and 
backward versions of each of the area formulas. This time could 
in turn be used to make sure that students get enough practice in 
cases where their prior algebra background appears insufficient 
for backward application of formulas, namely in use of the square 
root operation. Further, given the need for more square root 
practice, square-area-to-side problems should also be added. 

5. CONCLUSION AND FUTURE WORK 
This paper demonstrates an automated technique for the discovery 
of better student models using input from previously generated 
models. LFA discovered better student models in 11 of 11 cases 
as measured by item stratified cross validation and 10 of 11 cases 
by student stratified and non-stratified cross validation. 

Although the reduction in overall error (RMSE) appears rather 
small, we demonstrated how this small error reduction is a 
consequence of most of the discovered model being essentially 
the same as the original. There are a few isolated changes that are 
statistically large and, more importantly, practically significant for 
tutor redesign. 

A related, more nuanced point is that even in cases where there is 
no significant improvement in prediction error, the new model 
may be better in parsimony (i.e., by reducing the number of KCs). 
Parsimony improvements in student models are important 
scientifically because they simplify explanations and suggest 
broader transfer of learning. They are also practically important in 
that tutors with a more compact student model will save and focus 
student time. 

Student models are critical to effective adaptive instruction. 
Different kinds of student model changes (e.g, original KCs 

splitting or not splitting) suggest specific tutor redesigns. A 
number of instructional design changes are suggested when an 
original KC is split into one or more new KCs. First, the skill bars 
and knowledge tracing need to be changed to include the new 
KCs and to be sure that students master all of them. Second, often 
a newly discovered KC will occur in too few of the existing 
problems and thus new problems need to be created. Third, the 
distinction discovered in the KC split (e.g., use of square root) 
may be better highlighted in the various forms of instruction that 
tutor may employ including worked examples, error feedback 
messages, and next-step hint messages. Similarly, a different set 
of instructional design changes are suggested when a number of 
original KCs are merged (i.e., are not split) into a single KC. First, 
the skill bars and knowledge-tracing model need to be changed to 
eliminate unnecessary distinctions. With corresponding 
knowledge tracing parameter changes, the number of practice 
problems a student needs to master the merged KC will be 
significantly reduced relative to the greater number previously 
needed to master each of the separate KCs. Second, the 
commonality discovered in the KC merge (e.g., the learning 
obstacle for most area operations is learning to retrieve and map 
the right formula, not learning how to apply it in a forward or 
backward direction) can be highlighted in the various forms of 
instruction that tutor employs. Doing so may better encourage the 
desired generalization and greater transfer of learning. 
The general LFA algorithm includes an “add” operation that can 
produce multiple KC codes for a single problem step. For 
efficiency reasons (for larger datasets, LFA ran for multiple days) 
and to simplify interpretation of the results, we did not use the add 
operator in the version of LFA employed here. However, in the 
case that a new KC is added, there are instructional implications 
beyond those indicated above for split operations. Namely, there 
is the possibility of inventing new tasks that isolate a KC that 
might only occur with other KCs in the current set of tasks. Doing 
so has been demonstrated to yield significant improvements in 
student learning [7]. Future work should explore the use of the 
add operator in the LFA algorithm and, more generally, needed 
algorithm improvements to increase efficiency. 

Some other automated techniques discover models that are 
difficult or impossible to understand, either toward deriving 
insights into student learning or making practical improvements in 
instruction. The output of LFA is more interpretable and 
convertible to tutor changes than these alternative “black box” 
machine learning methods that may produce Q matrices (or other 
latent variable representations) without consistent application of 
analyst-derived codes or without code labels at all. Even so, the 
output of LFA is complex and not trivial to interpret. Thus, we 
recommend a strategy (illustrated in Table 2) for isolating the 
practically significant student model improvements that LFA 
discovers. Such improvements in the student model have direct 
implications for many aspects of tutor design including problem 
development, knowledge tracing, problem selection and 
sequencing, skill bar display, instructional hint and hint message 
content. Using data to automatically improve student models and, 
in turn, improve instructional systems is a tremendous opportunity 
for educational data mining, especially as we accumulate large 
datasets and relevant techniques in repositories like DataShop. 

A notable innovation here is a simple form of crowd sourcing of 
the work done by data analysts using DataShop. A significant 
limitation of LFA recognized in prior work [1] is the need for the 
P matrix input to the algorithm, that is, the human coding needed 
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to produce the various difficulty and learning factors on problem 
steps that are the basis for hypothesizing knowledge components. 
This limitation is addressed here by taking advantage of the 
DataShop facilities for creating and storing hand-built KC models 
and the fact that analysts have been using those facilities to create 
models. 

Our simple version of combining human and machine intelligence 
toward better model discovery could be applied more broadly 
beyond DataShop data or student modeling. The general idea 
involves a web-site with these components: 1) users can modify 
an existing model (e.g., add new features based on feature 
engineering) and see whether their new model yields better 
predictions (e.g., DataShop’s KC model leaderboard display), 2) a 
machine algorithm that collects features across all human-entered 
models (e.g., a simple union of all features), and 3) a machine 
algorithm that searches over the space of features to identify more 
predictive models (e.g., the LFA algorithm). We leave it for future 
research to test this proposed generalization of the approach 
presented here. 
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ABSTRACT 

In this paper we address the important task of automated 
discovery of speech act categories in dialogue-based, multi-party 
educational games. Speech acts are important in dialogue-based 
educational systems because they help infer the student speaker’s 
intentions (the task of speech act classification) which in turn is 
crucial to providing adequate feedback and scaffolding. A key 
step in the speech act classification task is defining the speech act 
categories in an underlying speech act taxonomy. Most research to 
date has relied on taxonomies which are guided by experts’ 
intuitions, which we refer to as an extrinsic design of the speech 
act taxonomies. A pure data-driven approach would discover the 
natural groupings of dialogue utterances and therefore reveal the 
intrinsic speech act categories. To this end, this paper presents a 
fully-automated data-driven method to discover speech act 
taxonomies based on utterance clustering. Experiments were 
conducted on three datasets from three online educational games. 
This work is a step towards building speech act taxonomies based 
on both extrinsic (expert-driven) and intrinsic aspects (data-
driven) of the target domain. 
Keywords 

Speech act discovery, dialogue systems, educational games. 

1. INTRODUCTION 
An important task in dialogue-based educational systems is the 
detection of students’ intentions from their natural language input, 
which we refer to as utterances. Speakers’ intentions are modeled 
using elements from the speech act theory (Austin, 1962; Searle, 
1969). Speech act theory was developed based on the “language 
as action” assumption as explained later. The automated detection 
of speaker’s intentions in dialogues is known as the task of speech 
act classification. 
Examples of speech acts are Questions, Statements, or Greetings. 
For instance, the hearer infers from the following utterance How 
did you do that? that the speaker is asking a Question, which 
informs the hearer to prepare an answer. Sometimes the speaker 
just states something as in the Statement, The situation is getting 
worse every day., or greets someone as in Hello!. 
Our work is conducted in the context of multi-party epistemic 
games in which chat rooms play an important role. For instance, 

in an Urban Science game, players take on the role of an intern for 
an Urban Planning company and are provided guidance from a 
mentor on the proper steps to be taken in redesigning a city. The 
players interacted with the mentor through a chat facility provided 
in the game. All chat among players and mentors was logged. 
If the mentor role is to be automated, in a tutoring system, we 
need to automatically manage the dialogue which involves 
identifying student-players’ intentions (speech act classification) 
based on their utterances as well as to select the best speech acts 
the auto-mentor system needs to produce (speech act prediction) 
for feedback and scaffolding. The details of the games from which 
we collected data are presented in the Experiments and Results 
section. 
The task of speech act classification has been extensively 
addressed by the intelligent tutoring systems (ITS; [1,2]) and 
natural language processing (NLP; [3,4,5]) communities. The 
related task of speech act prediction, which is about deciding what 
next speech act the automated dialogue system should generate, 
has also been investigated to some extent [6,7,8]. 
The NLP and ITS communities have addressed mainly the task of 
speech act classification and usually in simpler setups than ours: 
one-to-one dialogues, e.g. between an intelligent tutor and a 
student user or between a ticket-booking system and a human 
traveler. In contrast, the present study addresses multi-party 
dialogues in which more than two dialogue partners are involved. 
This has implications on the adopted solution to classify or 
discover the speech acts. Some predictive features that are easy to 
extract in dialogues between two partners become more 
challenging in speech act classification or discovery for multi-
party dialogues. For example, the previous speech act feature 
which is useful to predict the current speech act in dialogues 
between two partners, e.g. after a Question by one speaker an 
Answer by the other speaker follows, becomes more challenging 
in multi-party dialogues because the previous speech act is not 
always directly linked to the current speech act, as in the case of a 
third partner joining the discussion suddenly. 
Furthermore, the solutions to the task of speech act classification 
proposed by the ITS and NLP researchers are not fully automated 
because the important step of specifying the speech act taxonomy 
is manually handled by experts [9]. The expert-generated 
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taxonomies are specified extrinsically as experts generate them in 
an ad-hoc manner without an exhaustive analysis of the available 
data. Indeed, Andernach, Poel, and Salomons [10] indicates that 
experts define taxonomies based on their intuitions with minimum 
information from actual data which makes it hard to define a set 
of rules that different human annotators (or machines) could 
consistently apply to data in order to derive the same speech acts 
for similar utterances. In general, experts define a wishful 
taxonomy and then the hope is the automated algorithms could 
learn automatically the patterns to detect the speech acts in the 
taxonomy. There are other lingering issues with the expert-defined 
taxonomies as Traum [9] pointed out. Among these issues, Traum 
mentions the “significant challenges for creating a taxonomy of 
dialogue acts that can be understood and used by researchers other 
than the taxonomy designers.”1 We believe that a data-driven 
approach to discover or at least inform the creation of speech act 
taxonomies could be extremely useful. This work is a step in this 
direction of creating taxonomies based on both extrinsic and 
intrinsic processes. 
We propose a data-driven approach that infers the intrinsic speech 
act categories from the data based on the similarities of the 
dialogue utterances according to some model, e.g. using lexical 
and positional information from the utterances. The method is 
based on clustering algorithms, both parametric (K-Means) and 
non-parametric (Expectation-Maximization), to group dialogue 
utterances into homogeneous groups which are then used to 
define the speech act categories. An automated method to 
discover the speech categories could complement and also be used 
as a validation tool for expert-defined taxonomies. The natural 
language community has largely ignored the task of automated 
discovery of speech act taxonomies; there has been only one early 
attempt nearly two decades ago [10]. To the best of our 
knowledge, no previous work proposed such an automated 
method for speech act discovery in the area of dialogue-based 
intelligent tutoring systems and the larger ITS community. 
Our effort fits within the grander goal of building data-driven 
dialogue managers [11, 12]. The closest work to our own effort in 
the area of educational systems is by Kristy Boyer and colleagues 
([12, 13]). They automatically derived ‘dialogue modes’ from 
sequences of dialogue acts (a modern definition of speech acts), 
instead of asking experts to define the dialogue modes. The best 
number of dialogue modes is found intrinsically by selecting 
inferred sets of dialogue modes that maximize a log-likelihood fit 
function. We follow a similar idea but instead of inferring sets of 
dialogue modes we infer categories of speech acts and rely on 
clustering algorithms instead of Hidden Markov Models as Boyer 
and colleagues did. Hidden Markov Models are best suited for 
inferring hidden variables from sequences of events. In our case, 
we were interested in the discovery of hidden similarity patterns 
among individual utterances and thus clustering was a natural 
choice. We chose K-Means and Expectation Maximization (EM) 
as the clustering algorithms. The former requires a priori 
specification of the number of clusters expected while EM can 
automatically infer the number of clusters through cross 
validation. The appealing of K-Means is its simplicity and the 
ease of interpretation, e.g. a centroid vector for each cluster is 
                                                                 
1 Dialogue acts, speech acts, communicative acts, conversational 

acts, conversational moves, or dialogue moves are terms used by 
different researchers to refer to the same general concept [9]. 

provided which can be used to interpret the cluster. In the case of 
K-Means we experimented with several pre-specified numbers of 
clusters. By default, the results thus obtained are compared with 
the expert-defined number of clusters, i.e. the expert speech act 
categories. 
The rest of the paper is organized as in the followings. The next 
section provides an overview of speech act theory and speech act 
taxonomy work. We then provide the conceptual framework 
behind our basic idea to cluster dialogue utterances. The 
Experiments and Results section describes our experimental setup 
and the results obtained. We conclude with Conclusions and 
Future Work. 

2. RELATED WORK 
Speech act theory has been developed based on the language as 
action assumption which states that when people say something 
they do something. Speech act is a construct in linguistics and the 
philosophy of language that refers to the way natural language 
performs actions in human-to-human language interactions, such 
as dialogues. Its contemporary use goes back to John L. Austin’s 
theory of locutionary, illocutionary and perlocutionary acts [14]. 
According to Searle [15], there are three levels of action carried 
by language in parallel. First, there is the locutionary act which 
consists of the actual utterance and its exterior meaning. Second, 
there is the illocutionary act, which is the real intended meaning 
of the utterance, its semantic force. Third, there is the 
perlocutionary act which is the practical effect of the utterance, 
such as scaring, persuading, and encouraging. 
It is interesting to notice that the locutionary act is a feature of any 
kind of language, not only natural ones, and that it does not 
depend on the existence of any actor. In contrast, an illocutionary 
act needs the existence of an environment outside language and an 
actor that possesses intentions, in other words an entity that uses 
language for acting in the outside environment. Finally, a 
perlocutionary act needs the belief of the first agent in the 
existence of a second entity and the possibility of a successful 
communication attempt: the effect of language on the second 
entity, whether the intended one or not, is taking place in the 
environment outside language, for which language exists as a 
communication medium. As opposed to the locutionary act, the 
illocutionary and perlocutionary acts do not exist in purely 
descriptive languages (like chemical formulas), nor in languages 
built mainly for functional purposes (like programming 
languages). They are an indispensable feature of natural language 
but they are also present in languages built for communication 
purposes, like the languages of signs or the conventions of 
warning signals. 
In a few words, the locutionary act is the act of saying something, 
the illocutionary act is an act performed in saying something, and 
the perlocutionary act is an act performed by saying something. 
For example, the phrase ”Don’t go into the water” might be 
interpreted at the three act levels in the following way: the 
locutionary level is the utterance itself, the morphologically and 
syntactically correct usage of a sequence of words; the 
illocutionary level is the act of warning about the possible dangers 
of going into the water; finally, the perlocutionary level is the 
actual persuasion, if any, performed on the hearers of the message, 
to not go into the water. 
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Table 1. Our flat Speech Act Taxonomy with examples for each speech act category.
The notion of speech act is closely linked to the illocutionary level 
of language. The idea of an illocutionary act can be best captured 
by emphasizing that ”by saying something, we do something” 
[14]. Usual illocutionary acts are: greeting (”Hello, John!”), 
describing (”It’s snowing.”), asking questions (”Is it snowing?”), 
making requests (”Could you pass the salt?”), giving an order 
(”Drop your weapon!”), making a warning (”The floor is wet!”), 
or making a promise (”I’ll return it on time.”). The illocutionary 
force is not always obvious and could also be composed of 
different components. As an example, the phrase ”It’s cold in this 
room!” might be interpreted as having the intention of simply 
describing the room, or criticizing someone for not keeping the 
room warm, or requesting someone to close the window, or a 
combination of the above. 
A speech act could be described as the sum of the illocutionary 
forces carried by an utterance. It is worth mentioning that within 
one utterance, speech acts can be hierarchical, hence the existence 
of a division between direct and indirect speech acts, the latter 
being those by which one says more than what is literally said, in 
other words, the deeper level of intentional meaning. In the 
phrase, “Would you mind passing me the salt?”, the direct speech 
act is the request best described by “Are you willing to do that for 
me?” while the indirect speech act is the request “I need you to 
give me the salt.” In a similar way, in the phrase “Bill and Wendy 
lost a lot of weight with a diet and daily exercise.” the direct 
speech act is the actual statement of what happened “They did this 
by doing that.”, while the indirect speech act could be the 
encouraging “If you do the same, you could lose a lot of weight 
too.” 
The present study assumes there is one speech act per utterance 
and the set of speech acts used are all at the same level of depth 
thereby forming a flat hierarchy. These simplification assumptions 
are appropriate for a first attempt at automating the speech act 
discovery process. 

2.1 Speech Act Taxonomies 
As already mentioned, the tasks of speech act classification and 
prediction requires the existence of a predefined set of speech act 
categories or speech act taxonomy. 
Researchers agree that defining a taxonomy in general and a 
speech act taxonomy in particular implies a balancing act between 
power and simplicity ([9, 16]). That is, defining a taxonomy 
implies interactions between the experts’ conceptual view of the 
target domain with an emphasis on power, i.e. capturing fine 
distinctions that would maximize reaching the goal the taxonomy 
will serve such as effective tutoring dialogue in our case, and the 
need for reliable annotation and predictions, i.e. maximizing the 
reliability with which human annotators can tag the speech acts in 

which case a few, well-defined categories are better than many, 
sophisticated categories. 
Less emphasis has been paid to the relation between the taxonomy 
and the actual method to automatically recognize the speech acts 
in the taxonomy. In other words, taxonomies were refined by 
observing how reliably human annotators can use them to 
annotate data D’Andrade and Wish [17]. The degree to which the 
human annotators’ process may be replicated through an 
automated method or the intrinsic similarities among dialogue 
utterances within the constraints of a chosen model, e.g. leading 
tokens utterances [18], has been left as an afterthought. Our work 
is a step towards building taxonomies based on both expert and 
data-driven approaches which we believe could lead to a needed 
trade-off between power and accuracy. That is, while expert-
defined taxonomies could lead to best outcomes conceptually but 
may sometimes be hard to detect, the data-driven approaches 
would lead to taxonomies that are derived from patterns in the 
data and would therefore result in good speech act classification 
performance. A mixed approach could provide the necessary 
trade-off between desirable speech act categories and 
classification performance. It should be noted that experts do 
consult data, in a limited way, when deriving their taxonomies 
[17]. However, an automated method for grouping dialogue 
utterances as proposed here would infer speech act categories 
from the entire available data in a systematic way. 
We analyzed the speech act taxonomies proposed by researchers 
over the years. Some are flat while others are multi-layered. The 
layers in the multi-layered taxonomies can be viewed as levels, in 
which higher level speech acts are composed of lower level 
speech acts, or ranks, in which layers represent different 
phenomena [9]. We present next a summary of the most important 
ones as judged from a history and relevance to our own work. 
The classic categorization of Austin [14] postulates five major 
speech act classes based on five categories of performative verbs: 
Expositives - verbs asserting or expounding views, classifying 
usages and references; Exercitives – verbs issuing a decision that 
something is to be so, as distinct from a judgement that it is so; 
Verdictives - verbs delivering a finding, official or unofficial, 
upon evidence or reason as to value or fact; Commissives - verbs 
commiting the speaker to some course of action; and Behabitives - 
verbs involving the attitudinal reaction of the speaker to 
someone’s conduct or fortunes [17]. 
The taxonomy proposed by Searle [15] consists of six major 
classes: Representatives - committing the speaker to something’s 
being the case; Directives - attempt by speaker to get the hearer to 
do something; Commissives – committing the speaker to some 
course of action; Expressives - expressing the psychological state 
specified; Declarations - bringing into existence the state 

Speech Act Category Example Count 
Statement I'll be your planning consultant. 605 
Request Click that and click "New Staff Page" 343 
Reaction Ah, I see. 642 
MetaStatement i didn't understand what maya wanted 176 
Greeting Hello! 103 
ExpressiveEvaluation good!!!!!!!!!! 166 
Question why am i getting notes from people not in my group? 646 
Other same thing what 87 
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described in the proposition and Representative; and Declarations 
- giving an authoritative decision about some fact. 
The category scheme proposed by D’Andrade and Wish [17] 
treats most utterances as conveying more than one speech act and 
does not attempt to establish a hierarchical order among multiple 
speech acts. The primary motivation for the speech act coding 
system was a desire to investigate correspondences between 
speech acts and adjectival ”dimensions” descriptive of 
interpersonal behavior. In order for a classifying system to be 
useful for measuring interpersonal communication, the 
distinctions reflected by the coding scheme should be relevant to 
native speakers’ perceptions and evaluations of interaction. Their 
classes are: Assertions (Expositives), Questions (Interrogatives), 
Requests and Directives (Exercitives), Reactions, Expressive 
Evaluations (Behabitives), Commitments (Commissives) and 
Declarations (Verdictives, Operatives). 
While there seems to be some consensus on the existence of some 
speech acts, like greetings, questions, answers, etc., the efficiency 
of a particular taxonomy for solving a particular problem 
ultimately rests on the task at hand. For instance, Olney and 
colleagues [19] used a taxonomy that divided questions into 16 
subcategories and had only 3 classes for the rest of the utterances, 
which was suitable for a particular intelligent tutoring 
environment. The 16 subclasses of Questions were: Verification, 
Disjunctive, Concept Completion, Feature Specification, 
Quantification, Definition, Example, Comparison, Interpretation, 
Causal Antecedent, Causal Consequence, Goal Orientation, 
Instrumental/Procedural, Enablement, Expectational and 
Judgmental. 
In the case of Verbmobil, a research project aiming to develop a 
system that can recognize, translate and produce natural 
utterances, the taxonomy used takes into consideration in which 
of the five dialogue phases the actual speech acts occur. The main 
classes of their taxonomy tree are: Request, Suggest, Convention, 
Inform and Feedback which all yield subclasses. For instance, the 
Convention class is composed of the following subclasses: Thank, 
Deliberate, Introduce, Politeness Formula and Greeting [20]. 
In our work, we will use the set of speech act categories, shown in 
Table 1. The speech act categories are based on theoretical 
schemes that also can be reliably coded by trained judges [14, 15, 
17, 19]. We use this reference taxonomy as a benchmark for 
comparison purposes with the automatically derived set of speech 
act categories. 

3. THE APPROACH 
Our approach to the automatic identification of speech acts classes 
is achieved using clustering algorithms.  
Clustering is the unsupervised classification of data points 
(usually represented as vectors in a multidimensional space) into 
groups (clusters) based on similarity. A cluster is therefore a 
collection of objects which are similar to each other in the same 
cluster and are dissimilar to objects belonging to other clusters. 
The clustering problem has been addressed in many contexts and 
by researchers in many disciplines. This reflects the broad appeal 
of clustering and its usefulness as one of the steps in exploratory 
data analysis. In our case, we use clustering to discover intrinsic 
speech acts in dialogues from online educational games. 
Table 2 offers examples of utterances belonging to three different 
speech act categories as defined by experts. In our method, the 

clustering algorithm would be fed a set of utterances of this type 
(see Table 2) and produce clusters in which similar utterances, i.e. 
utterances encoding the same speech act, belong to the same 
cluster. A quick post-hoc analysis by a human interpreter of the 
clusters thus obtained would allow the labeling of each cluster 
with a speech act label. For instance, by analyzing the utterances 
in the first column in Table 2, we immediately realize that they are 
all greetings and therefore a good label for such a cluster would 
be Greetings corresponding to the speech act category of 
Greetings. In this paper, however, we use the expert-labeled 
speech act categories to evaluate the obtained clusters. 
An important step in clustering a set of data points, including 
dialogue data, is how to represent the data. In general, clustering 
algorithms require a vector representation. The dimensionality of 
the vector space is a choice the experimenter makes. In our case of 
clustering dialogue utterances, we rely on the hypothesis that 
good speakers in collaborative (as opposed to competitive or 
deceitful) dialogues make their intentions clear early on in their 
utterances allowing hearers to detect the speakers’ intentions.  
Intuitively, the first few words of a dialog utterance are very 
informative of that utterances speech act. We could even show 
that some categories follow certain patterns. For instance, 
Questions usually begin with a wh- word while speech acts such 
as Greetings use a relatively small bag of words and expressions, 
i.e. Greetings are closed-class of utterances similar to function 
words such as prepositions or determiners. 
In the case of other classes, distinguishing the speech act after just 
the first few words is not trivial, but possible. It should be noted 
that in typed dialogue, which is a variation of spoken dialogue, 
some information is lost. For instance, humans use spoken 
indicators such as the intonation to identify the speech act of a 
spoken utterance. We must also recognize that the indicators 
allowing humans to classify speech acts also include the 
expectations created by previous speech acts, which are discourse 
patterns learned naturally. For instance, after a first greeting 
another greeting that replies to the first one is more likely. In 
multi-party dialogue the previous speech act is more complex so 
consecutive utterances may or may not be directly related. We 
ignored such intonation and contextual clues so far in our work in 
order to explore the potential of classifying speech acts based on 
words alone. We do plan to incorporate contextual clues in future 
experiments. 
One other argument in favor of this leading words assumption is 
the evidence that hearers start responding immediately (within 
milliseconds) or sometimes before speakers finish their utterances 
([21] - pp.814). Further evidence of the leading words or tokens 
hypothesis has been provided by Moldovan, Rus, and Graesser 
[18] who showed that using “leading tokens” in an utterance leads 
to impressive speech act classification performance. 
Therefore, we adopted a model in which each utterance is 
represented by its leading tokens (words and punctuation). This 
model includes the tokens themselves as well as their positions 
thus relying on lexical, punctuation, and positional information. 
Punctuation is useful in chat rooms as one of its functions is to 
encode intonational information which is lost in typed dialogues. 
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Table 2. Example of dialogue utterances that belong to the same speech act category as identified by experts. 

4. EXPERIMENTAL SETUP AND 
RESULTS 
We present in this section the experiments we conducted and the 
results obtained by automatically clustering dialogue utterances in 
order to discover the intrinsic speech act categories in the data. 
The results are reported in terms of accuracy with respect to the 
expert-labeled speech act categories. After clustering the 
utterances, the expert-assigned label of the majority of the 
instances in a cluster is assigned as the predicted label of the 
cluster and thus all the instances in that cluster are given this 
label. Accuracy is then computed as the percentage of correctly 
predicted instances. 
There are two major categories of clustering algorithms. 
Hierarchical clustering algorithms produce a nested series of 
partitions based on a criterion for merging or splitting clusters 
based on similarity. Partition based clustering algorithms identify 
the partition that optimizes (usually locally) a clustering criterion. 
Example algorithms from each category are hierarchical 
agglomerative (HAC) and K-means, respectively. HAC produces 
a hierarchical structure of clusters while K-means leads to a flat, 
direct clustering. In HAC, each data point is initially regarded as 
an individual cluster and then the task is to iteratively combine 
two smaller clusters into a larger one based on the distance 
between their data points. In the K-means algorithm, we specify a 
priori the number of clusters (K) we would like to have in the end. 
The algorithm usually starts with K seed data points which are 
considered as individual clusters. In subsequent iterations, the 
remaining data points are added to some cluster based on the 
distance to the centroid of each cluster. The centroid is an abstract 
data point of an existing cluster that is found by averaging over all 
the other points in the cluster. A distance metric must be defined 
for clustering algorithms. In our experiments, we used Euclidian 
and Manhattan distances. The reported results are with the 
Euclidian distance which produced results similar to the 
Manhattan distance. To perform clustering, we needed to set a 
couple parameters: number of clusters, which informs the 
clustering algorithm how many clusters to generate, and seed. The 
seed value is used in generating a random number which is, in 
turn, used for making the initial assignment of instances to 
clusters. In general, K-means is quite sensitive to how clusters are 
initially assigned and thus it is often necessary to try different 
values and evaluate the results. We have explored seed values 
between10 and 100 with an increment of 10. The best obtained 
results are reported, which correspond to seed values of 10 and 
20. We used EM and K-means implementation from WEKA [22]. 

We collected dialogue utterances from three online educational 
games. While in general a dialogue utterance or turn may contain 
one or more sentences, in our context an utterance usually 
contains one sentence, with few exceptions. Therefore, the 
sentence was chosen as the unit of analysis. This choice can also 
be justified by the fact that it is closer to the ideal situation in 
which one and only one speech act is performed per unit of 
speech, i.e. an utterance.  
A first data set used for this analysis came from a study run using 
an epistemic game, Urban Science. Urban Science is an 
educational game in which players, using iPlan, a custom-
designed Geographic Information System, work as urban planners 
to change the look and feel of Madison, Wisconsin. They listen to 
people’s concerns, redesign the city, and present their findings to 
family, friends, and planning experts. Urban Science explores 
how innovative technology-based learning environments modeled 
on the professional practices of urban planners inform students’ 
understanding of ecology. The main goal of the game is to help 
players learn about ecology, develop self-confidence and 
presentation skills, and start to see the world through the eyes of a 
problem-solving urban planner. 
The Urban Science chat data was collected from a November 
2008 game run in Milwaukee and consists of online chat posts by 
the students and mentors exchanging information about the game 
rules, content, questions, advice, suggestions, according to the 
game plan. The posts, collected by the game log, were further 
preprocessed first by splitting them into sentences, and secondly 
by manually labeling each sentence with a category of the 8-class 
taxonomy (Statements, Requests, Reactions, Meta Statements, 
Greetings, Expressive Evaluations, Questions and Others). 
The resulting 2768 sentenced were manually classified separately 
by two trained annotators. Most of the speech act categories had 
high levels of reliability (kappas greater than 0.7) among the 
human coders, but two of the categories (Meta Statement and 
Other) had moderate kappa scores of 0.546 to .587.  The overall 
mean kappa score across all 8 speech act categories was 0.797. 
The class distribution is shown in Table 1. If one were to 
randomly assign a speech act category according to these 
distributions, the likelihood of selecting the correct speech act 
category by chance would be .18. The average number of tokens 
per sentence is 7.57, with a Standard Deviation of 6.40. 
The clustering results for the Urban Science data using the 
Expectation-Maximization algorithm are shown in Table 3, 
second column. The first column represents the number of leading 
tokens used for a particular trial. For instance, the third row from 
the top corresponds to the model in which three leading tokens 

Greetings Questions Expressive Evaluation 
Bye what do i say ? nice work , Player112 . 
Bye Player102 ! hahah what ?? this chat thing is sooooo cool 
bye guys yep what now ? nice work everyone , check your inbox 
Bye what do you like to do , etc . That 's great . 

Bye 
What sort of background qualifies you for this 
internship? Player109 great . 

Bye ! what was in your notes ? thanks for your help , laura 
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Table 3. Results with Expectation-Maximization clustering algorithm. 

Table 4. Results with K-Means clustering algorithm.
were used. The results show that the three leading tokens provide 
the best results and yields six discovered clusters. When evaluated 
against expert-assigned labels, the accuracy was 40.3% for the 
leading three tokens model. A random guess would uniformly 
assign a dialogue utterance to each of the eight speech acts for an 
accuracy of 12.5%. Compared to the expert-defined speech act 
categories, the EM algorithm does not identify Greetings and 
Other speech acts. Greetings are mostly clustered in the predicted 
Reactions cluster.  
Results for K-Means are shown in Table 4. The results are all for 
leading three tokens which was the best model when using the 
non-parametric EM algorithm. Remember that we do not have to 
specify a priori how many clusters we should expect when using 
the EM algorithm which is the reason we first used EM to find the 
best model to use for the discovery of intrinsic speech act 
categories in the data. The first column in Table 4 indicates the 
number of clusters used. We tried values around the expert-
defined number of clusters, which was eight clusters. 
Land Science is another computer-based educational game, in 
which players become interns at the office of a fictitious urban 
and regional planning firm. The players have to weigh the trade-
offs of land use decisions in ecologically-sensitive areas, interact 
with virtual stakeholders, and develop land use plans for local and 
national sites. It is a 10 hour game played in schools or out-of-
school enrichment programs. 
The Land Science data was collected from the log of a game run 
in 2010 at Massachusetts Audubon Society. The online chat posts 
were split into 4131 sentences which were than manually labeled 
independently by two humans. The inter-judge reliability scores 
ranged from 0.501 for the category Other to 0.918 for the category 
Question, with a mean of 0.755. 
The class distribution is as follows: 2.3% Others, 2.3% Expressive 
Evaluations, 2.7% Greetings, 7.8% Requests, 8.4% Meta 
Statements, 19.0% Questions, 28.2% Statements and 28.9% 
Reactions, which means that the chance of the corpus is .21. The 
average number of tokens per sentence is 6.85, with a Standard 
Deviation of 6.69. 
The results on the Land Science data set are shown in the third 
column of Tables 3 and 4. The best results are again for a model 

in which the three leading words were used. However, in this case 
the number of intrinsic speech act categories, i.e. clusters, is five. 
MetaStatements, Greetings, and Other are not identified as 
clusters by the three leading tokens model and the non-parametric 
EM algorithm. 
Nephrotex is an educational game in which undergraduate 
engineering students role-play as professional engineers-in-
training in order to develop the skills, knowledge, identity and 
values of engineers. In Nephrotex, students are welcomed as early 
career hires into the fictitious company Nephrotex, whose core 
technology is the ultrafiltration unit, or dialyzer, of a hemodialysis 
machine. The students’ assigned task is to design a next-
generation dialyzer that incorporates carbon nanotubes and 
chemical surfactants into the hollow fibers of the dialyzer unit. 
Online chat posts were collected from a game run in 2011 and 
subsequently split into 1000 sentences which were later manually 
classified by two humans. The kappa scores for each of the eight 
categories when comparing the two trained judges ranged from 
.41 for class Other to .94 for class Question with an average of .68 
The class distribution shows the following hierarchy: 1.1% 
Others, 1.4% Greetings, 2.4% Expressive Evaluations, 4.0% Meta 
Statements, 5.6% Requests, 17.3% Questions, 20.2% Reactions 
and 48.0% Statements, which indicates that the corpus' chance is 
.30 The average number of tokens per sentence was 9.01, with a 
Standard Deviation of 6.38. 
The large corpus obtained by combining the previous three 
corpora, consists of a number of 7899 sentences, each labeled 
with one of the eight speech act categories. The distribution is as 
follows: 2.4% Others, 2.9% Greetings, 3.6% Expressive 
Evaluations, 7.1% Meta Statements, 9.1% Requests, 20.3% 
Questions, 25.8% Reactions and 28.5% Statements, resulting in a 
chance of .20. The average number of tokens per sentence is 7.37, 
with a Standard Deviation of 6.59. 
For the Nephrotex corpus, the best results are obtained using the 
two leading tokens. However, the results obtained with the three 
leading tokens are comparable in terms of accuracy but not in the 
number of clusters discovered, three versus four. Because the 
three leading tokens model has been best in the other datasets, we 
incline to declare it a winner in this case too. 

Leading Tokens #Clusters/Urban 
Science 

#Clusters/Land Science #Clusters/Nephrotex #Clusters/Combined 

2 Tokens 5/34.4% 4/38.7% 3/38.9% 7/34.7% 
3 Tokens 6/40.3% 5/42.5% 4/38.2% 6/37.8% 
4 Tokens 4/36.2% 5/34.2% 4/38.7% 6/35.4% 
5 Tokens 5/39.9% 5/36.4% 5/36.4% 6/37.9% 

N Urban Science Land Science Nephrotex Combined 
6 clusters 29.6% 36.4% 28.6% 35.2 

7 clusters 27.2% 31.1% 
26.9% 31.5 

8 clusters 29.1% 30.3% 26.3% 27.8 
9 clusters 31.3% 28.9% 26.1% 28.0 
10 clusters 27.6% 26.2% 25.7% 27.0 
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Finally, we also experimented with a combined dataset. Results 
are presented in the last column of Tables 3 and 4. 

4.1 Balanced Data Set 
Because the three datasets collected were dominated by certain 
categories, e.g. Questions, Reactions, and Statements, we 
wondered about the ability of the clustering algorithms to discover 
the intrinsic speech act categories when the data would be 
uniformly distributed. 
To achieve this goal, we ran experiments on a balanced dataset of 
speech acts by extracting from the combined data set an equal 
number of utterances for each speech act. In the process, we 
dropped the Other category as too few utterances were available. 
In the end, we obtained a balanced data set of seven speech act 
categories, each category containing 230 utterances each. 

N #Clusters/Accuracy 

2 4/29.8% 
3 6/28.3% 
4 5/31.7% 
5 6/31.1% 

Table 5. Accuracy and number of clusters obtain with EM 
algorithm on the balanced data set. 

From the results in Table 5, we can see that the accuracy is quite 
similar for all values of N, i.e. the number of leading words used 
as predicting features in clustering. The leading three words 
generate six clusters (out of seven in the gold standard). 
MetaStatements were mostly labeled as Greetings, Statements, 
and Expressive Evaluations. For instance, the MetaStatement, 
“Yay!” expressing an emotion is similar to a Greeting because of 
its short length and exclamation mark. For short utterances which 
are shorter than the number of tokens used in a given model we 
introduce dummy values for missing tokens, e.g. NONE. So, 
“Yay!” and “Hi!” have similar representations except for the first 
tokens which explains why they are clustered. Given that ideally 
we would like to have a trade-off between the complexity of the 
model used, in our case defined by how many tokens are 
employed (the more tokens the more complex the model), 
discrimination power (number of distinguishable clusters), and 
performance, we conclude from the results in Table 5 that using 
the three leading words is best. 

5. CONCLUSIONS AND FUTURE WORK 
We proposed in this paper a fully automated method to speech act 
discovery. As we already mentioned, this work is a step towards a 
process of defining the speech act taxonomy using both extrinsic 
and intrinsic aspects of the target domain. The extrinsic aspects 
comprise of the goals of the system that needs the speech act 
taxonomy and the experts’ knowledge and biases. The intrinsic 
aspects relate to the actual similarities of the actual data. A trade-
off between the extrinsic and intrinsic forces could lead to a 
robust speech act taxonomy that is both informed by experts’ 
views and by the actual data.  
We presented results on the original dataset as well as on balanced 
datasets in which the gold standard (i.e., the speech act categories 
are validated by experts) had same numbers of utterances for each 
speech act. The balanced datasets offer a more fair comparison of 
the clustering method of the utterances in our epistemic games. 

However, sometimes domains such as educational systems may be 
biased towards particular speech acts in which case the original 
datasets offers us a view at the “real” world and how the proposed 
methods work in real settings. 
A drawback of the proposed model for representing dialogue 
utterances, i.e. the N leading tokens, is that the distance between 
two dialogue utterances is based on string operations rather than 
lexico-semantic distances which would be more meaningful for 
natural language dialogues. That is, two utterances that contain 
the words ‘hi’ and ‘hi’ would be close in a string-based 
representation while ‘hi’ and ‘hello’ or ‘hi’ and ‘bye’ would not. 
While for the former example of ‘hi’ and ‘bye’ one could argue 
for the creation of a different cluster, or speech act category, for 
the former they should definitely be in the same cluster. One 
solution is to modify the clustering library in WEKA [22] to 
include a lexico-semantic distance based on word-to-word 
similarity measures, e.g. using the WordNet similarity library 
[23]. We do plan to explore this line of research in the future. 
As one last conclusion, our work showed that there is close 
relationship between the model used, e.g. the number of leading 
tokens, and the number of intrinsic clusters found in the data. This 
result should inform the developers of speech act classifier who 
used a particular model about the power of that model to discover 
the intrinsic, extrinsic, or intrinsic-extrinsic speech act categories 
adopted. 
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ABSTRACT
Learning a more distributed representation of the input fea-
ture space is a powerful method to boost the performance
of a given predictor. Often this is accomplished by parti-
tioning the data into homogeneous groups by clustering so
that separate models could be trained on each cluster. In-
tuitively each such predictor is a better representative of
the members of the given cluster than a predictor trained
on the entire data-set. Previous work has used this basic
premise to construct a simple yet strong bagging strategy.
However, such models have one significant drawback: In-
stances (such as students) are clustered while features (tu-
tor usage features/items) are left alone. One-way cluster-
ing by using some objective function measures the degree
of homogeneity between data instances. Often it is noticed
that features also influence final prediction in homogeneous
groups. This indicates a duality in the relationship between
clusters of instances and clusters of features. Co-Clustering
simultaneously measures the degree of homogeneity in both
data instances and features, thus also achieving clustering
and dimensionality reduction simultaneously. Students and
features could be modelled as a bipartite graph and a si-
multaneous clustering could be posed as a bipartite graph
partitioning problem. In this paper we integrate an effective
bagging strategy with Co-Clustering and present results for
prediction of out-of-tutor performance of students. We re-
port that such a strategy is very useful and intuitive, even
improving upon performance achieved by previous work.

Keywords
Out-of-Tutor Prediction, Dynamic Assessment, Spectral Co-
clustering, Ensemble Learning, Bootstrap-Aggregation

1. INTRODUCTION
A significantly large student population would usually have
a wide variation in learning rates and knowledge levels. While
there are numerous reasons for this diversity, three major
reasons are related to: the type of instruction or help they

respond best to, the way they are oriented towards learning
and their levels of intellectual development [1],[2]. Need-
less to say, such differences would be reflected in the way
students interact with educational software, making educa-
tional data quite difficult to mine well. Specifically there
are many educational data mining problems where the end
goal is to predict the performance of a student on a given
in-tutor or out-of-tutor task. In-tutor tasks include pre-
dicting the probability that a student will answer an item
correctly after attempting a sequence of similar questions
whereas out-of-tutor tasks include being to predict student
performance in post-tests based on the data from their tutor
usage.

The idea that students are quite different makes it appar-
ent that perhaps it is not such a good idea to fit a global
prediction model over the entire dataset for making predic-
tions. In spite of the differences between students, educators
commonly observe that students actually lie in very rough
groups and have similar pedagogical needs. Taking a cue
from this intuition, the task of prediction can be improved
by clustering students into somewhat homogeneous groups
and then training a separate predictor for each group. Such
a predictor would obviously be a much better representative
of students in that cluster as compared to a predictor which
is fit on the entire dataset. For example, it makes sense
to have a different model for students roughly classified as
fast learners and a different model for slow learners than the
same for both. This rather simple strategy of grouping stu-
dents together and then modeling them separately can lead
to improved performance in prediction and perhaps even
better interpret-ability.

While the above approach is compelling, there are two ma-
jor issues with it. Firstly, while it is useful to model students
as belonging to different groups, it is also known that such
groupings are quite fuzzy and approximate. Students might
actually possess different characteristics in varying degrees
and what really sets them apart are certain dominant char-
acteristics. For example students classified as fast learn-
ers might actually be slow learners in certain skills. A fast
learner might also belong to the group of students that are
good at recalling information etc. Thus, such complex char-
acteristics can not be possibly modelled by simply clustering

Proceedings of the 5th International Conference on Educational Data Mining 33



students to a certain limit and then training models for each
cluster. This “spread” of features in a student across groups
also needs to be captured to make a distributed predictive
model such as the above more meaningful. Such an issue
can be resolved by varying the granularity of the clustering
and training separate models each time so that such features
can be accounted for. A simple yet quite effective strategy
to do so was proposed by the authors and was seen to work
quite well both in educational contexts (in-tutor predictions
[3], out-of-tutor predictions [4],[5]) and more generally [6].

The second problem with the above approach is that cluster-
ing is implicitly suggested to be one-way i.e only clustering
students. But this need not necessarily be the case and only
clustering students would consider only half of the story. As
an example, consider a matrix in which the rows represent
students and the columns represent their responses to cer-
tain items. Clearly, clustering students would depend upon
their item distributions, implicitly suggesting that for cer-
tain students certain items are more important than others.
Similarly if items were to be clustered, they would depend
on which groups of students get them correct (or incorrect)
most frequently. This indicates a duality between these two
clusterings, which on simultaneous co-clustering could be
very useful in answering many research questions. Co clus-
tering of such a student versus item matrix would pair clus-
ters of student proficiency to clusters of item performance
which could be seen as a sort of a subject treatment interac-
tion. This idea could be extended to the more general case
of students and features rather than just items. In this work
we use this idea of co-clustering students and their tutor in-
teraction features and interleave it with the bagging strategy
which was used with clustering [3],[4],[5],[6]. This combined
approach is then used to predict the post-test scores of stu-
dents.

This paper is organized as follows: In Section 2 we discuss
the idea of co clustering in more detail and that co cluster-
ing could be posed as a bipartite graph partitioning problem.
In Section 3 we describe a general framework in which we
interleave co clustering with the idea of generating an en-
semble. In Section 4 we describe the experimental results
which demonstrate the validity of this approach. In Section
5 we discuss the results and also describe some avenues for
further work.

2. CO-CLUSTERING
Clustering is a fundamental tool from unsupervised learn-
ing for data analysis that groups together relatively homo-
geneous objects. The central idea for clustering is that every
object could be specified by a feature vector (or a point in
the feature space) and then the degree of homogeneity be-
tween them could be measured by some objective function
that uses these feature vectors. For example in k-means
clustering: the points are grouped so as to minimize a dis-
tortion function, which is basically the sum of distances of
all points from their assigned cluster centroids [7].

Clustering algorithms are one-way, i.e. one dimension of the
data (say the rows of the data matrix) is clustered based
on the similarities measured on the second dimension (say
the columns). As pointed out in the previous section it
might be desirable, quite frequently, to cluster along both
the dimensions simultaneously, exploiting the apparent du-
ality between them. Such simultaneous clustering can of-

ten offer interesting insights about the nature of interaction
between the clusters at both the dimensions [8]. This util-
ity is fast making co-clustering a fundamental tool for data
analysis as is indicated by its widespread use in text and
document mining [9], [10]; bioinformatics and gene expres-
sion analysis [11], [12]; collaborative filtering [13] and many
others practical applications.

While there are now a number of approaches to co-clustering
such as based on spectral graph theory [10] and informa-
tion theory [14], [15], each with its advantages, we consider
the approach proposed by Dhillon [10] which formulates the
problem of co-clustering as a bipartite graph partitioning
problem. We now briefly describe this approach starting
with the relevant notation and definitions.

2.1 Notation and Definitions
A graph is represented as G = (V, E) where V represents the
set of vertices and E represents the set of all edge weights
Eij , where Eij is the edge weight between vertices {i, j}.

Definition 1. The n×n Weighted Adjacency Matrix
of an undirected graph is defined as the matrix (mij)i,j=1,...,n.
Ifmij = 0 it implies that vertices vi and vj are not connected
by an edge. If mi,j 6= 0 it implies that the vertices {i, j} are
connected and mi,j is the corresponding edge weight. Since
the graph is undirected, mij = mji necessarily.

Definition 2. Given the weighted adjacency matrix of a
graph and a partition of the vertex set V into two disjoint
subsets V1 and V2, the cut between these two subsets is
defined as:

cut(V1,V2) =
∑

i∈V1,j∈V2

Mij

An undirected bipartite graph is a triple represented by
G = (S,F , E) where S and F are two sets of vertices and E
is the set of edges. Since it is a bipartite graph one end of the
edges in set E have an endpoint in S and another in F . In
our case the set S is the set of students while the set F is the
set of features. The set of features could readily be seen as
a set of item-responses as well. If F is the set of items, then
an edge between si and fj exists if that item was answered
correctly by a student and not otherwise. More generally,
if F is just a set of features, then the edge {si, fi} simply
represents the value of that feature scaled between 0 and 1
for that student. Given this definition of a Bipartite Graph,
now we define the adjacency matrix of the same.

Consider a m×n dimensional data matrix with students on
the rows and the items or features on the columns. Let’s
suppose this matrix is given by A. Clearly, the adjacency of
the bipartite graph is given as:

M =

[
0 A
AT 0

]
The zeroes on the top-left and the bottom-right sub-matrices
signify the absence of connections amongst the elements of
S and F respectively (since connections in a bipartite graph
can only run between S and F). The matrix M is repre-
sented such that taking A at the top right corner and AT at
the bottom left implies that the first m rows of M represent
the set of students and the next n rows represent the set of
features or items.
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Suppose the Bipartite Graphs (whose adjacency matrix is
defined above) is partitioned into k clusters V1, . . . , Vk. Given
this partitioning, a corresponding set of student clusters
S1 . . .Sk and corresponding feature clusters F1 . . .Fk would
also be obtained. It could be intuitively seen that the best
possible such set of clustering for all such pairs would be
when the sum of all edges which cross between clusters is
the minimum possible. As defined by [10] this corresponds
to:

cut(S1 ∪ F1, . . . ,Sk ∪ Fk) = minV1,...,Vkcut(V1, . . . , Vk)

Where V1, . . . ,Vk represents a k-partitioning of the graph.

The above definition leads us to the Bipartite Graph Parti-
tioning problem:

Definition 3. The bipartite graph partitioning prob-
lem: Given a graph as defined earlier and subsets of V which
are almost of equal size, say V∗1 and V∗2 . The required par-
tition is

cut(V∗1 ,V∗2 ) = minV1,V2cut(V1,V2)

The bipartite graph partitioning problem as defined above is
NP-Complete. However, a good relaxation to this problem
is given by spectral graph bi-partitioning. This relaxation
is achieved via the graph Laplacian. The laplacian L of a
graph is a symmetric positive semi-definite matrix such that
its un-normalized form is given by L = D −M where D is
the degree matrix and M is the adjacency matrix as defined
earlier. Note that D is only a diagonal matrix while M is
a symmetric matrix with all zeros in the diagonal. Thus,
the Laplacian encodes both D and M in it and has many
useful properties such as being positive semi-definite, which
make it very useful for tasks such as clustering [24]. One
property of the Graph Laplacian that make it particularly
suitable for clustering are related to the properties of its
spectrum. The spectra of the Graph Laplacian unfolds the
data manifold to give an lower dimensional embedding which
can give “better” clustering results.

Returning to the Bipartite Graph Partitioning Problem, as
demonstrated by Dhillon [10] and Mohar [24], the second
eigenvector of the generalized eigenvalue problem Lz = λDz
gives a real relaxation to the problem of finding the mini-
mum normalized cut Q(V1,V2). The normalized cut is ba-
sically a cut that favours finding balanced partitions i.e. if
the cut of two different partitions is the same, then the nor-
malized cut is smaller for that partition which is more bal-
anced. Thus it favours partitions that are balanced and have
a small cut value. Clearly, the normalized cut is more suit-
able for tasks such as clustering [16]. Note that this relates
to the ideas above relating to the optimal bi-partitionings
in the following way: We want balanced clusterings with
minimum cut for solving the bipartite graph partitioning
problem, which would also be the optimal clustering for us.
Thus looking at the Laplacian of the bipartite graph might
provide such a clustering.

2.2 Spectral Co-Clustering
Given the definitions and notions in the previous section,
in this section we state an algorithm [10] for finding the
optimal co-clusters {S1 ∪ F1}, . . . , {Sk ∪ Fk} as mentioned
above. For that we define the graph laplacian of a bipartite

graph as such an optimal clustering can be found using a
laplacian. Using the definition of L = D −M as defined
above and also the definitions of D and M . The laplacian
may be written as:

L =

[
D1 −A
−AT D2

]
and

D =

[
D1 0
0 D2

]
where D1 and D2 correspond to the degree matrices of A
and AT respectively.

If the generalized eigenvalue problem Lz = λDz is written
for the above laplacian for a bipartite graph and then re-
arranged, it has been demonstrated [10] that the resulting
equations define the equations for a singular value decom-
position of the normalized matrix

An = D
−1/2
1 AD

−1/2
2

Thus instead of finding the second smallest eigenvector cor-
responding to the second eigenvalue, one could find the left
and the right singular values in its place. Finding the right
singular value gives a bi-partitioning of students while the
left singular value gives a bi-partitioning of the features.
These can then be used to find the optimal bi-partition as
defined above.

Algorithm 1.

1. Given the co-occurrence or data matrix scaled to be-
tween 0 and 1 A, form the normalized matrix.

An = D
−1/2
1 AD

−1/2
2

2. Compute the second left and right singular vectors for
An, concatenate them together to form a vector z.

3. Run k-means on this vector to obtain a simultaneous
clustering of both the students and the features.

This algorithm can be extended to a multipartition case if
instead of finding the second singular values, the first log2(k)
singular vectors are found. The rest of the process remains
the same.

Note that this algorithm gives a simultaneous clustering of
the rows and the columns and is restricted in the sense that
the number of row and columns clusters have to be the same.
We modify this by running k-means two times. If the num-
ber of row clusters is k and then the number of column
vectors is l, then we run k-means on the vector z twice,
once to find k clusters and then to find l clusters. The first
m elements of the length m + n cluster assignment vector
run will then correspond to the row clusters and the last n
elements of the cluster assignment vector in the second run
will correspond to the column cluster indices.

3. BAGGING STRATEGY
The statement of the supervised learning problem in ma-
chine learning could be roughly stated as follows: Given a
training set consisting of ordered pairs of feature vectors and
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their associated labels (which might be discrete or contin-
uous), the task of a learning algorithm is to learn a func-
tional map from the feature space to label space. A learn-
ing algorithm is said to be more powerful if it is able to
learn mappings such that it can generalize well and make
correct predictions on test data-points on which it was not
trained. Since the functional map under consideration might
be highly non-linear, learning algorithms that output only
a single mapping (frequently referred to as the hypothesis)
might suffer from statistical, computational and representa-
tion issues that restrict them from learning good mappings.
One way of solving this problem is to transform the fea-
ture space into a more suitable and “richer” representation
such that learning using this new representation gives much
better functional maps as compared to the original represen-
tation. This is the motivation behind deep learning methods
which have caused a new wave of excitement in the machine
community since 2006 [17]. Another way of solving this
problem atleast partly, is by using ensemble learning meth-
ods [18],[19],[20]. The basic idea behind ensemble methods is
that they involve running a “base learning algorithm” multi-
ple times, each time with some change in the representation
of the input (e.g. only considering a subset of features in
each run) so that a number of diverse predictions (or maps)
could be obtained. This diversity in prediction is then ex-
ploited to get better predictions. Thus ensemble methods
approach the said problem by both trying to learn multi-
ple functional maps and also by learning a more distributed
and hence “richer” representation of the input space at the
same time. In the next section we describe a method to use
clustering for bootstrapping.

3.1 Clustering for Bootstrapping
In earlier work we introduced the idea of using clustering
for bootstrapping [3], [4], [5], [6]. This idea was quite un-
like other bagging methods which use a random subset to
bootstrap. Thus, it had the potential advantage that the
subsets used to bootstrap could be more interpretable. Be-
fore we generalize this methodology using co-clustering we
first briefly describe the methodology using clustering.

The training set was first clustered into k disjoint clusters.
A linear regression model was trained on each of the clusters
only based on the training points assigned to that cluster.
Since each such linear regression was a representative of only
one cluster, we called it a cluster model. Thus, for a given k,
there would be k cluster models. But since all the clusters
are mutually exclusive, the training set is represented by all
the cluster models taken together. This is called a prediction
model (PMk). For an incoming test point on which a pre-
diction is to be made, we first identify the cluster that point
belongs to. After the cluster has been identified, the appro-
priate cluster model could be used to make a prediction for
that point. Now note that we don’t specify the number of
clusters in the above. Hence, we can change the granular-
ity of the clustering from 1 to some high value, say K. In
each instance we would get a different prediction model (a
special case would be PM1, which would basically be when
one linear regression model is trained on the entire dataset).
Thus, we would obtain a set of K prediction models each
of which would make a separate prediction on the test set.
Since we vary the granularity of the clustering, each of these
predictions are different, this diversity in prediction could be

Figure 1: Finding a Prediction Model, PMkl with k row
clusters and l column clusters

used by averaging all the (or half) the predictions obtained
to get a single much stronger prediction.

3.2 Co-Clustering for Bootstrapping
Note that the clustering is only one-way. That is, bootstrap-
ping is done by only changing the data instances available
for each cluster model (by changing the number of cluster
models itself) but the number of features used in each case is
the same. A cluster basically is a bunch of rows in the data
matrix with all columns. A co-cluster on the other hand
would be a “block” in the data matrix with a sub-set of
rows and a sub-set of columns assigned to each “co-cluster”.
Thus a co-clustering could be thought of as a simultaneous
clustering and dimensionality reduction of the data. Note
that a clustering is only a special case of co-clustering when
the columns are not clustered at all (or have only one column
cluster).

Clearly, the above bagging methodology can be suitably
modified using co-clustering. For a given number of row
clusters k and column clusters l we could have k co-clusters
where-in each cluster has only some features assigned to it
(note that the definition is symmetric i.e we could think of
this as l co-clusters). For each co-cluster we train a sepa-
rate linear regression model only using the data instances
and features assigned to it. We thus obtain k Co-Cluster
Models. Like in the above case for clustering, the combina-
tion of the k co-cluster models would be considered to be
a Prediction Model which makes a single prediction on the
test set. We can then vary k from 1 to some value K and l
from 1 to some value L. By doing so, we would get a total
of K×L prediction models. We then average a subset of the
predictions made by these models to obtain a much stronger
prediction.

There are some interesting aspects to such a methodology
using co-clustering. For k = 4 and l = 4, the grid in Figure
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(1,1) (1,2) (1,3) (1,4) 

(2,1) (2,2) (2,3) (2,4) 

(3,1) (3,2) (3,3) (3,4) 

(4,1) (4,2) (4,3) (4,4) 

Figure 2: Ordering the Co-Cluster Prediction Models, PMkl

2 illustrates all the Prediction Models (PMkl) that could be
obainted by co-clustering. The Prediction Model PM1,1 rep-
resented by (1, 1) is simply the case when there is one data
cluster and only one feature cluster i.e the original data ma-
trix itself. The prediction model for this case would simply
be training a linear regression on the entire dataset, consid-
ering all the features. The first column of this grid repre-
sents the case when the number of feature clusters is just
one, while the number of row clusters are changed. Note
that this is simply the methodology described above in Sec-
tion 3.1 using clustering. The first row of this grid is also
equally interesting. In this case the number of row clusters
is always one i.e the entire dataset is considered in all co-
clusters, while the column clusters are successively changed.
It should be noted that this is a sort of a step-wise regression,
where a linear regression is trained on the entire dataset but
the number of features that are used to train it are changed
(usually reduced as l increases). All the other cases are a
cross between these two extreme cases. We see that it seems
plausible that a bagging strategy using co-clustering if av-
eraged properly could definitely have more predictive power
as it generates diversity by considering a different subset
of data instances and features each time, consequently also
generating a much larger set of predictions.

3.3 Blending Predictions
As mentioned before, the method for combining the predic-
tions returned by the various prediction models is a naive
averaging strategy. When the prediction models were gener-
ated by clustering (PMk), we either averaged the first K/2
predictions (where K was the maximum number of clusters)
[6] or we learned the best number of prediction models that
could be averaged by an internal cross-validation [6]. The
averaging idea is not immediately straightforward when co-
clustering is used to generate the prediction models. This
is because the prediction models are obtained by changing
two parameters. It is also observed that prediction models
with a high k or l return poor accuracies, thus it wouldn’t be
useful to average predictions from all the PMk1 models first
and then PMk2 models and so on (i.e. traversing the grid
row-wise or column-wise). Since high values of k and l are
counter-productive, we take the order of the prediction mod-
els such that the sizes of k and l increase uniformly. This
ordering is illustrated by the curve in Figure 2. The first
half of this reordered set of predictions are then averaged.

4. EXPERIMENTAL VALIDATION
In this section we report experimental results for using co-
clustering for bagging and compare results with the bench-

mark (PM11) and clustering alone.

4.1 Dataset Description and Context
We primarily experiment with two datasets in this study.
This data was collected to study if dynamic assessment,
which has long been advocated as an effective method for
assessment, was actually better than the traditional static
assessment [21], [22]. Dynamic assessment is an interactive
approach to student assessment which is primarily based on
how much help a student requires during a practice test.
Traditional static testing only takes into account the per-
centage of questions that the student gets correct. Feng et
al. [23] showed that features that only recorded how much
assistance a student got while interacting with a tutor alone
were better predictors of student performance in post-tests
held later in the year as compared to how many questions
students got correct. This was confirmed in subsequent
studies [4], [5]. Thus if Co-Clustering is able to improve
predictions, then this study could further lend weight to the
idea that dynamic testing is indeed better than static test-
ing and that we could further improve upon PM11. It must
be noted that PM11 would correspond to results reported
in [23] which were better than static assessment. PM11 ba-
sically corresponds to the condition when all the dynamic
features are considered and all of the training set is used to
train a predictor.

The datasets come from the 2004-05 and 2005-06 school
years, the first two full years when ASSISTments.org was
used in schools in Massachusetts. ASSISTments is an e-
learning tutoring system developed at Worcester Polytech-
nic Institute which assesses students as it assists. These
datasets contain features that measure the interaction of
students with the tutor and their actual final grades, which
they obtained at the end of the year in the Massachusetts
state test (MCAS). There a total number of six features in
these datasets 1) DA Original Count is the number of
questions that the students answered with assistance in the
dynamic condition. 2) DA Original Percent Correct is
the percent of questions of feature 1 that students get cor-
rect . 3) DA Scaffold Percent Correct is the percentage
on tutorial help questions that students get correct. 4) DA
Average Time is the average time that a student spends
on a question 5) DA Average Attempt is the average
number of attempts students made per question. 6) DA
Average Hints is the average number of hints that stu-
dents used. The task is to use these interaction features to
predict the MCAS scores that students might get at the end
of the school year. The static condition feature is percentage
of questions answered correct in static testing. This feature
is never used for making predictions for the dynamic condi-
tion. The data in the 2004-05 set (ASSISTments 2004-05)
is for 628 students, while the 2005-06 data (ASSISTments
2005-06) is for 761 students.

For experimentation we do a five fold cross-validation on the
dataset and report results for the base condition (PM11) and
the various blended results which were obtained by averag-
ing as discussed in Section 3.3. For the sake of comparison
we also include results with k-means clustering too. In both
cases we consider the ensembled results, with the top K pre-
dictions averaged as described in [4], [5] and also in Section
3.1. Following results in [4] and [5] we report results in terms
of the mean absolute difference (MAD).

Finally, for pre-processing: As mentioned in Section 2, to

Proceedings of the 5th International Conference on Educational Data Mining 37



Figure 3: Performance on the 2004-05 Set

obtain a bipartite partitioning A must contain values that
are either binary or scaled between 0 and 1. Thus, in each
fold each feature column is scaled to between 0 and 1 so that
An could be considered a co-occurrence matrix. This marks
a slight difference from earlier papers in which the feature
scaling was done so as to map all the data-points to between
−1 and 1 by using the mapminmax command of MATLAB.
This slight difference might result in a small variation in the
results.

4.2 Experimental Results
We first report results on the ASSISTments 2004-05 dataset.
The five fold cross-validated results using co-clustering are
reported in Figure 3. The number of row clusters (k) and
the number of column clusters (l) were restricted to 4 each.
This resulted in 16 prediction models. The x-axis in the
graph represents the first eight prediction models on doing
co-clustering, while the y-axis simply gives the mean abso-
lute error. We observe that the accuracy of co-clustering
alone is quite bad (as seen by the blue line) as compared to
the baseline (PMkl, which is basically the result for x = 1 in
this graph. Note that the baseline is the dynamic condition
of Feng [23]). These predictions are those given by the first
elements of the ordered set of co-cluster prediction models
as defined in Section 3.3. However, averaging these predic-
tion models successively gives better and better predictions
(as can be seen by the red line).

Similar results were reported in the ASSISTments 2005-06
dataset as shown in Figure 4. In this dataset the prediction
models are far worse than the ensembled results as com-
pared to the previous dataset. Again, we obtain 16 predic-
tion models after co-clustering and successively average the
first eight (the first with second, the first with second and
third and so on) after they have been arranged in the way
suggested in Section 3.3. Again the ensembled results do
much better over the baseline (we report exact figures and
significance in Tables 1 and 2).

In Table 1 we compare the mean absolute errors when pre-
dictions of the first five prediction models are bagged. We
report results when the Prediction Models are obtained both
by using co-clustering and using k-means clustering on the
ASSISTments 2004-05 dataset. The figures in bold indi-
cate statistical significance over the baseline prediction on

Figure 4: Performance on the 2005-06 Set

Table 1: Comparison of predictions based on k-means and
Co-Clustering for the ASSISTments 2004-05 Dataset. Fig-
ures in bold indicate significance over the baseline on paired
t-test. Numbers are Mean Absolute Errors. Also note that
Pred. Model 1 corresponds to the baseline

Pred. Models Co-Clust k-means
1 8.7741 8.7741
2 8.7379 8.7518
3 8.7087 8.6725
4 8.6879 8.7153
5 8.6574 8.7100

a paired t-test. Results in Table 2 compare the predictions
obtained by using co-clustering and k-means for bagging on
the ASSISTments 2005-06 dataset.

The results are significantly better over the baseline and
also indicate that the dynamic assessment condition returns
a much better prediction of student test scores as compared
to the static condition. It has already been noted that the
static test condition results are significantly worse as com-
pared to even the baseline by [23] and [4], and thus we don’t
report results for the static condition.

5. DISCUSSION AND FUTURE WORK
The datasets that were used for the validation of this bag-
ging technique, which is based on co-clustering were not very
large and did not have a large number of columns. Thus,

Table 2: Comparison of predictions based on k-means and
Co-Clustering for the ASSISTments 2005-06 Dataset. Fig-
ures in bold indicate significance over the baseline on paired
t-test. Numbers are Mean Absolute Errors. Also note that
Pred. Model 1 corresponds to the baseline

Pred. Models Co-Clust k-means
1 7.9822 7.9822
2 7.7716 7.8185
3 7.5990 7.8034
4 7.4680 7.7815
5 7.5503 7.6487
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these results were initially surprising. One would imagine
that in a dataset which has a small number of features, per-
haps a feature selection might not be too helpful. However,
our experiments show us otherwise. The results that we ob-
tain, while modest improvements show that this technique
though simple can give access to a novel source of variance
in the data. It can potentially also have some nice prop-
erties in terms of returning simpler and more interpretable
groups. For example, it was earlier pointed out that one
row of the prediction models were actually nearly like a lin-
ear regression model in which the features are successively
eliminated. At the same time it was observed that one col-
umn of the prediction models were actually just the various
prediction models that we obtained on clustering alone as
reported in some previous work. It would be interesting to
see how the Co-Clusters (which are basically blocks in the
data matrix) on a student-item dataset would pair clusters
of student proficiency to clusters of item performance which
could be seen as a sort of a subject treatment interaction.

In the literature, it has been said that the real strength of co-
clustering is with binary valued data, co-occurrence tables
and basically in scenarios which involve collaborative filter-
ing. Hence, datasets which are basically a student by item
matrix would be an ideal candidate for trying out this tech-
nique. In the KDD Cup 2010 Töscher and Jahrer modelled
student response data as a collaborative filtering task and
used matrix factorization techniques for the same. Given
the connections of co-clustering with matrix factorization,
it is worth investigating how useful it could be in such a
setting.

In [3], the authors clustered students based on tutor interac-
tion features and then trained separate Knowledge Tracing
models for students based on the cluster they were in. This
was done so because it was not possible to cluster the item
sequences directly and an indirect approach had to be taken.
This co-clustering technique seems to give an alternative by
which such matrices might be clustered more readily with-
out the need to cluster the tutor interaction features.

In summary, in this paper we propose a bagging technique
that uses co-clustering and demonstrate that it’s perfor-
mance is better than that obtained by bagging using clus-
tering. We also suggest that it is most suitable for datasets
which are like co-occurrence tables and believe that it would
be a good direction for future work since such student-item
datasets are usually of this form.
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ABSTRACT 
A long-standing challenge for knowledge tracing is how to update 
estimates of multiple subskills that underlie a single observable 
step. We characterize approaches to this problem by how they 
model knowledge tracing, fit its parameters, predict performance, 
and update subskill estimates.  Previous methods allocated blame 
or credit among subskills in various ways based on strong 
assumptions about their relation to observed performance.  LR-
DBN relaxes these assumptions by using logistic regression in a 
Dynamic Bayes Net.  LR-DBN significantly outperforms previous 
methods on data sets from reading and algebra tutors in terms of 
predictive accuracy on unseen data, cutting the error rate by half.  
An ablation experiment shows that using logistic regression to 
predict performance helps, but that using it to jointly estimate 
subskills explains most of this dramatic improvement.  An 
implementation of LR-DBN is now publicly available in the 
BNT-SM student modeling toolkit. 
Keywords 
Conjunctive knowledge tracing, Dynamic Bayes Nets, logistic 
regression 

1. INTRODUCTION 
Knowledge tracing (KT) [1] is widely used to update an 
intelligent tutor’s estimate of the probability that a student has a 
given skill, based on the student’s observable performance on 
steps that use the skill.  KT does not in itself address the issue of 
how to update multiple subskills used in the same step.  This 
paper compares various approaches to this “multiple subskills 
problem.”  Section 2 frames the space of prior (and new) methods.  
Section 3 describes a recent method named LR-DBN [2].  Section 
4 compares LR-DBN against previous methods on two data sets.  
Section 5 concludes. 

2. COMPARATIVE FRAMEWORK 
As a framework to compare previous and proposed methods for 
tracing multiple subskills, we use four aspects to characterize 
them:  how they represent the KT model, how they fit the model 
parameters to observations of multi-subskill steps, how they use 
the model to predict performance on such steps, and how they 
update estimates of the subskills based on observed performance. 

2.1 Represent model 
Previous solutions represent the student’s knowledge at step n as a 
hidden state     

 in a Hidden Markov Model (HMM), shown in 
Figure 1. It has knowledge parameters already know for the 
probability that the student knew the skill to start with, learn for 
the probability of the transition from not knowing the skill to 
knowing it, and forget (usually assumed to be 0) for the 
probability of the transition from knowing the skill to not knowing 

it.  It also has performance parameters guess for the probability 
   

   
        

   
  of performing the step correctly despite lacking 

the skill, and slip for the probability        
   

    
   

  of 
performing the step incorrectly despite knowing the skill.  
 
 

 
Figure 1:  Single-skill knowledge tracing architecture 

2.2 Fit parameters 
One previous solution [3] tries to sidestep the problem by 
modeling each set of subskills as a distinct individual skill, e.g., 
computing the area of a circle embedded in a figure vs. by itself.  
However, modeling different sets of subskills as independent 
skills ignores transfer of learning between them.  

Other previous solutions [4-6] simply treat each subskill used 
in a step as if it were entirely responsible for that step.  They train 
a separate KT model for each subskill on observations of all the 
steps that use it.  Thus the same observed step appears in the 
training data for every subskill that it uses. They simply estimate 
the model parameters for each subskill using the same training 
procedure as for conventional KT. 

2.3 Predict performance 
In standard “single-skill” KT, predicting performance      at step 
n involving skill j is simple: 

   
   

      
   

                   
   

          

Equation 1:  Standard KT prediction 

Previous solutions to the multiple-subskills problem predict 
performance on a step by combining in different ways the 
probabilities of correctly performing all the skills it requires.  One 
way, based on an assumption that they are probabilistically 
independent, multiplies them [4, 6]: 
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Equation 2:  Independent subskills performance prediction 

The weakest-subskill alternative [5]  takes their minimum: 

   
   

           
   

                   
   

  

        
Equation 3:  Weakest-subskill performance prediction 

2.4 Update estimate 
To update its estimate of a skill j based on the observed success of 
a step n that uses it, standard KT applies Bayes’ rule: 

             
   

      
   

       

 
    

   
           

    
   

                   
   

         

 

Equation 4:  Standard KT skill update for successful step 

Conversely, the standard update rule if the step fails is: 

             
   

      
   

           

 
    

   
       

    
   

               
   

             
 

Equation 5:  Standard KT skill update for failed step 

Either way, it estimates the probability of knowing the skill at the 
next step as either knowing without forgetting, or learning: 

    
     

                
   

             

                 
   

          

Equation 6:  Standard KT next-step update 

When a step involves multiple subskills, previous methods use 
different ways to allocate responsibility among them for the 
observed success or failure of the step.  The “full responsibility” 
approach applies these equations to all the subskills.  The “update 
weakest subskill” approach simply applies the standard update 
equations above to whichever subskill in a step has the lowest 
probability, and leaves the others unchanged.  Its “blame weakest, 
credit rest” variant credits the other subskills as correct even if the 
step failed. 

Conjunctive knowledge tracing (CKT) [6] also predicts the 
probability of a step succeeding as a product of its subskill 
probabilities using Equation 2, and gives all of them full credit for 
success using Equation 4.  However, rather than place full blame 
on each subskill for failure, CKT apportions blame among them 
differently. Instead of using Equation 5 to update each subskill 
based just on its own guess and slip probabilities, CKT takes into 
account those of the other subskills as well, as follows.   

Bayes’ rule says how to update a skill based on performance: 

             
   

              
               

   
       

   
  

           
  

Equation 7:  Bayes' rule for skill update 

Conditioning on having skill j at step n reduces     
   

  to 1, 
simplifying the numerator of Equation 9 to: 

               
   

                   

       
   

                    
   

          

   

 

Equation 8:  CKT subskills update for failed step 

CKT computes the denominator by assuming independence: 

                         

        
   

                   
   

          

 

 

 
Equation 9:  CKT prediction based on multiple subskills 

Next, we introduce a different strategy of using logistic regression 
in KT to trace multiple subskills. 

3. USING LOGISTIC REGRESSION TO 
TRACE MULTIPLE SUBSKILLS 
We now describe two newer methods that trace multiple subskills 
using logistic regression.  Previous KT methods fit their 
parameters independently using the same algorithm as for single-
skill KT, thereby implicitly assigning full and equal responsibility 
to all the subskills in an observed step, and predict performance 
based on the weakest subskill or by multipying subskill estimates.  
Section 3.1 describes LR-DBN, which changes both these aspects 
by using Expectation Maximization (EM) [7] to fit parameters for 
multiple subskills simultaneously, and by using logistic regression 
to predict performance.  As an ablation experiment to shed light 
on the relative impact of these two innovations, Section 3.2 
introduces LR-DBN Minus, a hybrid method that fits the standard 
KT model just as previous methods do, but uses logistic 
regression to do prediction. 

3.1 LR-DBN 
LR-DBN is a recent but published method [2, 8] to trace multiple 
subskills, so we summarize it here only briefly in terms of the four 
aspects discussed in Section 2. 

 
Figure 2: Knowledge tracing with logistic regression 

Represent model:  Like standard KT, LR-DBN represents the 
knowledge for step n as a hidden knowledge state      in a 
dynamic Bayes net.  However, as Figure 2 illustrates, LR-DBN 
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adds a layer of observable states   
   

 as indicator variables to 
represent whether step n involves subskill j:  1 if so, 0 if not. 

LR-DBN uses logistic regression to model the initial hidden 
knowledge state at step 0 and the transition probabilities from step 
n-1 to n as follows: 

              
         

   
   

    
    

           

   
  

    
    

 

                           
            

    
    

              
    

    
 

                       
            

    
    

              
    

    
 

Equation 10:  Logistic regression to combine subskills 

These three conditional probabilities for each subskill replace 
the KT knowledge parameters already know, learn, and forget, 
but LR-DBN retains KT’s guess and slip parameters at each step. 
Fit parameters:  LR-DBN uses Expectation Maximization (EM) 
[7] to fit parameters for all subskills together. 
Predict performance:  LR-DBN uses logistic regression in a 
Dynamic Bayes Net to combine multiple subskills more flexibly 
than using Equation 2 to multiply their probabilities or Equation 3 
to take their minimum, but it uses Equation 1 to predict expected 
performance based on estimated knowledge, guess, and slip. 
Update estimates:  LR-DBN uses the same Bayes rule as single-
skill KT to update its estimate of the hidden knowledge state in 
Equation 4, Equation 5, and Equation 6. 

3.2 LR-DBN Minus 
LR-DBN Minus is a hybrid of LR-DBN and standard KT.  It 
combines KT’s single-skill fitting process with LR-DBN’s update 
and prediction based on logistic regression.  The key is to convert 
the probability of knowing a subskill into a coefficient in logistic 
regression. LR-DBN uses logistic regression to model the 
transition probabilities between knowledge states, as well as the 
relation of the knowledge state at each step to the subskills it 
involves [2].  Thus, given the set of subskills    

   
  used at step n, 

a set of coefficients    
   

  exists such that 

                      
   

  
   

 

   

  

Equation 11:  Logistic regression for the knowledge state 

If we assume step n requires only a single subskill i, then   
   

   
for all the j’s such that j  , and transformations between the 
probabilities     

   
  and the coefficients   

    are: 

    
   

              
   

  

  
   

             
   

   

Equation 12:  Transformation between probabilities and 
logistic regression coefficients 

To update the estimates, we need to distribute the update at 
each step that is calculated either from Equation 4 or Equation 5 

to the subskill coefficients. We assume that the coefficient for 
each subskill changes by the same amount    when updated: 

            
   

                  
   

       
   

 

   

  

Equation 13:  Update coefficients in LR-DBN Minus 

Then the update of each subskill becomes: 

             
   

                
   

       
   

  

Equation 14:  Update subskills in LR-DBN Minus 

Next we still use the standard KT Equation 6 to update 
subskills at step n+1. Now we have successfully transformed LR-
DBN to upate on standard KT parameters. Note that we replace 
the separate guessj and slipj parameters for each subskill j with 
uniform guess and slip for all the steps. The reason is that LR-
DBN combines subskills to estimate the probability of the student 
knowing a step and then uses guess and slip to predict 
performance.  In contrast, previous methods apply guessj and slipj 
to each subskill j before combining them to predict performance 
on the step. 

4. EXPERIMENTAL EVALUATION 
To compare LR-DBN and LR-DBN Minus to previous methods 
for tracing multiple subskills, we fit seven models to real data, 
summarized in Table 1: LR-DBN, LR-DBN Minus, CKT, and 
three variants of standard KT distinguished by how they update 
estimated skills: “full responsibility,” “blame weakest, credit rest,” 
and “update weakest subskill,” with majority class as an 
additional baseline.  Sections 4.1 and 4.2 describe our data and 
results. 

Table 1:  Summary of models compared 

Models Fit Predict  Update 

LR-DBN 

Train subskills 
together.  
Logistic 
regression 
assigns 
responsibility. 

Logistic 
regression 
on subskill 
estimates. 

Update subskills 
together.  Logistic 
regression assigns 
responsibility. 

LR-DBN 
Minus  

CKT 

Train subskills 
separately.  
Assign each 
one full 
responsibility. 

Multiply 
subskill 
estimates. 

Update subskills 
together.  Bayes 
equations assign 
responsibility. 

Full 
responsibility Update subskills 

separately, each with 
full responsibility. 

Blame 
weakest, 

credit rest 
Minimum of 
subskill 
estimates. Update 

weakest 
subskill 

Update only the 
weakest subskill.  

Majority 
class 

Identify larger 
class 

Majority 
class No update 
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4.1 Data sets 
We train and test the models on real data from two tutors used at 
schools.  One data set is from children using Project LISTEN’s 
Reading Tutor [9] at primary schools during the 2005-2006 school 
year. To model their oral reading fluency, we define performance 
      as whether the Reading Tutor scored a text word as read 
fluently at step n, i.e., read without help or hesitation and 
recognized by the automated speech recognizer. We assume that 
whether a student read a word fluently depended on whether the 
student knew the requisite subskills, namely the grapheme-to-
phoneme mappings in the word.  Due to the large amount of data 
(1,792,103 read words from 275 students), we randomly selected 
20 children who read a total of 80,268 words (3,972 distinct word 
types) with 320 unique grapheme-phoneme mappings.  To 
counteract the prevalence of high-frequency words like the, we 
include at most the first 20 of each student’s encounters of a word 
in the training data, leaving 24,145 read words.  We do not limit 
the test data, so it includes 40,867 words. 

The other data set [10] came from 123 high school students 
working on a geometry area unit of the Bridge to Algebra 
Cognitive Tutor®.  The model for each student includes the same 
50 subskills, and predicts whether the student will perform a step 
correctly.  Again we include at most the first 20 of each student’s 
encounters of a step in the training data, leaving 11,730 algebra 
practice steps, but 22,737 steps of test data. 

The data sets from both tutors are unbalanced.  The Reading 
Tutor scored 68.84% of the words in the training set as fluent, and 
74.31% of the words in the test set.  The Algebra Tutor rated 
74.22% of the steps in the training data as correct, and 84.63% of 
the steps in the test data. 

We fit each model separately for each student, as opposed to 
training a single model on the data for all the students.  One 
reason is computational expedience:  unlike methods that fit a 
separate model for each subskill, LR-DBN fits a single model for 
all the subskills, which involves processing much more data at a 
time.  Training this model on all the students’ data at once would 
be computationally unwieldy.  The other reason is to compare 
methods fairly.  Except for LR-DBN, it is feasible to train a single 
model of a subskill on the data for all the students, and in fact we 
tried it, but the resulting model does not perform as well as 
training a separate model for each student. 

For all the methods, we fit the model for each student to the 
first half of the student’s steps, and test it on the second half.  We 
report average per-student accuracy on the unseen test data, 
weighting its mean and variance by per-student sample size to 
derive 95% confidence intervals.  We use paired T-tests, paired by 
student, to rate LR-DBN’s accuracy against each other method. 

4.2 Results 
Table 2 and Table 3 list all seven methods in decreasing order of 
their binary predictive accuracy on the test data.  LR-DBN 
dramatically outpredicts all the other methods. LR-DBN’s overall 
accuracy on the Reading Tutor data is 13% higher than majority 
class, vs. only 1% for the next method.  For the Algebra Tutor 
data, LR-DBN is the only method that beats the majority class, by 
7%.  That is, on both data sets, LR-DBN has only half the error 
rate of the next best method. 

For unbalanced data, accuracy on the minority class can be 
especially important.  The minority class in our tutor data 
represents negative student outcomes to remediate by means of  

Table 2:  Mean per-student accuracy on Reading Tutor data 
(95% confidence interval in parentheses) compared to LR-DBN is 

significantly (p<.01) worse if underlined, or better if italicized. 

Models Accuracy  

Accuracy 
Within 
Positive 

Class  

Accuracy 
Within 

Negative 
Class  

LR-DBN 
87.31%) 

(±1.90%) 
91.17%) 

(±2.80%) 
75.80%) 

(±12.53%) 

Update 
weakest 
subskill 

74.53%) 
(±4.55%) 

95.06%) 
(±2.73%) 

15.15%) 
(±5.29%) 

Majority class 74.31%) 100.00%) 0.00%) 

LR-DBN 
Minus 

74.11%) 
(±5.05%) 

90.71%) 
(±7.89%) 

26.09%) 
(±11.61%) 

Blame 
weakest, 

credit rest 

73.90%) 
(±4.59%) 

92.36%) 
(±3.86%) 

20.52%) 
(±6.43%) 

CKT 
72.79%) 

(±3.99%) 
89.47%) 

(±3.52%) 
24.52%) 

(±7.76%) 

Full 
responsibility 

66.20%) 
(±5.39%) 

72.30%) 
(±10.24%) 

48.53%) 
(±12.87%) 

Table 3:  Mean per-student accuracy on Algebra Tutor data  
is significantly (p<.001) worse than LR-DBN’s where underlined; 

italicized values are significantly better. 

Models Accuracy  

Accuracy 
Within 
Positive 

Class  

Accuracy 
Within 

Negative 
Class  

LR-DBN 91.99%) 
(±2.00%) 

96.5%) 
(±1.30%) 

72.3%) 
(±7.80%) 

Majority class 84.63%) 100.00%) 0.00%) 

CKT 
84.38%) 

(±1.14%) 
99.03%) 

(±0.26%) 
20.44%) 

(±3.11%) 

Full 
responsibility 

84.27%) 
(±1.13%) 

95.65%) 
(±0.88%) 

34.55%) 
(±4.60%) 

LR-DBN 
Minus 

83.92%) 
(±1.17%) 

97.23%) 
(±0.62%) 

25.80%) 
(±3.84%) 

Blame 
weakest, 

credit rest 

80.38%) 
(±1.13%) 

90.70%) 
(±0.72%) 

35.28%)) 
(±3.14%) 

Update 
weakest 
subskill 

79.59%) 
(±1.19%) 

91.13%) 
(±0.69%) 

29.20%) 
(±2.76%) 

practice and instruction.  LR-DBN beats every other method on 
the minority class by over 20% absolute in both data sets. 

What does comparison to LR-DBN Minus reveal about the 
relative contributions of the fitting and update procedures?  LR-
DBN Minus uses the same fitting procedure as conventional 
knowledge tracing, but uses logistic regression to update 
estimates.  It performs substantially worse than LR-DBN, and 
comparably to the other methods.  We conclude that LR-DBN’s 
accuracy benefits more from its fitting procedure than from using 
logistic regression to combine estimates of hidden subskills. 
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Why does LR-DBN outpredict the other methods?  Possible 
reasons include the strong assumptions that it avoids, but which 
they make implicitly by fitting and updating subskill estimates 
separately, multiplying them to predict performance on a step, and 
assigning each subskill full responsibility for the step’s outcome.  
Inspection of Table 1 reveals that this last assumption is the only 
one they all have in common, implicating it as the likeliest culprit. 

Predictive accuracy is just one way to evaluate student models.  
A more sensitive metric is model fit as measured by data 
likelihood, penalized by model complexity.  Table 4 and Table 5 
list the complexity-penalized model fits of the methods on the two 
data sets in increasing order, as scored by the Akaike information 
criterion (AIC) [11] and Bayesian information criterion (BIC) 
[12], defined respectively as: 

               
                      

Equation 15:  Formulas for calculating AIC and BIC 

Table 4:  Complexity-adjusted Reading Tutor training data fit 
Models AIC BIC k 

LR-DBN 75,054.52 231,226.89 19,300 

LR-DBN Minus 120,259.60 239,606.70 12,840 

CKT 

145,779.60 383,730.20 25,600 Full responsibility 
Blame weakest, credit rest 
Update weakest subskill 

Table 5:  Complexity-adjusted Algebra Tutor training data fit 

Models AIC BIC k 

LR-DBN 60,545.20 201,052.44 19,065 

LR-DBN Minus 43,195.94 143,962.30 12,546 

CKT 

67,303.94 264,885.00 24,600 Full responsibility 
Blame weakest, credit rest 
Update weakest subskill 

Both AIC and BIC measure model fit as log-likelihood of the 
training data, ln(L), penalized by model complexity (number of 
parameters, k).  BIC also penalizes the number of observations, n.  
We calculate the number of parameters per student as follows: 

LR-DBN fits the 3 groups of coefficients for each of the 
subskills and one intercept in Equation 10, plus two shared 
parameters, guess and slip.   For the Reading Tutor data set, this 
number totals 3 × (320 + 1) + 2 = 965, multiplied by the 20 
children in the data sample.  For the Algebra Tutor data set, it 
totals 3 × (50 + 1) + 2 = 155, multiplied by 123 students. 

LR-DBN Minus fits 2 parameters (already know and learn) per 
subskill, plus 2 shared parameters (guess and slip).  This number 
of parameters per student totals (2 × 320) + 2 = 642 for the 
Reading Tutor and (2 × 50) + 2 = 102 for the Algebra Tutor. 

The other methods fit 4 parameters (already know, learn, guess 
and slip) per subskill for each student, totaling 4 × 320 = 1280 for 
the Reading Tutor, and 4 × 50 = 200 for the Algebra Tutor. 

Thus compared to previous methods, LR-DBN has about 1 less 
parameter per subskill, and LR-DBN Minus about 2 less. 

What about the number n of observations?  LR-DBN uses one 
observation per step to fit all the subskill parameters.  In contrast, 
the other methods fit each subskill separately, assigning it full 
responsibility for every step that uses it, as if observing it 
separately for each subskill.  Counting such duplicate 
observations as separate, they use three times as many Reading 
Tutor observations as LR-DBN, and twice as many Algebra Tutor 
observations. 

Table 6 and Table 7 show the average log-likelihood of steps 
in the training and test data.  All the methods except LR-DBN 
share the same likelihood on the training data because they fit 
parameters in the same way (as shown in Table 1). 

Table 6:  Average log-likelihood for the Reading Tutor data 

Models On training 
data  

On unseen test 
data  

LR-DBN -0.7549 -0.3555 

CKT 

-1.9586 

-1.1330 

Full responsibility -1.2230 

Blame weakest, credit rest -1.4944 

LR-DBN Minus -1.5690 

Update weakest subskill -1.6665 

Table 7:  Average log-likelihood for the Algebra Tutor data 

Models On training 
data  

On unseen 
test data  

LR-DBN -0.9555 -0.1503 

CKT 

-0.7717 

-0.2082 

Full responsibility -0.2065 

Blame weakest, credit rest -0.2529 

LR-DBN Minus -0.2364 

Update weakest subskill -0.2816 

Normally one might expect log-likelihood to be lower for test 
data than training data, by an amount reflecting the degree of 
overfitting.  However, the models assign higher likelihood to 
correct steps because, as Section 4.1 mentioned, they are more 
common than incorrect steps in the training data, and this 
difference is more pronounced in the test data.  Its likelihood is 
therefore higher, and hence is not a direct gauge of overfitting. 

Table 6 and Table 7 reveal that LR-DBN’s log-likelihood is by 
far the highest on unseen test data from both tutors, consistent 
with how dramatically it outpredicts the other methods, even 
though they have higher log-likelihood on the training data from 
the Algebra Tutor.  This reversal from training to test data 
suggests that the other methods might overfit that training data. 

In summary, LR-DBN has a smaller number k of parameters 
than the other methods (except for LR-DBN Minus), a smaller 
number n of observations (counting duplicate observations as 
distinct), and higher likelihood on Reading Tutor training data, 
where it achieves the lowest AIC and BIC scores.  Most 
important, LR-DBN far surpasses all the other methods in 
accuracy and log-likelihood on unseen test data from both tutors. 
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5. IMPLEMENTATION 
To make LR-DBN publicly available1, we added it to the Bayes 
Net Toolkit for Student Modeling (BNT-SM) [13].  BNT-SM 
inputs a data set and a DBN student model (not only the simple 
one used in standard knowledge tracing), specified in XML.  It 
generates and executes BNT code to train and test the model, and 
outputs Excel files containing the parameter estimates and 
inference results.  BNT is an open-source Matlab package2 that 
supports many learning and inference algorithms for both static 
and dynamic Bayes models. BNT-SM hides most of the BNT 
coding details, freeing users to focus on constructing the student 
models rather than on programming them. 

Using BNT-SM consists of four phases [13]: 

1. Specify the data source in an XML specification. 
2. Specify the DBN structure in XML. 
3. Specify and initialize parameters in XML. 
4. Call RunBnet.m in Matlab. 
To fit LR-DBN on the Reading Tutor data with 320 subskills, 

we specify the structure shown in Figure 2 to BNT-SM in XML, 
as shown in the APPENDIX.  

6. CONCLUSIONS 
This paper makes multiple contributions to knowledge tracing: 

First, we present a framework to characterize previous and new 
methods for tracing multiple subskills by how they (1) model 
knowledge tracing, (2) fit its parameters, (3) predict performance, 
and (4) update subskill estimates.   

Second, we use data sets from reading and algebra tutors to 
compare LR-DBN against previous methods in terms of AIC, BIC, 
and predictive accuracy on unseen data, and show that LR-DBN 
performs significantly better on both data sets on all three metrics, 
cutting the best previous prediction error rate in half. 

Third, we introduce the hybrid LR-DBN Minus method, which 
fits the same standard KT model as previous methods, but uses 
logistic regression to predict student performance. 

Fourth, by comparing LR-DBN Minus to LR-DBN, we show 
that using logistic regression to predict performance suffices to 
beat previous methods, but that using logistic regression EM to 
jointly estimate subskills accounts for most of LR-DBN’s superior 
performance. 

Finally, in order to amplify the impact of this work, we have 
made LR-DBN publicly available and easy to extend to other 
student modeling with dynamic Bayes nets, by incorporating it 
into the latest version of the BNT-SM student modeling toolkit 
[13] used in previous studies of knowledge tracing [e.g., 14]. 

This work has several limitations for future work to address.  
First, LR-DBN has so far been applied just to simple 

knowledge tracing of multiple subskills, but it can apply to any 
DBN. Future work could use LR-DBN to improve other DBN 
student models, for example to measure more accurately the 
scaffolding and learning effects of tutor help [14]. 

Second, LR-DBN needs 5.5 hours on average per student to fit 
and update; the other methods take less than 1 hour to fit a single 
set of parameters for all the students and subskills, and 2-5 
                                                                 
1 At http://www.cs.cmu.edu/~listen/BNT-SM 
2 At http://code.google.com/p/bnt 

minutes to update.  Future work may train LR-DBN faster or 
develop other methods that are faster to train. Such work might 
adapt two previous types of cognitive diagnosis models that 
operate on static data and have statistical learning algorithms, both 
EM and MCMC [15].  NIDA (Noisy Inputs, Deterministic “And” 
gate) models [16] resemble CKT because it applies guess and slip 
to individual subskills before combining them conjunctively.  
DINA (Deterministic Inputs, Noisy “And” gate) models [17] 
resemble LR-DBN because it combines subskills (with logistic 
regression) before applying guess and slip to the resulting 
knowledge state.  Extending either type of model to apply to 
knowledge tracing may improve LR-DBN itself. 

Finally, although LR-DBN traces multiple subskills better than 
previous methods, it (like them) must be told which steps use 
which subskills.  Future work may infer this information 
automatically [18]. 
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APPENDIX 
To use LR-DBN in BNT-SM, we first specify its data source: 
<multi_subskill>yes</multi_subskill> 
<input> 
 <evidence_train>evidence.train.xls</evidence_train> 
 <evidence_test>evidence.test.xls</evidence_test> 
</input> 
<output> 
 <param_table>param_table.xls</param_table> 
 <inference_result>inference_result.xls</inference_result> 
 <inference_result_header>inference_result.xls</inference_re
sult_header> 
 <log>log.txt</log> 
</output> 

To add logistic regression to standard knowledge tracing, we 
represent the 320 subskills as a single multi node kc, which 
transits to the latent node knowledge within a step. The hidden 
state of knowledge transits both to the output fluent within the 
current step and to the knowledge state at the next step:  
<nodes> 
 <node> 
  <id>1</id> 
  <name>kc</name> 
  <type>multi</type> 
  <values>320</values> 
  <latent>no</latent> 
  <prefix_field>kc</prefix_field> 
  <within> 
   <transition>knowledge</transition> 
  </within> 
  <between></between> 

</node> 
 <node> 
  <id>2</id> 
  <name>knowledge</name> 
  <type>discrete</type> 
  <values>2</values> 
  <latent>yes</latent> 
  <field> knowledge</field> 
  <within> 
  <transition>fluent</transition> 
  </within> 
  <between> 
  <transition>knowledge</transition> 
  </between> 
 </node>  
 <node> 
  <id>3</id> 
  <name>fluent</name> 
  <type>discrete</type> 
  <values>2</values> 
  <latent>no</latent> 
  <field>fluent</field> 
  <within></within> 
  <between></between> 
 </node> 
</nodes> 

Then we define and set initial values of the LR-DBN 
parameters.  We specify the input node kc as root to have no 
parents and no parameters, the latent node knowledge as softmax 

to have a multinomial logit function, and the output node fluent to 
have a simple discrete conditional probability table, with random 
initial parameter values in LR-DBN’s EM fitting algorithm: 
<eclasses> 
 <eclass> 
  <id>1</id> 
  <formula>P1(kc)</formula> 
  <type>root</type> 
 </eclass> 
 <eclass> 
  <id>2</id> 
  <formula>P2(knowledge </formula> 
  <type>softmax</type> 
  <cpd> 
   <eq>P2(T)</eq> 
   <init>rand</init> 
   <param>L0</param> 
   <eq>P2(F)</eq> 
     <init>1-P1(T)</init> 
   <param>null</param> 
  </cpd> 
 </eclass> 
 <eclass> 
  <id>3</id> 
  <formula>P3(fluent| knowledge </formula> 
  <type>discrete</type> 
  <cpd> 
   <eq>P3(T|F</eq> 
     <init>rand</init> 
   <param>guess</param> 
   <eq>P3(F|T)</eq> 
     <init>rand</init> 
   <param>slip</param> 
   <eq>P3(F|F)</eq> 
     <init>1-P3(T|F)</init> 
   <param>null</param> 
   <eq>P3(T|T)</eq> 
     <init>1-P3(F|T)</init> 
   <param>null</param> 
  </cpd> 
 </eclass> 
 <eclass> 
  <id>4</id> 
  <formula>P4(knowledge| knowledge)</formula> 
  <type>softmax</type> 
  <cpd> 
   <eq>P4(T|F </eq> 
   <init>rand</init> 
   <param>learn</param> 
   <eq>P4(F|T)</eq> 
   <init>rand</init> 
   <param>forget</param> 
   <eq>P4(F|F </eq> 
   <init>1-P4(T|F)</init> 
   <param>null</param> 
   <eq>P4(T|T)</eq> 
   <init>1-P4(F|T)</init> 
   <param>null</param> 
  </cpd> 
 </eclass> 
</eclasses>  
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ABSTRACT
This work describes a unified approach to two problems pre-
viously addressed separately in Intelligent Tutoring Systems:
(i) Cognitive Modeling, which factorizes problem solving
steps into the latent set of skills required to perform them
[7]; and (ii) Student Modeling, which infers students’ learn-
ing by observing student performance [9].

The practical importance of improving understanding of
how students learn is to build better intelligent tutors [8].
The expected advantages of our integrated approach include
(i) more accurate prediction of a student’s future perfor-
mance, and (ii) clustering items into skills automatically,
without expensive manual expert knowledge annotation.

We introduce a unified model, Dynamic Cognitive Trac-
ing, to explain student learning in terms of skill mastery
over time, by learning the Cognitive Model and the Stu-
dent Model jointly. We formulate our approach as a graph-
ical model, and we validate it using sixty different synthetic
datasets. Dynamic Cognitive Tracing significantly outper-
forms single-skill Knowledge Tracing on predicting future
student performance.

1. INTRODUCTION
We propose Dynamic Cognitive Tracing as a method that
estimates from performance data:

1. A Student model. The estimate of a student’s knowl-
edge of a skill in a given time.

2. A Cognitive Model. The skills a students require
to solve a problem step.

Let’s illustrate the student modeling problem with an ex-
ample. Suppose we are interested in modeling data from a
reading tutor that listens to children read aloud. Figure 1
shows sample data in this scenario. We follow the convention
of referring to the scorable steps in an intelligent tutor task
as “items” [27]. The input variable is the item id t, which in
this case is the word read by a student at time step t. The
target variable pt is the performance of the student– in this
case whether the tutor accepted the word read. The student
reads the words “smile because it” correctly, but misreads
the word “happened”. The student modeling problem is to
predict future student performance.

Existing student modeling techniques require cognitive mod-
els, assignments of items to skills [9]. This is a very expen-
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Figure 1: Reading tutor example of student modeling

sive requirement, since it often depends on expert domain
knowledge [4]. For example, in our reading tutor scenario,
it is not a trivial endeavor to cluster a dictionary of words
into the set of skills needed to read them.

Unfortunately, the success of existing methods for auto-
matic construction of cognitive models has been limited [11].
Current methods for discovering cognitive models are re-
stricted in that they cannot handle longitudinal data, or
that they are not fully automatic. For example, Princi-
pal Component Analysis, Non-Negative Matrix Factoriza-
tion [27] and the Q-Matrix Method [2] ignore the temporal
dimension of the data. On the other hand, Learning Factors
Analysis [7] is designed for temporal data, but it requires an
expert’s cognitive model. Our main contribution is a fully
automatic approach to discover a cognitive model of longitu-
dinal student data. Our goal is discovering student models,
while simultaneously clustering similar items together.

The rest of this document is organized as follows. Sec-
tion 2 reviews related prior work. Section 3 describes our
approach, Dynamic Cognitive Tracing, to jointly learn a stu-
dent model jointly with a factorization of items into skills.
Section 4 evaluates performance using synthetic data. Sec-
tion 5 provides some concluding remarks.

2. RELATION TO PRIOR WORK
In this section we study Dynamic Cognitive Tracing’s re-
lation with prior work. Section 2.1 surveys previous ap-
proaches to learn student models. Section 2.2 summarizes
automatic approaches for cognitive model discovery.
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2.1 Student Modeling
Corbett and Anderson [9]’s seminal paper introduced Knowl-

edge Tracing as a way to model students’ changing knowl-
edge during skill acquisition. It uses (a) a cognitive model
that maps a problem solving item to the skills required,
and (b) logs of students’ correct and incorrect answers as
evidence of their knowledge on a particular skill. Reye [22]
showed that there is an equivalent formulation of Knowledge
Tracing as a Bayesian Network. Knowledge Tracing has
enabled significantly faster teaching by Intelligent Tutors,
while achieving the same performance on evaluations [8].

Knowledge Tracing, as well as Dynamic Cognitive Tracing,
are non-convex problems. This means that the optimizer
that estimates the parameters of the models might get stuck
in local optima far away from the global optimum. More-
over, these formulations are also non-identifiable: There
exist potentially many student models that may explain
the data observed equally-well. In Knowledge Tracing, the
main source of non-identifiability is the trade-off between the
probability of a student’s initial knowledge, and the proba-
bility of learning the skill [5]. To mitigate non-identifiability,
recent work has proposed the use of Bayesian priors [5] or
using contextual clues to estimate whether a student has
guessed [1].

Other approaches to student modeling include Performance
Factor Analysis [19, 14], which predicts student performance
based on the item difficulty and student historical perfor-
mances. Alternatively, Learning Decomposition [6], uses
non-linear regression to determine how to weight different
types of practice opportunities relative to each other. More
recently, Tensor Factorization [25], has been used to the stu-
dent modeling problem. It use recommender system tech-
niques to learn student models. None of these techniques
aim to discover cognitive models. Thai-Nghe et al. [25] make
use of latent variables, but they argue that it is not possible
to interpret their semantics. Their formulation is tied to
specific students, and it is not clear how to generalize their
approach to unseen students in the training set, or when stu-
dents encounter only a very sparse set of items. We designed
Dynamic Cognitive Tracing aiming to discover latent factors
with the interpretation of Cognitive and Student Models.

Desmarais [11] argues that the construction of a cognitive
model from data is highly desirable, not only to avoid the
labor intensive task of specifying which skills are involved
in which task, but because a data-driven approach might
outperform human judgment. In the next subsection we
study such approaches.

2.2 Automatic Discovery of Cognitive Models
Winters et al. [27] surveyed methods for automatic con-

struction of cognitive models. Examples are matrix factor-
ization techniques, such as Principal Component Analysis
(PCA) and Non-Negative Matrix Factorization (NNMF).
The theoretical relationships between different matrix fac-
torization techniques has been studied in detail [24].

The Q-matrix algorithm [2, 3], is a hill-climbing method
that creates a cognitive model linking skills and items di-
rectly from student response data. An alternative approach,
Learning Factors Analysis [7], performs combinatorial search
to evaluate and improve on existing cognitive models.

None of the techniques reviewed in this section take into
account the temporal dimension of the data without human

intervention. To the extent of our knowledge, we are the first
ones to estimate a cognitive model completely automatically
from data collected over time.

3. DYNAMIC COGNITIVE TRACING
We now describe Dynamic Cognitive Tracing. Subsection 3.1
details our approach. Subsection 3.2 provides pointers on
the training and inference algorithms used. Subsection 3.3
shows how Dynamic Cognitive Tracing relates two common
techniques used in student modeling and in automatic gen-
eration of a cognitive model.

3.1 Model
We formulate Dynamic Cognitive Tracing as a Bayesian

Network. Bayesian Networks [20], are a popular framework
to reason using noisy information. Bayesian networks are
directed acyclic graphical models where the nodes are vari-
ables and the edges specify statistical dependencies between
variables.

Bayesian Networks are often described using plate diagram
notation to show the statistical relationship between their
random variables. The plate diagram of Dynamic Cogni-
tive Tracing is shown in Figure 2(a). Instead of drawing
a variable multiple times, we follow the convention of us-
ing a plate to group repeated variables. As an example, we
unroll Dynamic Cognitive Tracing using two skills in Fig-
ure 2(b). The description of the generative story of the vari-
ables is described in Figure 3. We follow the convention of
using dark-gray to color variables that are observable during
both training and testing. Variables visible during testing
only are colored in light gray. Latent variables, which are
never observed, are denoted in white circles. The double-
line around variables is used to indicate that their value is
calculated deterministically given its parents. The variables
in Dynamic Cognitive Tracing are:

• S is the number of skills in the model.

• Ids is the number of items that the student can prac-
tice with the tutor. For example, in the case of a read-
ing tutor, Ids is the vocabulary size. If the tutor is
creating items on the fly, Ids is the number of tem-
plates from where items are being generated.

• Q is an Id× S matrix that maps items to skills. Each
row Qid is modeled as a multinomial representing the
skills required for item id . For example, if Qidt =
[0.5, 0.5, 0, 0], we interpret item idt to be a mixture of
skills 1 and 2. In this example idt does not require
skills 3 and 4. Q need not be hidden. If in fact Q is
known, we can clamp the parameters to their known
values.

• qt is the skill for item idt. For example, qt = 1 iff skill
1 is required for item id t, qt = 2 iff skill 2 is required,
and so on. qt is chosen deterministically as the row
number id t of Q.

• Ks,t indicates whether the student has the knowledge
of skill s. Notice, there is a markovian dependency
across time steps: if skill s is known at time t− 1, it is
likely to be known it at time t. Therefore, we also need
to know which skills were active on the previous time
step (i.e., ks,t depends on qt−1). For simplicity, in this
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Figure 2: Dynamic Cognitive Tracing as a graphical model

work we treat each K as a binary variable (whether
the skill is known or not).

• ks,t is a binary variable that represents if the skill is
known and required by the item idt. Hence, its value is
computed deterministically by applying a dot product
to its parents: ks,t is true iff skill s is required (qt = s),
and the student has learned the skill (Ks,t = 1).

• pt is the target variable that models performance. It
is only observed during training.

– For discrete grades (i.e., right or wrong), a Bi-
nomial distribution or logistic regression can be
used. The use of logistic regression in Bayes-
ian Networks has been studied in the context of
mixture of experts [16], and more recently for
the multiple subskill problem in student model-
ing [28]. In this paper we use the Binomial ap-
proach.

– For continuous grades, (i.e., 0 ∼ 100) linear re-
gression can be used.

Our main contribution is unsupervised estimation of the
cognitive model Q from longitudinal data, while simultane-
ously estimating the student model parameters. In the next
subsection we study how to learn the parameters of Dynamic
Cognitive Tracing, as well as how to perform inference on
it.

3.2 Training and Inference
Dynamic Cognitive Tracing is formulated as a directed graph-
ical model (Bayesian Network). We leverage existing tech-
nologies to quickly implement a prototype of Dynamic Cog-
nitive Tracing. We used the Bayesian Network Toolkit [18]
(BNT) for Matlab.

As described in the previous subsection, the knowledge of
a skill is dependent of its value on the previous time step.
This kind of dependency is called a Markov Chain. There-
fore, in Dynamic Cognitive Tracing, the student knowledge

1. Draw Qid ∼ Multinomial; Ids times

2. For each time-step t ∈ {0 . . . T}:

(a) Draw id t ∼ Multinomial

(b) For each skill s ∈ {0 . . .S} :

(c) Set qs,t ← Qidt

(d) Draw Ks,t ∼ Binomial

(e) Set ks,t ← Kqt · qs,t
(f) pt ∼ N (k1,t, k2,t, . . . , kS,t), for continuous p, or

for binary variables either
pt ∼ logistic(k1,t, k2,t, . . . , kS,t), or pt ∼ Binomial

Figure 3: Generative story of Dynamic Cognitive Tracing

of S skills is modeled using S layers of Markov Chains. Un-
fortunately, this is not scalable, because exact inference on
layers of Markov Chains that produce a single output is un-
tractable: the runtime complexity grows exponentially on
the number of layers [12]. Hence, we limit our study to a
small number of skills. In future work we will implement
inference techniques that scale better, like Gibbs Sampling.

The name Bayesian Network is a misnomer, because it does
not require to use Bayesian Estimation, as in fact, we used
Maximum Likelihood Estimation to perform exact inference.
BNT implements the Junction Tree algorithm [15], an infer-
ence algorithm that generalizes the the Forward-Backward
algorithm that is used in Knowledge Tracing and Hidden
Markov Models [21]. To estimate the parameters of the
model, we use the Expectation-Maximization (E-M) algo-
rithm [10]. Like all non-convex optimizaters, E-M is not
guaranteed to find the globally optimal solution.

3.3 Unifying Perspective
We now discuss how Dynamic Cognitive Tracing generalizes
two common techniques for cognitive and student modeling.
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Cognitive models have been built by matrix factorization
techniques [27]. Probabilistic Principal Component Analy-
sis (PPCA) [26] is an example of such matrix factorization
techniques. It is a formulation of the Principal Component
Analysis algorithm using graphical models. The main ad-
vantages of this approach over conventional PCA, is that
it can handle missing data, and it provides a probabilistic
interpretation of the underlying factors.

In Figure 4(a) we show the graphical model representa-
tion of PPCA when explicitly formulated to handle missing
data. If the variable p is continuous, it is modeled with a
Gaussian. If the variable p is discrete, it is model with a Bi-
nomial, using a logistic link function. Discrete PCA is also
known in the literature as Logistic PCA [23]. Figure 4(b)
shows the simplified Dynamic Cognitive Tracing with two
skills, when there is no temporal information available. The
structure of both graphical models is very similar: in both
cases, the performance is explained by latent variables that
represent the skills. The main difference is that Dynamic
Cognitive Tracing takes into account the knowledge of the
skill estimated from the student model: the performance is
explained by the latent knowledge of the skills. We hypoth-
esize that the advantage of our approach lies in the fact that
it is not limited to a single timestep like PPCA is. We ex-
pect that item-performance data to be very noisy, and that
the temporal information would be useful to model skill ac-
quisition.

Figure 5(a) shows the graphical model representation of

Knowlege Tracing with a single skill model, which is just
a Hidden Markov Model. Figure 5(b) shows the unrolled
single-skill Dynamic Cognitive Tracing (S = 1) counterpart.
In this case the structure of Dynamic Cognitive Tracing is
equivalent to Knowledge Tracing.

4. EMPIRICAL EVALUATION
In this section, we report results of using Dynamic Cog-
nitive Tracing to predict future student performance using
synthetically generated datasets. In the context of this pa-
per, we decouple the problem of discovering the assignments
of items to skills and the problem of discovering the num-
ber of skills. For our experiments, we assume the number of
skills is known. In a real scenario, where the number of skills
is unknown, it could be estimated by using cross-validation
using a held-out set. We report our results using Dynamic
Cognitive Tracing using the true number of skills.

Dynamic Cognitive Tracing aims to discover the skills au-
tomatically without supervision. We compare if the cogni-
tive model estimated by Dynamic Cognitive Tracing out-
performs a cognitive model that assigns all of the items to
a single skill. Therefore, as a baseline, we compare against
Knowledge Tracing using a single skill.

In all comparisons between Knowledge Tracing and Dy-
namic Cognitive Tracing, their parameters are estimated us-
ing the same training set. The testing and training sets do
not overlap students.

4.1 Experimental setup
In this section, we describe the synthetic data sets gener-

ation criteria and the evaluation metrics. To generate the
synthetic data sets, we use the generative story described
in Figure 3, having each student encounter 25 items dur-
ing training (sequence length = 25). In preliminary experi-
ments, we noticed that by the 25th time step, most synthetic
students learned. To have a more balanced test set that has
roughly the same number of correct and incorrect answers,
the sequence length of the test set is sampled randomly.

We want synthetic data to be plausible; for example, the
probability of answering an item correctly by guessing should
be lower than the probability of answering an item correctly
due to knowledge. Therefore, the synthetic datasets follow
these constraints:

• The learning probability, the probability of transition-
ing from not knowing a skill, to knowing it, lies in
[0.01 . . . 0.45].

• The guess probability, the probability of answering cor-
rectly, given that the student does not know the skill,
lies in [0.01 . . . 0.30].

• The slip probability, the probability of answering in-
correctly, given that the student knows the skill, lies
in [0.01 . . . 0.30].

Note that these constraints are only exercised for gener-
ating the data. None of our models make use of this prior
knowledge. For simplicity, in this paper we limit studying
cognitive models that have only one skill active per item, but
Dynamic Cognitive Tracing does not make use of this infor-
mation. We constrain the models to not learn the “forget
probability” (e.g., the transition probability from “knowing”
to “not knowing” is zero).
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Knowledge Tracing can sometimes provide bad parameter
estimates. Beck and Chang [5] argued that when Knowl-
edge Tracing performs badly, it is often because of incorrect
estimation of the initial knowledge of the students (initial
probabilities). We want to make sure that our results are
better than Knowledge Tracing because of the strengths of
Dynamic Cognitive Tracing, not because Knowledge Trac-
ing got stuck in an “unlucky” local optimum. Therefore, we
constrain all of the students to not have any initial knowl-
edge in our experiments.

E-M is used to learn the parameters of the models. Knowl-
edge Tracing and Dynamic Cognitive Tracing are initialized
with random parameters, however, the emission probabil-
ities (slip and guess probabilities) of Dynamic Cognitive
Tracing are initialized using a single-skill model. We ex-
periment running E-M using five different random initial-
izations.

Unless noted otherwise, each dataset is divided in three
parts: (i) a training set with 200 students, (ii) a development
set with 50 students, used to choose the best out of five
random initializations of the E-M algorithm, and (iii) a test
set with 50 students. Students do not overlap among the
sets.

We report the performance of our models using two met-
rics:

• Average Per-item Likelihood. Likelihood is a com-
mon metric to evaluate models that find latent struc-
ture [12]. It measures how likely a model is to predict
the test set. It penalizes more heavily incorrect pre-
dictions with high-confidence. More formally, let I be
the number of students in the test set, let p̂i,t be the
estimated performance of student i at time t, let pi,t be
the real performance of the student and let Ti be the
number of time steps for student i. Then we compute
the per-item likelihood as:

I∑
i

Ti∑
t

pr(p̂i,t = pi,t|p̂i,t−1, idi,t)

I∑
i

Ti

• Classification Accuracy. Classification accuracy mea-
sures how often the predicted performance matches the
actual performance. Formally, let δ(·) be the Indicator
function that returns 1 iff its argument is true, and 0
otherwise. We compute the accuracy as:

I∑
i

Ti∑
t

δ(pr(p̂i,t = pi,t|p̂i,t−1, idi,t) > 0.5

I∑
i

Ti

In the next section, we report all of the different parameter
combinations of parameters we used to experiment. We did
not perform any additional tuning besides the one reported
in the next section.

4.2 Results
We create a total of 60 random synthetic datasets using

the constraints explained in Section 4.1. All of them have
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Figure 6: Average Likelihood of Dynamic Cognitive Tracing
and single-skill Knowledge Tracing in 60 different data sets

Table 1: Dynamic Cognitive Tracing’s worst performing
dataset (highlighted in Figure 6)

Skill 1 Skill 2

Learning probability: .35 .30
Slip probability: .09 .08
Guess probability: .02 .11

four types of items (Ids = 4). We created twenty datasets
with 2, 3 and 4 skills (S = 2, 3, 4), respectively.

In Figure 6, the horizontal axis denotes the Likelihood of
single-skill Knowledge Tracing. The vertical axis is the Like-
lihood of Dynamic Cognitive Tracing. The solid line divides
the datasets in which Dynamic Cognitive Tracing performed
better than Knowledge Tracing (upper left corner) and the
ones in which it performed worse (lower right corner). The
dotted lines represent the confidence interval for the mean
of the Likelihood of Knowledge Tracing. Dynamic Cognitive
Tracing performs as well or above the baseline in a total of
52 (87%) of the datasets.

Is estimating a cognitive model with Dynamic Cognitive
Tracing better than assuming a single skill model? We com-
pare the mean Likelihood of Dynamic Cognitive Tracing
(x̄DCT = 62.34, sDCT = 5.13), with the mean Likelihood of
single-skill Knowledge Tracing (x̄KT = 59.97, sKT = 5.18).
The null hypothesis is that the mean Likelihood of both
models is the same (H0 : µDCT = µKT ). We perform a
two-tailed t-test, pairing on the datasets (n=60). We reject
the null hypothesis H0 with confidence p < 0.05. We con-
clude that Dynamic Cognitive Tracing outperforms Knowl-
edge Tracing with a single skill assumption.

In Figure 6 the arrow points to the dataset that performs
the worst compared to the single-skill Knowledge Tracing
baseline. The Likelihood of the true model is 65%, of Dy-
namic Cognitive Tracing is 57%, and of single-skill Knowl-
edge Tracing is 61%. We now investigate why Knowledge
Tracing outperforms Dynamic Cognitive Tracing on this spe-
cific dataset. Table 1 shows the parameters of the student
model. We notice that both skills’ learning and slip prob-
abilities are very similar. We run the E-M algorithm using
100 different random initializations for both Dynamic Cog-
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Figure 7: Cumulative Distribution Function of the Like-
lihood over 100 restarts (using the dataset highlighted in
Figure 6)

Table 2: Model Comparison Over Number of Skills

2 skills 3 skills 4 skills
Acc. Lik. Acc. Lik. Acc. Lik.

True model .75 .64 .75 .61 .76 .62
DCT .74 .63 .73 .62 .73 .62
KT(1 skill) .71 .61 .69 .59 .70 .60
Majority .63 - .66 - .67 -

nitive Tracing and Knowledge Tracing. We use the same
training set used for the highlighted dataset of Figure 6. To
ensure more reliable results, we use a larger test set of 200
students (instead of 50 students). Figure 7 shows the Cu-
mulative Distribution Function of the Likelihood over 100
random initializations. For a specific Likelihood ` in the
horizontal axis, the vertical axis is the percentage of initial-
izations with Likelihood found at a value less than or equal
to `. Figure 7 shows that the Likelihood of the true model
is 62.6%. The best Likelihood of Dynamic Cognitive Trac-
ing is 61.1%, and of single-skill Knowledge Tracing is 59.7%.
Knowledge Tracing gets stuck in local optima in less than
5% of the restarts. On the other hand, for this dataset,
Dynamic Cognitive Tracing gets stuck in local optima 99%
of the time. While there is a Dynamic Cognitive Tracing
solution that outperforms Knowledge Tracing, the E-M al-
gorithm found it in 4% of the initializations.

In Table 2, we aggregate the results of Figure 6. We re-
port the mean performance of the parameters that generate
the 60 synthetic data sets (True model), Dynamic Cogni-
tive Tracing, single-skilled Knowledge Tracing (KT), and
the classifier that always predicts the majority class (Major-
ity). We present the mean Classification Accuracy and the
mean Likelihood. Dynamic Cognitive Tracing has a similar
Likelihood and Classification Accuracy to the True Model
and dominates Knowledge Tracing.

Let’s study a sample cognitive model estimated using Dy-
namic Cognitive Tracing. Here Q∗ is the True Model’s cog-
nitive model from which the synthetic data was generated.
An estimate Q̂, learned from data using our approach is:

Q∗ =


1 0
0 1
0 1
1 0

 Q̂ =


0.85 0.15
0.43 0.57
0.27 0.73
0.91 0.09
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Figure 9: Classification accuracy using different training set
sizes

The estimated cognitive model has some uncertainty, but
if we round Q̂ to integer values, it matches Q∗. In future
work, we are interested in using Bayesian priors to encourage
sparse entries in Q̂ [13]. Bayesian estimation is not currently
supported by the BNT toolkit in which we implemented our
model.

In Figure 8 we show how long it took to perform a single
restart of Dynamic Cognitive Tracing and Knowledge Trac-
ing. Although Dynamic Cognitive Tracing achieves better
accuracy, its exact inference implementation does not scale
well with the number of skills.

We now try to simulate the effect of different amount of
training data. For this, we experiment with 50, 100, 200 and
400 students. We observed that in the PSLC DataShop [17],
a repository for student data sets, it is common for smaller
datasets to have data from at least 50 students. We assess
the performance of our approach using ten synthetic training
sets with different number of students. For all experiments
here, we used four different types of items (Ids = 4), and
two skills (S = 2). In Figure 9, the “True model” line rep-
resents the classification accuracy of the model using the
parameters from where the synthetic data was generated.
The Knowledge Tracing line shows the performance of this
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Table 3: Model Comparison Over Number of Items

Ids = 4 Ids = 8 Ids=12
Acc. Lik. Acc. Lik. Acc. Lik.

True model .77 .66 .70 .60 .73 .61
DCT .76 .65 .67 .58 .66 .57
KT(1 skill) .73 .63 .64 .56 .66 .57
Majority .66 - .59 - .58 -

approach, using a single skill. The results suggest that the
approaches compared can achieve good performance even on
a smaller datasets.

Since we are actually clustering similar items into skills,
the number of different items (Ids) may have an impact on
the performance of our approach. We create ten sets with 4,
8 and 16 item types respectively (Id = 4, 8, 16). All of them
have two skills (S = 2). In Table 3, we summarize the Like-
lihood and the Classification Accuracy of different models.
The true model’s parameters achieve the highest likelihood,
followed by our approach, that dominates Knowledge Trac-
ing.

5. CONCLUSION
We propose Dynamic Cognitive Tracing as a novel unified
approach to two problems previously addressed separately in
Intelligent Tutoring Systems: (i) Student Modeling, which
infers students’ learning by observing student performance
[9], and (ii) Cognitive Modeling, which factorizes problem
solving steps into the latent set of skills required to perform
them [7].

We provide empirical results using synthetic data support-
ing that our unsupervised approach is better than assuming
that all items come from the same skills. Dynamic Cognitive
Tracing significantly outperforms Knowledge Tracing using
a single skill assumption.

We used the Bayesian Networks Toolkit to quickly proto-
type our approach. However, our prototype is limited in
that (i) the inference algorithm used by the toolkit leads
to complexity exponential in the number of skills, and (ii)
the optimization algorithm gets stuck in local optima. We
recommend implementing Dynamic Cognitive Tracing using
approximate inference as future work.

For simplicity, in this paper we limited our study to syn-
thetic data of items that require a single skill. However,
our formulation is capable of discovering items that require
multiple skills. It is an empirical question that we leave
for future work to understand how well Dynamic Cognitive
Tracing performs in this context.

We are also interested in comparing Dynamic Cognitive
Tracing to other automatic methods that produce cognitive
models from data, such as matrix factorization techniques
[27]. An interesting alternative we leave unexplored is find-
ing a cognitive model by first clustering items into skills,
and then using Knowledge Tracing with the discovered cog-
nitive model. However, it is not clear how to learn the skill
clustering from data that comes at different points of time.
For example, it is not obvious how PCA could be applied to
temporal data. To our knowledge, we are the first ones to
propose a fully-unsupervised method that combines student
modeling with discovering a cognitive model.
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ABSTRACT
Our learning-by-teaching environment, Betty’s Brain, cap-
tures a wealth of data on students’ learning interactions
as they teach a virtual agent. This paper extends an ex-
ploratory data mining methodology for assessing and com-
paring students’ learning behaviors from these interaction
traces. The core algorithm employs sequence mining tech-
niques to identify differentially frequent patterns between
two predefined groups. We extend this technique by con-
textualizing the sequence mining with information on the
student’s task performance and learning activities. Specifi-
cally, we study transformation of action sequences using ac-
tion features, such as activity categorizations, relevance and
timing between actions, and repetition of analogous actions.
We employ a piecewise linear segmentation algorithm in con-
cert with the action transformation and differential sequence
mining techniques to identify and compare segments of stu-
dents’ productive and unproductive learning behaviors. We
present the results of this methodology applied to a recent
middle school class study, in which students learned about
climate change. Our primary focus in this analysis is the
effectiveness and variation in the reading behaviors of high-
versus low-performing students. These results illustrate the
potential of this iterative methodology in identifying and
interpreting learning behavior patterns at multiple levels of
detail.

1. INTRODUCTION
Cognitive scientists have established that metacognition and
self-regulation are important components for developing ef-
fective learning in the classroom and beyond [5; 18]. In
developing a computer-based learning environment (CBLE)
called Betty’s Brain, we have adopted a self-regulated learn-
ing (SRL) framework to help students develop learning strate-
gies. As they explore hypermedia resources on a science
topic, they construct a causal map to teach Betty, their vir-
tual Teachable Agent (TA) [4]. Betty only knows what she
has been taught by the student, but, once taught, she can
use this information to answer questions like “if deforesta-
tion increases, what effect does it have on polar sea ice?”

and explain her answers as a chain of causal relations [9].
The student can also ask their TA to take quizzes, which
are a set of questions created and graded by a Mentor Agent
named Mr. Davis. The TA’s quiz performance helps the stu-
dents to assess and reflect on their TA’s, and, therefore, their
own learning performance. This assessment and subsequent
reflection can help guide them as they continue their learn-
ing and teaching tasks. Previous studies have shown that
observing Betty’s quiz performance (which is actually a re-
flection of their own understanding) motivates students to
learn more in order to help Betty improve her quiz score [4].

Overall, the combined learning and teaching task is com-
plex, open-ended, and choice-rich, so learners must employ
a number of cognitive and metacognitive skills to achieve
success. At the cognitive level, they need to identify and
understand relevant information from the resources in the
system, represent that information in the causal map format
to teach their agent, and use questions and quizzes to ex-
plore Betty’s understanding and assess her overall progress.
At the metacognitive level, they need to set goals and choose
strategies related to their knowledge construction and mon-
itoring tasks. In other words, they must decide when and
how to acquire information, build and modify the causal
map, check Betty’s progress, and reflect on their own un-
derstanding of both the science knowledge and the evolving
causal map structure. Their cognitive and metacognitive
activities are scaffolded through dialogue and feedback pro-
vided by Mr. Davis. This feedback aims to help students
progress in their learning, teaching, and monitoring tasks.

Betty’s Brain is designed to track many details of students’
learning interactions along with their teaching performance.
This wealth of data provides opportunities to assess, model,
and understand student learning behaviors and strategies
more accurately. Realizing these opportunities requires ef-
fective methods for identifying interesting learning behavior
patterns in the activity trace data. For example, sequential
pattern mining [2] can be employed to identify frequent pat-
terns in students’ activity trace data. However, this can also
result in a very large number of patterns1 To overcome this

1Sequential pattern mining with activity traces of 16 8th-
grade students working in Betty’s Brain identified over 1,000
patterns that occurred in at least 80% of the traces, when
allowing gaps of one action to account for noise introduced
by random or inconsequential actions.
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problem, we have developed an algorithm that employs a
novel combination of sequence mining techniques to identify
differentially frequent patterns between groups of students
(e.g., experimental versus control conditions or high- versus
low-performers) [8]. Further, this technique can be contex-
tualized with information about the student’s performance
(e.g., productive and counter-productive phases) over the
course of their learning interactions [8].

In this paper, we extend these techniques by incorporating
them in an iterative, exploratory methodology and further
contextualizing the differential sequence mining with action
features, such as activity categorizations, relevance and tim-
ing between actions, and repetition of analogous actions. We
apply this exploratory data mining methodology to learning
trace data gathered during a recent Betty’s Brain study run
in a middle school classroom. Previous analyses have shown
that reading the resources occupies a significant portion of
the students’ learning activities. Therefore, we delve deeper
than previous analyses by exploring reading action features
(e.g., short versus long reads and first reads versus rereads
of a page) and analyze student behaviors and performance
using this more detailed characterization of reading actions.

2. RELATED WORK
In this section, we briefly review relevant past work on us-
ing sequence mining techniques to analyze students’ learning
behaviors. For example, Perera et al. [14] investigate trace
data from mirroring and feedback tools that support effec-
tive teamwork among students collaborating on software de-
velopment using an open source professional development
environment called TRAC. In their approach, they help all
groups improve their work by observing and emulating the
behaviors of the strong groups. They use k-means cluster-
ing to find groups of similar teams and similar individuals,
and then employ a modified version of the Generalized Se-
quential Pattern (GSP) mining algorithm [16] to show that
leadership and group interaction are important to success.
Martinez et al. [12] discovered frequent sequences of actions
that differentiate high-achieving groups from low-achieving
groups of learners, who collaborate around a shared table-
top to answer an open question posed as a mystery prob-
lem. They apply a clustering algorithm to group similar pat-
terns to aid in analyzing the pattern distribution across the
groups. Employing sequential pattern mining allows them to
identify differences between the higher- and lower-achieving
groups in their manner of information gathering to solve
the problem. Like Perera et al. [14] and Martinez et al. [12],
we compare sequential patterns derived from groups of stu-
dent activity sequences. However, our differential sequence
mining algorithm directly incorporates comparisons between
groups with additional metrics to identify interesting pat-
terns, rather than manually performing researcher-directed
comparisons after data mining.

Other researchers have employed sequential pattern mining
(with a single set of student activity sequences or subse-
quences) to understand student learning behaviors. For ex-
ample, Su et al. [17] propose a method for creating personal-
ized activity trees to be used in a Sharable Content Object
Reference Model (SCORM) e-learning system. They use
sequential pattern mining to extract frequent learning pat-
terns as part of a larger process that creates a decision tree
to predict the group/category for a new student. Nesbit et

al. [13] employ sequential pattern mining to investigate self-
regulation in gStudy, which is a software application with
similarities to Betty’s Brain. In this system, students learn
from multimedia documents and organize their knowledge
with notes, concept maps, and other objects. Using sequen-
tial pattern mining, the authors hope to step beyond the
question of whether a tool helps learners construct knowl-
edge and instead investigate when and how learners use the
tool as they self-regulate their knowledge construction ac-
tivities. Similarly, our work investigates learning behav-
iors and self-regulation by identifying sequential patterns
of student activity. However, unlike all of the preceding
applications of sequential pattern mining, our methodology
also analyzes students’ evolving performance to identify, and
group, action subsequences corresponding to productive and
counter-productive phases. Further, our methodology itera-
tively employs action abstraction/transformation using fea-
tures, such as activity categorizations, relevance and timing
between actions, and repetition of analogous actions.

3. DIFFERENTIAL SEQUENCE MINING
METHODOLOGY

To effectively perform sequential data mining on learning in-
teraction traces, raw logs must first be transformed into an
appropriate sequence of actions. Since these logs can con-
tain a significant quantity of information about each student
interaction with the system, as well as other system book-
keeping information, raising the level of abstraction from
raw log events to a canonical set of distinct actions is a vital
first step in effective analysis. Our methodology incorpo-
rates iterative refinement of this action abstraction step to
focus the analysis on various learning activities and actions.

3.1 Action Abstraction with Context Summa-
rization

Action abstraction is the first step of our data mining method-
ology, in which researcher-identified categories of actions de-
fine an initial alphabet (set of action symbols) for the se-
quences. This step filters out irrelevant information (e.g.,
cursor position) and combines qualitatively similar actions
(e.g., querying an agent through different interfaces or about
different concepts in a given topic).

To apply the abstraction process, log events captured by the
CBLE are mapped to a sequence of canonical actions taken
by each student. As in previous work, we abstract student
activities in five primary categories [8]:

• READ: students access a page in the resources;

• LINK or CONCept Edit: students edit the causal map,
with actions further divided by: (i) whether they op-
erate on a causal link (“LINK”) or concept (“CONC”)
and whether the action was an addition (“ADD”),
removal (“REM”), or modification (“CHG”), e.g.,
LINKREM or CONCADD;

• QUER: students use a template to ask Betty a ques-
tion, and she uses a causal reasoning method to answer
the question [9];

• EXPL: students probe Betty’s reasoning by asking her
to explain her answer to a question, and she uses dia-
logue and animation on the causal map to demonstrate
her use of causal reasoning to answer the question;
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• QUIZ: students assess how well they have taught Betty
by having her take a quiz, which is a set of questions
chosen and graded by the Mentor agent.

However, abstracting the raw log traces through action cat-
egorization, also strips potentially important context asso-
ciated with the actions in the traces. For example, with
the LINK-ADD action, the particular link added can pro-
vide important context information, such as whether this
link relates to resource material the student read in a pre-
vious action. However, if the details of the exact link added
are used to differentiate each edit action, we would end up
with an unwieldy number of distinct actions, making it hard
to discover and interpret behavior pattern sequences. To
maintain a balance between the number of distinct actions
and retaining relevant context information, we employ met-
rics that summarize context in order to distinguish actions.
For example, we employ a relevance summarization metric,
which establishes whether the content/object of an action is
related to a small number of recent activities, where recent
is defined by a configurable window of previous actions [3].
This relevance metric splits each categorized action into two
distinct actions: (1) relevant to at least one of the recent
actions (with the “-REL” suffix) and (2) irrelevant to any
of the recent actions (with the “-IRR” suffix).

In this methodology, the choice of specific context-summary
metrics and their application to different categories of action
is iteratively refined over repeated analyses of the interac-
tion traces. This allows the researcher to focus the analysis,
providing more detail and context associated with specific
learning activities or strategies. In previous work, we pre-
sented an initial analysis of student action sequences apply-
ing only the relevance metric, which illustrated some inter-
esting map editing and monitoring behaviors distinguishing
high-performing and low-performing students [8]. However,
that analysis did not differentiate between reading actions
(e.g., long versus short, or reading pages in sequence ver-
sus using keyword search), which are frequent and vital to
student learning in Betty’s Brain [8; 15].

In this paper, we present the results of a subsequent itera-
tion in this extended methodology, in which we apply ad-
ditional metrics to distinguish different types of READ ac-
tions. As a continuation of the exploratory methodology,
a future iteration might instead focus on actions related to
editing the causal map by applying additional editing met-
rics (e.g., whether the edit increased or decreased the corre-
spondence between the student’s map and the expert map,
or whether the edit introduced a cycle, continued a chain of
causal relationships, or added a branch to a chain of causal
relationships). However, to maintain a reasonable number
of distinct actions in that hypothetical iteration (such that
sufficiently frequent patterns could still be identified), the
number of reading-related metrics would be correspondingly
reduced.

In the analysis and iteration of the methodology presented
in this paper, we apply three reading-related metrics to the
student action sequences:

• Source (TOC/HLNK/HIST): how the student reached
the page he/she is reading - by selecting a page in
the table of contents (TOC) always displayed on the
left of the resources, from a hyperlink (HLNK) on an-
other page, or using the backward or forward button
to move through their history of pages (HIST) like a

web browser;

• Time (SHRT/FULL): a determination of whether the
student spent enough time on the page to have read
a significant amount of the material2 (FULL) or only
spent a brief period of time on the page (SHRT), pos-
sibly skimming the material or checking whether the
page was one for which they were searching;

• Repetition (FRST/REPT): a determination of whether
the student had never done a FULL read of the page
(FRST) or this was a reread of the page (REPT) be-
cause the student had previously done a FULL read;

In addition to metrics related to individual actions, we also
apply another, general transformation to the action sequence.
In an environment like Betty’s Brain, there are cases in
which students often perform a particular type of action
(e.g., adding concepts) repeatedly in sequence, which can
result in a variety of frequent patterns that differ only by
the number of repetitions of that action. To improve this ex-
ploratory analysis, our action abstraction step distinguishes
a single action from repeated actions, which are condensed
to a single action with the “-MULT” suffix. Using the
re-transformed sequences, our differential sequence mining
technique can more efficiently identify trends that could oth-
erwise be hidden by the multitude of frequent patterns dif-
fering only in the length of a repeated action sequence [8].

3.2 Differential Sequence Mining
To identify important activity patterns in a comparison be-
tween two sets of action sequences, our methodology em-
ploys a novel combination of sequence mining techniques.
Sequential pattern mining [2] methods find the most fre-
quent action patterns across a set of action sequences, while
episode mining [11] discovers the most frequently used ac-
tion patterns within a given sequence. However, finding the
patterns most important for interpreting learning behaviors
or differentiating between groups of students is challenging,
because of the need to limit the large set of frequent patterns
to ones that are interesting and important (i.e., our focus is
on the effectiveness of mining techniques in identifying these
important patterns, rather than the efficiency, or speed, in
calculating the frequent patterns [1]).

In comparing across groups of action sequences, such as
high- versus low-performing students, the differences be-
tween the groups provide a natural criterion for identifying
important patterns that may elucidate differences in learn-
ing behavior. To use this criterion for mining important
frequent patterns, we define two measures of frequency and
the corresponding differences calculated across the groups.
The sequential pattern mining frequency measure (i.e., the
number of sequences in which the pattern occurs, regardless
of how many times) is important for identifying patterns
common to a group of action sequences. We refer to this as
the “sequence support” (s-support) of the pattern, following
the convention of [10], and we call patterns meeting a given
s-support threshold s-frequent. The second metric is the

2Based on the length of typical resource pages and the read-
ing abilities of the students in the study, we set the threshold
between short and full reads to be 30 seconds. Further, the
large majority of reads in the short category were actually
under 5 seconds and most of the reads in the full category
were over a minute.
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(a) High-performing student (b) Lo-performing student

1: Example student performance evolution with identified phases

episode frequency, defined as the number of times the pat-
tern is repeated within an action sequence. We refer to this
frequency measure as the “instance support” (i-support), fol-
lowing [10]. To calculate the i-support of a pattern in a group
of traces, we use the mean of the pattern’s i-support values
across all sequences in the group.

The details of our differential sequence mining algorithm
are presented in [8], but we briefly outline the main steps of
the algorithm. First, a sequential pattern mining algorithm
(SPAMc [6]) identifies the patterns that meet a minimum
s-support constraint within each group, employing a max-
imum gap constraint to account for noise, which is inter-
preted as a small number of irrelevant actions that may be
interspersed in a pattern. In this paper, we employ a gap
constraint of 1, i.e., we allow at most one irrelevant action
between each consecutive action in a pattern. To compare
the identified s-frequent patterns across groups, we calculate
the mean i-support of every pattern for each group. In order
to identify patterns whose usage more clearly differ between
the two groups, we also filter the patterns based on the p
value of a t-test comparing pattern i-support between the
groups.

This comparison produces four distinct categories of fre-
quent patterns: two categories where the patterns are s-
frequent in only one group, illustrating patterns primarily
employed by that group, and two categories where the pat-
terns are common to both groups but used more often in
one group than the other. The patterns in each of these
qualitatively distinct categories are (separately) sorted by
the difference in mean group i-support to focus the analysis
on the most differentially frequent patterns.

3.3 Performance Evolution Phases
In the Betty’s Brain environment, a student’s work can
be assessed in terms of their performance on the learning

task, which we define as the student’s current map score3.
By tracking the evolution of students’ map scores, we can
quantify how their learning and map-building performance
develop as they work on the system. To more effectively
identify and contextualize learning behavior patterns, we
consider phases of productive (increasing map score) and
counter-productive (decreasing map score) activity over the
course of learning by tracking their map scores, as illustrated
in Figure 1.

These phases are identified by generating a piecewise, lin-
ear representation (PLR) for a sequence of two-dimensional
points. In this representation, the x-value is a cumulative
measure of student editing activity (i.e., the number of edit
actions the student has performed thus far) and the y-value
is the student’s total map score after the corresponding edit
action [8]. Figures 1(a) and 1(b) illustrate these perfor-
mance phases with plots of map score versus number of
edits for a high-performing and a low-performing student,
respectively. To generate this representation, we employ a
standard bottom-up, time-series linear segmentation algo-
rithm [7] with the sum-squared-error (SSE) of the segments
as the criterion metric [8].

3.4 Summary of Methodology
Our iterative methodology consists of four major steps to
identify learning behaviors contextualized by performance
evolution between groups of students:

1. Action abstraction: Logfiles are processed to produce
a sequence of actions for each student by mapping
sets of interaction events to canonical actions. Each
canonical action is contextualized and split into dis-
tinct actions by applying metrics, such as the relevance

3The map score is defined as the number of correct links
(based on the expert map) in the student’s map minus the
number of incorrect links.
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metric and the reading metrics. At each iteration ad-
ditional metrics can be applied, as well as previous
metrics removed, based on the results of previous iter-
ations. Finally, any subsequences of a repeated action
are condensed into a single “action” identified with the
“-MULT” suffix.

2. Performance phase identification: Student action se-
quences are split into subsequences using the time-
series segmentation algorithm. These subsequences are
filtered to produce two sequential datasets: a) produc-
tive action sequences corresponding to segments with
a positive progress slope above a given cutoff, and b)
counter-productive action sequences corresponding to
segments with a negative progress slope below a given
(negative) cutoff.

3. Differential sequence mining: The student groups, as
well as productive and counter-productive action sub-
sequences within those groups, are compared to iden-
tify differentially frequent patterns of action.

4. Interpretation: The differentially frequent sequential
patterns of action are interpreted in terms of effec-
tive and ineffective learning behaviors exhibited by
students during the learning task. Investigation of
pattern details (i.e., raw event details for instances of
these patterns) may yield further insights into student
cognition and metacognition, as well as potential flags
and triggers for adaptive feedback/scaffolding in the
system.

4. RESULTS
We illustrate our methodology using interaction trace data
from a recent study with 40 8th-grade students taught by the
same teacher in a middle Tennessee school. At the beginning
of the study, students were introduced to the science topic
(global climate change) during regular classroom instruc-
tion, provided an overview of causal relations and concept
maps, and given hands-on training with the system. For
the next five days, students taught their agent about cli-
mate change and received feedback on metacognitive strate-
gies from the Mentor agent. In this version of the system,
the majority of the metacognitive feedback was related to
knowledge construction strategies [15]. However, the Men-
tor agent also provided advice on monitoring strategies to
help students recognize and correct errors in their casual
maps.

The results of this study presented an interesting dichotomy
in student performance at constructing their causal concept
maps. 16 of the students taught their agent a correct, com-
plete map or one very close to it (these students achieved
map scores between 11 and 15, inclusive, where 15 was the
maximum possible score). Another 18 students taught their
agents relatively poor maps with a map score of 5 or below.
Only 6 students had a map score in between these groups
(i.e., a map score of 6 to 10, inclusive). Therefore, we fo-
cus on an analysis and comparison of the learning activities
of the high-performing (“Hi”) student group and the low-
performing (“Lo”) student group. An initial analysis of the
activity traces from this study was presented in [8]. Here we
focus on the effectiveness and variation in students’ read-
ing behaviors by refining the action abstraction step in our
exploratory methodology with additional (reading-related)

metrics, discussed in Section 3.1. We should note that stu-
dents in the “Hi” group had higher pre-test scores in all of
the categories as compared to the “Lo” group. However, a
detailed analysis shows that 40% of the links added by the
“Hi” group were initially incorrect (this number was 58%
for the “Lo” group). This shows that the “Hi” group had
to put in significant effort into discovering errors in their
maps and correcting them, and the final results show that
they were quite successful in their monitoring and correction
tasks. This was not the case for the “Lo” group. Therefore,
a comparison of the learning behaviors of the two group
should demonstrate an important dichotomy in the strate-
gies employed by the two groups that mirrors the dichotomy
in their performance. To further differentiate behaviors as-
sociated with high and low performance, we compared pro-
ductive and counter-productive phases of student activities.
We discuss the results of our analyses in greater detail below.

To assess students’ overall learning gains, calculated as nor-
malized gains4 in pre- to post-test scores, we categorize the
pre- and post-test questions into three groups: (i) defini-
tion questions about the science topic in multiple choice
(MC) format, (ii) questions requiring reasoning about the
science topic that students had to answer by writing sen-
tences (“short answer”), and (iii) questions about causal
reasoning using a causal map that was not related to the
science topic. Table 1 presents the students average scores
(and standard deviations). The results of an ANOVA com-
paring the Hi and Lo student groups on each of the pre-post
gains show significant differences between the Hi and Lo
groups only for the definitional MC questions. Table 1 also
presents ANOVA analyses of the difference in performance
for the map-building metrics: (i) link accuracy - the per-
centage of links added to the map that were correct; (ii)
link creation effort - the total number of student actions
divided by the number of correct link edits, a measure of
the effort by the student in order to produce a correct link
edit; and (iii) action relevance - the percentage of student
actions that were relevant (as described in Section 3.1) to
at least one of the three previous actions show significant
differences in favor of the Hi group with moderate effect
sizes. These results indicate that students in the Hi group
were more accurate in their map edits and generally more
efficient in their learning and teaching activities. Further,
they tended to employ a more systematic approach to the
task, as indicated by their higher action relevance score.
Overall, students who achieved success in teaching Betty
accurate causal maps also learned significantly more factual
information, but their gains in causal reasoning and short
answer questions were not significantly different from the
low-performing group [8; 15].

As a first analysis to elucidate broad differences in reading
behavior between the Hi and Lo groups, Table 2 presents
the relative proportion of reading activities categorized by
each metric presented in Section 3.1. Both groups performed
roughly equal numbers of read actions on pages they had
previously read in-depth (“Repeat” (REPT)) compared to
ones they had not read in-depth (“First” (FRST)). The Lo
group relied slightly more on short (SHRT) reads (74%)
than the Hi group (69%), and the ratio of short to full page
(FULL) reads was approximately 3:1 for the Lo group and
2:1 for the Hi group. Similarly, the Lo group’s read actions

4The normalized learning gain was calculated as: (post−pre)
(max−pre)
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1: High vs. Low Performers - Learning Gain and Map Score

Metric Hi Group Lo Group F Sig. Effect Size (Cohen’s f)
Definition MC Norm. Gain 0.535 (0.344) -0.202 (0.769) 12.448 0.001 0.624
Causal Reasoning Norm. Gain 0.130 (0.614) -0.029 (0.414) 0.799 0.378 0.157
Short Answer Norm. Gain 0.027 (0.241) -0.028 (0.134) 0.700 0.409 0.146
Map Score 14.500 (1.155) 2.780 (1.592) 590.171 0.001 4.314
Link Accuracy (LA) 60.3% (7.1%) 42.8% (10.6%) 31.528 0.001 0.992
Link Creation Effort (LCE) 11.630 (8.196) 20.665 (5.942) 12.745 0.001 0.652
Action Relevance 53.3% (8.4%) 40.6% (12.2%) 12.401 0.001 0.622

were deemed more irrelevant (IRR) to recent actions (again
the ratio of IRR to REL (relevant) reads was 3:1). The same
ratio for the Hi group was 2:1.

2: Relative Proportion of Actions by Reading Metrics

Group First : Repeat Short : Full Irrel. : Rel.
(FRST : REPT) (SHRT : FULL) (IRR : REL )

Hi 51% : 49% 69% : 31% 67% : 33%
(SD 12%) (SD 15%) (SD 9%)

Lo 55% : 45% 74% : 26% 74% : 26%
(SD 14%) (SD 12%) (SD 7%)

To analyze specific reading behaviors illustrated by these
students’ interaction traces, we applied the differential se-
quence mining technique described in Section 3.2. This
allowed us to identify a variety of interesting learning be-
haviors related to reading that were not apparent from the
higher level analyses of behavior patterns we had conducted
in the past [8; 15]. Table 3 presents the top five patterns in
each of the differential categories detailed in Section 3.2. For
the analysis, we employed an s-support threshold of 50% to
analyze patterns that were evident in the majority of either
group of students and employed a standard statistical signif-
icance cutoff of p < 0.05. In all of the differential sequence
mining results presented here, we employed a maximum gap
threshold of 1, to allow for “noise” from irrelevant or in-
terchangeable actions in the learning activity sequences, as
described in Section 3.2.

All reads in the differentially frequent patterns distinguish-
ing reading behaviors between high and low students were
pages selected from the table of contents (TOC) rather than
from hyperlinks within pages or the (backward/forward) his-
tory mechanism. This is unsurprising since raw frequencies
of these different types of reading activities indicated that
in both the high and low group, the large majority of read-
ing activities involved selecting pages from the table of con-
tents. Table 3 shows that the high group was much more
likely to add a link (both relevant (REL) or irrelevant (IRR)
links with respect to recent actions) following a full-length
(FULL) re-read (REPT) of a page that was relevant (REL)
to recent actions. This greater reliance on extended re-reads
before adding links suggests the high group employed a more
careful approach to identifying causal links in the resources,
which may have helped increase their accuracy in teach-
ing correct links, and also their ability to correct previously
taught incorrect links.

Further, the high group more frequently employed reading
activities in a monitoring context (i.e., in conjunction with
quiz actions). Besides following extended re-reads by adding
links, the high group was also more likely to follow them with

quizzes, possibly in an attempt to connect what they were
reading with their TA’s right and wrong answers based on
the current map. Following quizzes, they were more likely
to do a quick re-read of a relevant page, which suggests an-
other monitoring strategy, such as confirming links used by
the TA in quiz answers. The differentially frequent patterns
employed more by the low group were various combinations
of reading, especially short reads and ones not relevant to
recent actions. This may be indicative of a less consistent
approach to reading and of strategies that do not system-
atically combine reading with other knowledge construction
and monitoring activities.

To further investigate which reading behaviors may have
contributed to the high performers’ success, we identified
differentially frequent patterns when students were produc-
tive as opposed to being counter-productive during their
map building activities. The method for extracting the
productive versus counter-productive phases was described
in Section 3.3, and we included all segments with a slope
greater than or equal to 0.4 in the productive set and all seg-
ments with a slope less than or equal to -0.4 in the counter-
productive set5 [8]. For the differential sequence mining with
performance evolution subsequences analysis, we employed a
lower s-support threshold because the sequences were signifi-
cantly shorter than the complete student activity sequences.
Specifically, we employed an s-support threshold of 20% to
analyze patterns that occurred with some regularity (i.e., in
at least one out of every five subsequences). Similarly, given
the limited length and number of sequences, we employed a
relaxed cutoff on the t-test comparison of p < 0.10.

In comparing the Hi group’s productive to counter-productive
periods, the only differentially frequent pattern observed was
that extended, relevant rereads (READ-TOC-REPT-FULL-
REL) occurred approximately twice as frequently (p = 0.034)
in productive segments (i − support = 0.65) than counter-
productive segments (i− support = 0.38). This reliance on
extended, relevant re-reads, especially during productive pe-
riods, provides further evidence that a more careful, system-
atic approach to reading may have been particularly benefi-
cial for the high-performing students. In comparing the Lo
group’s productive to counterproductive periods, the only
differentially frequent pattern observed was that extended,
relevant reading of a page for the first time occurred approx-
imately five times as frequently (p = 0.039) in productive
segments (i− support = 0.28) than counter-productive seg-
ments (i−support = 0.06). This suggests that when the low-
performing students read a page in-depth for the first time

5The slope cutoff of 0.4/-0.4 was determined by qualitative
analysis of a sample of student map score plots to distinguish
generally productive/counter-productive segments [8]
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3: High vs. Low Performers - Differentially Frequent Patterns

Pattern
I-Support
(Hi)

I-Support
(Lo)

t-test
(p value)

S-Freq
Group

READ-TOC-REPT-FULL-REL → LINKADD-REL 2.19 0.61 0.005 Hi
READ-TOC-REPT-FULL-REL → QUIZ 1.50 0.39 0.010 Hi
QUIZ → READ-TOC-REPT-SHRT-REL 1.44 0.33 0.018 Hi

READ-TOC-REPT-SHRT-REL → LINKADD-IRR 1.13 0.17 0.008 Hi
READ-TOC-REPT-FULL-IRR → LINKREM-IRR 1.13 0.28 0.016 Hi
READ-TOC-REPT-FULL-REL → LINKADD-IRR 2.00 0.94 0.022 BOTH

READ-TOC-FRST-SHRT-IRR → READ-TOC-REPT-SHRT-IRR-MULT 0.31 0.89 0.043 Lo
READ-TOC-REPT-SHRT-IRR → READ-TOC-REPT-SHRT-IRR-MULT 0.31 1.00 0.040 Lo

READ-TOC-REPT-FULL-IRR → READ-TOC-FRST-SHRT-IRR 0.44 1.17 0.033 Lo
READ-TOC-REPT-FULL-IRR → READ-TOC-REPT-SHRT-IRR 0.63 1.67 0.013 Lo
READ-TOC-REPT-SHRT-REL → READ-TOC-FRST-SHRT-REL 0.50 1.78 0.047 Lo

they tended to extract useful information, especially if the
page was relevant to their recent activities. However, they
did not seem to be as effective as the high-performing stu-
dents in extracting additional information when re-reading
pages.

To gain further insight into differences in productive read-
ing behaviors exhibited by students in Betty’s Brain, we ap-
plied the differential sequence mining technique to compare
the productive subsequences between the Hi and Lo groups.
This analysis, presented in Table 4, illustrates four reading
activities more frequently employed by the low-performing
students during their productive activity periods. The greater
frequency of irrelevant, extended rereads (both from the ta-
ble of contents and from hyperlinks) in the Lo group, sug-
gests that although they tended to be less systematic in their
approach, they were still able to gain some useful informa-
tion from rereading the resources. However, their greater re-
liance on initial, in-depth reads (READ-TOC-FRST-FULL-
REL) in productive periods suggests they may have had a
harder time identifying the less obvious causal relations of-
ten found after multiple reads. Finally, the repeated use of
short, irrelevant reads during productive periods by the Lo
group may indicate an inefficient, but ultimately effective,
searching behavior.

5. CONCLUSIONS
In this paper, we extended an exploratory data mining method-
ology for identifying important learning behaviors with an
iterative approach to action abstraction using a variety of
action features and presented results analyzing reading be-
haviors of students in a learning-by-teaching environment.
The exploratory methodology combines iterative action ab-
straction, a sequence mining technique to identify differen-
tially frequent activity patterns, and piecewise linear seg-
mentation of activity phases with respect to the evolution
of a performance or progress measure. Results from a recent
classroom study with Betty’s Brain illustrate the effective-
ness of this methodology and iterative action abstraction
for identification of important learning behaviors at multiple
levels of analysis, including behaviors distinguished by their
relationship to productive or counter-productive phases of
activity.

Although the majority of frequent action patterns that could
be identified in these interaction traces are common to both
high-performing students and low-performing students (and
occur throughout the course of students’ interaction with

the system), the analysis employing our differential sequence
mining methodology elucidated some important learning be-
haviors. In this paper, we extended previous results with
a focus on reading behaviors related to successful perfor-
mance in the learning environment and differentiating them
from ones employed by less successful students. Overall,
high-performing students differentially employed reading be-
haviors that indicated a more careful and systematic strat-
egy of reading. Their activity patterns more frequently
involved re-reading pages from the resources, such as em-
ploying full-length re-reads of the resources before adding a
link. Further, the reading activity patterns distinguishing
high-performers from low-performers usually involved read-
ing pages that were relevant to recent actions, suggesting a
more systematic reading behavior overall. Productive peri-
ods were particularly distinguished in high performers by a
larger number of full-length, relevant re-read actions.

Performance was also linked to monitoring behaviors that
incorporated re-reading of the resource material. In par-
ticular, high-performers were more likely to employ various
types of reading actions both before and after assessments of
progress/correctness using the quiz. Low performers, on the
other hand, had a differential tendency to use irrelevant, ex-
tended re-reads of pages in the resources during productive
periods. They may have also had more difficulties identify-
ing the less obvious causal relations, as suggested by their
greater reliance on initial reads of a resource page during
productive periods.

In future work, we also intend to expand upon the presented
data mining techniques through a variety of enhancements
and additional applications. We will enhance the existing
summarization of action-relevance to include determination
of the relationship between the specific actions in all sub-
sequences matching the identified patterns. For example,
this enhanced action-relevance summarization will allow us
to determine how frequently a pattern like READ-TOC-
REPT-FULL-REL→ LINKADD-REL involves adding a cor-
rect link and whether the specific link added was discussed
in the resource page from the reading action. Relating iden-
tified patterns of action back to specific details and context
in the interaction traces could provide significant benefits
for more efficient and effective interpretation of learning be-
haviors. Based on this analysis, we will expand and revise
the feedback triggering conditions and student modeling to
improve learning behavior feedback from the Betty’s Brain
agents.
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4: High vs. Low Performers (Productive Segments) - Differentially Frequent Patterns

Pattern
I-Support
(Hi)

I-Support
(Lo)

t-test
(p value)

S-Frequent
Group

READ-TOC-REPT-FULL-IRR 0.51 1.00 0.070 BOTH
READ-TOC-FRST-FULL-REL 0.10 0.28 0.091 Lo

READ-HLNK-REPT-FULL-IRR 0.08 0.28 0.057 Lo
READ-TOC-REPT-SHRT-IRR-MULT 0.15 0.39 0.079 Lo
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ABSTRACT
Identification of student learning behaviors, especially those
that characterize or distinguish students, can yield impor-
tant insights for the design of adaptation and feedback mech-
anisms in Intelligent Tutoring Systems (ITS). In this paper,
we analyze trace data to identify distinguishing patterns of
behavior in a study of 51 college students learning about a
complex science topic with an agent-based ITS that fosters
self-regulated learning (SRL). Preliminary analysis with an
Expectation-Maximization clustering algorithm revealed the
existence of three distinct groups of students, distinguished
by their test and quiz scores (low for the first group, medium
for the second group, and high for the third group), their
learning gains (low, medium, high), the frequency of their
note-taking (rare, frequent, rare) and note-checking (rare,
rare, frequent), the proportion of sub-goals attempted (low,
low, high), and the time spent reading (high, high, low). In
this paper, we extend this analysis to identify characteris-
tic learning behaviors and strategies that distinguish these
three groups of students. We employ a differential sequence
mining technique to identify differentially frequent activity
patterns between the student groups and interpret these pat-
terns in terms of relevant learning behaviors. The results of
this analysis reveal that high-performing students tend to be
better at quickly identifying the relevance of a page to their
subgoal, are more methodical in their exploration of the ped-
agogical content, rely on system prompts to take notes and
summarize, and are more strategic in their preparation for
the post-test (e.g., using the end of their session to briefly
review pages). These results provide a first step in identify-
ing the group to which a student belongs during the learning
session, thus making possible a real-time adaptation of the
system.

1. INTRODUCTION
Use of metacognition and self-regulated processes has been
identified as a key element for successful learning in gen-
eral [?; ?; ?; ?]. In the particular context of an intelligent
tutoring system (ITS), it means it is crucial to ensure that
students are actively using key self-regulated learning (SRL)
processes, which can be achieved through prompts, scaffold-

ing, and feedback. A major challenge is to make the ITS
more adaptive to individual learning characteristics, such as
browsing behavior and initiative in performing appropriate
SRL processes.

Using MetaTutor, an agent-based ITS that fosters the use
of SRL processes, we have collected a large amount of data
from students interacting with the system while they were
learning about the human circulatory system. In this paper,
our goal is to answer two questions: (1) how can students
be grouped according to their performance and their type of
interaction with the system? and (2) how do specific learn-
ing behaviors of high- and low-performing students differ, in
particular regarding their use of SRL processes in MetaTu-
tor?

In this paper, we propose to answer the first question us-
ing a clustering approach that groups students with similar
performance and scores on other system interaction metrics.
For the second question, we analyze members of the three
clusters (especially comparing high- and low-performing stu-
dents) with a differential sequence mining method [?], which
identifies statistically significant differences in frequent be-
haviors between clusters.

This paper is organized as follows. In section 2, we start by
discussing related work that combines clustering and pat-
tern mining techniques for analysis of data from computer-
based learning environments. In section 3, we introduce the
ITS used for data collection, MetaTutor, as well as theoret-
ical grounding of its key features, which encourage learners
to perform self-regulation monitoring and strategy as they
learn with the system. Section 4 describes the data col-
lected and the relevant events encoded as actions, as well
as the clustering performed to distinguish different types of
students. Section 5 presents the principles of the method
of differential sequence mining, its application to the data,
and the results obtained in terms of patterns of actions that
distinguish students from different clusters. Section 6 then
discusses the practical implications of those findings in terms
of potential modifications to the ITS, before concluding in
section 7.

2. RELATED WORK
Analysis of trace log data from users’ interactions to better
understand their learning process and distinguish groups of
learners (e.g., efficient versus inefficient ones) has been an
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important area of research in educational data mining. For
example, Perera et al. [?] follow a 2-step methodology like
ours, as they start by using a clustering algorithm (k-means)
to identify strong groups of students collaborating in a soft-
ware development task using an open environment (TRAC).
The students are first clustered according to a set of at-
tributes extracted a posteriori, and then they use a mod-
ified version of the Generalized Sequential Pattern mining
algorithm [?] to identify frequent sequences of actions that
characterize the most successful groups. In [?], Romero et al.
also use a combination of clustering and sequential pattern
mining to identify different kinds of browsing behavior that
students exhibit in their learning environment, “AHA!”, in
order to provide them links to the most appropriate pages.

With gStudy, Nesbit et al. [?] are interested in the use of
self-regulation by students learning from multimedia docu-
ments. They apply sequential pattern mining to find com-
mon subsequences between groups of students, although they
do not perform any clustering beforehand. Martinez et al. [?]
pursue a similar approach and objective, as they aim to
discover frequent sequences of actions that distinguish a
group of students with high achievements from one with
low achievements. They use a combination of pattern min-
ing and clustering techniques to identify the most successful
strategies in the context of a collaborative learning tool on
a tabletop device. However, they first extract frequent pat-
terns of actions and then cluster them in order to examine
clusters of patterns associated with each group. Tang and
McCalla [?] also use sequence mining and then clustering
in their web learning environment, to facilitate instructional
planning and diagnose students behaviors.

3. METATUTOR ENVIRONMENT

3.1 General overview
MetaTutor is a multi-agent, adaptive hypermedia learning
environment, which presents challenging human biology sci-
ence content. The primary goal underlying this environment
is to investigate how multi-agent system can adaptively scaf-
fold SRL and metacognition within the context of learning
about complex biological content. MetaTutor is grounded
in a theory of SRL that views learning as an active, con-
structive process whereby learners set goals for their learn-
ing and then attempt to monitor, regulate, and control their
cognitive and metacognitive processes in the service of those
goals [?; ?; ?]. More specifically, MetaTutor is based on sev-
eral theoretical assumptions of SRL that emphasize the role
of cognitive, metacognitive (where metacognition is concep-
tualized as being subsumed under SRL), motivational, and
affective processes [?; ?]. Moreover, learners must regulate
their cognitive and metacognitive processes in order to inte-
grate multiple informational representations available from
the system. While all students have the potential to regu-
late, few students do so effectively, possibly due to inefficient
or a lack of cognitive or metacognitive strategies, knowledge,
or control.

As a learning tool, MetaTutor has a multitude of features
that embody and foster self-regulated learning (cf. Fig-
ure ??). These include four pedagogical agents which guide
students through the learning session and prompt students
to engage in planning, monitoring, and strategic learning
behaviors. In addition, the agents can provide feedback
and engage in a tutorial dialogue in an attempt to scaf-

fold students’ selection of appropriate sub-goals, accuracy
of metacognitive judgments, and use of particular learning
strategies. The system also uses natural language processing
to allow learners to express metacognitive monitoring and
control processes. For example, learners can type that they
do not understand a paragraph and can also use the inter-
face to summarize a static illustration related to the circula-
tory system. Additionally, MetaTutor collects information
from user interactions with it to provide adaptive feedback
on the deployment of students’ SRL behaviors. For exam-
ple, students can be prompted to self-assess their under-
standing (i.e., system-initiated judgment of learning [JOL])
and are then administered a brief quiz. Results from the
self-assessment and quiz allow pedagogical agents to pro-
vide adaptive feedback according to the calibration between
students’ confidence of comprehension and their actual quiz
performance.

During learning, MetaTutor is capable of measuring the de-
ployment of self-regulatory processes by allowing us to col-
lect rich, multi-stream data, including: self-report measures
of SRL, on-line measures of cognitive and metacognitive pro-
cesses (e.g., concurrent think-alouds), dialogue moves re-
garding agent-student interactions, natural language pro-
cessing of help-seeking behavior, physiological measures of
motivation and emotions, emerging patterns of effective prob-
lem solving behaviors and strategies, facial data on both ba-
sic (e.g., anger) and learning-centered emotions (e.g., bore-
dom), and eye-tracking data regarding the selection, organi-
zation, and integration of multiple representations of infor-
mation (e.g., text, diagrams). The collection of these vari-
ous data streams is critical to enhancing our understanding
of when, how, and why students regulate or do not reg-
ulate their learning and adapt their regulatory behaviors.
These data are then used to develop computational models
designed to detect, track, model, and foster students’ SRL
processes during learning.

3.2 Self-Regulated Learning with MetaTutor
This paper is theoretically-guided by contemporary models
of SRL that emphasize the temporal deployment of these
processes during learning [?]. As such, the goal is to use
multiple measures to detect, track, and model learners’ use
of cognitive, affective, and metacognitive (CAM) processes
during learning. As such, we use Winne and Hadwin’s model
[?; ?] because it proposes that learning occurs in four ba-
sic phases: (1) task definition, (2) goal-setting and plan-
ning, (3) studying tactics, and (4) adaptations to metacog-
nition. Their model emphasizes the role of metacognitive
monitoring and control as the central aspects of learners’
ability to learn complex material across different instruc-
tional contexts (e.g., using a multi-agent system to track
and foster SRL) in that information is processed and ana-
lyzed within each phase of the model. Recently, Azevedo
and colleagues [?; ?; ?; ?; ?] extended this model and pro-
vided extensive evidence regarding the role and function of
several dozen CAM processes during learning with student-
centered learning environments (e.g., multimedia, hyperme-
dia, simulations, intelligent tutoring systems).

In brief, our model makes the following assumptions: (1)
successful learning involves having learners monitor and con-
trol (regulate) key CAM processes during learning; (2) SRL
is context-specific and therefore successful learning may re-
quire a learner to increase/decrease the use of certain key
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Figure 1: Annotated screenshot of MetaTutor (A: time remaining in the session, B: table of contents, C: current subgoals and
progression, D: embodied pedagogical agent, E: palette of monitoring and strategy actions)

SRL processes at different points in time during learning;
(3) a learner’s ability to monitor and control both inter-
nal (e.g., prior knowledge) and external factors (e.g., chang-
ing dynamics of the learning environment; relative utility of
an agent’s prompt) are crucial in successful learning; (4) a
learner’s ability to make adaptive, real-time adjustments to
internal and external conditions, based on accurate judg-
ments of their use of CAM processes, is fundamental to
successful learning; and; (5) certain CAM processes (e.g.,
interest, self-efficacy, task value) are necessary to motivate
a learner to engage and deploy appropriate CAM processes
during learning and problem solving. This model is best
suited for this project since it deals specifically with the
person-in-context perspective and postulates that CAM pro-
cesses occur during learning with a multi-agent system, which
will be useful in examining when and how learners will reg-
ulate their learning about the human circulatory system.
As such, the macro-level processes used in this paper are
reading, metacognitive monitoring, and learning strategies.

Reading behavior is critical since it is the most important
activity related to acquiring, comprehending, and using con-
tent knowledge related to the science topic. During reading,
learners need to monitor and regulate several key processes
such as: (1) selecting relevant content (i.e., text and dia-
grams) based on their current sub-goal; (2) spending appro-
priate amounts of time on each page, depending on their rel-
evance regarding their current sub-goal; (3) deciding when
to switch or create a new sub-goal; (4) making accurate
assessments of their emerging understanding; (5) conceptu-
ally connecting content with prior knowledge; (6) adaptively
selecting, using, and assessing the effective use of several
learning strategies including re-reading, coordinating infor-
mational sources, summarizing, making inferences, in order
to comprehend the material at various levels (i.e., declara-
tive, procedural, and conceptual knowledge); and, (7) mak-

ing adaptive changes to behavior based on a variety of exter-
nal (e.g., quiz scores, quality and timing of agents’ prompts
and feedback) and internal sources (e.g., affective experi-
ences including both positive and negative affective states,
perception of task difficulty). In sum, SRL involves the con-
tinuous monitoring and regulation of CAM processes during
learning with MetaTutor.

3.3 Participants and data collection
While data has been collected over a sample of 148 un-
dergraduate students from two large public universities in
North America, we consider for this study only a sub-sample
of 51 participants from the experimental condition that in-
cluded the most prompts from the pedagogical agents to
perform SRL actions and in which students were given some
adaptive feedback after having performed those actions. Par-
ticipants from other conditions did not receive a similar ex-
perience with the system, and therefore the values of the
variables considered (cf. section ??) were completely differ-
ent for them (e.g. they took less quizzes as they were not
prompted to self-regulate their learning). Considered logs
contained an average of 1072 events per session (σ = 255).

4. PRELIMINARY STEPS

4.1 Data preparation, coding and extraction
For the analysis performed here, as justified in section ??, we
abstracted the set of collected interactions into three broad
categories: reading, monitoring, and strategy (cf. Table ??
for The detailed list of actions extracted from the data).

4.1.1 Reading
A reading action (Read) is coded each time the student clicks
to display a new page of content to read. They can be split
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according to two combinatorial criteria, r and t, written as
Readrt , where:

• r stands for the relevance of the page with regard to
the student’s current subgoal (+ for a relevant page,
− for an irrelevant page, ∅ if no subgoal is currently
set and relevance can’t be determined);

• t stands for the time the student spent reading the page
(s if they remain less than 15 seconds, threshold under
which no SRL prompt can be triggered, l otherwise).

4.1.2 Monitoring
A monitoring action (Mon) is coded when the student per-
forms, or is prompted to perform, a monitoring action with
respect to their learning. This monitoring action could be
a judgment of learning (JOL) about what they have just
read, a feeling of knowing (FOK) regarding the content of
the page, an evaluation of the content (CE) relevance with
respect to their current subgoal, or an assessment of their
progress towards their current subgoal (MPTG). They can
also be split according to two combinatorial criteria, e and
i, written as Mone

i , where:

• e ∈ {+,−,∅} stands for the correctness of the moni-
toring evaluation performed by the student (+ if the
evaluation is right, − if it is wrong, ∅ if no direct eval-
uation is possible for the monitoring process);

• i ∈ {u, a} stands for the initiator of the action (u for
the user, a for the agent).

Following FOKs and JOLs, as well as when the student
claims to have finished a subgoal, students are asked to an-
swer a short quiz (of 3 to 10 questions). Those actions,
coded as Quiz , can be split along one dimension and are
then written Quizs, where s ∈ {+,−} stands for the success
or failure to pass the test (+ if the student obtained more
than 66% of correct answers, − otherwise).

4.1.3 Strategy
A strategy action (Str) is coded when the student uses a
strategy to self-regulate their learning, including when the
strategy is prompted by the agent, as well as when the user
independently decides to perform the action. Strategy ac-
tions include a summarization (SUMM) of the page, a coor-
dination of information sources (COIS) by viewing a related
image, an inference (INF) regarding the reading material,
a re-reading (RR) of a paragraph that was not well under-
stood, or notes taken about the reading material. This ac-
tion can also be split depending on the initiator of the action,
and is then written Stri, where i ∈ {u, a} as defined in 4.1.2.

Moreover, we distinguish a particular strategy consisting of
taking or checking notes in the embedded note interface or
using the electronic paper-based notepad provided next to
the workstation. These note actions are coded as Notes.

4.2 User clustering

4.2.1 Methodology
In a previous study [?], we ran a cluster analysis over a
subset of 13 variables extracted from the interaction log af-
ter the end of the student’s learning session: pretest and
posttest score, number of subgoal and page quizzes, mean

Table 2: Synthesis of clusters differences (italic means clus-
ters weren’t significantly different from one another accord-
ing to that variable when using an ANOVA with p < 0.05)

Variables
Score for each cluster

0 1 2
Pretest score M L H
Posttest score M L H
Session duration M M M
Reading duration H H L
Proportion of subgoals
attempted

L L H

Number of subgoals
changes

M L H

Number of subgoals
quizzes

M M M

Mean first score in
subgoal quizzes

M L H

Number of page quizzes M M M
Mean first score in page
quizzes

M L H

Number of note taking H L L
Number of note
checking

L L H

Time spent taking notes H L L

first score in subgoal and page quizzes, proportion of sub-
goals attempted among the 7 possible, number of subgoals
changes, total session duration, time spent reading content,
number of times the student took notes and checked notes,
and the duration of the note-taking episodes. This analy-
sis empoyed the Expectation-Maximization (EM) algorithm
as implemented in the Weka data mining package [?]. The
number of categories to find being undetermined a priori,
we used a 10-fold cross-validation, during which we incre-
mented the number of clusters (starting with 1) as long as
the loglikelihood averaged over the 10 folds was increasing
(i.e. we stopped as soon as the loglikelihood with N+1 clus-
ters was lower than with N clusters). We used 1000 different
initialization seeds for the EM algorithm, in order to com-
pensate for its tendency to get stuck into local optima, and
selected, among the 1000 partitions of students generated,
the most frequent one among the most frequently obtained
number of clusters (3).

4.2.2 Results
Three clusters were obtained, which characteristics are sum-
marized in Table ??, where clusters 0, 1 and 2 are made of
21, 14 and 16 students, respectively. Generally, students
from cluster 2 scored high on pretest, posttest and inter-
mediary quizzes, spent less time than others reading while
attempting more subgoals, and took less notes and less time
taking them. In contrast, students from cluster 1 scored low
on pretest, posttest and intermediary quizzes, attempted
less subgoals and took few notes and less time to take them.
Students from cluster 0 occupied generally a intermediate
position in terms of performance and subgoal uses, but took
overall more notes and more time to take them. When using
a formula derived from [?] to evaluate learning gains (cf. [?]
for more details), we also found that students from cluster 2
had the most significant knowledge acquisition, as opposed
to those in cluster 1. For all those reasons, cluster 1 will

Proceedings of the 5th International Conference on Educational Data Mining 68



Table 1: List of actions extracted from MetaTutor interaction logs

Category
Action
name

Description

Read

Read+s Student skims through a page relevant for their current subgoal for less than 15s
Read−s Student skims through a page irrelevant for their current subgoal for less than 15s
Read∅s Student skims through a page without having a subgoal set for less than 15s
Read+l Student reads a page relevant for their current subgoal for more than 15s
Read−l Student reads a page irrelevant for their current subgoal for more than 15s
Read∅l Student reads a page without having a subgoal set for more than 15s

Monitoring

Mon+
a Student is prompted to evaluate their knowledge, learning or the relevance of the content they

are reading, and evaluates correctly
Mon−

a Student is prompted to evaluate their knowledge, learning or the relevance of the content they
are reading, and is wrong in their evaluation

Mon∅
a Student is prompted to perform a monitoring action that doesn’t require an evaluation

Mon+
u Student takes the initiative of evaluating their knowledge, learning or the relevance of the content

they are reading, and evaluates correctly
Mon−

u Student takes the initiative of evaluating their knowledge, learning or the relevance of the content
they are reading, and is wrong in their evaluation

Mon∅
u Student takes the initiative of performing a monitoring action that doesn’t require an evaluation

Quiz+ Student passes a page or subgoal quiz (more than 66% of correct answers)
Quiz− Student fails a page or subgoal quiz (less than 66% of correct answers)

Strategy
Stra Student is prompted to deploy a strategy to self-regulate
Stru Student takes the initiative of using a strategy to self-regulate
Notes Student takes or checks notes using the embedded interface or a paper-based electronic notepad

be referred to as cluster L (for low), cluster 2 as cluster H
(for high) and cluster 0 as cluster M (for medium). The fact
that exactly three (as opposed to any other number) clus-
ters were extracted might sound unsurprising, but comes
from the fact that it was the best partition of the subjects
in the 13-dimension space considered.

5. DIFFERENTIAL SEQUENCE MINING

5.1 Method principles
To identify important activity patterns in a comparison be-
tween student clusters, we employ a differential sequence
mining technique [?]. This technique uses sequence mining
and two different measures of pattern frequency to identify
differentially frequent patterns between two sets of action
sequences. Differential sequence mining combines frequency
measures and techniques from sequential pattern mining [?],
which determines the most frequent action patterns across
a set of action sequences, and episode mining [?], which de-
termines the most frequently used action patterns within a
given sequence.

The sequential pattern mining frequency measure (i.e., how
many sequences/students exhibit the given pattern) is used
to identify patterns common to a group of students. We refer
to this as the “sequence support” (s-support) of the pattern,
and we call patterns meeting a given s-support threshold
s-frequent. In this analysis, we employ an s-support thresh-
old of 0.5 to focus on patterns exhibited by at least half
of a given group of students. The episode mining frequency
(i.e., the frequency with which the pattern is repeated within
an action sequence) is important for assessing the extent to
which a student relies on a particular pattern of activities.
For a given student, we refer to this as the “instance sup-
port” (i-support), and we call patterns meeting a given i-
support threshold i-frequent. To calculate the i-support of
a pattern for a group of students, we use the mean of the

pattern’s i-support values across all traces in the group.

The differential sequence mining technique first uses a se-
quential pattern mining algorithm to identify the patterns
that meet a minimum s-support constraint within each group
[?]. To compare the identified frequent patterns across groups,
we calculate the i-support of each pattern for each student
(in each group). Using a t-test, we filter the s-frequent pat-
terns to identify those for which there is a statistically signif-
icant difference in i-support values between groups. Com-
paring the mean i-support value for each pattern between
groups then allows us to focus the comparison on patterns
that are employed significantly more often by one group than
the other.

This comparison produces four distinct categories of fre-
quent patterns: two categories where the patterns are s-
frequent in only one group, illustrating patterns primarily
employed by the respective groups, and two categories where
the patterns are common to both groups but used signifi-
cantly more often in one group than the other. The patterns
in each of these qualitatively distinct categories are (sepa-
rately) sorted by the difference in mean group i-support1 to
focus the analysis on the most differentially frequent pat-
terns [?].

5.2 Application to the data
In order to identify patterns more closely related to changes
in students’ knowledge and understanding, we decided to fo-
cus mainly on clusters H and L, as defined in section 4.2.2.
Moreover, to further identify the patterns most character-
istic of students in cluster H (resp. L) we identified dif-
ferentially frequent patterns with respect to the other two

1Even though a pattern may not be s-frequent in a group
of action sequences, it can still occur in some sequences in
the group, so an i-support value can be calculated (or the
i-support is 0 if the pattern does not occur in any trace in
the group).
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clusters M and L (resp. M and H) in a secondary analysis.

We employed an s-support threshold of 50% in this analy-
sis, to consider all the patterns that were exhibited by at
least half of the students in a given cluster, and a standard
value of 0.05 for the t-test cutoff p value. We tried to pre-
liminarily group sequences of identical actions together, but
the results obtained were not very different from the ones
without grouping, as the data extracted do not display long
sequences of similar actions – therefore, those results are
not reported here. Similarly, although we also considered
the possibility of using gaps of one or more actions when
identifying patterns, we discarded this analysis because the
frequency of events collected in the log is low, which means
that even a gap of only one action could mean that two ac-
tions of a pattern are actually separated by a rather long
period of inactivity.

5.3 Results
The Table ?? displays the patterns with the highest differ-
ence of S-support between clusters H and L (positive value
in column 3) as well as between clusters L and H (negative
value in column 3), provided that difference is statistically
significant (i.e. a t-test p value below 0.05 in column 4).
It also displays a selection of interesting patterns, which
differed in a statistically significant way between the two
clusters. Columns 6 to 11 provide the results obtained for
that selection of patterns using two different samples of stu-
dents: first (columns 6 to 8), cluster H alone and a merge
of clusters L and M, and then (columns 9 to 11), cluster L
alone and a merge of cluster H and M. Columns 5, 8 and
11 show, for the two considered samples, if only one or both
of them were having a s-support above 50% for the consid-
ered pattern. Values N/A are used when the pattern is non
statistically significant for the two considered samples.

The following observations can be made:

– According to pattern 1, when prompted to use a strategy
(regardless of the one suggested by the agent), students in
cluster H reacted by taking notes more often than students
in cluster L. We already knew that students in cluster H had
received significantly more prompts from the system, and
taken less notes overall than those in cluster L (but checked
them more often). This pattern seems to suggest that the
reason might be that the notes they were taking mainly came
from prompts from the agents. Moreover, since when they
type a summary, students are offered the possibility to add
it to their notes, it appears that students from cluster H
must have preferred that strategy, which also would explain
why they spent less time with the note-taking interface open
(since the summary is typed in a different text box, and the
note-taking interface is opened only to add the already typed
text). Finally, the fact that the difference for this pattern is
significant for cluster H vs. L, H vs. M&L and H&M vs. L
indicate that the degree to which one relies on the prompt
for notes or summaries to take notes is directly correlated to
the belonging to one of the three clusters (i.e. this behavior
is observed more in cluster H than in M, and more in M
than in L).
Similarly, pattern 3 indicates that after a note-taking event,
students from cluster H often moved on to another relevant
page, which they read for an extended period. Pattern 5,
which is a combination of patterns 1 and 3, confirm the idea
that students from cluster H had a very methodical approach
to navigating through the content: they selected a relevant

page, read it until being prompted by the agent to take notes
or summarize it, performed that action, and then moved on
to a new relevant page. Incidentally, it also indicates their
effectiveness in identifying a page relevant to their current
subgoal simply from its title (since that is all they can see
before opening it). This latter hypothesis is itself reinforced
by the observation that patterns 10 and 11, relative to a
brief visit on an irrelevant page or to a succession of brief
visits to irrelevant pages, is characteristic of students from
clusters M and L, as opposed to students from cluster H who
seem to not even need to open the pages to figure out they
are irrelevant to their current subgoal.

– Pattern 2 simply confirms what we already knew about the
tendency of student in cluster H to have answered correctly
more often to intermediate quizzes (for a page or a subgoal).
It also significantly distinguish members of cluster H from
those in cluster M&L considered together.

– Patterns 4 & 7 are relative to pages viewed when the
students did not have any active subgoal set. Pattern 4
indicates that students in the cluster H have visited more
pages for a long time without having a subgoal set, which
is confirmed by pattern 7 which also indicate an alternation
between short and long reads when no subgoals were set. As
we also know that students from cluster H attempted more
subgoals overall than students in the cluster L, it cannot
mean that they have simply refused to set additional sub-
goals once they had finished their original ones (e.g., in an
attempt to get rid from the system prompts and feedback),
but rather that: a) they might have spent some time review-
ing pages already read before taking the posttest, and/or b)
instead of setting a final subgoal when they did not have
much time left, they took some time to review the pages
they had not yet explored.
This hypothesis can be confirmed by looking at the tempo-
ral distribution of those two patterns: for students in cluster
H, the median time is of 108 and 112 minutes (for an overall
session of approximately 120 minutes), which means that
it’s during the last 15 minutes of their learning session that
students were displaying that kind of browsing behavior,
clearly distinct from the ones they had displayed earlier in
the session.

– Pattern 6 indicates that students in cluster H seemed to
more often estimate properly their level of understanding of
the content or the relevance of the page they were visiting
when it was relevant for their current subgoal. While this
pattern is only marginally significant when comparing clus-
ters H and L, it is statistically significant when comparing H
to M&L, confirming that it is specific of students in cluster
H. It tends to show that not only other students had diffi-
culties to identify the relevance of a page from its title, but
that even once they had been able to spend some time read-
ing its content, they were less prone to correctly evaluate its
relevance or their understanding of it.
This hypothesis seems to be confirmed by the complemen-
tary pattern 8, which indicates that students from cluster L,
when they were on a page irrelevant for their subgoal for a
long time and got prompted to evaluate its relevance (the
only prompt they can get on a non-relevant page), tended
to be wrong in their evaluation.
If we consider again the temporal distribution of those two
patterns, we can notice that the median time, for students in
cluster L, is of 50 and 45 minutes, i.e. less than the median
time of the session (60 minutes). We can therefore assume
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Table 3: Significant and most frequent patterns differentiating clusters

# Pattern
Cluster H vs. L Cluster H vs. M&L Cluster H&M vs. L

I-Supp.
Diff

t-test
(p value)

S-Freq.
Cluster

I-Supp.
Diff

t-test
(p value)

S-Freq.
Cluster

I-Supp.
Diff

t-test
(p value)

S-Freq.
Cluster

1 Stra≺ Notes 3.93 0.002 Both 3.28 0.005 Both 2.30 0.007 Both
2 Quiz+ 3.10 0.036 Both 2.09 0.046 Both 2.30 0.086 Both
3 Notes≺ Read+l 2.86 0.004 Both 2.35 0.012 Both 1.71 0.012 Both
4 Read∅l 2.63 0.039 H 2.27 0.050 H 1.48 0.107 H&M
5 Stra≺ Notes≺ Read+l 2.38 0.001 Both N/A N/A N/A 1.27 0.017 Both
6 Read+l ≺ Mon+

a 1.96 0.065 Both 1.96 0.048 Both 0.85 0.304 Both
7 Read∅s ≺ Read∅l 1.33 0.050 H 1.23 0.061 H N/A N/A N/A

. . .
8 Read−l ≺ Mon−

a -0.54 0.039 L N/A N/A N/A -0.25 0.360 L
9 Read+s ≺ Read−l -0.65 0.012 L N/A N/A N/A -0.53 0.038 L
10 Read−s ≺ Read−s N/A N/A N/A -1.77 0.030 M&L N/A N/A N/A
11 Read−s -3.49 0.149 Both -2.56 0.036 Both -2.39 0.321 Both

that, at least, students from cluster L have been slightly
improving their capacity to evaluate their learning and the
relevance of a page over time.

– Pattern 9 confirms the previous observation that students
in cluster L really had issues to see the relevance of a page
with regard to their subgoal: they did not simply end up
going to random pages that were irrelevant to their subgoal,
or ignored the subgoal they had set, but instead, they ap-
peared to sometimes skim through a relevant page, miss its
relevance, and end up instead spending a long time on a
page that wasn’t irrelevant to their subgoal. This tendency
is shared, to some extent, with students from cluster M,
as the results of clusters H vs. M&L are also statistically
significant.

– A final observation can be made regarding the tendency
of a student to obey system prompts: if we run the same
analysis without distinguishing the correctness of the eval-
uation of students monitoring (i.e. by considering actions
Mona = Mon+

a ∪Mon−
a and Monu = Mon+

u ∪Mon−
u ), we

observe that the pattern Mona≺ Monuis significantly more
frequent for students in cluster H, which tends to indicate
that when prompted to perform an optional monitoring ac-
tion (most likely, a MPTG, since otherwise there should be
a Quiz action following the Mona), they are more prone to
accomplish the suggested action.

6. DISCUSSION
To summarize the results obtained in the previous section,
we can conclude that students from cluster H are more in-
clined to follow the system prompts and to follow the sug-
gestions to take notes or summarize what they have just
learned. Further, they are more prone to keep applying the
same method for each page they read, are better at iden-
tifying a page relevant to their subgoal from its title, and
are more strategic in their preparation for the posttest (e.g.,
they usually use their last 10 to 15 minutes to briefly review
various pages). From an ITS design point of view, the fact
that these students used system prompts to effectively reg-
ulate their learning tends to indicate that the frequency of
Strategy prompts should probably not be reduced. However,
as they seem good at distinguishing relevant pages from ir-
relevant ones, they might need less scaffolding regarding the
Monitoring processes. On the other hand, students from
cluster L appear particularly unable to identify pages rele-

vant to their subgoal, which is probably linked to their lower
prior knowledge. For them, it seems that additional scaffold-
ing from the system would certainly be beneficial. However,
even when prompted to monitor their learning, they tend to
be mistaken in their evaluation. Therefore, it could be nec-
essary to go further than the methods currently employed to
suggest ways in which they can better evaluate the relevance
of a page.

7. CONCLUSION, FUTURE DIRECTIONS
In this paper, we have presented a two-step analysis of data
collected with an ITS designed to foster self-regulated learn-
ing. First, the clustering of students using Expectation Max-
imization has allowed us to distinguish three clusters of stu-
dents with different prior knowledge on the topic, learning
performance, and strategies. We then described a set of ac-
tions extracted from the system interaction trace log and
employed a sequence mining technique to identify differen-
tially frequent activity patterns. We used the identified pat-
terns to characterize students from different clusters with
particular emphasis on those that had the highest and the
lowest learning gains. We have been able to identify patterns
of actions that suggest students with high prior knowledge
and high learning gains tended to be more compliant with
system prompts, using them to validate their progression.
Further, these students were better at identifying pages rel-
evant to their subgoals from the page title and tended to
have a phase at the end of the session during which they
reviewed the content in preparation for the posttest.

The analysis performed here will allow us to more accu-
rately identify the group to which a student belongs during
their use of MetaTutor and dynamically adapt the scaffold-
ing and feedback mechanisms accordingly. Another future
research direction will involve the use of other channels of
data collected while students use MetaTutor (eye-tracking
information, affective data extracted from video captures,
and think-aloud data) in order to enhance our identification
and understanding of phases when low-performing students
are unable to properly monitor their learning.
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ABSTRACT 

Although ITSs are supposed to adapt to differences among 
learners, so far, little attention has been paid to how they might 
adapt to differences in how students learn from help. When 
students study with an Intelligent Tutoring System, they may 
receive multiple types of help, but may not comprehend and make 
use of this help in the same way. To measure the extent of such 
individual differences, we propose two new logistic regression 
models, ProfHelp and ProfHelp-ID. Both models extend the 
Performance Factors Analysis model (Pavlik, Cen & Koedinger, 
2009) with parameters that represent the effect of hints on 
performance on the same step on which the help was given. Both 
models adjust for general student proficiency, prior practice on 
knowledge components, and knowledge component difficulty. 
Multilevel Bayesian implementations of these models were fit to 
data on student interactions with a geometry ITS, where students 
received on-demand problem-relevant help ranging from first-
level hints that facilitate application of principles to specific and 
immediately actionable bottom-out hints. The model comparison 
showed that in this dataset students differ in their individual hint-
processing proficiency and these differences depend on hint 
levels. These results suggest that we can assess specific learning 
skills, e.g., making sense of instructional text, and in future work 
we may be able to remediate and improve such skills. 

Keywords 
Effect of help on performance, individual differences, learning 
skills, multilevel Bayesian models, Item Response Theory 

1. INTRODUCTION 
In virtually all imaginable learning settings, when students work 
through problems, they may seek help. But are all students able to 
benefit from help equally, and are there meaningful differences 
across types of help?1 
Our long-term goal is to answer this and other questions related to 
the nature of the learning skills that students bring to bear when 
working with educational technologies, as well as whether or not 
there are significant individual differences in these learning skills. 
Seeking help and learning from help [1, 19] may be one set of 
such learning skills, which can include both the metacognitive 
monitoring needed to determine when soliciting help benefits 
learning, as well as making sense of instructional text in the 
context of problem solving. If individual differences in learning 
skills exist, and if they can be assessed, an Intelligent Tutoring 
System may be able to adapt to these differences, to provide 
students with appropriate metacognitive support, and perhaps 
even to improve learning skills. 

1 This work is supported in part by Postdoctoral Training Grant 
awarded to Carnegie Mellon University by the Department of 
Education (#R305B110003). 

In this project, we aim to determine whether or not there are 
significant variations in students’ abilities to make use of help. As 
a first step, we examine how well students can use help to solve 
the task at hand (i.e., the problem step they are working on). 
While the effect of help on learning, rather than performance, is of 
primary long-term interest, if a student cannot make good use of 
help “locally” (on the current step), it is unlikely such help will 
enhance learning (i.e., enhance performance on a future related 
task). [11] In other words, studying the “local” effect of help on 
performance is useful, because any beneficial effect of help on 
performance may be a harbinger of longer-term effect on learning. 
Specifically, our research questions are: How well do students 
perform after receiving hints, and does performance after hints 
differ across hint levels? Are there individual differences in how 
effective hints are among students, and if so, are the individual 
differences consistent within each student across hint levels? Are 
the individual differences, if any, related to general student 
proficiency in solving problems? 
We analyze data generated in the course of another study, and use 
statistical methods to account for potentially confounding 
variables, including general student proficiency, prior practice on 
knowledge components, and knowledge component difficulty. 
One prior effort to evaluate the effect of hints on same-item 
performance is by the developers of the Mastering physics ITS. In  
[12], a 2PL Item Response Theory model was fit to performance 
on first attempts, after which separate models were fit to each of 
several paths through the ITS. Unlike that effort, our work 
examines individual differences with various types of help, and 
addresses potential confounds due to variability in prior practice 
and due to difficulty of knowledge components (rather than just 
unique problem items). We also analyze a larger dataset, and fit 
parameters relating to various types of help simultaneously in a 
Bayesian Markov Chain Monte Carlo (MCMC) framework to 
account for uncertainty during estimation. 
Mining data from the Geometry Cognitive Tutor (an earlier 
version of the tutor whose data is analyzed in the current study), 
we showed that asking for help is beneficial for local 
performance. [1] Specifically, asking for help after one or two 
errors on a step was compared to attempting to solve the step 
again. Asking for help, compared to continued trying, was 
associated with fewer subsequent errors on the given step and a 
reduction in the time needed to complete the step. However, [1] 
did not look into individual differences in students’ ability to take 
advantage of help to improve performance on problem steps, and 
did not investigate differences between hint levels. 
Another related study [7] presents two models, a learning 
decomposition and an extension to Bayesian Knowledge Tracing. 
The latter is particularly interesting in that it aims to distinguish 
the effect of help as a performance scaffold from its effect on 
learning. However, neither model addresses multiple hint levels or 
individual differences in hint-processing proficiency. 
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Table 1: Examples of hint messages 

Knowledge 
Component First Hint Second Hint Third Hint 

Triangle-Sum-
Answer 

In this problem, you have triangle SOL. You 
know the measure of two of the angles in this 
triangle, namely, angles DSO and OLD. 

The sum of the measures of the interior 
angles of a triangle is 180 degrees. 

m∠SOL = 180 - m∠DSO - 
m∠OLD. 

Triangle-Sum-
Reason 

In this problem, you have Triangle WAR. You 
know the measure of two of the angles in this 
triangle, namely, angles ARO and OWA. 

The sum of the measures of the interior 
angles of a triangle is 180 degrees. 

You can find the measure of 
Angle WAR by applying the 
“Triangle Sum” theorem. 

Separate-
Complementary-
Angles-Answer 

The problem statement says that angles ∠XSD 
and ∠JNT are complementary angles. 

Complementary angles are angles whose 
measures add up 90 degrees. 

m∠XSD = 90 - m∠JNT. 

Angle-Addition-
Answer 

Angles DGF and MGD are adjacent angles. 
This means that they share a side (namely, 
GD) but do not overlap. Together they form 
∠MGF. 

When an angle is formed by two or more 
adjacent angles, the measure of that angle 
is equal to the sum of the adjacent angles. 
Therefore, m∠MGF = m∠DGF + 
m∠MGD. 

[No third level hint.] 

 An exploratory analysis of our dataset (Section 2) shows that 
selection effects confound a naïve approach that merely tallies 
successful and unsuccessful performance with and without hints. 
Section 3 proposes two logistic regression models that take these 
confounds into account. Section 4 describes the results of fitting 
multilevel Bayesian implementations of these models to our data. 
The final sections discuss the results, limitations, contributions of 
this research, and future directions. 

2. EXPLORATORY DATA ANALYSIS 
The study that produced the dataset analyzed here took place at a 
vocational school [17]. Three 9th grade classes of 51 participating 
students, led by the same teacher, used Geometry Cognitive Tutor 
as part of regular instruction about twice a week for five weeks. 
Students worked through problems, most of which contained 
multiple steps. There were 170 distinct problems, consisting of 
1666 problem steps. Problems were assigned to students 
according to a mastery criterion based on the Knowledge Tracing 
[8] algorithm in the Cognitive Tutor software, i.e., each student 
only saw a subset of the 170 problems. 
Using this software, a student may make multiple attempts to 
complete a problem step. Completing a step requires a correct 
response; giving a correct response on the first attempt means that 
this student will never see a hint. On each attempt, a student may 
supply a correct answer, an incorrect answer, or may ask for a 
hint. The first hint that the student sees is called “help level 1”, the 
second is “help level 2”, and so on to the final (“bottom-out”) 
hint, which in our dataset is help level 3 or 4. (Table 1) For 
students who do not know how to respond, the bottom-out hint 
often states exactly what the response must be. 
In general, a first hint points out relevant problem features, and it 
defines key terms, e.g., “vertical angles.” Second hints state the 
problem-solving principle that is applicable given the features 
pointed out in the first hint, in terminology consistent with the 
first hint. Third hints derive an expression for the sought angle 
measure (in terms of known angle measures). Using this 
expression, the angle measure can be found in a straightforward 
manner, by first substituting in the values for the angle measures 
referenced in the expression, and then evaluating the resulting 
arithmetic expression. The rationale for sequencing hint levels 
from less specific to more specific was to try to give the student as 

much opportunity as possible to “generate” the step, which may 
include retrieving a relevant problem-solving principle, as 
discussed in [4] and [3]. 
Interaction with such hint sequences may lead some students (e.g., 
those who are relatively less proficient) to request hints more 
often than others. Similarly, some problem steps (e.g., those that 
are challenging) may lead to hint requests relatively more often. 
As a measure of student proficiency, we consider how often a 
student responds correctly to a problem step on the first attempt. 
Specifically, a crude measure of proficiency is the success rate on 
first attempts, i.e., the proportion of all problem steps that the 
student answered correctly on first attempt out of all those first 
attempts where a student gave a correct or an incorrect response 
(omitting first attempts where the student requested a hint). 
Given this measure, is proficiency related to use of hints? For 
each student, the hint use rate is the proportion of problem steps 
on which this student requested one or more hints out of all 
attempted problem steps. The correlation of student proficiency 
and hint use rate is r=-0.84, i.e., hints are more likely to be 
requested by less proficient students. 
Similarly, as a measure of problem step difficulty, we take the 
proportion of first attempts on the step to which a student gives a 
correct response out of correct and incorrect first attempts (again, 
omitting first attempts that are hint requests). Is step difficulty 
related to use of hints? The rate of hint use on a problem step is 
the proportion of students who request any hints on the step out of 
all students who attempt the step. The correlation of step easiness 
(1 - step difficulty) and rate of hint use is r=-0.68, i.e., hints are 
more likely to be requested on steps that are harder. 
Do hints of different levels differ in their effect on performance?  
If requesting a hint counts as unsuccessful performance (Table 2, 
top row), the success rate drops from first attempts (78%) to 
attempts after first and second hints (21% and 37%). However, 
when students request a first hint, the next action that they are 
most likely to perform in the tutor is to ask for a second hint (87% 
of the time). Students ask for a third hint as the likely next action 
after the second (88% of the time). Not counting hint requests 
(Table 2, bottom row), performance after the first hint (68%) is 
lower than after the second and third hints (83% and 88%). 
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Table 2: Success rates after hints, counting Correct, Incorrect, 
and Hint outcomes 

Success Rate 
Formula 

On First 
Attempt 

After  
1st Hint 

After  
2nd Hint 

After  
3rd Hint 

𝐶 (𝐶 + 𝐼 + 𝐻)⁄  78% 21% 37% 82% 

𝐶 (𝐶 + 𝐼)⁄  83% 68% 83% 88% 

To sum up this exploratory analysis, we find that hints are more 
likely to be requested by less proficient students; hints are more 
likely to be requested on steps that are difficult; and success after 
first hints is less likely than after second and third hints. 
The exploratory analysis is appealing, but possibly misleading. 
First, what is “student proficiency”? A student who is proficient 
may simply have had more opportunities to practice the relevant 
skills, which would cause a selection effect for this analysis, or 
there may be additional differences in student ability that cannot 
be observed directly. Second, while an ITS may tutor all students 
on the same skills, it may assign students different problems. If so, 
skills rather than problem steps would be the right grain size for 
analysis. Third, since students see different problems, and 
problems involve different hints, there could be selection effects 
in terms of how we measure performance after hints for different 
students. Thus, it would be desirable to control for proficiency, 
prior practice, selection effects related to problem difficulty, and 
to take into account a model of skills in the domain. As described 
in the following section, we can use a logistic regression to take 
these elements into account. 

3. METHODS 
We fit two models to these data, both extending the Performance 
Factors Analysis (PFA) model. [14] PFA is a logistic regression 
that is fit to correct and incorrect student responses. 

𝑙𝑜𝑔𝑖𝑡(Pr(𝑌 = 1)) = � (𝛽𝑗 + 𝛾𝑗𝑠𝑖,𝑗 + 𝜌𝑗𝑓𝑖,𝑗)
𝑗∈𝐾𝐶

 

Equation 1: Performance Factors Analysis (PFA) model 

Under PFA, the probability of a correct response by a pupil on a 
problem step, i.e., of 𝑌 = 1, is determined by a linear combination 
of parameters related to the knowledge components (KCs) that are 
thought to be relevant to that step. Parameter 𝛽𝑗  denotes the 
easiness of 𝐾𝐶𝑗 . Parameters 𝛾𝑗  and 𝜌𝑗  are weights on the observed 
frequency of successful (𝑠𝑖,𝑗) and unsuccessful (𝑓𝑖,𝑗) prior practice 
by the same learner 𝑖 on the same KC 𝑗. The innovation in PFA 
was to separate 𝛾𝑗  and 𝜌𝑗 , the effects of successful and 
unsuccessful prior practice, rather than collapsing these effects as 
one parameter. 

Table 3: Example of instances in our dataset 

Pupil Item Attempt Prior Practice Outcome 

5 Prob1.St3 1 S5,9=3; F5,9=1 First hint 
5 Prob1.St3 2 S5,9=3; F5,9=1 Incorrect 
5 Prob1.St3 3 S5,9=3; F5,9=1 Correct 

Our interest is in learner performance in the presence of help on 
attempts after the first. The original use of PFA was to model 
unassisted performance; in PFA, the outcome variable 𝑌 and the 
prior practice counts 𝑠𝑖,𝑗 and 𝑓𝑖,𝑗 only represent first attempts on a 
problem step, not subsequent attempts. By contrast, we fit our 

models to outcomes both at first attempts and at each attempt that 
was the next action after a hint (but the prior practice counts still 
represent only first attempts). 
Consider the example in Table 3, where a student (pupil 5) makes 
three attempts on the same item (problem 1, step 3). When the ITS 
initially presents the student with this step in the course of solving 
the problem, the student requests a hint. This hint is at the first of 
several levels of help (usually 3 or 4) that the ITS may offer on a 
problem step. According to the knowledge component model for 
the problems in this dataset, this step has a single relevant KC 
with KC id=9. This student has had prior practice opportunities 
with this KC: three were successful, and one was not. Counts of 
prior practice are based on first-attempts only; thus, when this 
student practices this KC on a future item, prior practice counts 
will be S5,9=3; F5,9=2, because the outcome of the first attempt in 
this example was unsuccessful. This example yields two instances 
to be input to the logistic regression, corresponding to the first 2 
attempts. Both attempts are coded as having the outcome 0 (only 
correct outcomes are coded as 1). For the purpose of estimating 
the help-level parameters in our model, the first-attempt instance 
is coded as not following a help message, and the second-attempt 
instance is coded as following a hint at help level 1. We assume 
that the effect of a hint should be observable in the next attempt 
on the same step. Because attempt 3 follows an input rather than a 
hint display, its outcome is not directly attributable to a hint, and 
this attempt does not yield an instance. Of the 28777 transactions 
in this dataset, 17515 were first attempts, 4466 attempts were the 
next action after some kind of a hint, and the rest were not entered 
as instances because they were not next actions following a hint. 
The first model, ProfHelp, examines how help levels differ in 
their effect on performance, but does not consider individual 
differences in hint processing among students. 

𝑙𝑜𝑔𝑖𝑡(Pr(𝑌 = 1)) = 𝜃𝑝 +  𝜆ℎ + � (𝛽𝑗 + 𝛾𝑗𝑠𝑖,𝑗 + 𝜌𝑗𝑓𝑖,𝑗)
𝑗∈𝐾𝐶

 

Equation 2: Proficiency and Help (ProfHelp) model 

The innovation in this model is the 𝜆ℎ parameter. One 𝜆ℎ is fit for 
every attempt after a hint. (Because help may be requested as a 
first attempt, but never prior to a first attempt, 𝜆0 = 0.) One of 
𝜆1, . . , 𝜆4, respectively, represents the contribution of having just 
seen a first, second, third or fourth hint to the probability of 
successful performance on this subsequent attempt. Another view 
of 𝜆ℎ is that it represents average proficiency in processing level-h 
hints. Parameters other than 𝜆ℎ control for student proficiency, 
problem step difficulty via a decomposition on knowledge 
components, and prior practice on knowledge components. In 
other words, the effect of having just seen a hint is not 
confounded by the findings that hints are more likely to be 
requested by less proficient students and on more difficult items 
(Section 2), nor by the intuition that a lack of prior practice can 
lead to more frequent hint requests. Finally, one 𝜃𝑝 parameter, as 
in Item Response Theory (IRT) models, is fit for every student p, 
representing the baseline proficiency of that student. 

𝑙𝑜𝑔𝑖𝑡(Pr(𝑌 = 1)) = 𝜃𝑝 + 𝜆𝑝,ℎ + � (𝛽𝑗 + 𝛾𝑗𝑠𝑖,𝑗 + 𝜌𝑗𝑓𝑖,𝑗)
𝑗∈𝐾𝐶

 

Equation 3: ProfHelp-ID (Individual Differences) model 

The second model, ProfHelp-ID, considers that the same help 
level may have different effects on different students. The 
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difference from the ProfHelp model is in the 𝜆𝑝,ℎ parameter, 
where the subscripts 𝑝, ℎ indicate that a separate parameter is fit 
for each pupil in each help level. This represents the pupil’s 
individual hint-processing proficiency. These parameter estimates 
are pooled across pupils within a single help level via a multilevel 
model (bold typeface denotes hyperparameters): 

𝜆𝑝,ℎ~𝑁(𝝀ℎ,𝝈ℎ2) 

For instance, the ProfHelp-ID model stipulates that 𝜆𝑝,2, i.e., each 
per-pupil estimate of the effect of responding after a second hint 
(h=2) is drawn from a distribution with mean 𝝀2 and variance 𝝈22 
that is shared across pupils. In this way, information on each pupil 
helps determine a baseline effect of seeing a second hint, and the 
baseline effect helps constrain the estimate of the per-pupil 
individual differences. 
Partial pooling is appropriate for this problem not only for 
statistical parsimony, but also because it lets us be conservative in 
making a claim about the presence of individual differences.  
(Partial pooling is similar to the idea of a random effect, where 
values are assumed to come from a broader sample of interest, 
rather than a fixed effect, where all values of interest are 
represented.)  The alternative, a no-pooling model, would treat 
pupils as independent of one another. This means that first, the 
no-pooling model could detect individual differences even when 
the differences are small (i.e., not meaningful), and second, 
unpooled individual differences would be hard to quantify 
because there may be very few observations for any particular 
pupil at a given help level. The partial pooling pulls all individual 
difference estimates towards the mean, reducing the effect of 
small differences, and it helps compensate for data sparsity by 
using the hyperparameter estimates as prior information for the 
parameters. (Note that model ProfHelp is the complete-pooling 
version of ProfHelp-ID, in that ProfHelp does not allow for 
individual differences in hint processing.) 
The models were fit using the JAGS software for Bayesian 
modeling [15], which is an effective platform for fitting Item 
Response Theory and similar models (e.g., [9]). For each model, 
we ran 4 sampling chains, with 400 adaptation iterations 
(discarded). Inferences below are based on every 10th draw 
(thinning) of 1000 iterations. Model convergence and mixing 
across chains were verified by visual examination of 
autocorrelation, trace and density plots. 

4. RESULTS 
As multilevel Bayesian models, ProfHelp and ProfHelp-ID may 
be compared in terms of Deviance Information Criterion (DIC). 
DIC is similar to AIC in that it rewards models that fit the data 
well but penalizes an increase in the number of parameters in the 
model. [16] DIC takes into account that in Bayesian models with 
pooling, the effective number of parameters is itself estimated as a 
posterior distribution of a random variable. 

Table 4: Model-fitting results 

Model Deviance Effective 
Parameters DIC 

ProfHelp 22013 135 22149 
ProfHelp-ID 21741 220 21962 

As Table 4 shows, the ProfHelp-ID model is preferable to the 
ProfHelp model on this dataset in that the improvement in 
prediction accuracy outweighs the increase in the number of 

parameters. Relative to the ProfHelp approach of fitting a single 
parameter across all students within a help level (complete 
pooling), the partial-pooling approach of ProfHelp-ID finds that 
there are individual differences in student performance after a hint 
at each help level. This finding is despite the fact that ProfHelp-ID 
is nonetheless more conservative than a no-pooling model. 
The 𝜃𝑝 proficiency parameter (Figure 1) is positive for most of the 
students, reflecting the prevalence of successful first attempts in 
this dataset (the model predicts that a student for whom 𝜃𝑝 = 0 
will answer correctly on 50% of first attempts, given that the other 
terms are zero). The 𝜃𝑝 parameter is entered into the model for 
both first attempts and later attempts, and both could affect its 
estimate. However, first attempts are much more frequent than 
later ones, and 𝜆𝑝,ℎ provides an intercept for each pupil on the 
later attempts. This effectively makes 𝜃𝑝 a constant baseline for 
𝜆𝑝,ℎ that is unaffected by the later attempts.2 

ProfHelp-ID measures the effect of having seen a hint on the 
immediately preceding attempt as a baseline across all students 
(the 𝜆ℎ hyperparameter), and as a deviation from this baseline for 
every pupil, 𝜆𝑝,ℎ. The improved fit of ProfHelp-ID over ProfHelp 
implies that the mean effects 𝜆ℎ are correct only on average, not 
for all students. As Figure 2 shows, the mean effect, in logit units, 
of having just seen a hint (solid black vertical line in each of the 
three frames) are approximately -2.4, -1.7 and 0.5 for first, second 
and third help levels, respectively.3 These differences are 
significant, as indicated by the non-overlapping 95% credible 
intervals (grey vertical lines on the left and right of each black 
line). The mean effects of first and second hints are negative, 
which implies that, on average, the performance of all students, 
proficient or not, and on all problem steps, easy or difficult, is 
lower after these hints than would be predicted based only on 
overall proficiency 𝜃𝑝. The effect of third hints is only somewhat 

2 A parameter in a logistic regression adds to the model’s estimate 
of success on a given instance. To interpret a coefficient, a rule 
of thumb is to divide by 4. For example, if 𝜃1 = 2, that adds 0.5 
to the probability that model will predict success on every 
attempt by pupil 1. 

3 As a check on the model fitting, the estimates of 𝜆𝑝,ℎ from 
ProfHelp were similar, -2.3, -1.5, and 0.5. There were few 
observations for performance after a fourth hints, so we omit 
discussion of 𝜆𝑝,4 and 𝜆4. 

Figure 1: Medians and 95% CI for 𝜽𝒑 under ProfHelp-ID 
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positive. Converted to probabilities, effects of first and second 
hints at -2.4 and -1.7 logit units, respectively, implies that a 
student with median proficiency on this dataset (𝜃𝑝 = 1.4), on a 
problem step of average difficulty (∑ 𝛽𝑗 = 0𝑗∈𝐾𝐶 ), and with no 
prior practice on relevant KCs, is predicted to respond correctly 
27% of the time after first hints and 42% of the time after second 
hints. These predicted correctness rates are higher than those of 
the “naïve” analysis (21% and 37%, Table 2) that does not take 
into account proficiency and other confounds. While these rates 
are low, they are nonetheless an improvement over the students’ 
failures to answer correctly on the first attempt. 
An unexpected finding is that general proficiency 𝜃𝑝 is negatively 
correlated with hint-processing proficiency 𝜆𝑝,ℎ: for first, second, 
and third hints, r=-0.48, r=-0.54, and r=-0.41, p < 0.01 for all. The 
more proficient the student, the less likely it is that the student 
benefits from a hint. This relationship is also visible in Figure 2, 
where each frame is ordered by ascending 𝜃𝑝. Hint-processing 
proficiency of first hints 𝜆𝑝,1 is also correlated with hint-
processing proficiency of second hints 𝜆𝑝,2, r=0.34, p<0.05; other 
hint-processing proficiencies are uncorrelated with each other. 

5. DISCUSSION 
We aimed to understand the nature of learning skills such that we 
can support learning more effectively. We found that hints levels 
differed in their effect on performance, and only level-1 and level-
2 hint-processing proficiencies correlated with each other. 
Further, there were individual differences in hint-processing 
proficiency, and general proficiency was negatively correlated 
with hint-processing proficiency. 
Given how hint levels are implemented (Table 1), it is not 
surprising to see better performance on the next attempt after the 
bottom-out hint level, compared to the next attempt after other 
hint levels. As mentioned, all that correct performance following a 
bottom-out hint requires is algebraic substitution and arithmetic, 
which are likely to be mastered skills for our student population. 
By contrast, correct performance after first and second hint levels 
requires interpretation of mathematical text that refers to 
potentially unmastered geometry concepts and principles. To 
solve problems in the geometry unit in this dataset, one needs to 
retrieve a general geometry principle, to apply the principle to the 
problem by mapping it to specific problem features, and to 
perform algebra and arithmetic according to the principle. Before 
the principle can be retrieved, salient problem features need to be 
identified. Level-1 hints tend to point out the salient problem 
features and define key terms. Level-2 hints state what principle is 
applicable given the salient features pointed. 
The negative effects of level-1 and level-2 hints are consistent 
with prior work on hint effectiveness. [1] As pointed out in [7], 
“students request help on [items] on which they have low 
knowledge. The help thus acts as evidence of a lack of knowledge, 
rather than a direct cause of that lack of knowledge.” Further, 
neither short nor long hint reading times are positively associated 
with learning. [18] Another explanation for the negative 
coefficients for our dataset in particular is that the logistic 
regression is effectively forced to estimate these very negative 
effects given the prevalence of positive 𝜃𝑝 values (which are in 
turn due to the prevalence of successful first attempts). 
Prior work suggests that it can be fruitful to consider how tutor 
behavior may differentially affect students across varying levels 
of KC mastery. [2] The ProfHelp models are based on the 

psychometric concept of latent traits that is inherent to Item 
Response Theory. IRT models are said to be unidimensional if 
they represent proficiency with one parameter 𝜃𝑝 per student. 
ProfHelp-ID relaxes this unidimensionality assumption via 
parameters 𝜆𝑝,ℎ per student for attempts after hints, but retains it 
within each type of attempt (first attempt and after each hint 
level). Thus, the dimensions of proficiency in ProfHelp-ID (first 
attempts and help levels) may not represent proficiency ideally. 
The ProfHelp-ID estimate of the probability of success will be in 
error when performance within this type of attempt is 
multidimensional, e.g., if an otherwise easy KC unexpectedly 
challenges a proficient student (or, vice versa, if a student with 
low proficiency succeeds quickly on a generally difficult KC). 
Having found individual differences within different attempt 
types, we speculate as to the nature of the learning skills that may 
be involved in interpreting hints and using them to support correct 
performance. This analysis will inform future model refinements. 
Success after level-1 hint with good knowledge of relevant KC. 
A student who is close to KC mastery did not succeed on the first 
attempt on a step, but did on the next action after a level-1 hint. 
The failure on the first attempt may have been an “identification 

Figure 2: Medians and 95% CI for 𝝀𝒑,𝒉 under ProfHelp-ID; 
median of 𝝀𝒉 (black vertical) and 95% CI (grey vertical) 
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slip”, i.e., a slip in identifying the relevant problem features that 
was due to random circumstance rather than lack of knowledge, or 
to high cognitive load such as could be expected in a dataset of 
quite complex geometry problems that involve multiple steps and 
multiple problem-solving principles. Level-1 hints point out 
problem features that are relevant to the application of a principle, 
but not what principle to use, or how. Because the student 
succeeded after the level-1 hint, the student was apparently able to 
retrieve and apply the principle (i.e., did not need further hints) 
once given the salient features, but required assistance to identify 
the salient features. When hints are used to fix “identification 
slips,” no hint interpretation skills are needed; the hint serves as 
reminder of something the student already knows but failed to 
retrieve. The student still applied “principle application skills” to 
the extent that the knowledge of how to apply this principle had 
not yet been proceduralized or automated. 
Success after level-1 hint with little knowledge of relevant KC. 
By contrast, an identification slip is not possible for a student with 
little knowledge of the relevant KC. Given that level-1 hints state 
problem features relevant to the application of a principle, success 
after a level-1 hint suggests that this hypothetical student was able 
to infer a correct answer from a set of problem features, even 
without knowing the rule that connects the features to the answer. 
Perhaps Assuming this was not a guess, the student induced a 
valid principle from the given example, and then used principle 
application skills mentioned above, though a less generous 
interpretation would suggest that the student learned shallowly.  
Quite an impressive feat of unsupervised inductive learning, with 
less than a single example to work with and no outcome given! 
How could this be possible? Perhaps this student drew on 
additional information sources, e.g., student peers or the textbook. 
Perhaps the diagram helps; e.g., once one sees a visual 
representation of adjacent angles, the notion that the measure of 
an angle made up of adjacent angles is the sum of the two 
measures of the adjacent angles seems quite intuitive. Other 
geometry knowledge may help as well. For instance, smart 
students may be able to infer the vertical angles theorem from the 
linear pair postulate.  
Success after level-2 hint with good knowledge of relevant KC. 
Failure after a level-1 hint followed by success after a level-2 hint 
suggests that the student needed to be reminded of the relevant 
domain principle. This student should have been able to retrieve 
the relevant domain principle from memory given the prior 
practice of the KC. What could cause failure to retrieve a 
principle? Similar to failure on a first attempt, one cause may be a 
mere “applicability slip” in mapping problem features to a known 
principle, e.g., due to random occurrence or to overwhelming 
cognitive load. Another cause may be that there is a phase in the 
normal skill acquisition process in which students have more 
trouble recognizing the applicability of rules than in applying 
them once cued to critical problem features.  In other words, while 
in this phase, students need to be reminded of a principle, but can 
apply it, especially when also given some key information (as in 
the level-1 hint) on how to instantiate the principle. This 
hypothesized phase also explains failure after the level-1 hint.  
The modest but statistically significant correlation of 𝜆𝑝,1 and 𝜆𝑝,2 
suggests that the two hint levels may be linked in how they affect 
students, but that there are also some differences. One explanation 
for the correlation is that level-1 and level-2 hints would both be 
skipped by a student engaged in “help abuse” [19], causing both 
level-1 and level-2 hints to be associated a 0 (unsuccessful) 

logistic regression outcome. By contrast, bottom-out hints cannot 
be skipped, so unsuccessful outcomes after bottom-out hints 
would not be confounded with help abuse. Another cause for the 
correlation may well the requirement, shared across the level-1 
and level-2 hints, to apply a principle, while the requirements of 
bottom-out hints, likely mastered by all students, would not 
induce a correlation. Finally, the two hint levels may share the 
hypothesized phase affecting students with good KC knowledge. 
One difference between level-1 and level-2 is that answering 
correctly after (only) a level-1 hint requires more domain-specific 
knowledge than answering correctly after a level-2 hint. One way 
to answer correctly after a level-1 hint is to retrieve the relevant 
problem-solving principle from memory, possibly cued by the 
problem features pointed out in the hint, and to apply the rule 
successfully, helped perhaps by the information provided in the 
hint. By contrast, to answer correctly after a level-2 hint, it is not 
necessary to retrieve the principle from memory, since the level-2 
hint provides a statement of the principle. The student must still 
do some work to figure out how the rule applies. 
An instance of poor retrieval may be symptomatic of a broader 
retrieval deficiency on the part of the student, which would 
constitute a learning skill deficiency. Success after first hints 
occurred frequently enough (predicted 27% correctness rate for a 
student with median general proficiency) that it may be worth 
investigating whether such a deficiency could be detected, or even 
addressed. Ideally, learners could be supported in overcoming 
such a cognitive shortcoming on their own. Students need to apply 
general principles to specific problems in many domains (e.g., 
[10]), and it would be interesting to see if such a skill could 
transfer. 
Success after level-2 hint with little knowledge of relevant KC. 
Poor retrieval cannot explain success after a level-2 hint when a 
student has had little prior practice on the relevant KC, i.e., when 
there is no expectation for retrieval. A level-2 hint states the rule 
that applies, but not how it applies. Thus, such successful 
performance may indicate that the student is skilled at applying a 
somewhat unfamiliar problem-solving principle, when given a 
statement of that principle (level-2 hint) and key problem features 
that instantiate the principle's applicability conditions (level-1 
hint). What remains for the student to do is still rather involved: 
apart from understanding the principle, the principle has to be 
mapped onto the problem, a process that (facilitated by the level-1 
hint) requires dealing with difficult terminology in relating the 
general terms in which the rule is stated to the specific problem.  
Success after level-3 hint. With respect to the level-3 hints, it 
seems unlikely that correct performance after a bottom-out hint 
involves important learning skills, aside from possibly a general 
tendency to carefully follow very specific instructions. 
In sum, this analysis contemplates several hypothesized 
metacognitive skills. Success after level-1 and level-2 hints for a 
student with high KC knowledge may indicate deficiencies in 
identifying salient problem features, mapping a principle to salient 
features, and retrieving a principle. Success after level-2 hints for 
a student with little KC knowledge may indicate skill in applying 
unknown principles (i.e., parsing and mapping—with some 
help—of an unfamiliar principle). Our results could be viewed as 
implying that different students possess these different learning 
skills to different degrees. This interpretation addresses both 
possible causes of differences between hint levels and possible 
causes of learners’ differences in hint processing. For instance, if 
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we could find a way to help students learn to recognize when a 
geometry principle applies, this should both improve the 
effectiveness of first hints, and reduce unexplained variability 
among students in terms of their hint-processing proficiency. 
Perhaps if students were given instruction to look for diagram 
features that can cue a principle, then on a first hint like “The 
problem statement says that angles ∠XSD and ∠JNT are 
complementary angles”, they might be better able to interpret the 
notion of complementary angles by paying attention to that part of 
the diagram. The analysis considered the major findings that hint 
levels differ in their effect on performance, that student 
proficiencies with level-1 and level-2 hints are modestly 
correlated, and that there are individual differences in hint-
processing proficiency.  
Finally, we address the finding that general proficiency is 
negatively correlated with hint-processing proficiency. One 
explanation is that this finding is merely an artifact induced by the 
statistical model. In designing the ProfHelp-ID model, we 
reasoned that to ascribe an effect to some proficiency with hints 
we had to partial out the effect of general proficiency. In fact, 
making 𝜃𝑝 a baseline for 𝜆𝑝,ℎ may overcorrect for any relationship 
between general proficiency and hint proficiency. The linear 
combination of the two parameters effectively subtracts 𝜃𝑝 from 
𝜆𝑝,ℎ, which means that 𝜆𝑝,ℎ contains information on 𝜃𝑝, and that 
can induce the negative correlation.4 While such a correlation 
complicates interpretation of parameter estimates, it would not 
invalidate the model fit. A second explanation is that individuals 
with a higher proficiency may be less proficient with hints 
because they have less practice using them. 
One contribution of the ProfHelp models is that they control for 
selection effects due to general student proficiency, prior practice 
on knowledge components, and knowledge component difficulty. 
The models here do not account for other selection effects, which 
we intend to address in future work. First, ProfHelp treats all hint 
messages at a given level as equally effective, while messages 
associated with different KCs may in fact have differential effects 
on student performance.  (Such an analysis would be the "KC 
differences" analogue of the individual differences analysis 
presented here.)  In this way, we might be able to identify specific 
hint messages that are significantly more or less effective than 
other messages to inform ITS design. Second, in future work we 
intend to relax the unidimensional IRT assumption, i.e., to handle 
the case that a KC that the model estimates to be easy may 
challenge a student that the model estimates to be proficient. 
Third, the ProfHelp models do not account for patterns of use that 
students may follow. For instance, in discussing the effect of 
level-1 and level-2 hints it would be desirable to account for the 
effects of help abuse, e.g., a student clicking through the hints 
without reading them. [2, 6] The ProfHelp models do not 
distinguish such behavior from spending a long time on each hint, 
which may indicate deliberative reflection. 
The need for future research is highlighted by the ProfHelp-ID 
estimates of effectiveness of hints: 27% and 42% accuracy after 
level-1 and level-2 hints, respectively, for a student with median 
general proficiency. While even these relatively low levels of 
effectiveness improve, by definition, over the students’ failure to 

4 To see how this would work, let 𝑋 and 𝑌 be two independent 
random normal variables. Let 𝑋’ ← 𝑌 − 𝑋. By definition, 
𝑐𝑜𝑟(𝑋,𝑌)  =  0, but 𝑐𝑜𝑟(𝑋’,𝑌)~0.71. 

answer correctly on the first attempt, there is clearly room to make 
hints more effective, and hence a need for research on hints types 
and hint processing. The ProfHelp-ID model may serve as a tool 
for such research. Given that this model can fit transaction data 
from an ITS, one can expect to apply it again in the future to 
evaluate alternative hinting strategies. 

6. CONCLUSIONS 
The results presented here may be said to pose more questions 
than they answer, which is appropriate for an early project in a 
relatively unexplored area. Significantly, the results show that 
hints levels differ in their effect on performance, and that there are 
individual differences in hint-processing proficiency. These 
findings account for general student proficiency, prior practice on 
knowledge components, and knowledge component difficulty via 
the ProfHelp and ProfHelp-ID models. The next steps are to 
understand the causes of the individual differences, and to try to 
detect them automatically. 
An additional contribution of this research is the new Bayesian 
implementation of the new ProfHelp and ProfHelp-ID models 
(and by extension, the PFA model).5 The flexibility of the JAGS 
modeling tool is well-suited to logistic regressions such as these 
and to the need for rapid prototyping of model variations. The 
time saved in development easily outweighs potentially slow 
MCMC sampling. Moreover, the model-fitting process can easily 
be parallelized for separate MCMC chains. 
This research has wide impact. The data analyzed here come from 
a system in the Cognitive Tutor family, in use by over 600,000 
students. [5] The same methods would apply to any software that 
uses either progressive hint sequences or multiple independent 
types of help. For instance, in SQL Tutor, “an error flag message 
informs the student about the clause in which the error occurred. 
A hint-type message gives more information about the cause of 
error. Partial solution feedback displays the correct content of the 
clause in question, while the complete solution simply displays 
the correct solution of the current problem.” [13] The 
Masteringphysics ITS includes three types of hints (“a list of 
steps, declarative statements, and procedural subtasks”) and other 
types of help. [12] 
Among the limitations of this research, the first is that it considers 
the effect of hints on performance, not learning. As [7] points out, 
in theory, a hint may both scaffold performance on the current 
step and it may teach the student in preparation for a subsequent 
problem. However, as evidenced by the analysis in Section 5, 
while the effects on learning are important, the effects on 
performance are not yet well understood.  
Other limitations are due to the assumptions embedded in the PFA 
model and the ProfHelp models. These include that knowledge 
components are independent and linearly additive; that the effects 
of the problem step are fully represented by the relevant 
knowledge components and prior practice on these KCs; and that 
there are no problem effects, e.g., steps within the same problem 
are treated as independent of one another. The ProfHelp models 
are limited in that they only consider the effect of help from the 
immediately preceding attempt, while there could be effects that 
carry over from earlier attempts. In the dataset examined here, 
hint levels were always presented in the same order, and the 
differential effects of hint types could not be teased apart using 

5 Please contact the corresponding author for the JAGS code. 
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ProfHelp. However, this is a limitation of the dataset rather than 
ProfHelp itself. 
In future work, we plan to extend the ProfHelp models. We may 
incorporate students’ hint-level preferences, such as to take into 
account the tendency of some students to click through to the 
bottom-out hint without making attempts after first and second 
hints. We may also incorporate the number of prior hint episodes 
on practice opportunities of various KCs to distinguish the effect 
of prior hints from the effect of incorrect prior performance. 
At the same time, regression techniques cannot eliminate all 
selection effects. Future work should include controlled 
experiments that compare different hint types, and an evaluation 
of their effects on learning and on reduction of unexplained 
variance in hint processing among students. 
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ABSTRACT
Identifying the skills that determine the success or failure
to exercises and question items is a difficult task. Multiple
skills may be involved at various degree of importance, and
skills may overlap and correlate. In an effort towards the
goal of finding the skills behind a set of items, we investi-
gate two techniques to determine the number of dominant
latent skills. The Singular Value Decomposition (SVD) is a
known technique to find latent factors. The singular values
represent direct evidence of the strength of latent factors.
Application of SVD to finding the number of latent skills is
explored. We introduce a second technique based on a wrap-
per approach. Linear models with different number of skills
are built, and the one that yields the best prediction accu-
racy through cross validation is considered the most appro-
priate. The results show that both techniques are effective
in identifying the latent factors over synthetic data. An in-
vestigation with real data from the fraction algebra domain
is also reported. Both the SVD and wrapper methods yield
results that have no simple interpretation.

1. INTRODUCTION
A critical component of student models is the skills mastery
profile. Personalization of the learning content relies heavily
on this component in many, if not most intelligent tutoring
systems. The more precise the skills mastery profile is, the
more appropriate this personalization process will be.

However, finding the latent skills underlying exercises or
questions items is non-trivial because of a number of rea-
sons.

One reason is that multiple skills may be involved at various
degree of importance with regards to a single item. This is
in fact typical of most items. For example solving a simple
fraction algebra problem may require knowledge of a few
algebra rules, each rule representing a specific skill. More
general skills such as vocabulary and grammar rules may be
involved in language related task, etc.

Another difficulty is that skills may overlap and they will
therefore correlate. Highly correlated skills result in similar
response patterns to a set of items.

Finally, the nature of the items and the difficulty of mas-
tering some skills will result in slip and guesses. Those will
be reflected as noise that will make the identification of the
latent skills more difficult.

Most of the time, the latent skills underlying question items
are defined by experts. Models such as Knowledge Tracing
[2], Constraint-based Modeling [7], or Performance Factor
Analysis [8], are well known examples that require expert
defined mapping of skills to latent factors. Some studies
have looked at means to help this process.

Suraweera et al. have used an ontology-based approach to
facilitate the item to skill mapping and the more general
task of building the domain model [9].

Others have studied the mapping of items to skills with data
driven algorithms with some success [1; 3; 11]. Their results
show that mappings can be successfully derived in certain
conditions of low noise (slip and guess) relative to the latent
factors. However, these studies assume that the number of
skills are known in advance, which is rarely the case. Al-
though some of the the latent skills may be relatively obvi-
ous, the obvious skills only set a minimum number. That
minimum does not preclude that other skills may come into
play and have a strong effect also.

Of course, we do not need to identify all the skills behind
an item in order to use the item outcome for assessment
purpose. As long as we can establish a minimally strong tie
from an item to a skill, this is a sufficient condition to use
the item in the assessment of that skill. But knowledge that
there is a fixed number of determinant factors to predict
item outcome is a useful information. For example, if a
few number of skills, say 6, are meant to be assessed by a
set of 20 questions items, and we find that the underlying
number of determinant latent factors behind these items is
very different than 6, then it gives us a hint that our 6-skills
model may not be congruent with the assessment result.

This study aims at identifying this number. It aims at find-
ing means to estimate how many latent factors are influ-
encial enough to determine the item success. We explore
two techniques towards this end: Singular Value Decompo-
sition (SVD) and a wrapper selection feature based on Non-
negative Matrix Factorization (NMF). We describe these
techniques in more details and report the results of our ex-
periments to validate their effectiveness for estimating the
number of latent skills1.

1The reader interested in more details is referred
to the code that was used in this study: http:
//www.professeurs.polymtl.ca/michel.desmarais/
Papers/EDM2012/scripts.html
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2. SVD-BASED METHOD
Singular Value Decomposition (SVD) is a well known matrix
factorization technique that decomposes any matrix, A, into
three sub-matrices:

A = UDVT (1)

where U and V are orthonormal matrices and their column
vectors respectively represent the eigenvectors of AAT and
ATA. D is a diagonal matrix that contains the singular
values. They are the square root of the eigenvalues of the
eigenvectors and are sorted in a descending order.

Because the singular values represent scaling factors of the
unit eigenvectors in equation (1), they are particularly use-
ful in finding latent factors that are dominant in the data.
This is demonstrated with simulated data below. First we
describe the simulated data and the results of applying SVD
on the students item outcome results matrix R.

2.1 Simulated data
The synthetic data is generated by defining a Q-matrix of
21 items that combine 6 skills. The 21 items are represented
as columns in figure 1. They span the space of all pairwise
combinations of skills (first 15 columns) plus 6 single skill
items (last 6 columns).

Items

S
k
il
ls

1 111110000000000100000
2 100001111000000010000
3 010001000111000001000
4 001000100100110000100
5 000100010010101000010
6 000010001001011000001

Figure 1: Conjunctive Q-matrix composed of 21 items that
span all combinations of 6 skills for pairs of skills and single
skills

Figure 1’s Q-matrix is used to generate simulated data and
we assume a conjunctive model (all skills are necessary to an-
swer the item correctly). The data contains the 21 question
items and 200 simulated student responses over these items.
The six skills are assigned an increasing degree of difficulty
from 0.17 to 0.83 on a standard normal (Gaussian) scale,
and each student is assigned a skill vector based on a {0,1}
sampling with a probability corresponding to this difficulty
(or easiness in fact, since higher values bring greater chances
of skill mastery). The choice of these difficulty values stems
from the need to have a mean student success score around
50%–60%: because 15 of the 21 items require the conjunc-
tion of two skills, mean skill mastery must be substantially
higher than 50% to obtain average results around 50%–60%.

Once a skills mastery profile is assigned to students, repre-
sented by a matrix S, an ideal response matrix is generated
according to the product ¬R = Q¬S, where Q is a con-
junctive Q-matrix (more details about this model are given
later, see equation (3) below). Then, slip and guess factors
are used to generate noise in the ideal response pattern by
randomly changing a proportion of the item success and fail-
ures outcomes according respectively to slip and guess val-
ues. The slip and guess values of respectively 0.1 and 0.2 will
result in approximately 15% of the item outcomes being in-
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Figure 2: Singular values of simulated data for a 21 items
test. Unit standard error bars for a 10-fold simulations is
drawn for each line. A vertical dashed line at singular value 6
corresponds to the number of underlying latent skill factors.

consistent with the ideal response matrix (15% corresponds
to a weighted average of 0.1 and 0.2).

2.2 Results
The results of the SVD method are shown in figure 2. The x
is the index of the singular value, and the y axis is its actual
value. Recall that the singular values of SVD indicate the
strength of latent factors.

Three conditions are reported in figure 2. The y values at 1
on the x scale are truncated on the graph to allow a better
view of the interesting region of the graph, but the highest
value is from the [guess=0, slip=0] condition and the lowest
is for the random condition. The random curve condition
can be obtained by simulating random {0, 1} values and en-
suring that the overall average score of the results matrix
reflects the original’s data average. In this random condi-
tion, the slope from singular value 2 to 21 remains relatively
constant, suggesting no specific number of skills. In condi-
tion [guess=0, slip=0], a sharp drop occurs between singular
values of 6 and 7. Then the slope remains relatively constant
from values 8 to 21. The largest drop is clearly at value 6
which corresponds to the underlying number of skills. In the
third condition [guess=0.2, slip=0.1], the largest drop still
remains visible between 6 and 7, but not as sharp as for the
noiseless condition, as expected.

In other experiments with various number of skills, not re-
ported here due to space constraints, we observed similar
patterns. Another observation is that the random curve in-
tersects with the other two after the number of underlying
latent skills (after 6 in figure 2’s experiment).

Therefore, the SVD method does allow for the identification
of the number of skills with synthetic data, at least up to
the [guess=0.2, slip=0.1] level.
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3. WRAPPER-BASED METHOD
We introduce a second method to determine the number of
dominant skills behind items based on a wrapper approach.
In statistical learning, the wrapper approach refers to a gen-
eral method for selecting the most effective set of variables
by measuring the predictive performance of a model with
each variables set (see [6]). In our context, we assess the
predictive performance of linear models embedding different
number of latent skills. The model that yields the best pre-
dictive performance is deemed to reflect the optimal number
of skills.

3.1 A Linear Model of Skills Assessment
The wrapper method requires a model that will predict item
outcome. A linear model of skills is defined for that purpose
on the basis of the following product of matrices:

R = QS (2)

where the R matrix contains observable student results with
item rows and student columns, and the S matrix is the
skills (rows) per students (columns) mastery profile (see for
e.g., [3]). Matrix Q is the Q-matrix that maps items (rows)
to skills (columns). Normalizing row sums of Q to 1 would
yield values of 1 in the results matrix, R, if all skills nec-
essary to succeed an item is mastered by the corresponding
individual. Equation (2) represents a compensatory inter-
pretation of skills modeling, where each skill contributes ad-
ditively to the success of an item.

A conjunctive model can be defined according to the follow-
ing equation [1; 4] :

¬R = Q¬S (3)

where the operator ¬ is the Boolean negation, which is de-
fined as a function that maps a value of 0 to 1 and any other
value to 0. This equation will yield values of 0 in R when-
ever an examinee is missing one or more skills for a given
item, and yield 1 whenever all necessary skills are mastered
by an examinee.

3.2 Overview of the method
To estimate the optimal number of skills, the wrapper model
can either correspond to equation (2) or (3). We will focus
our explanations around equation (2), but they obviously
apply to (3) if R and S are negated.

This model states that, given estimates of Q and S, we can
predict R. We refer to these estimates as Q̂ and Ŝ, and to
the predictions as R̂ = Q̂Ŝ. The goal is therefore to derive
estimates of Q̂ and Ŝ with different number of skills and
measure the residual difference between R̂ and R.

First, Q̂ is learned from an independent set of training data.
Then, Ŝ is learned from the test data, and the residuals are
computed2.

2Note that computing Ŝ from the test data raises the is-
sue of over-fitting, which would keep the accuracy growing
with the number of skills regardless of the “real” number of
skills. However, this issue is mitigated by using independent
learning data for Q̂, without which, we empirically observed,
the results would deceive us: in our experiments using both
Ŝ and Q̂ from NMF while increasing the rank of the fac-
torization (number of skills), ends up increasing prediction
accuracy even after we reach beyond the “real” number of
skills. This can reasonably be attributed to over-fitting.

An estimate of Q̂ is obtained through Non-negative Matrix
Factorization (NMF). Details on applying this technique to
the problem of deriving a Q-matrix from data is found in
[3] and we limit our description to the basic principles and
issues here.

NMF decomposes a matrix into two matrices composed solely
of non-negative values. Its structure is equivalent to equa-
tion (2). The technique requires to choose a rank for the
decomposition, which corresponds in our situation to the
number of skills (i.e. number of columns of Q and num-
ber of rows of S). Because NMF constrains Q and S to
non-negative values, their respective interpretation as a Q-
matrix and a as student skills assessments is much more
natural than other matrix factorization techniques such as
Principal Component Analysis, for example. However, mul-
tiple solutions exists to this factorization and there are many
algorithms that can further constrain solutions, namely to
force sparse matrices. Our experiment relies on the R pack-
age named NMF and the Brunet algorithm [5].

Once Q̂ is obtained, then the values of Ŝ can be computed
through linear regression. Starting with the overdetermined
system of linear equations:

R = Q̂Ŝ (4)

which has the same form as the more familiar y = Xβ (ex-
cept that y and β are generally vectors instead of matrices),
it follows that the linear least squares estimate is given by:

Ŝ = (Q̂T Q̂)−1Q̂TR (5)

Equation (5) represents a linear regression solution which

minimizes the residual errors (||R− Q̂Ŝ||).

3.3 Prediction Accuracy and the Number of
Skills

We would expect the model with the correct number of skills
to perform the best, and models with fewer skills to under-
perform because they lack the correct number of latent skills
to reflect the response patterns. Models with greater num-
ber of skills than required should match the performance of
the correct number model, since they have more represen-
tative power than needed, but they run higher risk of over-
fitting the data and could therefore potentially show lower
accuracy in a cross-validation. However, the skills matrix Ŝ
obtained through equation (5) on the test data could also
result in over-fitting that will increase accuracy this time.
We return to this issue in the discussion.

We use the same simulated data as described for the SVD
method in section 2.1, where six skills are used to gener-
ate data according to the Q-matrix of figure 1. For this
experiment, we only report the condition of guess=0.2 and
slip=0.1.

Figure 3 shows the percentage of correct predictions of the
models as a function of the number of skills. Given that
predictions are {0, 1}, the percentage can be computed as

||R− Q̂Ŝ||/mn, where m and n are the number of rows and
columns of R.

The results confirm the conjectures above: the predictive
accuracy increases until the underlying number of skills is
reached, and it almost stabilizes thereafter. Over-fitting of
Ŝ with the test data is apparently not substantial.

It is interesting to note that the accuracy increments of fig-
ure 3 are relatively constant between each skill up to 6. This
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Figure 3: Precision of student results predictions from esti-
mated skill matrix (equation (5)). Error bars are the stan-
dard error of the accuracy curves. Experiment is done with
simulated data with 6 skills and slip and guess values of 0.1
and 0.2 respectively.

is also what we would expect since every skill in the under-
lying Q-matrix has an equivalent weight to all others. We
expect that differences in increments indicate differences in
the weights of the skills. This could either stem from the
structure of the Q-matrix (for e.g., more items can depend
on one skill than on another), or on the criticality of the
skill over its item outcome.

4. APPLICATION OF THE METHODS ON
REAL DATA FROM FRACTION ALGE-
BRA

Simulated data reveals that both the SVD and wrapper
methods provide effective means to identify the number of
latent skills. Are these means as effective in identifying skills
with real data? This can depend on a number of factors.
One factor is the degree to which a skill is determinant to
the success of an item. General high level skills can only
add to the chances of success, they are not decisive. More
specific skills can be decisive, but there may be alternative
skills that also account for an item success (e.g. a differ-
ent method of solving a problem). Finally, noise from slips
and guesses will undermine the ability of any method that
attempts to identify the number of latent skills.

Therefore, an answer to the above question, i.e. whether we
can identify the number of latent skills, is only valid within
a given context, where the factors mentioned above take on
a particular combination. So any conclusion will have to
take into account this limitation in its generalization.

We investigate the question with data from Vomlel [10] on
fraction algebra problems. This data set is composed of
20 question items and answers from 148 students. A Bayesian

Items
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1 CL 1 1 1
2 CMI 1 1 1 1 1
3 CIM 1 1
4 CD 1 1 1 1 1
5 MT 1 1 1
6 AD 1 1 1
7 SB 1 1

Figure 4: Conjunctive Q-matrix of Fraction Algebra data
composed of 7 skills and 17 items. Item numbers refer to
the original data items.

Network linking items to skills was defined by experts for the
20 items. It can readily be transformed into the Q-matrix
shown in figure 4.

This Q-matrix is a subset of the whole Q-matrix from the
Bayesian Network in Vomlel’s study. It was chosen based
on four fundamental skills of fraction algebra :

1 CL: cancelling out
2 CIM: conversion to mixed numbers
3 CMI: conversion to proper fractions
4 CD: finding common denominator

A total of 15 items are involved those skills. Because some
items involved other skills, 3 more skills are added through
conjunction, for a total of 7 skills:

5 AD: addition
6 SB: subtraction
7 MT: multiplication

And 2 more items involving these added skills are also added,
for a total of 17 items. Six out of the 17 items involve a
conjunction of 2 skills, whereas all other items are single
skill.

Note that contrary to the synthetic data, skills are not ex-
pected to have equal weight in the prediction results, as some
are only involved in two items, whereas others are involved
in five items.

The SVD and wrapper methods are applied to the data in
an attempt to derive the number of underlying skills. For
the SVD method, the factorization is conducted on the full
data set since this method does not rely on a cross validation
process. For the wrapper method, the data is split in half
for training, half for testing. Both approaches follow the
methodology described in sections 2 and 3.

4.1 SVD method
Results of applying the SVD method to the fraction algebra
data is reported in figure 5. Apart from the usual steep slope
from singular value 1 to 2, there is no clear indication of the
number of skills in this figure when we look at a change of
slope as we had with the simulated data experiment. How-
ever, the random and real curves meet at singular value 2,
which, according to the results from simulated data, would
suggest that the number of latent skills is 2. However, this
not consistent with the expert Q-matrix. It is also counter-
intuitive since we would expect that more than two skills in
fraction algebra problems would cover the skills described
above.

We could also conclude that there is a continuum of skills,
and/or that the data is too noisy to show any effect of skills.
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Figure 5: SVD results over fraction algebra data. The ran-
dom and real curve at skill 1 are not shown but they are
respectively 30 and 35.

Let us turn to the wrapper method before speculating any
further on these unexpected results.

4.2 Wrapper method
For the wrapper method, the data set is divided into two
random samples of half the size of the original 148 students.
One half is used for deriving the Q-matrix and the other in
deriving the skills matrix, Ŝ, and measuring the accuracy of
the predictions. This procedure is the same as the one used
for the simulated data. As we explain below, a large number
of folds (50) have to be run in order to obtain stable results.

Figure 6 reports the results of the wrapper method. We
observe a sharp drop after skill 2, which suggests that a peak
was reached at that point3. In that respect, it confirms the
2-skill findings of the SVD method.

However, we also observe a steady increase of accuracy start-
ing from 3 skills, up to 8 skills, and a gradual decrease of
skill contribution to performance starting from 4 skills. Ex-
cept for the unexpected drop after 2 skills, this finding is
close to the 7 skills defined by experts. And the fact that
some skills have a greater weight on the performance is also
consistent with the gradual decrease of contribution up to
8 skills.

Concerning the decrease after 9 skills, this can be explained
by over-fittins in the NMF Q-matrix induction (Q̂) with
the training data. In simulated data, the sample size was
apparently large enough to shield the results from the over-
fitting issue, but the smaller sample size of the real data
may raise this issue here. Moreover, as the number of latent
factors approaches the number of items in the data (17), the

3The implementation of the method does not allow a com-
putation of the accuracy for a single skill, but we can reason-
ably assume that a single skill model would perform worst
than a 2-skills model.
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Figure 6: Wrapper method applied to the fraction algebra
data set. The error bars represent the standard error of
50 folds results.

over-fitting issue becomes even more significant.

Drawing conclusions from this experiment with real data is
obviously hard. Both the SVD and the wrapper methods
seem to suggest that 2 skills would are plausible, but the
wrapper method also points to an 8 skills set that is more
consistent with the expert Q-matrix.

5. DISCUSSION
Both the SVD and the wrapper methods provide strong cues
of the number of underlying skills with simulated student
test data. However, for the Vomlel data set, both methods
yield results that are much more ambiguous. Instead of the
7 skills that were identified by experts over the 17 items set,
the SVD method suggests only 2 skills if we rely on the in-
tersection with the random data curve, and no clear number
if we look for a change of slope after skill 2. The wrapper
method shows data that is also consistent with 2 skills to
the extent that a drop of accuracy is observed at 3 skills,
but a rise of accuracy up to 8 skill draws an interpretation
closer to the experts’ 7 skills set.

An important difference between the SVD and the wrap-
per methods has to do with the independence of skills. For
SVD, orthogonality of the singular matrices U and V in
equation (1) forces latent factors to be independent. NMF
does not require latent factors to be independent. The or-
thogonality constraint of may limit the application of the
SVD method with respect to real skills and might explain
some of the difference between the two methods. The skills
from the synthetic data of the first experiment were inde-
pendent and the Q-matrix had an homogeneous pattern for
each skill, and therefore the effect of dependence between
skills could not come into play.

Obviously, the study calls for more investigations. The
findings from one set of data from the real world may be
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highly different from another set. More studies should be
conducted to assess the generality of the findings. Other
investigations are called for to find ways to improve these
methods and to better understand their limits when faced
with real data. In particular, we need to know at which level
of noise from guess and slip factors do the methods break
down, and what is the ratio of latent skills to data set size
that is critical to avoid over-fitting of the wrapper method.

One improvement that can be brought to the wrapper method
is to use a cross validation to derive the skills matrix. This
would require the use of two sets of items, one for testing
and one for assessing the student’s skills. This comes at the
cost of a greater number of items, but it avoids the problem
of over-fitting that leads to accuracy increases.
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ABSTRACT 

Reading comprehension is critical in life-long learning as well as 
in the workplace. In this paper, we describe how multidimensional 
k-means clustering combined with Bloom’s Taxonomy can be 
used to determine positive and negative cognitive skill sets with 
respect to reading comprehension tasks.  This information could 
be used to inform environments that support students improving 
their meta-cognitive skills. 
Keywords 

Data mining, k-means clustering, Bloom’s taxonomy, reading 
comprehension, cognitive strategies. 

1. INTRODUCTION 
Anderson and Pearson [4] in their seminal work on reading 
comprehension describe three different cases where reading 
comprehension is a problem.  First, a person having difficulty 
reading is likely to have gaps in knowledge.  Prior knowledge is 
necessary in the determination of what he/she can currently 
comprehend.  Second, the reader can have an incomplete 
understanding of the relationships that exist among facts on a 
certain topic.  Since the current knowledge base is used to create 
all of the relationships on a topic, new arbitrary information can 
be a source of confusion, slow learning and slow processing, 
which leads to unsatisfactory reasoning.  Third, readers are 
unlikely to be able to make correct inferences about the material 
in order to arrive at a coherent overall representation of the topic.  
The creation of a coherent representation for a topic requires the 
drawing of precise, integrated inferences.  Often poor readers do 
not perform these tasks either routinely or spontaneously [8].  Any 
reading comprehension tools or models need to be able to address 
these problems with deep comprehension. 
The reading strategy instruction method is one of the most often 
suggested methods for enhancing reading ability [18, 20].  This 
particular method deals with problems on the vocabulary and 
sentence levels [2], and on higher level issues such as text 
comprehension [2,14].  Other recommended approaches include 
determining the main message of the content (e.g. 
summarization), the use of textual enhancements (e.g. 
illustrations, mental images), question and answer drills (e.g. self-
questioning) and practicing meta-cognition (e.g. through 
comprehension monitoring) [9].  However, the most successful 
reading strategies combine methods rather than one single 
technique [14]. 

There are several barriers to the adoption of multiple strategies 
within the classroom setting [14].  First, there is a large amount of 
training that is required for the teachers to become familiar with 
the strategies in order to employ them within the classroom 
setting.  Second, there is a considerable time requirement for 
teachers to prepare the course materials.  Third, getting the 
students to apply the strategies in daily life can be extremely 
complex.  Therefore, the creation of environments that help 
relieve the teacher of some of these complexities would be of 
great benefit.  
There are several learning environments that aid students with 
their reading comprehension.  Some of the more prominent are 
Project Listen, iSTART, Point&Query, and AutoTutor.  Project 
Listen [13] creates an environment where children and ESL 
(English as a second language) students can read text out loud 
with the aim to improve this skill.  The software listens to the 
reader and makes suggestions on how to improve their reading 
skills.  One of the ways that the software increases reading 
comprehension is by asking the students questions about the text 
that they just read [6].  Presumably, the increase in reading 
comprehension and word comprehension do not translate into 
helping the students enhance the deeper comprehension skills 
discussed by Anderson and Pearson [4] since this is not the aim of 
this particular software.  The remaining environments, however, 
do take aim at creating deeper understanding within the reading 
comprehension field.  Point&Query augments current learning 
environments, such as hypertext and hypermedia, by providing 
learner controlled question and answer sessions that expose 
readers to deep causal questions [10].  Both AutoTutor and 
iSTART make use of animated agents and natural language 
dialogue to scaffold inquiry strategies, metacognition, and 
explanation construction [10].  AutoTutor generates why, what-if, 
and how style questions and then enters into a dialogue with the 
student to expose the deeper constructs of the topic.  iSTART 
takes a coaching approach to teach the students how to construct  
and improve self-explanations combined with other 
metacomprehension strategies.  Although these systems have 
demonstrated student learning gains and improvement in learning 
strategies, more can still be done.  
Many of the aforementioned tools, created to aid in reading 
comprehension, are more closed-ended systems that require   a 
significant amount of time and energy to develop course content 
[15].    These closed-ended systems often make use of help 
requests to aid them in determining when a student is having a 
reading comprehension problem [6,10,13].  However, the vast 
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majority of environments such as WebCT/Blackboard, Moodle, 
etc., that are adopted by schools and post-secondary institutions 
are more open-ended in nature.  These systems provide much 
more flexibility in terms of content development and improved 
ease in making changes to the content compared to what can be 
provided with closed ended systems.  The problem with the open-
ended systems is that they provide no real support for student 
learning other than providing the content for the students.  
However, open-ended systems do have good tracking facilities in 
place to capture student interaction with the system. By making 
use of current data mining techniques and pedagogy aimed at 
improving student learning, it is possible to capture students’ 
cognitive behavior from these open environments.      
Trace methodologies, such as capturing keystroke data, events, 
eye tracking data, etc., have demonstrated that data generated 
from a student’s interaction with an environment can provide the 
necessary information to make cognitive and metacognitive 
interpretations [5].  This makes sense since how a student 
consumes content will have a direct effect on their comprehension 
of that content.  If we know the following: what task the student is 
currently working on, the difficulty of the task, and the current 
behavior of the student as they work on the task, we can make 
cognitive interpretations [5,13,17,21].  Bloom’s Taxonomy [3] of 
the Cognitive Domain, provides a pedagogical framework   for 
determining how cognitively difficult a question/task is.  Using 
this framework we can determine if the student’s current cognitive 
skills are appropriate for the task that they are currently working 
on. 
Bloom’s Taxonomy [7] and its subsequent revision [3] are 
comprised of three overlapping domains: cognitive, affective and 
psychomotor.  The affective domain is comprised of emotions, 
attitudes and values. The psychomotor domain is comprised of 
physical skill mastery, coordination, etc.  The cognitive domain 
provides a method to classify educational objectives that relate to 
knowledge [21].  Within the cognitive domain are six hierarchical 
levels in order of increasing complexity.  They are: knowledge, 
comprehension, application, analysis, synthesis and evaluation (as 
revised by Anderson et. al.[3]).  The first three levels are 
considered to be foundational learning and are based upon the 
ability to know and apply factual knowledge [21].  The last three 
levels are considered higher level learning that is more abstract in 
nature [20].  Bloom had originally assumed that you could not 
achieve the higher levels without first mastering the lower levels 
of the hierarchy [7].  However, it appears that it is possible to 
work at the higher levels on some topics without first mastering 
the lower levels [3]. 
Wankat and Oreovicz [19] provide some examples of how to 
apply Bloom’s taxonomy to an engineering domain.  Knowledge 
or recall involves the descriptions, definitions, generalizations and 
other routine information about a topic.  Comprehension involves 
understanding the technical representations of a topic including 
the translation, interpretation and extrapolation of that topic.  
Application involves the use of topical abstractions in explicit 
situations such as the use of rules, procedures and theories to 
perform some computation.  Analysis involves breaking a 
problem into its principal parts in order to highlight any content 
hierarchy, properties.  Furthermore, connections and structure 
found within the content are defined and clarified.  Synthesis 
involves putting together all the constituent parts of a problem 
into a coherent system or solution.  This can be very difficult 
since the process is open-ended and there may be many possible 

solutions to the problem.  Lastly, evaluation can involve making 
conclusions about the value of materials used in a project or the 
methods used in that project.  There is a need to satisfy specific 
criteria or use some standard of appraisal. 
Through the use of the different levels of Bloom’s Taxonomy and 
questions that are appropriately couched within the framework, it 
is possible to help learners to overcome the various problems 
originally posed by Anderson and Pearson [4]. 

2. METHODOLOGY 
An experiment was designed to look for patterns of student 
behavior in a reading comprehension task.  Students interacted 
with a learning environment designed to emulate hypermedia 
courses offered in post-secondary institutions where written 
content is presented along with questions about that content.  The 
students could view the content and/or questions in any order or 
manner they chose with no constraints applied to their interaction 
with the system.  In keeping with trace methodology approaches, 
all of the interactions/events with the content and questions were 
recorded and time-stamped. These would include events such as 
mouse click, mouse wheel, which item was clicked or selected 
and so on.  
To aid in determining what part of the document was currently 
being read, a small scrollable text box that allowed 7 lines of text 
to be displayed as displayed in Figure 1.  The size of the text box 
performed a couple of tasks.  First, it does not take more than one 
minute to read the approximately 77 words contained within the 
text box.  Although not directly used in the analysis, this could be 
used to determine if the individual was distracted from the task at 
hand.  Second, it provided a means to determine how much time 
and how quickly the student read over the portions of the 
document that contained the answers to the various questions.  
The questions could be selected in any order and any text the 
students had entered into the answer text box was saved and 
displayed when the corresponding question was selected.  None of 
the participants was observed, nor reported, as having any 
difficulty with operating the interface.  
 

 
Figure 1 Screen Capture of Interface 

The questions were developed using Bloom’s Taxonomy Action 
Verbs [3,7].  Bloom and Anderson created a list of verbs that 
direct the way that a question should be answered.  These verbs 
correspond to a level within Bloom’s taxonomy.  When you place 
the action verb at the beginning of the question, it frames the way 
that the question should be answered [7].  For example, Bloom’s 
lowest level, knowledge, contains the action verb ‘list’.  Since the 
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task of the knowledge level is to remember previously learned 
information, successfully listing something that the student has 
previously read would demonstrate that the student has mastered 
that level of cognitive difficulty for that content.  Questions at 
various Bloom levels were presented to the participants in a 
randomized order.  All of the questions were present on the screen 
at all times and could be selected in any order by the student.  
Questions were scored in order to provide a metric for how well 
the students were comprehending the content.  In order to deal 
with the subjective nature of scoring question answers, a rubric 
was created according to the principles laid out in [16] for each of 
the questions.  The rubric was revised a couple of times to take 
into account the various types of answers that were submitted 
during the testing phase of the development.  For the lower Bloom 
levels, the answers generally came from one direct location within 
a document and so the scoring was fairly simple.  For the higher 
level Bloom questions, information from multiple sources was 
expected.  It was also expected that the students would bring their 
own prior knowledge to bear on the answer.  It was here that 
revisions were required as the beta testing group interpreted the 
questions in unforeseen ways.  The experiment was broken into 
two components.  The first component provided the students with 
a single document to read and questions about that content were 
based upon the lower levels of Bloom’s Taxonomy.  All of the 
answers to the questions could be found within the document.  
The document that was chosen was a fairly technical document 
based upon Canadian privacy law as it applies to Facebook so that 
the participants would not have much prior knowledge of the 
specific subject matter. The participants were given 30 minutes to 
finish reading the document and answering four questions. 
The second condition provided the students with two more 
documents in addition to the first document. The purpose of this 
condition was to better test the higher levels of Bloom’s 
Taxonomy.  The higher levels of Bloom’s Taxonomy require 
synthesis and evaluation and so more information and documents 
were needed to allow for these requirements.  The second 
document was instruction on how to implement advanced privacy 
features not commonly used within Facebook and the third 
document was a high level overview of the privacy settings used 
within Facebook.  Again the answers to the high level questions 
could be found within the documents provided.  However, in 
order to fully answer the higher level questions, information from 
more than one document was required.  For this second condition, 
90 minutes were allotted as the questions were more difficult and 
there were two new documents that needed to be read to generate 
complete answers.  Two questions were aimed at the prior reading 
done in the first condition.  One was a repeated question from the 
first condition and a second question was new but based solely on 
the information found in that first document.  The remaining six 
questions were new and tested various levels of Bloom’s 
Taxonomy.  It was possible that the students could answer the 
questions in an increasing level of difficulty; however, they would 
have to purposefully select that order since the order in which 
they were presented was random.  
Since the amount of time required to participate in both conditions 
might be a factor in participant involvement, both conditions were 
designed so that they could be run separately and using different 
participants depending on the participants’ wishes.  In the actual 
running of the experiment, the majority of the participants moved 
from the first condition right into the second condition with no 
delay.  The participants were adult students enrolled in a grade 12 

Saskatchewan Institute of Applied Science and Technology 
(SIAST) Adult Education English course.  There were 17 
participants for the first condition and 11 for the second condition 
with an average age of 26. 

3. RESULTS 
The 28 participants generated over 8500 events in total from both 
conditions.  Events such as the mouse clicking on a specific 
button or object and mouse wheel scrolling were captured.  Each 
event was time-stamped with the user-id, event-id, current 
question-id, current document-id, and position within the current 
document.  This gave us what task/question the student was 
currently working on, which document they were working on, 
where in the document they were, and what event they were 
using.  For example, if the student moved the scroll wheel of the 
mouse to move down in the document we could then determine 
from the time-stamp data and the position data, how quickly and 
what material they were reading.  With this information we can 
begin to deduce student behavior as they work at completing the 
various questions. 
In order to determine how much reading the students were doing, 
the timestamp data was processed so that reading, scanning and 
scrolling navigation times could be calculated for each 
interaction/event.  The time cutoffs used to distinguish reading 
from scanning from scrolling fit with other document navigation 
research [1].  Any time between events greater than five seconds 
was classified as reading.  Any time greater than two seconds but 
less than five seconds was classified as scanning and any time less 
than two seconds was classified as scrolling.  The reading time 
also encompassed time that the participant spent thinking about 
the answer.  In the 8500 events captured across the 28 
participants, only 13 events had a time greater than two minutes 
and only 33 events had a time greater than one minute before 
another event was performed.  Given the time it takes to read the 
content in the textbox, the total time between events including the 
reading and thinking times, was not a large enough percentage of 
the data to warrant separate classification. 
The total amount of time that a student spent in the experiment 
was calculated and used to create a ratio of time spent by the 
student reading, scanning and scrolling.  This ratio was then 
broken down into the reading, scanning and scrolling ratios for 
each individual question.  When combined with the level of 
difficulty for each question, as determined by Bloom’s taxonomy, 
it was possible to tie student reading behavior to the difficulty of 
the task.  
In order to see if there were students who behaved similarly for 
different levels of difficulty, we implemented the Forgy method 
for k-means clustering for d=3 dimensions and k=4 [11].  
Hammerly et al. [11] demonstrated that the Forgy method for 
initialization was the preferred method for initializing the standard 
k-means, also known as Llyod’s, algorithm [12]. The dimensions 
that we chose were the reading, scanning, and scrolling axes.  K = 
4 was chosen since our sample size was small.   More than 4 
clusters produced some clusters where there were too few to be 
statistically analyzed.  Since the algorithm randomly chooses its 
centroid points, there is no researcher bias entering into the initial 
sets of clusters that were created.  In order to find as many 
interesting clusters as we could, the Forgy k-means algorithm was 
iterated multiple times. We defined interesting clusters as those 
clusters that elicited either positive or negative reading, scanning 
or scrolling behaviors.  A positive behavior is defined as a 
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behavior that results in a good grade.  A negative behavior is 
defined as a behavior that results in a poor grade.  Those clusters 
that presented with both positive and negative behaviors were 
deemed less interesting. Each time an interesting cluster was 
found, the centroid was recorded.  Once multiple interesting 
centroids were found, the most interesting centroid found was 
hard coded as a starting centroid.  The hard coding of the 
algorithm removes one of the random initializations from the 
Forgy initialization and inserts the most interesting centroid in its 
stead.  For example, the experiment used k = 4 random clusters in 
the initialization.  With the hard coded cluster added, k = 3 
random and k = 1 hard coded are what the algorithm would 
initialize with.  The algorithm was run again with one hard coded 
centroid and three randomly chosen centroids to see how the other 
random clusters interacted since how the cluster is initialized is 
known to have an effect on how the other clusters form [11].  If a 
new interesting cluster was discovered that was more predictive of 
students’ behavior than a previous closely related centroid, the old 
centroid was removed in favor of the new centroid.  If no more 
centroids were discovered that were more interesting than the hard 
coded centroid, then the second most interesting centroid was hard 
coded and the remaining two centroids were left random and the 
above process was duplicated with two hard coded centroids.    A 
third hard coded cluster was added in accordance with the above 
procedure and the process was performed again until all four of 
the initializations centroids were hard coded.  
Over multiple iterations six interesting clusters were discovered 
with two of these clusters containing too few data points to be 
included in any statistical analysis that was performed.  The 
following clusters proved to be statistically interesting with 
respect to the Bloom level: 

 Light Reading Cluster: 50% reading: 30% scanning: 20% 
scrolling (50:30:20) 

 Light Medium Reading Cluster: (60:30:10) 
 Heavy Medium Reading Cluster: (70:20:10) 
 Heavy Reading Cluster: (80:10:10) 

The two clusters, Medium Scrolling (10:10:60) and Medium 
Scanning (10:60:10), were clusters that we expect to play a more 
important role in future experiments.  However, due to our sample 
size, they could not be used in our statistical analysis. 
An ANOVA was performed on each of the clusters to see if a 
statistically significant relationship could be found between the 
different reading behaviors as clustered by k-means and the 
Bloom levels of the questions within the experiment.  The tests 
were performed at the α = 0.05 level.  Questions at Bloom levels 
1,2,3,5, and 6 were provided in this experiment.  There were no 
Bloom level 4 questions, to give learners time to answer more 
questions at level 5 and 6 within the overall time constraints. 
Table 1 shows that, with the exception of level 5, all of the Bloom 
levels were statistically significant.  The null hypothesis used for 
these tests are that the means for each of the clusters does not vary 
according to the Bloom level that is being tested.  In other words, 
the reading, scanning and scrolling means should be the same for 
all of the clusters found by k-means. Table 1 shows that the 
differences found between the clusters for each of the Bloom 
levels were not due to random chance. The p-values indicate that, 
in all but two cases, there is a really small chance of getting these 
results if no real difference between the groups exists.  This 
indicates that the students’ reading, scanning and scrolling 
behaviors captured by the system and then clustered are 

significantly different from one another as it relates to the level of 
Bloom’s taxonomy.  For example, those students who were 
classified as Light Readers based on the reading, scanning and 
scrolling ratios for Bloom level 1 were significantly different from 
those who were classified as Light Medium Readers for the same 
Bloom level.  However, the ANOVA itself cannot make this exact 
determination of which cluster is significantly different from 
another cluster; it can only tell us that there is a significant 
difference between some of the groups in the analysis.  Further 
analysis, discussed later on, is needed in order to see which of the 
clusters are significantly different from each other.   
Although inclusion in a cluster does not completely predict scores, 
it is indicative of overall performance.  For example, take question 
2 in the first condition (low level Bloom with a single document) 
that was designed to force the students to scan through the 
document as they needed to count the number of instances that a 
certain event, such as a successful appeal on a complaint about 
Facebook to the Canadian Privacy Commission, occurred in the 
document.  This type of problem is often present in many forms in 
academia and the work place where it is necessary to arrive at a 
solution within the time constraints.  100% of the students in the 
Light Reading (50:30:20) cluster, which was higher in scanning 
and scrolling times, achieved full marks or close to full marks.  
Correspondingly, those students in the Heavy Reading (80:10:10) 
cluster scored no better than 50% with over ½ of the students in 
the cluster scoring 0%.  Since the source materials were present 
for the duration of the experiment and there were time constraints, 
the Heavy Reading strategy is not the best strategy to be used in 
this situation.  This result is somewhat surprising since it is 
generally accepted that Heavy Reading is considered a good 
cognitive strategy in a reading comprehension task.  In this case, 
the cognitive load required to be able to answer this type of 
question, the time limitations of the experiment and the fact that 
the source materials were available, make the adoption of the 
Light Reading strategy a better choice.  The reduction in the 
cognitive load by choosing to perform more scanning and 
scrolling through the document rather than committing the 
information to memory when performing Heavy Reading allows 
the participants to perform better on this type of task.  It should be 
noted that for other tasks, a Heavy Reading strategy is the best 
choice.  Furthermore, in situations where the source materials are 
not available during the task, the Heavy Reading strategy is most 
likely the best choice regardless of the task given.  
The Heavy Reading strategy proved to be the most successful 
strategy as the level of difficulty for the questions increased as 
measured by Bloom’s Taxonomy.  The participants were able to 
achieve better marks compared to those that chose a Light 
Medium Reading strategy.  For example, question six of the 
second condition required the participants to put together various 
thoughts and ideas about FaceBook privacy policy from multiple 
documents into a complete whole thought that did not exist in any 
of documents (Bloom level 6).  For this problem the students fell 
into multiple clusters.  Each document had its own set of events 
that tied the reading, scanning and scrolling ratios to that 
document.  This provides a mapping of how each student used 
each document to answer a particular question.  In order for the 
students to get a good grade they needed to fall into the Heavy 
Reading category on all the documents that were required to fully 
answer the question.  Those students that performed Heavy 
Reading on all the necessary documents scored well.  The 
students that performed Heavy Reading on only one of documents 
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they were required to read did not score above 30%.  Those 
students that performed Heavy Reading on two of the required 
documents scored no higher than 83% and those that performed 
Heavy Reading on all of the documents scored no lower than 83% 
and up to 100%.  Those students that used the Light Medium 
Reading strategy scored 0%.  There was one student who scored 
30% that used the Light Medium Reading strategy but their 
answer contained no content from any of the documents, rather 
they used extraneous information from their previous experience.   
The use of the Light Reading strategy did not appear above 
Bloom level three and the Light Medium Reading strategy 
appeared throughout the Bloom levels.  At Bloom level’s five and 
six, those participants that chose to use the Light Medium 
Reading strategy did not receive good grades.  The availability of 
the source documents to the participants did not aid them in 
answering more challenging questions.  The participants needed 
to be able to recall information from a variety of sources in order 
to be able to fully answer the questions.  Instead of using source 
material, probably because they could not recall where it was or if 
it was present, they used incorrect information from some other 
source outside of the experiment.  It should be noted that they did 
not access supplementary material from either books or the 
Internet during this experiment.  
These aforementioned patterns of behavioral clustering being 
predictive of marks do not hold in all cases.  For example, the 
Light Reading (50:30:20) cluster for question 3 in the second 
condition (higher level Bloom with multiple documents) had 50% 
of the students achieve 100% while the other 50% received 0%.  
Since we captured the current reading position within the 
document with each event, we can determine the amount of time 
spent reading, scanning and scrolling over the portions of the 
document that contain the answer.  When analyzed, this 
information is able to fully account for the differences in scores 
found within the cluster of the above example.  For example, 
those students who received 0% spent the majority of their time 
scrolling and scanning compared to those who received full 
scores, who spent much more time reading over the portion of the 
document that contained the answer.    
The Low Level and High Level analysis from Table 1 shows that 
when Bloom is broken down into two categories, low level (levels 
1, 2, and 3) and high level (levels 5 and 6) there are significant 
differences for both the high and low levels between the clusters.  
When we perform the Tukey-Kramer test later on (Table 5), it will 
show that all of the clusters are significantly different from one 
another as well.  Interestingly, when we combine all the levels 
together to see if the clusters by themselves are statistically 
different, we get no significant results.  In other words, higher 
level and lower level meta-cognitive reading strategies seem to 
elicit different behavior on the part of learners. 
In order to find out which clusters were significant from each 
other, a Tukey-Kramer analysis is required.  A Tukey-Kramer 
analysis allows a pairwise comparison of each of the clusters and 
allows a comparison of groups that do not have the same number 
of students.  The minimum significant difference value was used 
to calculate if the pairwise comparison was significant and correct 
for the multiple comparisons.  The numbers in the top right hand 
portion of the Tables 2 through 5 show the Tukey-Kramer 
minimum significant differences (MSD).  The numbers in the 
lower left corner of Tables 2 through 5 show the observed 
absolute value of the difference in means between each pair of 
groups.  Those numbers in the lower left of the tables marked with 

an asterisk are deemed significant if they are larger than their 
corresponding MSD located in the top right of the table.  Table 2 
shows that all of the clusters were significantly different from 
each other.  This was found for all of the other Bloom levels 
except for Bloom level 2 and 5.  Table 3 shows that there are 
significant differences between most of the groups except for the 
Medium Heavy Reading cluster and the Heavy Reading cluster 
for Bloom level 2.  Although the k-means algorithm clustered 
these reading, scrolling and scanning ratios into two different 
clusters, the actual differences between the ratios was close.  So 
the grades tended to be higher in the Medium Heavy Reading and 
at the same time lower in the Heavy Reading cluster.  It was 
situations like this one where the ratios were close together that 
made us wonder if a breakdown of individual Bloom levels was 
the best predictor or if the levels should be more coarse-grained 
and moved into a high level Bloom category and a low level 
Bloom category rather than individual Bloom levels. 
One of the major problems with this experiment was that we did 
not have a large enough sample size for the higher levels of 
Bloom as tested in the second condition.  Table 4 shows that there 
were no significant differences found between any of the clusters 
at Bloom level 5.  A more in-depth analysis showed that most of 
the students chose a similar strategy to answer those questions and 
 

Bloom Level F P F-Critical 

1 79.94 3.14E-16 2.86 

2 39.31 3.74E-11 2.88 

3 147.93 4.80E-11 3.63 

5 0.60 0.63 3.59 

6 50.77 0.000385 5.99 

Low Level 209.48 1.83E-43 2.48 

High Level 95.95 1.64E-17 2.86 

All Levels 
Combined 

1.40 0.25 2.68 

Table 1 One way ANOVA for Bloom Level 

 

 50,30,20 60,30,10 70,20,10 80,10,10 
50,30,20 - 0.08311 0.07745 0.08089 
60,30,10 0.16204* - 0.07976 0.08311 
70,20,10 0.2963* 0.13426* - 0.07745 
80,10,10 0.4447* 0.28268* 0.14842* - 
Table 2 Tukey-Kramer Analysis Bloom Level 1 (* denotes 

significant differences) 

 50,30,20 60,30,10 70,20,10 80,10,10 
50,30,20 - 0.21238 0.19337 0.17629 
60,30,10 0.21341* - 0.2324 0.21839 
70,20,10 0.4906* 0.2772* - 0.19995 
80,10,10 0.6724* 0.459* 0.18183  - 

Table 3 Tukey-Kramer Analysis Bloom Level 2  
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 60,30,10 70,20,10 80,10,10 
60,30,10 - 40.5993 28.4136 
70,20,10 12.182  - 38.9069 
80,10,10 11.666  0.5159  - 

Table 4 Tukey-Kramer Analysis Bloom Level 5 

 
50,30,20 60,30,10 70,20,10 80,10,10 

50,30,20 - 0.09225 0.07145 0.0668 
60,30,10 0.15755* - 0.09473 0.09127 
70,20,10 0.27206* 0.11451* - 0.07019 
80,10,10 0.4222* 0.26463* 0.15012* - 

Table 5 Tukey-Kramer Analysis Low Level Bloom 

therefore no significant differences were found between the 
clusters.  With a larger sample size we believe that even this 
would become statistically significant.  The fact that a significant 
difference was found in Bloom level 6 may just be due to an 
artifact in the data; however, the significant differences found in 
the lower Bloom levels 1 through 3, given the slightly larger N, 
seems to imply that with a larger N we will see those same 
differences in the higher Bloom levels. 
For the low level and high level Bloom groupings, significant 
differences were found between all of the clusters.  Table 5 shows 
the significant differences found for the low level Bloom 
grouping.   

 
Figure 2 Graph of Reading Ratio vs Bloom Level 

Next we analyzed how the clusters were related to the Bloom 
levels.  Figure 2 shows that the Light Reading behavior was not 
found in any questions above Bloom level 3.  This seems to 
indicate that Light Reading behavior is not conducive to the more 
cognitively difficult tasks.  The Heavy Medium Reading cluster 
had only 2 instances in questions above Bloom level 3.  The 
decreasing use of Heavy Medium Reading as the Bloom level of 
difficulty increases shows that some of the students’ adapted a 
heavier reading behavior compared to the Light Reading behavior 
at the lower Bloom levels.  They gave up the Heavy Medium 
Reading strategy for the Heavy Reading strategy used more in the 
higher Bloom levels.  The Heavy Reading cluster was found at 
each of the Bloom levels.  As the Bloom levels increase in 
difficulty, the amount of Heavy Reading increases until all but 
one student are Heavy reading at Bloom level 6.  
Correspondingly, the Light Reading cluster that contains more 
scrolling and scanning decreased as the Bloom level increased.  
This seems to suggest that different strategies are appropriate for 
different Bloom levels.  There were several students that used the 
same cognitive strategy throughout the experiment despite the 
difficulty of the tasks changing.  For example, some of the 
students chose a Heavy Reading strategy for the entire 
experiment.  As a result they did not complete the experiment 
with respect to answering all of the questions as they spent too 
much time reading and not enough time answering the questions.  
Furthermore, students who chose a Heavy Reading strategy for 
the lower level Bloom questions did not always score very well 
even though the questions were cognitively simpler.  The question 
2 example from the first condition cited earlier in the paper is a 
good example.  Other students chose different strategies for 
different levels of difficulty.  For example, they would choose a 
strategy that was higher in scanning for the lower levels of Bloom 
and switch to a Heavy Reading strategy at the higher levels of 
Bloom.  These students were able to complete the experiment and 
answer all of the questions within the time allotted. 
At Bloom level 6 only two strategies are used: the (60:30:10) 
Light Medium Reading and the (80:10:10) Heavy Reading 
strategies.  Although the students’ inclusion in the Heavy Reading 
cluster was a good indicator of higher scores, there was still a lot 
of variance in the grades found within the Heavy Reading cluster 
for Bloom level 6.  The best predictor of scores within the cluster 
was the ratio of reading time spent over the position in the various 
documents that contained the material necessary for the answers.  
This helped to identify those students that merely used their own 
unsupported opinions to answer questions versus those students 
that used information from the articles to support their answer. 

4. CONCLUSIONS 
This experiment demonstrates that the various cognitive strategies 
used by students to solve tasks of varying degrees of difficulty can 
be recognized automatically by an ITS. The use of Bloom’s 
Taxonomy for categorizing the difficulty of the task and k-means 
clustering on the reading-scanning-scrolling strategies allowed for 
the detection of these cognitive strategies.  These clusters can 
easily be turned into metrics that can be used by a system to 
discover the strategies the students are using and provide the 
necessary metacognitive suggestions to improve the student’s 
cognitive skill set.  Furthermore, the experiment shows that 
students may not always select the best strategy to use.  This 
approach is not refined enough to predict an actual score on a 
question.  However, it does provide a method of determining the 
reading strategy being used and predicting if the cognitive 
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strategy that is being employed is one that is positive or negative 
given the difficulty level (in terms of Bloom) of the question.  
Furthermore, since we are able to detect these inconsistencies in 
the use of cognitive strategies automatically we have the potential 
to automatically update a student model, and thereby inform the 
student about the metacognitive strategies they are employing 
and/or suggest appropriate pedagogical tasks that could be useful 
for a student attempting to improve weak metacognitive skills in 
the reading comprehension domain at least.   
It is possible that the course grained detection of cognitive 
strategies will provide direction for systems where the application 
of more fine grained searches and algorithms might be able to 
predict the grade or allow for some specific pedagogical 
interventions.   For example, do the students perform some course 
grained strategy in their initial search through a document and 
then use that information to refine their strategy for one that is 
more optimal for the solving some particular task? 
K-means clustering comes with its benefits and drawbacks.  The 
benefit of this algorithm is that it arrived at four interesting 
centroids that are hard-coded and that can be used in a real-time 
algorithm for the detection of significant reading strategies.  There 
are other clustering methods, such as EM clustering, that may 
work better at determining new cluster centroids or are better at 
including the students in the correct cluster.  This will be a subject 
of further research. 
Future experiments also need to be performed to increase the 
sample size of the experiment, especially in terms of the higher 
Bloom levels.  The increased sample size should allow us to see 
statistically significant cognitive skill differentiation at the higher 
Bloom levels but should also help to validate the reading-
scanning-scrolling clusters that were not statistically viable with 
the current sample size.   These experiments should further help 
solidify the use of Bloom’s Taxonomy as a tool in detecting 
cognitive strategies for reading comprehension tasks.  
Furthermore, the interplay between reading comprehension and 
document selection may provide some interesting insights at the 
higher levels of Bloom’s Taxonomy. 
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ABSTRACT
We apply collaborative filtering (CF) to dichotomously scored
student response data (right, wrong, or no interaction), find-
ing optimal parameters for each student and item based on
cross-validated prediction accuracy. The approach is natu-
rally suited to comparing different models, both unidimen-
sional and multidimensional in ability, including a widely
used subset of Item Response Theory (IRT) models which
obtain as specific instances of the CF: the one-parameter lo-
gistic (Rasch) model, Birnbaum’s 2PL model, and Reckase’s
multidimensional generalization M2PL. We find that IRT
models perform well relative to generalized alternatives, and
thus this method offers a fast and stable alternate approach
to IRT parameter estimation. Using both real and simu-
lated data we examine cases where one- or two-dimensional
IRT models prevail and are not improved by increasing the
number of features. Model selection is based on prediction
accuracy of the CF, though it is shown to be consistent with
factor analysis. In multidimensional cases the item parame-
terizations can be used in conjunction with cluster analysis
to identify groups of items which measure different ability
dimensions.

1. INTRODUCTION
Online courses offer the prospect of large data sets of stu-
dent responses to assessment activities that occur over time
and under varying conditions (e.g. training, practice, graded
homework, and tests). These present a more complex anal-
ysis task than test data recorded under constrained circum-
stances, but they offer the opportunity to learn about learn-
ing (e.g. over a semester, or from a specific intervening in-
structional activity) in the spirit of evidence-centered design
[1]. Analyzing such data will require extensions of standard
assessment methods such as Item Response Theory (IRT),
for example when multiple attempts are allowed [2].

In the context of educational measurement, item response
models have numerous advantages over classical test theory,
and their use is widespread [3]. Despite a variety of available

∗bergner@mit.edu
†also: Ostfalia University of Applied Sciences
‡permanent affiliation: Michigan State University

software packages, IRT parameter estimation is still techni-
cal and goodness-of-fit analysis continues to be a subject
of research [4; 5]. In this paper we describe an alternate
approach to IRT parameter estimation and goodness-of-fit
motivated by machine learning. Our approach springs from
an operationalist interpretation of the goals of IRT as stated
by Lord [6]: “to describe the items by item parameters and
the examinees by examinee parameters in such a way that
we can predict probabilistically the response of any exami-
nee to any item, even if similar examinees have never taken
similar items before.”

Collaborative filtering (CF) is commonly used in recom-
mender systems with the goal of recommending unfamiliar
items to a user based on ratings of those items by other
users and prior rating information by the user in question
[7]. The Netflix prize, for example, drew much attention to
the problem of movie recommendations [8]. The idea behind
any collaborative filter is that when multiple users interact
with overlapping subsets of items, information from the in-
teractions can be extracted and used to make probabilis-
tic inferences about potential future interactions. Memory-
based CFs attempt to do this by exploiting similarity be-
tween users based on a vector of their prior interactions. A
naive algorithm might predict that user J will have identi-
cal interactions to those of the most similar user K (or to
cluster of similar users). This descriptive approach does not
attempt to model, causally or otherwise, the nature of the
individual interactions. By contrast, model-based CF uses
the partial interaction information to model a set of param-
eters for the users and the items which, taken together, can
reconstruct probabilistic predictions about the missing in-
teractions. In this aspect, CF and IRT have the same end.

The structural similarity between IRT and logistic regres-
sion has been noted in [9; 10]. Beck and Woolf [11] have
applied a linear regression machine learning algorithm to an
intelligent arithmetic tutor to predict when a student would
answer a problem correctly (and in how much time). Des-
marais and Pu [12] have compared Bayesian modeling of
knowledge spaces to IRT in pursuit of examinee ability esti-
mation. Whereas Bayesian knowledge tracing requires iden-
tification of subject-specific knowledge components, multidi-
mensional IRT is a general framework for measuring ability
along multiple dimensions.

This paper explores the application of model-based collabo-
rative filtering (CF) to the analysis of student responses with
similar goals to IRT, i.e. finding parameters for students
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and items that combine to predict student performance on
an item by item basis. From machine learning, we borrow
the notion of learning the model from the data. Rather
than assign an item response model a priori, we use the
CF to train a class of log-linear models on the data and
select the one which performs the best in terms of predic-
tion accuracy. The model is selected for capturing maximal
information from a student response matrix, with no prior
knowledge about the data assumed. We show that several
standard IRT models emerge naturally as special cases.

In the remaining sections, we describe the numerical pro-
tocol for parameter estimation as well as an approach to
goodness-of-fit based on prediction accuracy and cross-validation
techniques standard in machine learning. The approach is
naturally suited to comparing different IRT models, both
unidimensional and multidimensional. We apply the CF to
two sets of student response data. One of the two, con-
taining roughly 120 online homework responses in a Gen-
eral Chemistry course with 2000 students, hints strongly at
two dimensions of skill and discrimination for students and
items respectively. We demonstrate that the items, thus
parametrized by the CF, cluster into the same groupings
that are suggested by principal component analysis.

2. REGULARIZED LOGISTIC REGRESSION
AS A COLLABORATIVE FILTER

2.1 Parameter Estimation
We describe the collaborative filtering approach for dichoto-
mously scored responses using regularized logistic regres-
sion. Particular IRT models obtain as a special case.

A binary classifier of individual responses is built ab initio
around a logistic function

P =
1

1 + e−Z
(1)

which provides a mapping from the real line to the probabil-
ity interval [0,1]. We are given a response matrix Usi whose
rows represent the response vector of student s to each item
i. Each student is to be parametrized by a vector θk and
each item by a vector Xk. The vectors are by design of com-
mensurate dimension (known as the number of features nf )
such that a scalar product can be constructed, the logit, or
inverse of the logistic function,

Z = θ ·X =
∑
k

θkXk (2)

Although student and item indices have been suppressed, Z
is a matrix product of θ (Ns × nf ) and X (nf × Ni ). It
is useful to modify the description slightly to include a bias
component (fixed, equal to 1) on either the student side or
the item side, or both, by considering generalizations such
as

θ∗ =

(
1
θ

)
X∗ =

(
X
1

)
(3)

in which case

Z = θ∗ ·X∗ = X0 +
∑
k

θkXk + θ0 (4)

where we have taken the liberty of relabeling the indices for
simplicity of presentation. The bias component in a student
or item vector does not add parameter information but im-
portantly allows the logit to be a function of the difference
between student and item parameters. (Nothing is gained by
having more than one bias component since a sum of student
or item parameters defines a single alternate parameter with
the same information). The logistic function now generates
a probability (or expectation) matrix with the dimensions
Ns ×Ni of the response matrix Usi,

Psi =
1

1 + e−Zsi
(5)

The likelihood function for the observed response matrix U
given the parameters θ and X is given by the product

L(U |θ,X) =
∏
s

∏
i

PUsi
si (1− Psi)(1−Usi) (6)

and remains to be maximized by suitable assignment of stu-
dent and item parameters. For computational benefit, one
typically uses the logarithm of the likelihood function. If
we multiply the log likelihood by −1 (turning the maximum
into a minimum), we can relabel the result in the convention
of machine learning as the “cost function”

J(θ,X) = −
∑
s

∑
i

[Usi logPsi + (1− Usi) log(1− Psi)]

(7)

Numerically maximizing the likelihood function L or (equiv-
alently) minimizing the cost function J is quite fast on a
modern desktop with off-the-shelf optimization packages (in
our R implementation, we use optim with method “BFGS”).
Typically these min/max finders take as arguments one long
parameter vector (formed by unrolling the X and θ matri-
ces) and a definition of the cost function and its gradient.
As of this writing, a response matrix of 2000 students and
50 items takes about 10 seconds to process on a 3.4 GHz
Intel i7 machine. This approach to Joint Maximum Likeli-
hood Estimation (JMLE) no longer necessitates a stepwise
update of item and student parameters as was once standard
[13; 14; 15].

As the number of model features nf is increased in any data
fitting scenario, it becomes possible to minimize the cost
function with parameters that do not generalize well to new
data, i.e. to over-fit the data. Regularization terms may
be introduced in the cost function to reduce over-fitting.
To equation 7 we add the terms (sums exclude any bias
components)

λ
∑
k=1

θ2k + λ
∑
k=1

X2
k (8)

where the optimal regularization parameter λ can be deter-
mined from cross-validation as discussed is section 2.3.

2.2 IRT Recovered as Special Cases of the CF
It is now possible to show explicitly how IRT models emerge
from this framework. To keep track of the absence or pres-
ence of the optional bias component, we label the dimension-
ality of the student or item vector as an ordered pair. The
first component refers to the number of information-carrying
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parameters while the second (either a zero or a one) indi-
cates whether or not a bias component is used. Thus the
Rasch model (operationally equivalent to the 1PL model)
obtains under the arrangement

dim(θ) = (1, 1) θ∗ = (1 θ)
dim(X) = (1, 1) X∗ = (X 1)

}
→ ZRasch = X + θ (9)

where we have used the generalized form of the logit con-
structed in equation 4. The scalars θ and X here are iden-
tified with the student ability and item easiness parameters
in the Rasch model.

The Birnbaum 2PL model, still unidimensional in skill, is
obtained as

dim(θ) = (1, 1) θ∗ = (1 θ)
dim(X) = (2, 0) X = (X1 X2)

}
→ Z2PL = X1 + θX2

(10)

Although the slope-intercept form of the logit appears in the
literature, it is common to map X1 and X2 to the discrim-
ination and difficulty parameters α and β, where α = X2

and β = −X1/X2, such that Z = α(θ − β).

As a final example, Reckase and McKinley [15; 16; 17] have
defined as M2PL the multidimensional extension of the 2PL
model for m skill dimensions, which emerges here when

dim(θ) = (m, 1) θ∗ = (1 θ1 . . . θm)
dim(X) = (m+ 1, 0) X = (X0 X1 . . . Xm)

}
→ ZM2PL = X0 +

m∑
i=1

θmXm

(11)

This is a compensatory multidimensional model to the ex-
tent that high values of one component of θ may compensate
for low values in another component. However the model is
still capable of describing items which have very low discrim-
ination along one or more skills. The Xm item parameters
for m > 1 should be seen as “discrimination-like” param-
eters whereas a “difficulty-like” parameter along each axis
could be constructed by analogy with the 2PL model as the
ratio −X0/Xm.

2.3 Evaluating the Model, or Goodness-of-Fit
The CF minimization procedure results in a set of parame-
ters for each student and item. These can be used to con-
struct item response curves (or surfaces or hyper surfaces) as
a prelude to studying model-data fit. An alternate approach
however, common to machine learning algorithms, is to se-
quester a portion of the response matrix as a test set which is
not considered during parameter estimation. Once parame-
ters are estimated using the remaining “training” data, these
same parameters are used to predict the values in the test
set (where a probability value of greater than 0.5 results in
the prediction of a correct item response). The percentage of
correctly classified elements is the accuracy score. An inter-
mediate test-set can be used for cross-validation, for example
to adjust the regularization parameter to avoid over-fitting
the training set. Moreover by subsampling multiple times
(either with disjoint partitions or random subsamples) and
averaging the accuracy score, subsampling variability can be
controlled.

In the following section, we present results of data analyzed
using this recipe, with 30% of the response matrix randomly

subsampled for use as a test set, repeating 100 times. In
section 4, we discuss interpretation of the accuracy score as
a goodness of fit statistic.

3. SAMPLE RESULTS OF CF ANALYSIS
We analyze three data sets, two real and one simulated. The
first set comes from a pre-test administration of a physics
instrument, the Mechanics Baseline Test (MBT) [18] at the
Massachusetts Institute of Technology over multiple years
from 2005-2009 (26 items and 2300 examinees). The MBT is
a standard instrument used to gauge student learning gains
on and competencies with essential concepts in introductory
physics. A superset of these data has been described and
analyzed by Cardamone et al. using (unidimensional) IRT
[19].

To test whether the collaborative filter would indeed“discover”
multidimensionality of skills in student response data, we
constructed a second data set of simulated responses to
a two-skill test, assuming correlated skill-components but
unidimensional items. In other words, 2000 skill-pairs were
sampled from a multivariate Gaussian distribution and a re-
sponse matrix for 60 items simulated based on a 2PL unidi-
mensional model. Responses to the first 30 items depended
only on the first skill component, while responses to the last
30 items depended only on the second component. The two
skills over the sampled population were correlated with a
Pearson coefficient r = 0.58.

The third data set comes from online homework data us-
ing LON-CAPA for a General Chemistry class at Michigan
State University (MSU). The class was selected for study
because it had a large student enrollment in a typical year
(N = 2162), and because the 120 items were repeatedly ad-
ministered over several years between 2003-2009. Although
students were allowed multiple attempts on homework prob-
lems, the responses were scored correct/incorrect on first
try for this analysis. No prescreening of the items was per-
formed, and the data analysis was completely blind to the
content of this course.

When the dichotomously scored response matrix contained
omitted responses (up to 40% in the General Chemistry
homework) the sum over matrix elements in Equation 7 and
the computation of the accuracy score both excluded omit-
ted responses.

For each data set, the model space was scanned by starting
with dim(X) = (1 0), dim(θ) = (1 0) and proceeding incre-
mentally subject to the commensurability constraint (i.e. to
construct a scalar product of θ and X). In the figures below
we denote each model by combining the dimensions of θ and
X into one compact string (dim(θ) dim(X)), i.e. (1010). In
this notation, the model (2130) is read as containing two
skill parameters plus a bias parameter and three item pa-
rameters (no bias). The apportionment of bias parameters
means that both skill parameters multiply an item parame-
ter, but there is one item parameter that remains as a term
by itself in the logit.

Figures 1-3 display the accuracy scores of the CF models
as the dimensionality is varied. For reference, we indicate
with shaded regions the separation of the model space by
the dimensionality of student skills. We also indicate with
vertical dashed lines the CF models corresponding to par-
ticular IRT models. We observe that for the MBT data set,
accuracy increases up to the unidimensional 2PL model, but
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Figure 1: Model by model accuracy scores using the Me-
chanics Baseline Test data. Performance peaks at the 2PL
model and is not improved by additional features.
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Figure 2: Model by model accuracy scores using the simu-
lated two-skill responses. Two-dimensional models (and the
2d-2PL model in particular) perform optimally.

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

63
.0

63
.5

64
.0

64
.5

65
.0

MSU General Chem

Ac
cu

ra
cy

 (%
)

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

1PL

2PL 2d2PL

1d skill 2d skill 3d skill 4d skill

 (1
01

0)
 

 (1
11

1)
 

 (1
12

0)
 

 (2
01

1)
 

 (2
02

0)
 

 (2
12

1)
 

 (2
13

0)
 

 (3
02

1)
 

 (3
03

0)
 

 (3
13

1)
 

 (3
14

0)
 

 (4
03

1)
 

 (4
04

0)
 

 (4
14

1)
 

 (4
15

0)
 

 (5
04

1)
 

 (5
05

0)
 

CF Model (by parameter dimensionality)

Figure 3: Model by model accuracy scores using online Gen-
eral Chemistry homework. Two-dimensional models (and
the 2d-2PL model in particular) outperform unidimensional
models.

no significant gains are achieved by going to higher dimen-
sional models. In the simulated response data based on a
two-part, two-skill test, an accuracy improvement is realized
by going to two-dimensional models (and the 2D-generalized
2PL MIRT model in particular), but again this asymptotic
limit is not exceeded by higher-dimensional models. This is
not surprising given that the simulated data were devised
using two skills, but it serves as confirmation that the CF is
capable of learning this feature of the data. The substantive
result is that the General Chemistry analysis (Fig. 3) follows
the pattern of the two-dimensional simulated data and not
the unidimensional MBT data.

We note that among the four possible models representing
m skill dimensions (for m > 1) the latter two models appear
to outperform the first two (except in the case of the simu-
lated data). The better performing models are the Reckase
M2PL model (m 1 m+1 0) and a hybrid model (m 1 m 1)
which could be thought of as M2PL along all but one skill
component and 1PL for the remaining skill. Models with
higher dimensionality require larger regularization parame-
ters to avoid over-fitting. The apparent degradation of per-
formance for increasing dimensionality is most likely due to
over-fitting/sub-optimal choice of regularization parameter
(the choice was suitable for the MBT data).

To understand the structure of the simulated two-dimensional
data set and calibrate our perceptions for the General Chem-
istry data, we perform an exploratory factor analysis of the
simulated response matrix and show the scree plot in fig-
ure 4(a). We plot the projection of each item (factor loading)
onto the second principal component in figure 4(b). Whereas
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Figure 4: Simulated two-skill analysis: (a) scree plot and
(b) projection of items onto second principal component for
simulated data set. Color is added in (b) to identify points
in later figures.

the first principal component captures the variance in overall
score or (unidimensional) skill, the second component

will differentiate between students who may have the same
overall score but perform proportionately better or worse on
different groups of items.

The second principal component loadings in figure 4(b) clearly
distinguish two different subsets of items in the simulated
data, the first and second half of the item set by design.

In figures 5(a) and figure 5(b), we now plot the items as
points in the item parameter space generated by two CF
models: the (1120) CF model corresponding to unidimen-
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Figure 5: Simulated two-skill analysis: Item parameter
space in (a) 1d- and (b) 2d-2PL IRT. Color coding is based
on second principal component loading, and k-means cluster
analysis is superimposed using shapes in (b).

sional 2PL (the full item-parameter space is 2-dimensional,
spanned by X1 and X2) and the (2130) CF model, corre-
sponding to 2d-2PL IRT. There are three item parameters
in the latter model, and we examine the reduced parame-
ter space spanned by the two discrimination-like parameters
X2 and X3. The parameters plotted here come from a single
run of the CF algorithm.

The unidimensional model blurs any distinction between the
two known groups of items, but this distinction is manifest
in the 2d-2PL model. The roughly orthogonal arms in fig-
ure 5(b) reflect the fact that in our simulated responses, each
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Figure 6: General Chemistry homework data justifies two-
dimensional models. Scree plot (a) showing two significant
eigenvalues and (b) projection of items onto second principal
component. Color is added in (b) to identify item points in
later figures.

item was truly unidimensional in skill-dependence and thus
does not discriminate at all with respect to the complemen-
tary second skill. We superimpose the results of a k-means
(with k = 2) clustering analysis indicated by shape on the
plotted points in figure 5(b). All the red (blue) points are
overlapped with triangles (circles), showing that the cluster-
ing algorithm finds the same two groups that were identified
by the factor loading in figure 4(b). We have verified that
this clustering is manifest in three dimensions as well using
a 3d-2PL model on simulated data.
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Figure 7: General Chemistry: (a) unidimensional 2PL item
parameter space shows little separation of colors (corre-
sponding to loading onto the second principal component).
Conversely (b) 2d-2PL IRT clearly separates color-coded
items in the space of two discrimination-like parameters;
moreover cluster analysis in this space identifies the border.

We repeat the procedure to visualize the results of the Gen-
eral Chemistry data in figures 6(a)-7(b) with similar results.
The cluster analysis in the 2d-2PL parameter space identi-
fies the same two groups as the principal component analysis
for over 90% of the items (discrepant items are those that
fall very close to the zero line in figure 6(b)).

We emphasize that the choice of model (2130) was driven by
the accuracy score of the CF algorithm. Given the model,
the two clusters of items emerge from the assignment of

Proceedings of the 5th International Conference on Educational Data Mining 100



discrimination-like item parameters which best predict the
response matrix. We have added no information about the
items nor offered any interpretation of the meaning of the
two clusters in this case, though we are working with domain
experts on identifying the significance. For the simulated
data, the two clusters emerge as expected from simulated
responses predicated on the assumption that the different
item groups test different, though correlated, abilities of the
examinees.

4. INTERPRETATION OF THE ACCURACY
SCORE STATISTIC

It may be noted that the overall accuracy scale differs in each
of the figures 1-3, that the scores sometimes seem rather
unimpressively low (≈ 65%), and that in some cases the
model scores for a given data set differ by only a fraction
of one percent. Since we claim that this score provides a
basis for preferring one model over another, it behooves us
to discuss the meaning of the score value itself.

Beck and Woolf also observed that in any probabilistic bi-
nary classifier, the maximum expected accuracy score de-
pends on the distribution of values in the probability (or
expectation) matrix [11]. For example, if all probabilities
(for each student-item pairing) are equal to 0.75, then all
responses would be predicted by the binary classifier to be
correct, though of course only 75% should be expected. Per-
haps less intuitive, if the values in the probability matrix are
distributed uniformly over all values in the interval [0, 1], the
expected accuracy score will also be 75%.

A workaround suggested in [11] is to bin the matrix elements
into probability bins before comparing with the observed
responses. This indeed results in a visible one-to-one cor-
respondence between expected bin-fractions and observed
bin-fractions, but bin-based statistics inevitably raise sev-
eral concerns about the binning procedure itself. Certainly
binning choice is not a characteristic of the model. Instead,
we probe the accuracy score formally as follows. If the dis-
tribution of p values in the expectation matrix is given by a
distribution function g(p), then the expected accuracy score
is given by the following “average”

S =

∫ 0.5

0

(1− p)g(p)dp+

∫ 1

0.5

pg(p)dp (12)

where the first term accounts for predicted-to-be-wrong and
the second term for predicted-to-be-right matrix elements.
The shape of g(p) in turn depends on the distribution of the
student and item parameters and the function that is used
to model the probability. As an explicit example, for the
Rasch or 1PL model, the probability of a correct response
when the student skill is θ and the problem difficulty is β is
given by

p =
1

1 + e−(θ−β) (13)

If student skills are distributed as gθ(θ) and item difficulties
as gβ(β), then g(p) can be shown to be the convolution

g(p) =
1

p(1− p)

∫ ∞
−∞

gθ(θ)gβ

(
θ + ln

1− p
p

)
dθ (14)

Although the model dependence has been folded into equa-

tion 14, the dependence on the distribution of item difficul-
ties is explicit. The accuracy score thus cannot be meaning-
fully compared for two different data sets unless the exam-
inees and items are drawn from very similar distributions.
For 2PL and M2PL models, the best score will also be a
function of the distribution of item discriminations. In fact,
we have observed that after removing two MBT items with
pathological item response curves found in [19], prediction
accuracy on the remaining data increased by 2 percentage
points, while this gain was not observed when two randomly
selected problems were removed.

In view of the model dependence of equation 14, a cau-
tionary flag might be raised in using the accuracy score to
compare different models on a given data set. However since
the models are designed to predict the data, we argue that
this model-dependence is justly accounted for in using the
accuracy score as a goodness-of-fit statistic.

In practice it is much easier to calculate the expected score in
equation 12 numerically from the expectation matrix with-
out any integrals. Simply replace all probabilities less than
0.5 by one minus the probability and average over the re-
sulting matrix.

5. SUMMARY AND CONCLUSIONS
We have applied a model-based collaborative filter, i.e. a
numerical method for analyzing a dichotomous student re-
sponse matrix with the goal of predicting the observed re-
sponses. Relying on readily available optimization code, the
CF is fast, flexible and stable. We showed that CF nat-
urally parameterizes a series of models with increasing di-
mensionality and that this family contains several common
unidimensional and multidimensional IRT models.

We showed with sample data that the CF can aid in model-
selection and that the multidimensional-model capability
can result in improved prediction accuracy and easy investi-
gation of whether the data are better fit by alternate models.
Practitioners of IRT will be pleased to learn that, at least
in the cases considered here, CF was not able to improve
significantly on the quality of fit achieved using standard,
but in two cases multidimensional, IRT models. Moreover,
the dimensionality of models suggested by the CF and the
clustering of items in the ensuing parameterizations are con-
sistent with results from exploratory factor analysis.

Finally, the stability, speed, close connection with IRT, and
easy generalizability of CF recommends it very highly for
use in analyzing student response data of all sorts.
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ABSTRACT
This paper focuses on predicting drop-outs and school fail-
ures when student data has been enriched with data derived
from students social behaviour. These data describe so-
cial dependencies gathered from e-mail and discussion board
conversations, among other sources. We describe an extrac-
tion of new features from both student data and behaviour
data represented by a social graph which we construct. Then
we introduce a novel method for learning a classifier for stu-
dent failure prediction that employs cost-sensitive learning
to lower the number of incorrectly classified unsuccessful
students. We show that the use of social behaviour data
results in significant increase of the prediction accuracy.

1. INTRODUCTION
One of the current trends in higher education is the sub-
stantial increase of the first-year students and, consequently,
the volume of educational data. Thousands of students are
admitted to study at universities every year. They reach in-
terim results, pass or fail at exams, communicate with each
other during their studies and many of them fail to finish
their study successfully. University staff would like to en-
courage such students to finish their studies but it is hard
to identify them early also because of the huge number of
enrolled students. It is important to explore methods that
can extract reliable and comprehensive knowledge from the
student data that allow prediction of a drop-out with a suf-
ficiently high accuracy.

In this work we utilized student data that have been stored
in the Information System of Masaryk University (IS MU),
which stores educational data and comprises of all informa-
tion about students and their studies, about teachers and
courses, and also provides examination management tools,
excuses registration system, evaluation of on-line tests, and
various forms of communication, e.g. discussion boards.
We utilized only a subset of information stored in IS MU
that is relevant for prediction of the student success, like
capacity-to-study test scores, gained credits, average grades,
or gender. Data from IS MU are periodically imported to
data warehouse Excalibur [3] that combines three main dis-
ciplines of data processing—data management, data mining
(DM), and visual analytics.

IS MU also stores the complete history of users’ requests
to the system. Data about students’ social behaviour, such

as intensity of interpersonal communication or number of
mutually shared files, can be observed and stored either
immediately, when the particular system function is used,
or later from the complete history of users’ requests that
is present in the form of the system access log. Relations
among students (identified from their social behaviour) are
main building blocks of a latent social network. With the
help of Social Network Analysis (SNA) [4] we compute sev-
eral new features of a student from the network, for example
neighbours characteristics.

In this paper we introduce a novel method for data gener-
ation, pre-processing, and educational data mining (EDM)
[1; 14; 10] that utilize both the student records and the data
about their social behaviour. We show how to predict stu-
dent drop-out and school failure using DM [7] methods and
SNA. We use SNA for creating new study-related features
that can help conventional learning methods to increase the
accuracy of predicting student performance or detecting a
possible drop-out. We intend to build classifiers for early
detection and long term prediction of a potential drop-out.
The early detection implies a need for the history of data.

Preliminary results for this task were published in doctoral
workshop [2]. The highest measured accuracy was above
80% when only student data were employed. We enriched
the student data with the data about social behaviour and
achieved an increase of the overall accuracy of about 10%.
In both cases, the information gain based machine learning
(ML) methods generated the most successful classifiers.

Another approach to the prediction of a student study per-
formance that is based on questionnaires can be found in
[12]. In [15], a design of a web based system for solving
issues related to student performance in higher education
is proposed. It utilizes a quality function deployment in
combination with DM methods. A novel ML method pre-
dicting drop-out in distance higher education from imbal-
anced datasets is discussed in [9]. It reveals limitations of
the existing methods and proposes another approach based
on local-cost sensitive techniques. A novel approach to iden-
tify factors influencing the student success is discussed in
[11]. It focuses on factors available before the beginning of
a students degree program suggesting associative rules for
subgroup discovery to predict possible drop-outs. A signifi-
cant improvement of prediction of freshmen drop-out using
cost sensitive learning is described in [5]. The highest accu-
racy of classification was achieved using decision trees. In
comparison with our approach of utilizing social behaviour,
a combination of data mining methods with natural lan-
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guage processing, especially text mining, was employed in
[17] to increase the student retention.

In the following section, we introduce the structure of both
the student data and the social behaviour data and the nec-
essary preprocessing steps. We describe how we built the so-
cial network and applied the analytical methods in Section
2.2. Section 2.3 describes the DM method used for drop-out
prediction. In Section 3 we demonstrate the results and the
improvement of the classification by measuring the amount
of the additional data explored by SNA. Then we show that
high-accuracy classifiers can be created for every student
regardless of the actual stage of the study. Discussion of re-
sults is in Section 4. Finally, we conclude this paper with an
overview of the main results and future work in Section 5.

2. DATA AND DROP-OUT PREDICTION

2.1 Student data
Our research considers bachelor students of Applied Infor-
matics admitted to Faculty of Informatics, Masaryk Univer-
sity in years 2006, 2007, and 2008. For that period we can
obtain data that match the whole length of the standard
bachelor study, i.e. three years. The year 2006 as the lower
bound is set as the year when social behaviour data have
been started to collect. We explored only the students that
were in contact with the school community. Such students
produce social behaviour data characterizing them in the
university setting.

We selected only general attributes of studies to be able to
apply our approach to students of any faculty. To predict a
drop-out through the whole period of the study we collected
data snapshots for each term of student studies. The set
of attributes can be divided into three categories according
to the type: Student-related attributes, Semester-related at-
tributes and Attributes related to other studies.

Student-related attributes comprise of the following:

(1) gender

(2) year of birth

(3) year of admission

(4) exemption from entrance exam

(5) capacity-to-study test score—a result of the entrance
examination expressed as the percentage of the score
measuring learning potential

Semester-related attributes are the following:

(6) the number of finished semesters

(7) recognized courses—the number of related courses
finished in other studies

(8) recognized credits—the number of credits gained from
recognized courses

(9) credits to gain—the number of credits to gain for en-
rolled but not yet finished courses

(10) gained credits—the number of credits gained from fin-
ished courses

(11) uncompleted courses—the number of courses a stu-
dent has failed to complete

(12) second resits done—the number of the utilized second
resits. Each student can exercise the right to the second
resit for only as many times as the standard length of
the study in years increased by one.

(13) excused days—the number of days when a student is
exused

(14) average grades—the average grade computed from all
gained grades

(15) weighted average grades—average grades weighted
by the number of credits gained for courses

(16) the ratio of the number of gained credits to the
number of credits to gain

(17) the difference of gained credits and credits to
gain

Because a student can be enrolled in more studies or also
on more faculties, we added also attributes related to other
studies of the student. This set of attributes consists of the
following:

(18) the number of parallel studies at the faculty

(19) the number of parallel studies at the university

(20) the number of all studies at the faculty

(21) the number of all studies at the university

Data that consist of values of all attributes characterizing
a study in a point of time have been extracted from Excal-
ibur. The data set contained 775 students, 837 studies and
4,373 examples in total—one example per a term, where the
number of terms for a student varied from 1 up to 8.

2.2 Social behaviour data
The aforementioned set of 775 students is the core of ego-
centered social network. We create it from the students plus
their direct schoolmates and relations among them. Rela-
tions reflects the patterns of social behaviour data. Then we
compute new student features from the network structural
characteristics and student direct neighbours attributes.

To obtain knowledge concerning a student from perspective
of his or her engagement in the school community, we con-
struct a sociogram, a diagram which maps the structure of
interpersonal relations. Such social graph allows to find new
features by link-based ranking.

There are number of interpersonal ties already evaluated to
enhance IS MU full text search. We compute them either on-
line or through system log processing and store them both in
the search engine index as a relevant document non-textual
tokens and as a part of the user model. These are then
used to better order the search results by matching docu-
ments (e.g. e-mails, files, courses) related to the respective
users [16].
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Pajek

Figure 1: Network with vertices arranged by Kamada-Kawai
energy layout algorithm. Dark nodes represent students
with successfully finished studies.

Some ties are intuitive and strong facts, namely:

(a) explicitly expressed friendship

(b) mutual e-mail conversation

(c) publication co-authoring

(d) direct comment on another person

Weaker ties are more hidden and are derived from the fol-
lowing facts:

(e) discussion forum message marked as important

(f) whole thread in discussion forum or blog marked as fa-
vourite

(g) files uploaded into someone else’s depository

(h) assessments of noticeboard’s messages

(i) visited personal pages

We measure the value of a tie by its importance and weight
it by the number of occurrences. For instance, a tie repre-
senting exchange of several e-mails have grater value than
a visit to somebody’s personal profile. The identification of
the best weights is a possible subject of future evaluation.
Another notable property of a relation is its direction. It in-
dicates the source and the target of an action which we count
as the relation. For example, a person who sent/received an
e-mail or who uploaded/received a file in the source/target
respectively. Some actions have no direction, e.g. marking
the same discussion thread as a favourite one.

As a result we calculated a single number from all mentioned
ties reflecting the overall strength of a student relation to
any given schoolmate. We found 13,286 such connections
representing graph arcs (oriented lines) valued by this num-
ber.

Now, the network can be visualized for exploratory analy-
sis of its properties. For example, after applying Kamada-
Kawai energy layout algorithm [8] (Fig. 1), we can see that
the successful students (black nodes) occupy the area in the
middle of the network and are rarely seen on the periphery.
In opposite, the unsuccessful ones (white nodes) are placed
all over the graph. This, along with results presented later,
supports our assumption that higher number and stronger
ties have a positive impact on the success of the study while
absence of the ties predicts a potential to failure.

2.2.1 New feature generation
This single mode social network of students and their inter-
personal ties (i.e. homogeneous information network) allows
us to explore it not only visually but also by tools for social
network analysis, e.g. Pajek [13]. Moreover, previously un-
seen features of each student may be computed with such
tools. The following two types of features are interesting
and give us a new insight into the data.

First, features obtained from the network structure are com-
puted from basic structural characteristics, namely the ver-
tex degrees, the summary of incident line values, and the
betweenness centrality:

(22) degree—the number of lines that incident with a ver-
tex, represents how many relations the student is in-
volved in

(23) indegree (or popularity)—the number of arcs coming
to the node, it represents for how many other members
of the network the student is a subject of interest

(24) outdegree—the number of arcs with opposite direction
represents an interest initiated by the given student

(25) sum of incident line values—to measure also the
strength of the ties

(26) betweenness centrality—the number of shortest paths
from all vertices to all others that pass through given
vertex represents student’s importance (global to the
network)

Second, features obtained from the neighbourhood proper-
ties are also important to examine, and we must measure
not only the quantity of person’s ties but also their quality.
In other words, the academic performance of the surround-
ing students is important, because it would be hard to get
advantage from communication with unsuccessful students.
We selected four student features from the data set, pre-
ferred by their information gain, to calculate averages of the
neighbourhood values (ANV):

(27) capacity-to-study test score ANV

(28) grade average ANV

(29) proportion of enrolled and fulfilled credits ANV

(30) credits per semester ANV1

2.3 Process of drop-out prediction
We aimed at developing an accurate method for drop-out
prediction that would also allow predicting the drop-out in
an early stage of the study. The method should have min-
imum of false negatives, i.e. students that have not been
recognized to be in danger of dropping-out.

When all the attributes were used the accuracy was poor.
That is why we utilized feature selection methods to reduce
the dimensionality of the student data extracted from Ex-
calibur data warehouse. We improved the pre-processing
method described in [12] by computing the average rank of
attributes while eliminating the extreme values.

1Surprisingly, when we tried to use these features with
weighting using the strength of the corresponding connec-
tion, it has not improved the performance of the classifiers.
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The goal was to preserve reliability of attributes for classifi-
cation after the reduction. Therefore we utilized a combina-
tion of feature selection/estimation algorithms based on dif-
ferent approaches. We employed three algorithms based on
entropy (InfoGainAttributeEval, GainRatioAttributeEval
and SymmetricalUncertAttributeEval), an algorithm select-
ing the minimum-error attribute for prediction (OneRAt-
tributeEval), an algorithm utilizing χ2-distribution (Chi-
SquaredAttributeEval), an algorithm preferring attributes
highly correlated with the class but with low intercorrela-
tion to others (CfsSubsetEval), an algorithm looking for the
smallest subset of attributes having the consistency equal
to that of all attributes (ConsistencySubsetEval), and an
algorithm assessing attributes by finding the nearest neigh-
bours for a randomly chosen example from every class. It
compares the accumulated differences of values of the cor-
responding features (ReliefFAttributeEval), and we utilized
also two filters (FilteredAttributeEval, FilteredSubsetEval).
Then, we computed a list of attributes ordered by the av-
erage ranks gained from the ordered lists produced by the
feature selection algorithms evaluating the significance of
the attributes. For every attribute, we skipped the extreme
values—the best and the worst evaluations. We reduced the
set of attributes to the 22 most relevant and learned the
classifiers again. Except for the Naive Bayes (NB) method,
all used machine learning methods achieved a higher accu-
racy. Examples of the removed attributes are the following:
being a seminar tutor, the number of password changes, or
the number of enrolled courses.

The list of the refined set of attributes in relevance order
can be found in Table 1.

Then we computed significant structural characteristics of
the social network to gain additional attributes implying
social relations among the students.

We employed machine learning methods from Weka on the
student data and then on the data that contained also the
social behaviour data. To cover all types of machine learn-
ing algorithms, we employed J48 decision tree learner, IB1
lazy learner, PART rule learner, SMO support vector ma-
chines, and NB classifier. We also employed ensemble learn-
ing methods, namely bagging and voting. We utilized cost-
sensitive learning (CSM) and then bagging with cost matrix.
All methods have been used with default parameter settings.
Performance was measured in terms of accuracy (the num-
ber of correctly classified examples over the number of all
examples) and True Positive Rate (the number of correctly
classified examples from the class of unsuccessful students).
We used 10-fold cross-validation.

3. RESULTS
First we created a classifier using only the social behaviour
data but the accuracy did not raise above 69%, in fact, it
was lower than for learning from student data. However, if
we added the attributes that described the social behaviour
to the student data, we observed an increase of accuracy
that reached 11%. Main results can be found in Table 2. In
the first column represents the results obtained from Excal-
ibur data warehouse, followed by the results for the Excal-
ibur data enriched by the social behaviour data. The base-
line was 58.86%. The highest accuracy was obtained with
PART, 93.67%, and the True Positive (TP) rate 92.30%.
Accuracy for the data without information about student’s

social behaviour did not overcome 90% and the best result
was obtained with decision tree learner, 82.53%, and the TP
rate 78.50%.

The most significant attributes include the ratio of the num-
ber of gained credits to the number of credits to gain, and
the average of this ratio measured for neighbours weighted
by the strength of their relation in the social network. The
seven most relevant attributes are presented in Table 1.

Table 1: Seven the most relevant attributes
Order Avg. Ord. Attribute

1 1.000 (16)
2 2.000 (14)
3 2.625 (15)
4 4.500 (5)
5 5.625 (17)
6 6.000 (8)
7 7.750 (10)

Table 2: Learning from student data (Excalibur) and stu-
dent data enriched with social behaviour attributes (With
SNA) [%]

Excalibur With SNA
Method Accur. TP Accur. TP
ZeroR 58.86 – 58.86 –
NB 77.57 73.5 72.26 83.4
SMO 79.17 64.6 81.59 74.2
IB1 78.14 72.5 89.80 86.2
PART 82.44 73.7 93.67 92.3
OneR 75.89 57.9 88.45 83.8
J48 82.53 78.5 89.89 88.8

We consider social behaviour data to be a characteristic of
a student. Therefore, we learned classifiers only from the
social behaviour data without snapshots of student studies
data. The baseline was slightly lower than for the student
data or the enriched data. The most successful classifier was
PART with the accuracy 68.82% and the TP with the rate
70.50%. The results are in Table 3.

Table 3: Learning from social behaviour attributes only [%]
Method Accur. TP
ZeroR 50.18 –
NB 64.04 80.6
SMO 63.68 83.5
IB1 60.10 63.5
PART 68.82 70.5
OneR 59.50 57.3
J48 68.34 65.0

Then we analyzed how successful a prediction of a drop-out
would be for different time periods. We learned classifiers
on interim study results enriched by social behaviour data
to recognize drop-outs as soon as possible. Results in terms
of accuracy (%) are in Table 4.
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Table 4: Learning from student data enriched with social behaviour attributes per semester [%]
1 2 3 4 5 6 7+

Method Accur. TP Accur. TP Accur. TP Accur. TP Accur. TP Accur. TP Accur. TP
ZeroR 50.18 – 50.25 – 53.87 – 58.56 – 64.02 – 72.20 – 76.77 –
NB 71.45 69.1 78.87 75.8 78.98 80.7 78.77 81.8 78.66 80.2 77.56 76.3 68.60 68.0
SMO 72.40 73.9 81.33 80.2 81.02 77.5 83.22 78.1 83.74 72.3 87.56 67.5 85.48 52.3
IB1 66.48 62.4 70.64 67.2 66.72 61.1 71.40 63.2 74.59 61.0 77.07 53.5 90.93 75.8
OneR 62.84 65.7 77.89 77.3 79.71 74.4 83.56 74.4 81.50 66.7 83.90 60.5 80.58 37.5
PART 70.13 69.5 74.82 74.3 76.20 72.8 76.20 73.1 77.24 69.5 79.51 64.0 91.11 83.6
J48 70.73 71.2 74.82 72.8 75.77 72.5 77.91 72.7 77.64 67.8 80.00 63.2 87.11 68.8

Subsequently, we focused on prediction of drop-outs when
the history of data about student studies is employed. All
data snapshots were used. Results in terms of accuracy (%)
are in Fig. 2. On X axis there is a period of study in
semesters (e.g. 3 means that only the data from the first 3
semesters have been used for building the classifier). More
details are in Table 5 and Table 6.

Figure 2: Classifications according to semesters

We can see that for all periods the classification that used
only the student data achieves lower accuracy in comparison
to the classification on the enriched data. Moreover, start-
ing with the period of the first four semesters the accuracy
of classification on the enriched data was higher than 90%.
We can conclude that four semesters is a period when our
model can predict a drop-out with high probability. We con-
sider this result to be satisfactory. The Masaryk University
evaluates the learning potential of students before they are
admitted to study.

For our task it is more serious when a student is not recog-
nized to be in danger of a drop-out than the opposite situ-
ation. To decrease the number of incorrectly classified un-
successful students, we tested cost-sensitive learning (CSM)
and also bagging, and then bagging with cost matrix, al-
ways with the most accurate learning algorithm as the base
classifier. In the case of cost-sensitive learning, we set a cost
matrix to [0, 1, 0.5, 0] so that the cost of false negative error
(i.e. of non-recognized weak students) was twice as high.
All the results are in Table 7 in the form of Accuracy (%),
TP rate (%), and Incorrectly classified unsuccessful studies
(ICUS).

4. DISCUSSION
Based on the results, we conclude that a student perfor-
mance appears to be correlated with the social habits, mainly
with the frequency of communication. It supports the hy-
pothesis that students with average results but communi-

Table 7: Meta-classifiers accuracies
Accur. TP ICUS

Excalibur (J48) CSM 80.45 85.7 258
With SNA (PART) CSM 92.89 92.8 129
Excalibur (J48) Bagging 83.30 87.8 219
With SNA (PART) Bagging 96.66 96.0 55

cating with students having good grades can successfully
graduate with a higher probability than students with simi-
lar performance but not communicating with successful stu-
dents. We identified wrongly classified instances and sup-
plemented them with additional information about specific
courses. We found that about one third of students did not
complete two particular courses (Automata and Grammars
and Specialist English). These findings could be useful in
the future work.

Classifiers based on the information gain were the most suc-
cessful ones. The NB classifier suffered from the strong in-
dependence assumption, on our data.

We also combined the two most successful classifiers—J48
and PART—and built a meta-classifier where the prediction
was computed as the average of probabilities of particular
classifiers. However, the overall accuracy was not higher
than that of the best classifier.

We investigated the influence of social behaviour data on
the accuracy of classification with respect to the gender of
students. The additional data did not increase the accuracy
at all. Any classifier did not overcome the baseline 92.11%.

In comparison to [12], we employed social network analysis.
They achieved higher accuracy but with more specific at-
tributes obtained from the data that was collected specially
for the study. These attributes can not be retrieved from
standard school information systems, e.g. smoking habits,
the parents’ level of education, or the number of siblings.

We investigated the influence of cost sensitive learning on
the accuracy of a drop-out prediction. Employing a cost-
matrix did not decreased the overall accuracy but slightly
improved the TP rate. Using bagging with a cost matrix
increased both the accuracy and the TP rate. In the case
of classification on the student data, the accuracy remained
almost unchanged, but the TP rate increased from 78.5%
to 87%. The most significant improvement was achieved in
the case of classification on the enriched data. The meta-
classifier increased the accuracy to 96.66% and the TP rate
to 96%. The number of data snapshots of incorrectly clas-
sified unsuccessful students decreased from 146 to 55 in the
case of the classification using PART. The number of all
data snapshots is 4,373.
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Table 5: Learning from student data only according to semester [%]
1 1–2 1–3 1–4 1–5 1–6 All

Method Accur. TP Accur. TP Accur. TP Accur. TP Accur. TP Accur. TP Accur. TP
ZeroR 50.18 – 50.21 – 51.28 – 52.74 – 54.37 – 56.28 – 58.86 –
NB 63.80 34.5 70.56 50.5 72.47 55.0 74.66 59.1 75.82 67.4 76.64 72.7 77.57 73.5
SMO 69.41 64.7 72.62 61.9 75.26 63.1 76.58 64.9 77.64 65.5 78.41 65.4 79.17 64.6
IB1 62.72 61.2 66.38 66.4 69.43 67.0 70.96 68.6 72.30 68.8 74.73 70.2 78.18 72.3
OneR 55.56 41.0 64.93 68.1 70.63 76.5 74.14 79.1 75.32 76.0 75.27 70.9 75.90 57.9
PART 65.35 73.4 71.29 71.5 76.33 71.8 78.97 73.3 80.01 75.0 81.34 77.9 82.44 73.7
J48 61.77 62.8 71.77 73.0 75.47 73.6 77.67 75.2 79.34 75.5 80.61 77.1 82.53 78.5

Table 6: Learning from student data enriched with social behaviour attributes according to semester [%]
1 1–2 1–3 1–4 1–5 1–6 All

Method Accur. TP Accur. TP Accur. TP Accur. TP Accur. TP Accur. TP Accur. TP
ZeroR 50.18 – 50.21 – 51.28 – 52.74 – 54.37 – 56.28 – 58.86 –
NB 71.45 69.1 75.05 75.4 75.81 78.3 75.41 79.7 75.41 80.7 74.80 80.9 74.07 80.8
SMO 72.40 73.9 77.10 75.7 79.15 76.7 80.10 77.5 80.36 76.4 81.66 76.7 81.68 74.4
IB1 66.43 62.4 67.41 63.7 70.59 67.4 76.92 73.1 81.07 76.8 83.10 79.2 90.10 86.7
OneR 62.84 65.7 69.11 67.0 74.83 74.0 81.27 79.7 83.56 81.5 82.31 79.7 88.20 83.6
PART 70.13 69.5 79.65 77.6 86.60 86.7 90.21 89.3 92.38 90.9 92.99 91.1 93.51 91.9
J48 70.73 71.2 80.01 79.1 84.93 83.0 87.40 85.7 88.77 87.1 88.25 85.8 89.57 87.2

5. CONCLUSIONS AND FUTURE WORK
The main goal of this research was to develop a method
for mining educational data in order to learn a classifier to
predict the success of a student study and verify the method
on real data.

We employed DM and SNA methods to solve the task. We
verified the method on students of Faculty of Informatics,
Masaryk University but the used data were faculty-indepen-
dent. Therefore, the method can be used for any unit of a
university.

We have shown that structured data gained by means of
link-based data analysis increased the accuracy of the clas-
sification significantly.

We used only the data that are not specific for a faculty.
However, to increase the accuracy of the classification it
would be useful to enrich the data with faculty-specific at-
tributes, e.g. information about particular exams that a
student passed or failed. Another possible way of future
improvement may be to exploit more information from the
social network.

Actually, we used only information about a student and his
or her direct neighbours. It was intentional because this in-
formation is easy to gain and also easy to incorporate into
the Information system which is the goal of this research. On
the other hand, more complex relations may help further in-
crease the system performance. Data about communication
between students and teachers may also be useful. There-
fore, we plan to build a heterogeneous [6] network where the
vertices will be of more types. Different learning methods
can be used then, e.g. multi-label classification.
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ABSTRACT 

Although learning from multiple representations has been 
shown to be effective in a variety of domains, little is 
known about the mechanisms by which it occurs. We 
analyzed log data on error-rate, hint-use, and time-spent 
obtained from two experiments with a Cognitive Tutor for 
fractions. The goal of the experiments was to compare 
learning from multiple graphical representations of 
fractions to learning from a single graphical representation. 
Finding that a simple statistical model did not fit data from 
either experiment, we searched over all possible mediation 
models consistent with background knowledge, finding 
several that fit the data well. We also searched over 
alternative measures of student error-rate, hint-use, and 
time-spent to see if our data were better modeled with 
simple monotonic or u-shaped non-monotonic 
relationships. We found no evidence for non-monotonicity. 
No matter what measures we used, time-spent was 
irrelevant, and hint-use was only occasionally relevant. 
Although the total effect of multiple representations on 
learning was positive, they also had a negative effect on 
learning, mediated by a higher error-rate. Our evidence 
suggests that multiple representations increase error-rate, 
which in turn inhibits learning. The mechanisms by which 
multiple representations improve learning are as yet 
unmodeled.  

Keywords 

Model search, variable search, mediation, log data, multiple 
representations 

1. INTRODUCTION 
Learning processes are complex: many factors influence 
learning outcomes and the mechanisms by which 
experimental interventions influence learning are often 
mysterious. Intelligent Tutoring Systems (ITSs) can easily 
capture large amounts of data during learning, and 
combined with sophisticated data mining tools, they have 
the potential to help understand the mechanisms underlying 
the effects of successful interventions. Most ITSs are 
instrumented to collect data on several problem-solving 
behaviors that might mediate learning, such as error-rate, 
hint-use, and time-spent [13]. Variables that assess 
students’ problem-solving behaviors have been used to 

model students’ learning [3,8] and to improve ITSs [17]. 
To make use of the potential of ITS data to gain insights 
into why we see certain learning outcomes, however, we 
have to overcome difficulties in modeling the mechanisms 
of learning outcomes. First, we may not adequately 
understand which variables to use to model these complex 
relationships. We often assume a linear relationship 
between measures of learning behaviors and learning 
outcomes, even though linear relationships may not 
adequately describe such complex relations [1]. Second, 
there are a very large number of possible models that 
describe how learning behaviors and learning outcomes 
relate – how can we know which is the right one? The goal 
of the present paper is to address both of these important 
issues using variable search, path analytic modeling, and 
model search. 
Many ITSs use multiple representations to support 
mathematics learning. Although a vast body of research 
shows that multiple representations can benefit student 
learning [2], we know little about the mechanisms that 
underlie the advantage of learning with multiple 
representations compared to learning with only a single 
representation. We investigated the benefits of multiple 
graphical representations compared to the benefits of a 
single graphical representation in the context of an ITS – 
thus enabling us to make use of the rich log data provided 
in order to investigate the mediating role of student 
learning behaviors. Specifically, students worked with a 
Cognitive Tutor for fractions. Cognitive Tutors provide 
problem-solving tasks and individualized support for 
students during the learning process [10], and have been 
shown to lead to significant learning gains in a variety of 
studies [10,11]. The Fractions Tutor provides error 
messages tailored to specific misconceptions a student may 
have. Students can also request a sequence of hints for each 
step. We chose fractions as the domain for our experiments 
since fractions instruction typically uses multiple graphical 
representations such as circles, rectangles, and number 
lines [12]. Each of these representations emphasizes a 
different conceptual view on fractions [6] and students need 
to understand each of these conceptual views [12]. 
Furthermore, fractions pose a major obstacle for students in 
the elementary and middle grades [12], such that 
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understanding mechanisms underlying successful learning 
is an important educational goal. 
We conducted two in vivo experiments to investigate the 
benefits from learning with a version of the Fractions Tutor 
that uses multiple graphical representations compared to 
learning with a version of the Fractions Tutor that uses only 
a single graphical representation. In experiment 1, students 
worked only with a number line (in the single 
representation condition), or (in the multiple 
representations condition) with a variety of graphical 
representations, including circles, rectangles, and number 
lines. The representations were relatively static: students 
could interact with the representations only by entering a 
number into a text field. The picture updated when the 
student entered the correct number. In each tutor problem, 
students solved a fractions problem. For instance, students 
were asked to add two given fractions and by typing the 
number of shaded sections into a text field, specifying the 
numerator of the sum fraction. We crossed these two 
conditions with a second experimental factor: whether or 
not students received self-explanation prompts to relate the 
graphical representations to the symbolic notation of 
fractions (e.g., ½). For example, students were asked to 
select “adding the number of shaded sections” to the 
question of what action with a circle diagram corresponds 
to adding the numerators using fractions symbols. Results 
based on an analysis of pretests, immediate posttests, and 
delayed posttests showed that learners significantly 
benefited from multiple representations, provided that they 
were also prompted to self-explain [15].  
In experiment 2, we included self-explanation prompts in 
the single representation condition and in the multiple 
representations condition. Students in the single 
representation condition worked either only with a number 
line, only with a circle, or only with a rectangle. Students in 
the multiple representations condition received all three 
graphical representations. In this experiment, the graphical 
representations were interactive: students could interact 
with the representations by dragging-and-dropping sections 
from one representation into another, by using buttons to 
change number of sections, and by clicking on sections to 
highlight them. Results based on students’ test data confirm 
the findings from experiment 1: students in the multiple 
representations condition significantly outperformed 
students in the single representation condition1.  
We hypothesize that multiple graphical representations 
result in more successful learning behaviors in the learning 
phase. We investigated these relationships with the log data 
that the Fractions Tutor recorded during the learning phases 
of both experiments. We assume that students who make 
very few errors, ask for very few hints, and spend very little 
time per step already have a very good understanding of 

1 This effect was significant for number line items and conceptual 
transfer on the delayed posttest. 

fractions and will not benefit from working with the 
Fractions Tutor. On the other hand, inefficient learning 
such as trial-and-error [4], may manifest themselves in 
making many errors, asking for many hints, and spending a 
lot of time per step. We expect that students who show 
these kinds of unsuccessful learning strategies are not 
engaging in deep processing of the learning contents and 
will consequently be less likely to benefit from working 
with the Fractions Tutor. We hypothesize that the most 
successful learning behaviors will manifest themselves in 
moderate levels error-rate, hint-use, and time-spent. This 
suggests that the relationships between error-rate, hint-use, 
and time-spent with learning is not simple and monotonic, 
but rather u-shaped (or inverted u-shaped). We investigated 
this hypothesis by searching for non-monotonic 
transformations of our "raw" variables that better predict 
students’ learning than do the raw variables. We then used 
the best variables in path analysis to investigate the 
mediating role of error-rate, hint-use, and time-spent on 
students’ benefit from multiple graphical representations. 

2. DATA SETS 
The analyses presented in this paper are based on the data 
obtained from the two experimental studies just described. 
Students in both experiments received a pretest on the day 
before they started to work with the Fractions Tutor. The 
day after students finished working with the Fractions 
Tutor, students received an immediate posttest. About one 
week after the immediate posttest, students were given an 
equivalent delayed posttest. In experiment 1, the pretest 
was a shorter version of the posttests, the posttests included 
more advanced items which required students to transfer 
the knowledge covered by the tutoring system to novel 
situations. In experiment 2, all three tests were equivalent 
(i.e., they contained the same type of items, but with 
different numbers). 
In experiment 1, 110 6th-grade students worked with either 
of four versions of the Fractions Tutor (i.e., with a version 
that included a single graphical representation without 
prompts, a single graphical representation with prompts, 
multiple graphical representations without prompts, or 
multiple graphical representations with prompts). Students 
worked with the Fractions Tutor for 2.5 hours of their 
regular mathematics instruction. The average number of 
errors made per step, the average number of hints requested 
per step, and the average time spent per step were extracted 
from the log data obtained from the tutor sessions. Table I 
shows the means and standard deviations per condition per 
and per test. Students had a broad range of prior 
knowledge: the minimum pretest score was 0.00, and the 
maximum was 1.00. As shown in Table I, students in the 
MGR condition with prompts outperformed the other 
conditions both at the immediate and at the delayed 
posttest. Since in experiment 1, the pretest was not 
equivalent to the posttests, the pretest scores are not 
directly comparable to the posttest scores shown in Table I. 
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Table II gives an overview of the tutor log data for each 
condition. While conditions did not differ with regards to 
error-rate, students who received self-explanation prompts 
requested fewer hints than students without prompts. 
Students in the MGR condition with prompts spent 
relatively more time per step than students in the other 
conditions, but the differences were small.  

 SGR w/o 
prompts 

SGR 
with 

prompts 

MGR 
w/o 

prompts 

MGR 
with 

prompts 
Pretest 0.79 

(0.14) 
0.70 

(0.24) 
0.64 

(0.25) 
0.75 

(0.21) 
Immediate 

posttest 
0.77 

(0.16) 
0.70 

(0.18) 
0.61 

(0.23) 
0.83 

(0.15) 
Delayed 
posttest 

0.77 
(0.19) 

0.74 
(0.22) 

0.63 
(0.21) 

0.85 
(0.12) 

Table I. Means and standard deviations (in brackets) of 
standardized performance on pretest and posttests from 
experiment 1 per condition: single graphical representations 
(SGR) with or without prompts, and multiple graphical 
representations (MGR) with or without prompts. 

 SGR w/o 
prompts 

SGR 
with 

prompts 

MGR 
w/o 

prompts 

MGR 
with 

prompts 

Error-
rate 

0.27 
(0.15) 

0.37 
(0.17) 

0.31 
(0.12) 

0.34 
(0.13) 

Hint-use 0.13 
(0.31) 

0.04 
(0.05) 

0.19 
(0.32) 

0.04 
(0.09) 

Time-
spent 

10.37 
(4.98) 

8.47 
(6.77) 

11.93 
(10.18) 

13.99 
(18.46) 

Table II. Means and standard deviations (in brackets) of 
error-rate (# per step), hint-use (# per step), and time-spent 
(in sec) per condition: single graphical representations 
(SGR) with or without prompts, and multiple graphical 
representations (MGR) with or without prompts. 

In experiment 2, 290 4th- and 5th-grade students worked on 
one of two versions of the Fractions Tutor (i.e., SGR with 
prompts, or MGRs with prompts) for about 5 hours of their 
regular mathematics instruction. As in experiment 1, we 
extracted the average number of errors made per step, the 
average number of hints requested per step, and the average 
time spent per step from the log data. Table III summarizes 
students’ performance on each test for each condition in 
experiment 2. Again, students started with a broad range of 
prior knowledge: the minimum pretest score was 0.06, and 
the maximum pretest score was 0.96. Students in the MGR 
condition perform slightly better than students in the SGR 
condition at the immediate and at the delayed posttest. 
Since in experiment 2, the pretest was equivalent to the 
posttests, we can compare the pretest scores to the posttest 
scores: students’ average scores improved from pretest to 

the posttests (see Table III). Table IV shows that students 
in the MGR condition make slightly more errors and ask 
for slightly more hints, while spending the same time per 
step as students in the SGR condition. As in experiment 1, 
the differences between conditions on the log data variables 
are small. 

 SGR MGR 

Pretest 0.54 (0.23) 0.57 (0.21) 
Immediate 

posttest 
0.60 (0.23) 0.63 (0.21) 

Delayed posttest 0.62 (0.23) 0.67 (0.20) 
Table III. Means and standard deviations (in brackets) of 
standardized performance from experiment 2 per condition 
and test: single graphical representations (SGR) and 
multiple graphical representations (MGR). 

 SGR MGR 

Error-rate 0.14 (0.07) 0.16 (0.08) 
Hint-use 0.04 (0.06) 0.06 (0.09) 

Time-spent 0.14 (0.04) 0.14 (0.05) 
Table IV. Means and standard deviations (in brackets) of 
error-rate (# per step), hint-use (# per step), and time-spent 
(in sec) per condition: single graphical representations 
(SGR) and multiple graphical representations (MGR). 

3. DEFINING VARIABLES WITH WHICH 
TO INVESTIGATE MEDIATORS  
In order to investigate whether a u-shaped, non-monotonic 
relationship between error-rate, hint-use, and time-spent 
with students’ learning describes the association between 
problem-solving behavior and learning better than the 
monotonic relationship, we first conducted a search for a 
non-monotonic transformation that best predicts students’ 
learning using the data from experiment 2. We used a 
simple algorithm which computed the “optimal level” of 
error-rate, hint-use, and time-spent by searching for the 
highest correlation with learning gains from pretest to the 
immediate posttest, and from pretest to the delayed posttest, 
respectively. The algorithm used intervals that varied in 
size and position. For each interval, we computed a binary 
variable that for each student indicated whether his/her 
error-rate (or hint-use, or time-spent) was within the 
interval or outside the interval. We then computed the 
correlation of this variable with students’ learning gains. 
For the interval that had the highest correlation with 
students’ learning gains, we identified the mid-point as the 
“optimum” level of error-rate, hint-use, and time spent. 
Next, we created two new, non-monotonic predictor 
variables for error-rate, hint-use, and time-spent, 
respectively: distance from the optimum, and squared 
distance from the optimum. 
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To evaluate whether the non-monotonic variables more 
accurately predict students’ learning, we conducted step-
wise regression analyses separately for error-rate, hint-use, 
and time-spent on both the immediate and the delayed 
posttests. We entered pretest performance, error-rate, hint-
use, or time-spent, and the interaction of pretest 
performance with error-rate, hint-use, or time-spent as 
predictors into the regression model. Table V provides a 
summary of the results from the stepwise regression 
analyses for error-rate. The regression models with error-
rate show that the regression models using monotonic 
variable explain more variance than the non-monotonic 
variables. Similarly, the best models with hint-use using the 
monotonic variable explain more variance than the best 
models with the non-monotonic variables. The most 
successful regression models with time-spent take only 
pretest performance into account; neither the monotonic 
variable for time-spent nor the non-monotonic variables for 
time-spent were significant predictors. 

  pre pre + 
errors 

pre + errors 
+ errors*pre 

mono-
tonic 

IP β1 = 81*, 
R² = .66 

β1 = .81*,  
β2 = -.27*, 
R² = .70 

β1 = .46*,  
β2 = -.48*,  
β3 = .19*,  
R² = .71 

DP β1 = .80*, 
R² = .65 

β1 = .65*,  
β2 = -.24*, 
R² = .68 

β1 = .54*,  
β2 = -.38*,  
β3 = .13(*),  
R² = .68 

distance 
from 
optimum 

IP β1 = .81*, 
R² = .66 

β1 = .76*,  
β2 = -.17*, 
R² = .68 

β1 = .63*,  
β2 = -.37*,  
β3 = .23*,  
R² = .69 

DP β1 = .80*, 
R² = .65 

β1 = .78*,  
β2 = -.13*, 
R² = .66 

β1 = .71*,  
β2 = -.22*,  
β3 = .11,  
R² = .66 

squared-
distance 

IP β1 = .81*, 
R² = .66 

β1 = .76*,  
β2 = -.16*, 
R² = .68 

β1 = .73*,  
β2 = -.25*,  
β3 = .09,  
R² = .68 

DP β1 = .80*, 
R² = .65 

β1 = .77*, 
 β2 = -
.13*, R² = 
.66 

β1 = .77*,  
β2 = -.12,  
β3 = -.01,  
R² = .66 

Table V. Regression with error-rate: standardized 
regression weights and variance explained by each 
regression model for performance on immediate posttest 
(IP) and delayed posttest (DP). The best model is displayed 
in bold-italics. β1 = pretest (pre), β2 =error-rate (errors), and 
β3 = errors*pre. 
In sum, the results from the stepwise regressions show, the 
non-monotonic variables do not predict performance on the 
immediate or the delayed posttest better than the monotonic 
variables do. For that reason, we decided to use the 

original, monotonic variables of error-rate, hint-use, and 
time-spent for the subsequent path analytical analyses. 

4. HYPOTHESES AND PATH ANALYSIS 
MODELING 
In order to investigate the mechanisms by which the 
intervention (multiple graphical representations) might 
have affected learning, we first specified, estimated and 
tested two path analytical structural equation models [5,20] 
for each of the two experiments. Structural equation models 
provide a unified framework within which to test mediation 
hypotheses, to estimate total effects, and also to separate 
direct from indirect effects. The models that represented 
our hypotheses in both experiments were decisively 
rejected by the data, and in such a case it is not appropriate 
to use the model to test mediation hypotheses or estimate 
effects. Our strategy was to use the Tetrad IV program2 to 
search for alternative models that are both theoretically 
plausible and consistent with the data. In this section, we 
describe the path analytic models that represent our 
hypotheses, describe the search algorithms we use to search 
for alternative models, and briefly summarize the results of 
our search. 

4.1 Modeling Our Hypotheses 
We hypothesized that multiple representations lead to 
learning via the three different mechanisms discussed 
above: error-rate, hint-use or time-spent per step. As each 
of these variables might also be affected by a student’s 
prior knowledge of fractions, our hypothesis included paths 
from our intervention variables to each of these mediator 
variables as well as paths from pretest to each of these 
variables. One of the path models we specified to represent 
and test our hypothesis about mediation for experiment 1 is 
shown in Fig. 1.3 Fig. 2 shows one of the models we 
specified for experiment 2. Each node in the path models 
refers to a variable in the data set: mult_rep = single vs. 
multiple representations, se = self-explanation prompts, 
mr*se is variable representing a intervention interaction, 
pre = pretest, time, errors, hints = average time spent, # of 
errors, and # of hints requested per step, post = 
performance on the immediate posttest, delpost = 
performance on the delayed posttest. For both experiments, 
we hypothesize that pretest performance predicts 
performance on the immediate and on the delayed posttests, 
as well as error-rate, hint-use, and time-spent. 

2 Tetrad, freely available at www.phil.cmu.edu/projects/tetrad, 
contains a causal model simulator, estimator, and over 20 model 
search algorithms, many of which are described and proved 
asymptotically reliable in [20].   

3 In path models of this type, also called "causal graphs" [20], 
each arrow, or directed edge, represents a direct causal 
relationship relative to the other variables in the model.  For 
example, in Fig. 1 the conditions are direct causes of the 
mediator variables, but only affect the post-test indirectly 
through these mediators.   
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Fig. 1. Path model for experiment 1. 

In addition, we predict that in experiment 1, multiple 
representations (mult_rep), self-explanation prompts (se), 
and the interaction between multiple representations and 
self-explanation prompts (mr*se) predict error-rate, hint-
use, and time-spent. In other words, we predict that the 
effects of the intervention variables are entirely mediated 
through students’ learning behaviors. Similarly, for 
experiment 2, we predict that the effect of multiple 
representations (mult_rep) predicts error-rate, hint-use, and 
time-spent, which corresponds to a full mediation of the 
intervention through learning behaviors. Hence, the path 
model for experiment 2 corresponds to the one shown in 
Fig. 1, except that self-explanation prompts (se), and the 
interaction between multiple representations and self-
explanation prompts (mr*se) were not present in 
experiment 2. 
Using normal theory maximum likelihood to estimate the 
parameters of these models, we find that in each case the 
deviation between the estimated and the observed 
covariance matrix is too large to be explained by chance 
(for the model for experiment 1 in Fig. 1: χ² = 53.8, df = 16, 
p < .0001,4 and for the model for experiment in Fig. 2: χ² = 

4 The usual logic of hypothesis testing is inverted in path analysis. 
The p-value reflects the probability of seeing as much or more 
deviation between the covariance matrix implied by the 
estimated model and the observed covariance matrix, 
conditional on the null hypothesis that the model that we 
estimated was the true model. Thus, a low p-value means the 
model can be rejected, and a high p-value means it cannot.  The 
conventional threshold is .05, but like other alpha values, this is 
somewhat arbitrary. The p-value should be higher at low sample 
sizes and lowered as the sample size increases, but the rate is a 
function of several factors, and generally unknown.   

59.41, df = 6, p < .0001), thus the models do not fit the data 
and the parameter estimates cannot be trusted.5  
4.2 Model Search 
To search for alternatives, we used the GES algorithm in 
Tetrad IV along with background knowledge constraining 
the space of models searched [7] to those that are 
theoretically tenable and compatible with our experimental 
design. In particular, we assumed that our intervention 
variables are exogenous, that in experiment 1 our 
intervention variables are causally independent but direct 
causes of the interaction variable, that the pretest is 
exogenous and causally independent of intervention, that 
the mediators are prior to the immediate posttest and to the 
delayed posttest, and that the immediate posttest is prior to 
the delayed posttest. Even under these constraints, there are 
at least 232 (over 4 billion) distinct path models of 
experiment 1 that are consistent with our background 
knowledge, and 225 (over 33 million) distinct path models 
of experiment 2.  
The qualitative causal structure of each of these linear 
structural equation models can be represented by a Directed 
Acyclic Graph (DAG). If two DAGs entail the same set of 
constraints on the observed covariance matrix,6 then we say 
that they are empirically indistinguishable. If the 
constraints considered are independence and conditional 
independence, which exhaust the constraints entailed by 
DAGs among multivariate normal varieties, then the 
equivalence class is called a pattern [14,20]. Instead of 
searching in DAG space, the GES algorithm achieves 
significant efficiency by searching in pattern space. The 
algorithm is asymptotically reliable,7 and outputs the 
pattern with the best Bayesian Information Criterion (BIC) 
score.8 The pattern identifies features of the causal structure 
that are distinguishable from the data and background 
knowledge, as well as those that are not. The algorithm’s 
limits are primarily in its background assumptions 
involving the non-existence of unmeasured common causes 
and the parametric assumption that the causal dependencies 
can be modeled with linear functions. 

5 We also tested variations of these models in which we added 
direct paths from the condition variables to the post-test and 
delayed post-test. These variants are also clearly rejected by our 
data.  

6 An example of a testable constraint is a vanishing partial 
correlation, e.g., ρXY.Z = 0. 

7 Provided the generating model satisfies the parametric 
assumptions of the algorithm, the probability that the output 
equivalence class contains the generating model converges to 1 
in the limit as the data grows without bound. In simulation 
studies, the algorithm is quite accurate on small to moderate 
samples. 

8 All the DAGs represented by a pattern will have the same BIC 
score, so a pattern’s BIC score is computed by taking an 
arbitrary DAG in its class and computing its BIC score. 
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Fig. 2. The model found by GES on data from experiment 
1, with parameter estimates included. This model fits the 
data well: χ2 = 22.11, df = 19, p = .29.  

 
Fig. 3. The model found by GES on data from experiment 
2, with parameter estimates included. This model also fits 
the data well: χ2 = 6.89, df = 10, p = .74.  

Fig. 2 shows a model found by GES on the data from 
experiment 1, with path coefficient estimates included. The 
model fits the data well (χ2 = 22.1, df = 19, p = .28), and 
contains a number of interesting properties. For one thing, 
students with higher pretest scores spend much less time 
per problem, but none of our intervention variables had any 

influence on time, and the apparent effect of time spent per 
step during the learning phase is minimal. Multiple 
representations had a positive effect on learning, but only 
when self-explanation prompts were also part of the 
learning environment.9 Further, there is no evidence that 
the positive effect of multiple representations is mediated 
by either error-rate, hint-use, or time-spent. When not 
combined with multiple representations, self-explanation 
prompts appear to slightly increase error-rate and thus 
inhibit learning, but slightly decrease hint-use, which, 
because they appear to inhibit learning, have an overall 
positive effect on learning.  
Fig. 3 shows a model found by GES for experiment 2 that 
fits the data very well (χ2 = 6.89, df = 10, p = .74). This 
model indicates that although multiple representations (mr) 
have a positive direct effect on both the immediate posttest 
and the delayed posttest, they also have a negative indirect 
effect on both outcomes through error-rate. Learning with 
multiple representations seems to cause students to make 
slightly more errors during learning, possibly because the 
greater variability in tutor problems leads to higher 
cognitive processing demands. The higher error-rate during 
the learning phase seems to have a negative influence on 
test performance. Note that there are two paths from 
multiple representations to the posttests in the model in Fig. 
3, and that the positive direct effect (a bit over 3 ½ 
percentage points on both) is larger than the indirect 
negative effect through errors in both cases (2 percentage 
points on the immediate posttest and about ½ a percentage 
point on the delayed posttest). 
As in experiment 1, hint-use and time-spent do not 
discernibly mediate the influence of multiple 
representations on learning. However, students appear to 
ask for more hints in response to making more errors, and 
they spend more time on a problem when they have asked 
for hints.  

5. DISCUSSION 
We used data mining in two ways: first to search for 
mediator variables that are monotonically related to 
learning outcomes and thus amenable to analysis with 
standard tools like linear regression and path analysis, and 
second, to search for causal models of learning that allowed 
us to investigate mediation relationships and to estimate the 
total and indirect effects of multiple representations on 
learning.  
Contrary to our expectations, we found that raw measures 
of error-rate, hint-use, and time-spent were as predictive of 
learning as any of the non-monotonic variants we searched 
over. One might suspect that our variable search failed to 

9 The paths from the interaction variable mr*se track the effect of 
both treatments compared to either one alone or neither. The 
paths from the individual treatments track the effect of each 
treatment when the other is absent.  
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improve on the apparent monotonicity of the raw measures 
because our sample did not include high prior knowledge 
students. However, students’ pretest scores covered a broad 
range from very low to very high (see Tables I and III). 
Although surprising, our findings can be taken as 
encouraging for the community of educational data mining 
and for the community of researchers who study ITSs. 
Analyzing raw measures of error-rate, hint-use, time-spent 
and learning is much easier than analyzing non-monotonic 
variants. Furthermore, most research that uses log data 
obtained from ITSs assumes monotonicity. Our findings do 
nothing to undermine this practice. 
Our findings from path analysis modeling demonstrate the 
importance of model search. None of our initial hypotheses 
fit the data, but there are millions of plausible alternatives, 
only a small handful of which could be practically 
investigated by hand. Further, estimating path parameters 
with a model that does not fit the data is scientifically 
unreliable. Parameter estimates, and the statistical 
inferences we make about them with standard errors etc., 
are all conditional on the model specified being true 
everywhere except the particular parameter under test.  
Even if our initial hypotheses had fit the data well, 
however, it would have been important to know whether 
there were alternatives that explained the same data. The 
GES algorithm implemented in Tetrad IV enabled us to 
find plausible models that fit the data well. The models we 
found in Fig. 2 and Fig. 3 allow us to estimate and test path 
parameters free from the worry that the model within which 
the parameters are estimated is almost surely mis-specified, 
as is the case for the model in Fig. 1.  
Several caveats need to be emphasized, however, lest we 
give the false impression that we think we have “proved” 
the causal relationships that appear in the path diagrams 
shown in Fig. 1 and Fig. 2. First, the GES algorithm 
assumes that there are no unmeasured confounders (hidden 
common causes), an assumption that is almost certainly 
false in this and in almost any social scientific case, but one 
that is routinely employed in most observational studies.10 
In future work we will apply algorithms (e.g., FCI) that do 
not make this assumption, and see whether our conclusions 
are robust against this assumption. Second, although we did 
include intervention interaction in our model search for 
experiment 1, and did test for interactions between pretest 
and mediators in experiment 2, by no means were our tests 
exhaustive, and by no means can we rely on the assumption 
that the true relations between the variables we modeled are 
linear, as the search algorithms assume. Nevertheless, many 
of the bivariate relationships in the data we modeled appear 
approximately linear, so the assumption is by no means 

10 Although our data are from a study in which we intervened on 
intervention, we did not directly intervene on our mediator or 
outcome variables. Thus these parts of our model are subject to 
the same assumptions as a non-experimental study.  

unreasonable. Third, we have a sample of 290 students, and 
although that is sizable compared to many ITS studies, 
model search reliability goes up with sample size but down 
with model complexity and number of variables, and is 
overall impossible to put confidence bounds over on finite 
samples [19].  
Nevertheless, our searches for causal models suggest that 
there are indeed path models that are consistent with our 
background theory and with the data, and which indicate 
that multiple representations enhance learning, but not 
through any detectible mechanism involving error-rate, 
hint-use, or time-spent. In experiment 1, multiple 
representations have a positive influence on learning, but 
have no detectible effect on any of the mediators we 
measured. In experiment 2, in which interactive graphical 
representations were part of the intervention, it appears that 
there is a mediated influence on learning through error-rate, 
but it is a negative influence. Research from a variety of 
domains shows that some interventions that decrease 
performance during the learning phase by increasing the 
variability of learning tasks result in better long-term 
retention and transfer performance [9,16]. In other words, 
interventions that are beneficial in the long run often come 
at some cost, for instance in the form of lower performance 
during the learning phase. Our results show that “costs” 
which become apparent during the learning phase are 
indeed associated with lower performance also on the 
posttests. However, we have not yet identified the 
mediators of the benefits of learning with multiple 
representations. Given the results from the two experiments 
described in the present paper, it is unlikely that the 
advantage of multiple representations is mediated through 
error-rate, hint-use, or time-spent. Taken together, the 
results from our two experiments suggest that researchers 
need to look elsewhere for the cognitive mechanisms by 
which multiple representations improve students’ learning.  
The finding that error-rate partially mediates the effect of 
multiple representations in experiment 2 (but not in 
experiment 1) is an interesting one as well. One difference 
between experiment 1 and experiment 2 was that the 
graphical representations in experiment 1 were not 
interactive tools, but static pictures that updated when 
students entered the correct answer into a text field. By 
contrast, the graphical representations in experiment 2 were 
interactive: students could drag-and-drop sections from one 
representation into another and use buttons to partition the 
representation into fewer or more sections. It is conceivable 
that interactive representations provide a more direct 
learning experience for students, which will have a 
different effect on problem-solving behavior (as, for 
example, on error-rate) than relatively static representations 
[18]. There is currently very little research that 
systematically investigates the impact of interactive versus 
static representations on students’ problem-solving 
behaviors and consequent learning outcomes. Our findings 
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demonstrate, that the impact of interactive representations 
is an interesting question to address in future research.  
In conclusion, our results are of interest both to the 
educational psychology literature and to the intelligent 
tutoring systems literature. First, we can gain insights into 
the effects of instructional interventions: although multiple 
representations seem to overall be beneficial, they also 
seem to lead students to make more errors during the 
learning phase, which is associated with lower performance 
on posttests. Second, once we gain knowledge about which 
learning behaviors are adaptive and which are not, we can 
use these insights to improve our tutoring systems. For 
example, perhaps multi-representational ITSs should be 
designed to prevent errors in the practice and learning 
phase. Perhaps we can help students avoid practice errors 
by providing more worked examples, or by designing better 
error feedback messages. Or perhaps the increase in errors 
is simply a cost associated with multiple representations 
that instructors have to live with. These questions and 
others arose from path analysis and model search and lead 
almost directly to new hypotheses that we, and hopefully 
others, will address in future research. 

6. ACKNOWLEDGMENTS 
This work was supported by the National Science 
Foundation, REESE-21851-1-1121307, and by the 
Pittsburgh Science of Learning Center which is funded by 
the National Science Foundation, award number SBE-
0354420. In addition, we would like to thank Vincent 
Aleven, Nikol Rummel, Ken Koedinger, the Datashop 
team, and the students and teachers who participated in our 
study. 
 
7. REFERENCES 
[1] Aleven, A., Stahl, E., Schworm, S., Fischer, F., & Wallace, 

R. 2003. Help Seeking and Help Design in Interactive 
Learning Environments. Review of Educational Research, 
73(3), 277-320. 

[2] Ainsworth, S. 2006. A conceptual framework for considering 
learning with multiple representations. Learning and 
Instruction, 16, 183-198. 

[3] Anderson, J. R. 1993. Problem Solving and Learning. 
American Psychologist, 48(1), 1-35. 

[4] Baker, R., et al. 2008. Why Students Engage in “Gaming the 
System” Behavior in Interactive Learning Environments. 
Journal of Interactive Learning Research, 19(2), 185-224. 

[5] Bollen, K. 1989. Structural Equations with Latent Variables. 
Wyley, New York. 

[6] Charalambous, C. Y., & Pitta-Pantazi, D. 2007. Drawing on 
a Theoretical Model to Study Students' Understandings of 
Fractions. Educational Studies in Mathematics, 64, 293-316. 

[7] Chickering, D. M. 2002. Optimal Structure Identification 
with Greedy Search. Journal of Machine Learning Research 
3, 507-554. 

[8] Croteau, E., Heffernan, N. T., & Koedinger, K. R. 2004. 
Why Are Algebra Word Problems Difficult? Using Tutorial 
Log Files and the Power Law of Learning to Select the Best 
Fitting Cognitive Model. Lecture Notes in Computer 
Science, 32200, 15-53. 

[9] De Croock, M. B. M., Van Merrienboer, J. J. G., & Paas, F. 
G. W. C. 1998. High versus low contextual interference in 
simulation-based training of troubleshooting skills: Effects 
on transfer performance and invested mental effort. 
Computers in Human Behavior, 14(2), 249-267. 

[10] Koedinger, K., & Corbett, A. 2006. Cognitive Tutors: 
Technology Bringing Learning Sciences to the Classroom. 
In: Sawyer, R. K. (ed.).The Cambridge handbook of the 
learning sciences, pp. 61-77, Cambridge University Press, 
New York, NY, US. 

[11] Koedinger, K., Anderson, J. R., Hadley, W., & Mark, M. 
1997. Intelligent Tutoring Goes to School in the Big City. 
International Journal of Artificial Intelligence in Education, 
8, 30-43. 

[12] National Mathematics Advisory Panel. 2008. Foundations for 
Success: Report of the National Mathematics Advisory 
Board Panel, U.S. Government Printing Office. 

[13] Newell, A., & Rosenbloom, P. 1981. Mechanisms of Skill 
Acquisition and the Law of Practice. In Anderson, J. (ed.). 
Cognitive Skills and Their Acquisition, Erlbaum Hillsdale 
NJ. 

[14] Pearl, J. 2000. Causality: Models, Reasoning, and 
Interference. Cambridge University Press. 

[15] Rau, M. A., Aleven, V., & Rummel, N. 2009. Intelligent 
tutoring systems with multiple representations and self-
explanation prompts support learning of fractions. 
International Conference on Artificial Intelligence, 441-448. 

[16] Rau, M. A., Aleven, V., Tunc-Pekkan, Z., Pacilio, L., & 
Rummel, N. accepted. How to schedule multiple graphical 
representations? A classroom experiment with an intelligent 
tutoring system for fractions. To appear in the proceedings of 
ICLS 2012. 

[17] Ritter, S., Anderson, J. R., Koedinger, K. R., & Corbett, A. 
2007. Cognitive Tutor: Applied Research in Mathematics 
Education. Psychometric Bulletin & Review, 14(2), 249-255. 

[18] Robers, Y. 1999. What Is Different about Interactive 
Graphical Representations? Learning and Instruction, 9, 419-
425. 

[19] Robins, J., Scheines, R., Spirtes, P., & Wasserman, L. 
(2003). Uniform Consistency in Causal Inference, 
Biometrika, 90, 491 – 515. 

[20] Spirtes, P. Glymour, C., Scheines, R. (2000). Causation, 
Prediction, and Search. 2nd Edition, MIT Press. 

 

Proceedings of the 5th International Conference on Educational Data Mining 117



The Impact on Individualizing Student Models on
Necessary Practice Opportunities

Jung In Lee
Language Technologies Institute

Carnegie Mellon University

junginl@cs.cmu.edu

Emma Brunskill
Computer Science Department

Carnegie Mellon University

ebrun@cs.cmu.edu

ABSTRACT

When modeling student learning, tutors that use the Knowl-
edge Tracing framework often assume that all students have
the same set of model parameters. We find that when fitting
parameters to individual students, there is significant varia-
tion among the individual’s parameters. We examine if this
variation is important in terms of instructional decisions by
computing the difference in the expected number of prac-
tice opportunities required if mastery is assessed using an
individual student’s own estimated model parameters, com-
pared to the population model. In the dataset considered,
we find that a significant portion of students are expected to
perform twice as many practice opportunities if the student
is modeled using a population-based model, compared to the
number needed if the student’s own model parameters were
used. We also find an additional significant portion of stu-
dents will be likely to receive less practice opportunities than
needed, implying that such students will be advanced too
early. Though further work on additional datasets is needed
to explore this issue in more depth, our results suggest that
considering individual variation in student parameters may
have important implications for the instructional decisions
made in intelligent tutoring systems that use a Knowledge
Tracing model.

1. INTRODUCTION
Both intelligent tutoring systems and live classroom instruc-
tion often assume that student learning can be adequately
represented using a single model and associated set of model
parameters. For example, in this paper we will focus on
Knowledge Tracing [8], a popular method for estimating stu-
dent mastery of skills that has been used in effective cogni-
tive tutor systems [9]. Knowledge tracing is parameterized
by 4 variables that are typically assumed to be the same for
all students. Note that these population-level models still
allow us to represent variation in our estimates of student
performance: if two students respond differently to a set
of practice opportunities, the model will have different esti-
mates of future student performance for the two cases.

There have been some prior work on KT student models that
represent differences in the student’s initial knowledge [10].
In addition, several logistic regression-based student mod-
els, including Additive Factor Models [5] and Instructional
Factors Analysis [7], include a single constant that is in-

dividually fit per student. Including this student parame-
ter has been shown to lead to models that better fit the
data, and have improved prediction accuracy. However, in
all these cases, the parameters related to the progress of stu-
dent learning and student observations, are fitted to the en-
tire population. Therefore the underlying dynamical process
of student learning, and the way in which that is translated
to student performance, is assumed to be identical across
students.

There’s evidence to suggest this assumption is too strong.
Standard high schools commonly offer multiple versions of
the same class, such as a remedial version, normal version,
and honors version. This approach is taken, at least in part,
because it is believed both that students may have differ-
ent learning speeds or prior backgrounds for a subject, and
that those differences mean that the students will be best
taught in different ways. In other words, instruction will
vary not just according to our current estimate of student
performance, but also how we anticipate that performance
changes over time.

Here we examine the variation among individual student’s
parameters, and quantify the impact of this variation on
pedagogical strategies. To start we consider this in the
context of mastery learning, using the Knowledge Tracing
framework to estimate and monitor student skill mastery.
We already know from Cen et al. [6] that tuning the KT
parameters can lead to a significant impact on reducing the
amount of necessary practice opportunities; however, this
work still uses a single set of KT parameters for all students.
Corbett and Andersen [8] did try fitting individual param-
eters, and found this improved the predictive power of the
model, as well as some evidence that this might improve stu-
dent performance; however, the authors used curve-fitting to
find the parameter values1 and the authors did not examine
the difference in practice opportunities needed if a popula-
tion model was used instead of an individual model.

In this paper we fit Knowledge Tracing model parameters
to each individual, on a dataset from the ASSISTment sys-
tem [10]. We examine the distribution of the resulting pa-
rameters, and compare them to computing a single set of KT
model parameters for all students. In our second contribu-
tion, we compute the difference in expected number of prac-
tice opportunities required if mastery is assessed using an
individual student’s own estimated model parameters, com-
pared to the population model. We find that about 40% of

1Evidence [2] suggests that EM, which we use in this paper,
finds a better parameter fit than curve fitting.
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our student sample falls into one of two cases: students who
will be forced to do many more practice opportunities than
necessary, and students who are considered to have mastered
the material when in reality they likely need additional prac-
tice opportunities. This implies that observed variation in
student modeling parameters has an important and signifi-
cant effect on instructional decisions, and that considering
individual variation in the model parameters could lead to
more effective teaching. We will outline several future ideas
for how this could be accomplished in the conclusion of this
paper.

2. BACKGROUND
A popular approach is to model a student’s knowledge as a
latent variable, which changes in response to practice oppor-
tunities. The system gets information about this underlying
state through the student’s responses to practice opportuni-
ties. This model is a Hidden Markov model, and estimating
the student’s current hidden state can be done by perform-
ing Bayesian filtering. A special case of this approach is
known as Knowledge Tracing [8], which assumes the student
has 1 binary hidden state per skill (the student has either
mastered or not mastered the skill) and binary observations,
corresponding to whether the student gets a question about
a skill correct or incorrect. There are 4 model parameters
per skill in the Knowledge Tracing framework: p(L0) is the
initial probability the student has already mastered the skill;
p(T ) is the probability of the student transitioning from not
having mastered the skill to having mastered it after a prac-
tice opportunity; p(S) is the probability the student gives a
wrong answer even though she has mastered the skill; and
p(G) is the probability the student gives the correct answer
even though she has not mastered the skill. After the stu-
dent is given a practice opportunity, and gets the problem
correct or incorrect, the model updates the probability of
the student’s underlying mastery state. Though in Knowl-
edge Tracing the standard approach is to first update the
estimate of the student’s mastery given their observed re-
sponse, and then update their mastery as to whether they
have learned, in this paper we instead adopt the alternate
convention (often used in other Bayesian models) of first
updating the probability the student has mastered the ma-
terial given they received a new practice opportunity, and
then updating that estimate given the observed student re-
sponse. This yields the following equations for computing
p(Lt+1), the probability the student has mastered the skill
at time step t + 1, as a function of the probability the stu-
dent has mastered the skill at the prior time step p(Lt), the
observed student response, and the 4 parameters:

p(Lt+1|c) =

(1− p(S))(p(Lt) + p(T )(1− p(Lt)))

(1−p(S))(p(Lt)+p(T )(1−p(Lt)))+p(G)(1−p(T ))(1−p(Lt))
(1)

p(Lt+1|w) =

p(S)(p(Lt) + p(T )(1− p(Lt)))

p(S)(p(Lt)+p(T )(1−p(Lt)))+(1−p(G))(1−p(T ))(1−p(Lt))
(2)

The basic model assumes that the student never forgets a
skill, so once it is mastered, it stays mastered.

Often Knowledge Tracing is paired with mastery learning.
Here the goal is for the student to master the desired skill
(or set of skills). As the student’s mastery level is hidden, a

typical approach is to continue to provide practice opportu-
nities to the student until, based on the student’s responses,
the probability that the student has mastered the skill p(Lt)
exceeds some prespecified threshold, such as 95%.

3. METHODS
Our interest is in characterizing the distribution of model
parameters associated with individual students, and exam-
ining how this impacts the amount of practice opportunities
needed for a student to reach mastery, versus using param-
eters fit to the population.

3.1 Parameter Fitting
We fit a KT model for each individual student, where the
model consists of the 4 parameters specified in the prior
section, 〈p(L0), p(T ), p(S), p(G)〉. The input data for each
student consists of a trajectory of practice opportunities for
a particular skill, where the j-th entry contains whether the
student got this opportunity correct or incorrect. We would
like to compute the model parameters that maximize the
likelihood of the observed data. If at each j we knew if the
student had mastered or not mastered the skill, then com-
puting the best parameters would simply involve counting.
For example, to estimate the probability of slipping p(S) we
would simply count up the number of instances where the
student had mastered the skill but got the problem wrong,
divided by the number of times the student had mastered the
skill. However, we don’t know if the student has mastered
the skill or not. Therefore we use Expectation Maximiza-
tion to find parameters that locally maximize the likelihood
of the observed data.

Expectation maximization (EM) is an iterative algorithm
where each iteration consists of two stages. In the first stage
we fix the current estimates of the parameters and use these
parameters to estimate the probability the student has mas-
tered or not mastered (p̂(Lt) and 1− p̂(Lt)) the skill at each
of the time steps in the trajectory. These estimates can be
efficiently computed using the forward-backward algorithm,
whose computational complexity is linear in the trajectory
length and quadratic in the number of hidden states: here
there are only 2 possible states, mastered or unmastered.

In the second stage, new parameter estimates are computed
given these estimated probabilities of mastery. The new
p(S) parameter is computed by taking all instances where
the student got the problem wrong, and summing the prob-
ability that the student had really mastered the skill in all
those instances, divided by the probability of the student
having mastered the skill on all time steps:

p̂(S) =

∑
j
δj(w)p̂(Lj)
∑

j
p̂(Lj)

,

where δj(wrong) is 1 if the j-th student response was wrong,
and 0 otherwise. A new estimate of p(G) is computed as

p̂(G) =

∑
j
δj(c)(1− p̂(Lj))

∑
j
(1− p̂(Lj))

,

where in the numerator we sum over all instances where
the student got the answer correct. Updating the parame-
ter estimate of p(T ) involves the probability of the student
transitioning from not having the skill mastered to having
mastered the skill. p(L0) is estimated from p̂(L0).
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Algorithm 1 ExpOppNeed

Input: ptsg = 〈p(T ), p(S), p(G)〉, p(Lj), d, ppath, ǫ
Output: EO

if ppath < ǫ then

return EO = 0;
else

if p(Lj) ≥ d then

return EO = 0 {reached mastery}
else

p(c|p(Lj)) (Eqn. 3) {prob get correct}
p(Lj+1|c) (Eqn. 1) {prob mastery if get correct}
ppath,c = ppath ∗ p(c|p(Lj))
{Compute further opp. need if get problem correct}
EOc=ExpOppNeed(ptsg, p(Lj+1|c), d, ppath,c, ǫ)
p(w|p(Lj)) (Eqn. 4) {prob get wrong}
p(Lj+1|w) (Eqn. 2) {prob mastery if get wrong}
ppath,w = ppath ∗ p(w|p(Lj))
{Compute further opp. need if get problem wrong}
EOw=ExpOppNeed(ptsg, p(Lj+1|w), d, ppath,w, ǫ)
return EO = 1+p(c|p(Lj))∗EOc+p(w|p(Lj))∗EOw

end if

end if

Then the whole process repeats, using the updated param-
eter estimates to compute new estimates of the underlying
probability of mastery. These iterations continue until the
process converges to a fixed point, which is guaranteed to
occur.

There are several limitations to using EM that are relevant
for our purposes. First, EM is only guaranteed to converge
to a local optima of the likelihood function. Second, the pa-
rameters found may not be semantically plausible. This can
occur for the p(S) and p(G) parameters. We expect p(S) to
be < 0.5 since if it is larger, it means that it is more likely
for a student to get a problem wrong than right when she
has mastered the given skill. Similarly, we expect p(G) to be
< 0.5, since a student is more likely to get a problem wrong
than right if she has not mastered the associated skill.

Given these concerns, we performed a discretized search over
the p(G) and p(S) parameters, as well as a discretized search
over the initial probability of mastery p(L0). We included
this parameter as we initially had some results where the
p(L0) was fit by EM to be 0 or 1 and we suspect it is probable
that students should lie inside these extremes. We ran EM to
compute the best p(T ) for each tuple of 〈p(L0), p(G), p(S)〉
parameters, and selected the model parameter tuple with
the highest likelihood.

In addition, we also fit model parameters by aggregating
all student data together, and fitting a single population
model. In the rest of the paper we will use pi to denote the
parameters fit for the i-th student, and ppop to denote the
parameters fit for the whole population of students.

3.2 Expected Time to Mastery
Given the estimated student learning model parameters, we
next compute the expected number of practice opportuni-
ties it will take for student i to reach mastery. We take
the standard approach of using a threshold d to define mas-
tery: when p(Lt) ≥ d, the student is defined to have reached
mastery. Consider a given student i, with her associated pa-

Algorithm 2 ExpOppNeedPop

Input: p
tsg
i = 〈pi(T ), pi(S), pi(G)〉, pi(Lj),d,ppath, ǫ,

ptsgpop = 〈ppop(T ), ppop(S), ppop(G)〉, ppop(Lj),
Output: EO

if ppath < ǫ then

return EO = 0;
else

if ppop(Lj) ≥ d then

return EO = 0 {reached mastery under pop model}
else

p(c|pi(Lj)) (Eqn. 3) {prob student i gets correct}
{Prob. mastery if get correct}
ppop(Lj+1|c) (Eqn. 1) {under population model}
pi(Lj+1|c) (Eqn. 1) {under student i’s model}
ppath,c = ppath ∗ p(c|pi(Lj))
{Compute further opp. need if get problem correct}
EOc=ExpOppNeedPop(ptsgi , pi(Lj+1|c), d, ppath,c, ǫ,
ptsgpop,ppop(Lj+1|c))
p(w|p(Lj)) (Eqn. 4) {prob student i gets wrong}
{Prob. mastery if get wrong}
ppop(Lj+1|w) (Eqn. 2) {under population model}
pi(Lj+1|w) (Eqn. 2) {under student i’s model}
ppath,w = ppath ∗ p(w|p(Lj))
{Compute further opp. need if get problem wrong}
EOw=ExpOppNeedPop(ptsgi , pi(Lj+1|c), d, ppath,c,
ǫ, ptsgpop, ppop(Lj+1|c))
return EO = 1+p(c|pi(Lj))∗EOc+p(w|pi(Lj))∗EOw

end if

end if

rameters 〈pi(L0), pi(T ), pi(S), pi(G)〉. First, let pi(Lt|obs1:t)
be the probability of student i having mastered the skill af-
ter having t practice opportunities, and having made the
responses 〈obs1, obs2, . . . obst〉 to each respective practice op-
portunity (where obsj = correct, wrong). Note this expres-
sion can be calculated by sequentially applying either Equa-
tion 1 or Equation 2, depending on whether the student got
that practice opportunity correct or incorrect.

A second important pair of quantities is the probability of
observing a particular student response (correct or incor-
rect) at time t to an opportunity, given the current proba-
bility of mastery pi(Lt). These are:

p(c|pi(Lt)) = p(G)(1− pi(Lt)) + (1− p(S))pi(Lt) (3)

p(w|pi(Lt)) = (1− p(G))(1− pi(Lt)) + p(S)pi(Lt).(4)

Using Equations 1,2,3 and 4, we can compute the expected
number of practice opportunities for a student to reach mas-
tery using a recursive algorithm. Intuitively, the expected
number of additional practice opportunities needed depends
on the current probability that the student has mastered the
material, pi(Lt). If pi(Lt) ≥ d then no more practice oppor-
tunities are needed. Otherwise at least one more practice
opportunity is needed. Depending on whether the student
gets that opportunity correct or incorrect, then pi(Lt+1) will
get updated accordingly, and then we can compute the ex-
pected number of additional opportunities needed from the
resulting probability of mastery. But we don’t know in ad-
vance whether the student will get the next question correct
or not, so we take the expectation over these two possi-
bilities. More precisely, let EOi(pi(Lt)) be the expected
number of further practice opportunities needed given the
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current probability of mastery. Then if pi(Lt) ≥ d,

EOi(pi(Lt)) = 0, (5)

otherwise,

EOi(pi(Lt)) = 1 + p(c|pi(Lt))EOi(pi(Lt+1|c))

+ p(w|pi(Lt))EOi(pi(Lt+1|w)). (6)

The full algorithm, ExpOppNeed, is displayed in Algorithm 1.
The algorithm is called using the student’s initial probabil-
ity of mastery, pi(L0). Calculating the expected number of
practice opportunities needed for individual i is done using
Equations 5 and 6. The algorithm also maintains a vari-
able ppath that represents the probability of the path of ob-
servations, given the student’s initial probability of mastery
pi(L0). When ppath falls below a threshold ǫ, we also set the
expected number of future practice opportunities needed to
0. This is an approximation, but is necessary since in some
models the student will never reach a sufficient probability
of mastery if she gets all practice opportunities incorrect.
Since in the real world such a student would not do an infi-
nite number of problems, and to prevent infinite recursion,
we terminate when ppath < ǫ.

3.3 Population vs Individual
As mentioned previously, often intelligent tutoring systems
operate with a fixed set of parameters for all students, which
we denote the population model ppop. We are interested
in what impact this assumption means for individual stu-
dents whose learning parameters may not match the aggre-
gate population model parameters. More specifically, we
are interested in the expected needed number of practice
opportunities if the probability used to assess mastery is
calculated using the population parameters instead of the
student’s own parameters. Note that we cannot simply ap-
ply Algorithm 1 using the population parameters. Doing so
would calculate the expected number of practice opportuni-
ties needed if we assess mastery using the probability given
by the population model, and if correct and wrong obser-
vations are generated according to a student who has the
same parameters as the population model. In contrast, we
are interested in the case when a real student (with different
parameters than the population model) is responding cor-
rectly or incorrectly to practice opportunities, but that the
system is monitoring the student’s progress using a different
set of model parameters. This is likely to occur in tutors
that use population models.

To estimate the expected needed number of practice oppor-
tunities in this situation, we need to estimate the probabil-
ity of a correct or wrong answer being generated according
to student i’s model parameters pi, but assess if the stu-
dent has reached a sufficient probability of mastery using
the population parameters ppop. This means that during
our calculations we need to maintain two separate estimates
of the probability of mastery for the student, ppop(Lt|obs1:t)
and pi(Lt|obs1:t), which respectively represent the probabil-
ity under the population model parameters, given the ob-
served sequence of correct and incorrect answers, and the
probability under student i’s own parameters.

Let EO
pop
i (ppop(Lt), pi(Lt)) represent the expected number

of additional practice opportunities need to reach mastery,
given the current estimate of the probability of mastery un-
der the population model is ppop(Lt), and under the indi-

vidual model is pi(Lt). EO
pop
i is computed in Algorithm 2,

which is a modification of Algorithm 1.

4. EXPERIMENTS
We used a dataset of student responses to 42 problem sets
in the ASSISTment system [10]. Each set corresponded to
1 skill, and the number of problems given per skill ranged
from 4-13. We first compute individual student parame-
ters. Since the number of data samples was fairly limited
per skill, we computed a set of parameters for all skills an
individual did problems on. Though this is an approxima-
tion, in existing tutoring systems with good learning out-
comes, multiple skills are often modeled as having the same
parameters. We will consider this and other assumptions
made further in the discussion section. We selected the
subset of 265 students who did problems on 10 or more
skills. For this subset, the mean number of skills per stu-
dent was 12.79 (range=[10,22]), yielding an average of 69.57
(range=[45,132]) total problem tries per student. We fit
learning parameters 〈p(L0), p(T ), p(S), P (G)〉 to each indi-
vidual, and to the aggregated dataset across all individuals.

When fitting the model parameters, we restricted p(S) to
lie in [0.05, 0.1] and p(G) to lie in [0.05, 0.3], trying values
incremented by 0.05: these bounds have been used in prior
work [1]. p(L0) was restricted to lie in [0.1, 0.9], and val-
ues were tried at increments of 0.1. p(T ) was fit using EM,
as described previously. We ran EM for each individual (or
the aggregated dataset) with 10 different initializations, and
chose the one with the highest log likelihood. The compu-
tational time needed for EM to converge (for a single indi-
vidual’s data) was approximately 0.6s.

Following the standard procedure in Knowledge Tracing [8],
we set the mastery threshold d to 0.95. We set the expected
number of future practice opportunities from p(Lt|obs1:t) to
0 if the sequence of observations obs1:t had a probability of
less than ǫ = 10−7. We later discuss the effect of ǫ.

5. RESULTS
We first report the resulting distributions of the estimated
student learning model parameters, computed for each stu-
dent separately. Histograms of these distributions are dis-
played for the four learning parameters in Figures 1(a),
1(b), 1(c), and 1(d). For the slip p(S) and guess p(G)
parameters, the distribution is fairly peaked. The majority
of individuals have p(S) and p(G) parameters that are close
to the parameters for the full population. However, for both
the initial probability of mastery, p(L0), and the probability
of mastering a skill after not having understood it, p(T ),
there is a large spread of values. In each figure we have also
included the parameter estimated if the data from all 265
individuals is aggregated, and a single set of model param-
eters is estimated. It is clear that for both p(L0) and p(T ),
there will be many individuals whose best fit parameters
are quite far from the population parameters. This suggests
that the expected number of practice opportunities needed
for some students may differ if student mastery modeling
is done using the individual student’s own estimated pa-
rameters, compared to if we maintain a probability of the
student’s mastery level using the population parameters.

Indeed, this is what we observe. We start by computing
the expected number of practice opportunities needed for
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(a) p(L0). ppop(L0) = 0.6
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(b) P (T ). ppop(T ) = 0.086
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(c) P (S). ppop(S) = 0.1

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Probability of guessing

F
re

q
u

e
n

c
y

(d) P (G). ppop(G) = 0.3

Figure 1: Histogram of parameters fit for each individual.

an individual, given the model parameters pi estimated for
that individual, EOi(pi(L0)). The probability of the student
reaching mastery is assessed using the student’s parameters
pi. A histogram of the expected number of practice opportu-
nities for an individual to reach mastery as evaluated using
their own parameters is displayed in Figure 2(a). We have
binned the data to illustrate the distribution of the individ-
uals. Over half the individuals are expected to need less
than 5 practice opportunities to reach mastery. However,
there are also a significant number of individuals that are
expected to need a much larger number of practice oppor-
tunities to reach mastery: over 40 students require at least
15 practice opportunities, and over 30 of those require 20 or
more. This graph suggests that there is a significant spread
in the required amount of practice necessary for different
students.

We next examine the expected number of practice opportu-
nities needed for a student i, if we evaluate mastery using the
population parameters, EO

pop
i (ppop(L0), pi(L0)). Note that

this is the situation that occurs in existing tutors that use a
single set of model parameters for all students. Figure 2(b)
displays a histogram of the expected number of practice op-
portunities needed when evaluating mastery using the pop-
ulation parameters. At a rough glance the histogram looks
similar to Figure 2(a), but upon closer examination, the in-
dividuals histogram has its peak at about 2 whereas the
population model has its peak at about 5 expected number
of time steps.

We examine this discrepancy more systematically in Fig-
ures 3(a) and 3(b). There are three possible situations that
could result from estimating the number of practice oppor-
tunities if we evaluate mastery learning using a set of pop-
ulation parameters, on an individual with their own set of
parameters. In the first case a student might have to do more
practice problems than they would if we evaluated mastery
using the student’s own parameters. For example, this might
occur if the probability of mastering an unmastered skill is
higher for individual i than for the group, pi(T ) > ppop(T ).
In the second case an individual will need a very similar
number of practice opportunities, whether we evaluate their
skill mastery using the estimated population parameters, or
the individual’s own parameters. In the third case are stu-
dents who are expected to need more practice opportunities
than that predicted if using the population model.

The first and third situations are the ones of concern. In the
first case, it would mean that some students are having to do
more problems than really needed. Since there is only a fi-
nite amount of time in the school year, this means that these
students would be likely to cover less material than they are
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(a) Using Individual Parameters
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(b) Using Population Parameters

Figure 2: The expected number of practice opportunities to
reach mastery, where the probability of mastery is evaluated
either based on the individual’s estimated model parame-
ters, or the estimated population model parameters.

capable of, due to doing extra unnecessary problems. In ad-
dition, doing more problems than required might contribute
to student boredom and disengagement. In the third case,
a student may be recorded as having mastered a skill before
he has really reached the required threshold probability of
mastery. This means that the student could be advanced to
later skills, some of which might assume knowledge of this
earlier skill, without the student having actually understood
the earlier skill to a satisfactory level.

Therefore our next objective was to ascertain if there was
evidence that either case 1 or case 3 occurred in this dataset.
For each individual i we computed the difference in expected
number of practice opportunities needed using the popula-
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tion model to assess mastery, versus the individual model:

∆(i, pop) = EO
pop
i (ppop(L0), pi(L0))− EOi(pi(L0))). (7)

Figure 3(a) displays a histogram of ∆(i, pop). Note that
higher values mean that the expected number of practice op-
portunities is more under the population parameters, than
if one used the individual’s parameters, aka case 1. Nega-
tive numbers are when the individual is expected to need
more opportunities given their own parameters, compared
to the population parameters, aka case 3. We can see that
there are a number of individuals that fall into either case.
One way for defining students in case 1 is students that are
expected to be given one or more additional practice oppor-
tunities if the population model is used to do assessment
of reaching the threshold probability of mastery, versus the
expected number using the student’s own parameter. Using
this definition 146 students (or 55%) fall into case 1, where
the mean ∆(i, pop) of this group is 2.18. Though important,
this may not sound like a large number. But the importance
of this difference becomes more clear when we consider the
ratio of expected practice opportunities,

r(i, pop) =
EO

pop
i (ppop(L0), pi(L0))

EOi(pi(L0))
. (8)

A histogram of r(i, pop) is displayed in Figure 3(b). This
figure shows that over 50 students in our dataset would be
expected to do twice as many problems if the population
parameters are used to assess mastery learning, compared
to using the individual’s parameters. For example, one stu-
dent’s parameters were pi(L0) = 0.3, pi(T ) = 0.86, pi(S) =
0.1, pi(G) = 0.3. Here ∆i(i, pop) = 2.74 and r(i, pop) =
3.32. For such students, they could potentially be covering
twice or more as much material in the same time if their
own model parameters were known and used to evaluate
mastery. This could have very significant effects on such
students’ learning, and, equally importantly, at least in this
dataset, this effects a significant proportion of the students,
over 20% of the student population in our dataset.

Returning to estimates of ∆(i, pop), Figure 3(a) also reveals
that there are a number of individuals whose ∆(i, pop) < −1,
indicating that we expect such individuals to need at least
one more practice opportunity if we use their own param-
eters to assess mastery, compared to using the population
model parameters. This is case 3, and there are 21 individ-
uals who fall into this category. The average ∆(i, pop) for
this subset is −1.47. An additional interesting quantity in
this case is the expected probability of mastery of individual
i, if mastery is assessed using the population model param-
eters. This quantity is displayed in Figure 3(c) for all stu-
dents whose ∆(i, pop) < 0, aka students that are expected
to need more practice opportunities than they will receive
if the population parameters are used. Though a subset of
these students have an expected probability of mastery that
is fairly close to the desired threshold (0.95), 44 students
(∼17%) have an expected probability of mastery of 0.6 or
less. For example, one student’s estimated parameters were
pi(L0) = 0.1, pi(T ) = 0.028, pi(S) = 0.1, pi(G) = 0.3, and
the expected actual average mastery for this student when
his mastery is assessed using the population parameters, was
only 0.47, far below the 0.95 threshold of mastery desired.
Such individuals are unlikely to have sufficiently understood
the current skill, yet would be considered to have reached
mastery, and moved on to the next skill.

Therefore, in this dataset, there appear to be a substantial
number of students who fall into case 1 or case 3, who would
be likely to have to do more problems than is actually neces-
sary, or who would not have reached the desired probability
of mastery, respectively.

Some readers might be concerned that the reported results
are computed using an algorithm that only approximates
the expected number of needed practice opportunities. This
approximation arises from setting EOi(p(Lt|obs1:t) to 0 if
the probability of the path of observations is less than set
threshold, p(obs1:t) ≤ ǫ = 10−7, which was done from com-
putational reasons. As one exploration, we repeated our
analysis using ǫ = 10−5 and observed very similar results.
More generally, our approximation will typically underes-
timate the difference ∆(i, pop) in the two cases we are in-
terested in. Intuitively this is because whichever parameter
set, either pi or ppop, has the higher learning rate and/or
higher initial probability of mastery, that model will be less
effected by terminating low probability paths, because its
expected number of time steps will be shorter. We tested
this intuition by taking the population parameters (where
p(T ) = 0.086), and creating two alternative models, one
“fast” learner where p(T ) = 0.2, and one “slow” learner
where p(T ) = 0.02. We used different ǫs and evaluated ∆
for these different models:

ǫ 10−5 10−6 10−7 0.5 ∗ 10−7

∆(fast, pop) 2.511 2.844 3.103 3.175
∆(slow, pop) −1.700 −2.374 −3.100 −3.311

Note that the magnitude of the difference is increasing as
ǫ → 0, indicating that by using a ǫ > 0, we are likely to be
underestimating the true difference in expected time steps
between an individual model and when using a population
model. This suggest that we expect our reported results to
be an underestimate of the true significance of the impact of
using population parameters instead of individual parame-
ters when assessing mastery.

6. RELATEDWORK
Student modeling is naturally of key interest to the intelli-
gent tutoring systems and educational data mining commu-
nity. Knowledge Tracing [8] has been explored extensively
in the research community and is also used in effective in-
telligent tutoring systems.

Over the last 5 years there has been significant interest in
methods for fitting the parameters in the Knowledge Trac-
ing model. Beck and Chang [3] pointed out that in some
cases, more than 1 set of KT parameters predict exactly
the same student performance (the probability the student
will get the next answer correct as the number of practice
opportunities increases). This means that the model suf-
fers from an identifiability problem, where there are more
than 1 set of parameters that equally well fit the observed
data. In addition, Beck and Chang discuss the issue that
when model parameters are fit by EM, the resulting model
parameters may be implausible from a seminar perspective,
for example if the probability of guessing the right answer
p(G) is higher than 0.5, then students that have a greater
chance of getting a problem right than wrong when they
haven’t mastered the skill, which seems unlikely. Beck and
Chang addressed the issue of identifiability by using hand
set Dirichlet priors to introduce domain. Baker, Corbett
and Aleven [1] presented a machine learning method to es-
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(c) Expected mastery

Figure 3: The expected number of practice opportunities needed when using the population parameters to assess if the student
has reached a threshold of mastery(a), versus the individual’s own parameters(b). (c) shows the expected level of mastery of
students if using the population parameters to assess mastery, for students i that needed more practice, ∆(i, pop) > 0.

timate the probability a student has slipped or guessed as a
way to address both identifiability and plausibility. Rai and
colleagues [11; 12] have since investigated learning Dirichlet
priors from data, or multiple Dirichlets, to improve param-
eter plausibility. Ritter et al. [13] clustered similar skills to-
gether to reduce the number of model parameters required
in order to find better parameters given a fixed set of data.

There has also been a limited amount of work on trying to
individualize the Knowledge Tracing parameters. In their
key paper, Corbett and Andersen [8] investigated individu-
alizing the KT parameters by first learning a set of param-
eters for all students, and then computed weights to adjust
these parameters to individual students. While the resulting
weighted parameters lead to predictions that correlated bet-
ter on student test performance than a nonweighted model,
the weighted model did not generally have a better pre-
dictive accuracy on the student’s test score. In contrast to
weighting, Pardos and Heffernan [10] simply enabled the ini-
tial probability of mastery, p(L0), to vary among individuals
during the initial fitting process. The resulting model pre-
dicted student responses better than a Knowledge Tracing
model where all parameters are identical for all students.
Our work is related to Pardos and Heffernan, except we fit
all 4 KT parameters individually to each student.

There are a number of alternate mathematical models of stu-
dent learning and performance, including Learning Factors
Analysis [5]. A number of these models use a logistic regres-
sion approach to directly modeling the probability a student
will get the next practice opportunity correct, without an
additional representation of the student’s latent skill mas-
tery state. However to our knowledge, unlike the Knowledge
Tracing approach, these models have not been used to help
make decisions about how much additional practice a stu-
dent needs. One simple extension to the idea of thresholding
when the student’s probability of mastery has reached a suf-
ficient level would be to continue providing the student with
practice opportunities until the logistic regression model ex-
ceeds a prefixed threshold of the student getting the next
problem correct.

7. DISCUSSION AND FUTUREWORK
Our results suggest there is a large amount of variation in
student learning parameters in this dataset, and this varia-
tion has important implications for the amount of practice
opportunities that should be given to individual students.

There are a number of ways that the work presented in this
paper could be further improved in the future. Right now
we are combining a brute force discretized grid search over
a subset of the Knowledge Tracing parameters, with per-
forming Expectation Maximization over the remaining pa-
rameters. It would be interesting to explore other methods
for fitting KT parameters to data, such as those previously
proposed [3; 1; 11; 12; 13].

We currently assume all the skill parameters for an individ-
ual student are the same. This was done in order to have a
larger number of data points to use in order to fit the stu-
dent model parameters, and because there is prior precedent
in successful tutors of using the same skill parameters for
multiple skills. However, we suspect that at least for some
skills, the parameters differ. Therefore we have two axes of
potential variation: the individual skills, and the individual
students. One natural concern is that increasing the number
of model parameters (by modeling individual skills or indi-
vidual students) leads to a danger of overfitting, since there
will be less data for each subset of parameters we wish to
estimate. Indeed, prior work by Ritter et al. [13] found that
by clustering skills into groups, and fitting KT parameters
to each cluster (instead of each skill), the resulting clusters
generalized better to new students than fitting data to in-
dividual skills. We plan to perform a related analysis on
seeing if there appear to be different clusters of students,
all of which share similar skill parameters. More generally,
we are interested in developing hierarchical models of skill
parameters, which could fit individual student and individ-
ual skill parameters, but do so in a way that encourages
clustering of both skills and students. Latent Dirichlet Al-
location [4], a method for modeling collections that share
features, such as documents sharing subsets of topics, may
be a relevant approach.

Though our results suggest that individual variation in stu-
dent model parameters can exist, and lead to overpractice
or underpractice if these differences are ignored by using a
population model, we have only analyzed a single dataset.
Further experiments should be performed on other datasets
to see if similar results are obtained.

Assuming these results hold in other cases, to us the most
exciting issue is how to modify automated mastery teaching
to enhance student learning, assuming that individual stu-
dents’ parameters vary. In the current paper we fit individ-
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ual model parameters to the student data after the students
have already completed all practice opportunities. In real
tutoring settings, the student parameters will be unknown.
Therefore, in order to test whether using individual student
parameters benefits students using real classroom studies,
we will need to infer students’ parameters while simultane-
ously monitoring their performance and deciding whether
the student has reached a sufficient threshold probability of
mastery. Corbett and Andersen [8] used a fixed initial set of
exercises as a diagnostic period to learn student parameter
weights. After this mastery learning proceeds using param-
eters that incorporate the student’s individual weights. Of
course, this begs the question of how long a diagnostic pe-
riod is required to fit a good estimate of the individual’s
parameters, while simultaneously being short enough that
the individual may benefit from having individualized pa-
rameters: if we can only fit individual parameters after the
student has reached mastery, this method is unlikely to be
effective. The success of this approach also depends on other
modeling assumptions. For example, if we assume that an
individual has the same set of parameters for all skills, then
one approach is to use the population skill parameters when
the student is learning the first skill, and then take the stu-
dent data from that first skill and fit a set of KT parameters
to that data for the individual. This set could then be used
as the student learns other skills. One could also imagine
taking a Bayesian approach and explicitly modeling the un-
certainty over a student’s learning parameters. This uncer-
tainty could be updated as the student responds to practice
opportunities. One challenge in this setting is that in a
Knowledge Tracing model the student’s true state of mas-
tery is never observed. This poses some interesting technical
challenges when updating a distribution over model param-
eters.

Finally, in this paper we focused on a Knowledge Tracing
model of student learning. KT models have been often used
in mastery tutoring systems. In contrast, we are not aware
of prior work that use logistic regression student learning
models (e.g. [5]) as part of an adaptive instructional strat-
egy that decides when to stop giving the student practice
opportunities. Logistic regression student models often in-
corporate both student-specific and shared population pa-
rameters. Therefore in the future we are interested in in-
corporating logistic regression models into a tutoring strat-
egy, and comparing this with our individualized KT model
mastery-learning approach, in terms of their effect on the
expected amount of practice needed.

8. CONCLUSIONS
In this paper we fit all 4 Knowledge Tracing parameters to
each individual student from a set of tutoring data, and ex-
amined the resulting parameter distributions. The resulting
observed parameter distribution was found to have interest-
ing implications for instruction versus using a single model
for all students. About 20% of students would have to do
approximately double the number of practice problems in
order to reach the threshold of mastery defined using the
population parameters, compared to using the student’s own
parameters to assess probability of mastery. Another ∼17%
of students would be expected to have a probability of mas-
tery of only 60% or less when the population model would
expect the student is at a probability of mastery of 95% or

higher. This suggests that using a single set of population
parameters for all students in a tutoring system may result
in a significant portion of students covering less content than
they are capable of, due to being required to complete re-
dundant practice problems, and equally importantly, may
advance some students to later skills before they are ready.
In the future we will investigate how to learn and incorpo-
rate individualized parameters during the tutoring process.
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ABSTRACT 
In recent years, the usefulness of affect detection for educational 
software has become clear. Accurate detection of student affect 
can support a wide range of interventions with the potential to 
improve student affect, increase engagement, and improve 
learning. In addition, accurate detection of student affect could 
play an essential role in research attempting to understand the root 
causes and impacts of different forms of affect. However, current 
approaches to affect detection have largely relied upon sensor 
systems, which are expensive and typically not physically robust 
to classroom conditions, reducing their potential real-world 
impact. Work towards sensor-free affect detection has produced 
detectors that are better than chance, but not substantially better—
especially when subject to stringent cross-validation processes. In 
this paper we present models which can detect student engaged 
concentration, confusion, frustration, and boredom solely from 
students' interactions within a Cognitive Tutor for Algebra. These 
detectors are designed to operate solely on the information 
available through students’ semantic actions within the interface, 
making these detectors applicable both for driving interventions 
and for labeling existing log files in the PSLC DataShop, 
facilitating future discovery with models analyses at scale. 

Keywords 
Educational data mining, affective computing, affect detection, 
boredom, engaged concentration, frustration, confusion, 
intelligent tutoring system 

1. INTRODUCTION 
In recent years, the log data collected through educational 
software such as intelligent tutoring systems has been a major 
resource for the educational data mining community [cf. 12; 33]. 
In specific, it has been possible to study changes in student 
learning and engagement over long periods of time by developing 
models using approaches such as classification or knowledge 
engineering and applying the models to larger data sets, a process 
termed “discovery with models.” Examples of this research 
include work to understand which models best predict student 
learning with an intelligent tutoring system [29; 38], work to find 
prerequisites within a curriculum [37], work to study the 
differences in engagement over the course of an entire year 
between urban, rural, and suburban schools [10], and work to 
study the differences in disengaged behavior between different 
tutor lessons [3]. 

Fewer research studies have focused on affect/academic emotions 
[30]. It is known that affect interacts with engagement and 
learning in complex fashions [cf. 7; 11; 21; 22; 26; 35]. However, 
research of this nature has largely been limited to relatively brief 
time-windows, on the order of a small number of lab sessions or 
field sessions. This limitation is due to the methods used in 
conducting these studies: self-report [cf. 1; 18; 35], retrospective 
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emote-aloud protocols [cf. 19], field observations [cf. 7; 11; 22], 
and video observations [19, 21]. Each of these methods has been 
shown to produce replicable assessments of relevant academic 
affect, but each method also has limitations in terms of large-scale 
applicability. Specifically, self-report can disrupt naturally 
affective processes, and retrospective emote-aloud protocols, like 
observational methods, are expensive to conduct at large-scale. 

A method with the potential to address this limitation is automated 
detection of affect. Researchers have been investigating affect 
detection from physiological sensors or vocal patterns for over a 
decade, and have produced successful detectors for a range of 
emotions. Such work is reviewed in detail by Calvo and D’Mello 
[14, 15]. In the domain of educational research, researchers have 
used sensors to develop detectors for several affective constructs. 
Litman and Forbes-Riley have found that features of students’ 
voices while engaging in vocal dialogues with tutors can predict 
students’ emotions [27]. D’Mello and Graesser have shown that a 
combination of body language and facial features, in combination 
with student interaction with the learning software, can be used to 
detect learner affect [20]. Muldner, Burleson, and VanLehn have 
shown that a combination of sensors can be used to detect student 
delight while learning [28]. Finally, Arroyo and colleagues have 
shown that sensor-based approaches to affect detection can work 
in urban schools and classrooms, enabling real-time adaptation to 
students’ affect in an authentic learning setting [1]. 

However, approaches relying upon sensors are limited in 
application to data sets for which sensors were present. This limits 
applicability for schools, where sensor breakage can present a 
challenge for long-term use. In addition, sensor cost can be an 
economic challenge for schools, and internet connections may not 
have sufficient bandwidth to log full physiological sensor data for 
retrospective analysis. 

Hence, to achieve maximum utility of an affect detector for 
retrospective discovery with models analysis, it is necessary to 
detect affect without reference to any sensor data. Ideally, such 
detection will be conducted solely with the type of log file data 
already being collected at large scale, such as the data being 
collected in the PSLC DataShop repository [cf. 24].  

D’Mello and colleagues presented a first paper on an affect 
detector developed solely from log files [19]. Modeling student 
affect in the AutoTutor intelligent tutoring system in a laboratory 
study, they achieved decent agreement to ground-truth labels 
provided by human video coders. Their model successfully 
distinguished frustration from the neutral state approximately 40% 
better than the base rate (e.g. Kappa = approximately 0.4), and 
distinguished boredom, confusion, and flow from the neutral state 
approximately 20% better than chance. However, there were a 
few limitations in this pioneering study that need to be addressed 
to make sensor-free detectors of affect maximally useful. First, the 
detectors’ best performance was achieved when distinguishing 
between specific affective states and the neutral state (e.g. all 
other affective states were discarded from the data set). The 
detectors achieved relatively poorer performance (Kappa = 0.163) 
when attempting to distinguish affective states from each other. 
Second, they re-sampled the data to eliminate imbalance between 
classes, and validated their models on the re-sampled data. Re-
sampling is an appropriate method for generating unbiased 
classifiers, but the resultant models should ideally be tested on a 
non-resampled data set to verify detector effectiveness for future 
application of the models to data with natural class distribution. 
Third, their models were cross-validated at the observation level, 

rather than the student level, providing less information on 
detector generalizability to new students. Within this paper, we 
attempt to build on the methods in this pioneering research, while 
addressing these limitations. 

A second paper developing non-sensor-based detectors was 
presented by Conati and Maclaren, who conducted a laboratory 
study of affect in the game Prime Climb [18]. In this paper, 
detectors using a combination of questionnaire and log data were 
used to predict self-reports of student affect, using a Bayesian 
framework. The cross-validation in this paper was conducted at 
the student level, giving information on model applicability to 
new students. Also, affect was compared using a median-split on 
binary distinctions (such as the distinction between joy versus 
distress), avoiding bias that may stem from discarding data that is 
neither the current affective state being detected nor the neutral 
state.  

As in D’Mello et al. [19], Conati and Maclaren re-sampled the 
data to eliminate imbalance between classes during training. They 
validated their models using both the re-sampled distribution and 
the original distribution [18]. For the re-sampled data, their model 
was 32% better than the base rate at distinguishing between joy 
and distress, and 6% better than the base rate at distinguishing 
between admiration and reproach. However, their models 
achieved accuracy below the base rate when applied to the 
original distribution. This result indicates the challenge of 
achieving appropriate cross-validated performance for unbalanced 
constructs that are only indirectly reflected in student interaction 
within learning software.  

A third paper developing sensor-free affect detectors was 
presented by Sabourin, Mott, and Lester, who studied the affect of 
students using the Crystal Island narrative-centered learning 
environment, [34]. In this classroom study, as in Conati and 
Maclaren’s laboratory research [18], detectors based on a 
combination of questionnaire and log data were used to predict 
self-reports of student affect, using a Bayesian framework. As in 
[18], cross-validation was conducted at the student level. In 
addition, all relevant data was considered in model development 
and evaluation, and models were evaluated using the original data 
distribution rather than a re-sampled distribution. Their model was 
38% better than the base rate at identifying focused students, and 
24% better than the base rate at identifying curious students. It 
was less successful at identifying students who were confused 
(19% better than base rate), frustrated (14% better than base rate), 
bored (10% better than base rate), excited (8% better than base 
rate), although the detectors were better than the base rate for 
every construct except anxiety (3% worse than base rate). The 
only limitation for broad applicability of these models is the use 
of questionnaire measures, which require that a new student be 
given the same questionnaires for the model to be applied to that 
student.  
A fourth paper, by Lee and colleagues [40], presented a sensor-
free detector of confusion in a programming development 
environment. This detector achieved a very high student-level 
cross-validated Kappa of 0.86, but it is not clear if this detector 
was assessing the affective state of confusion or the more general 
experience of a student having difficulty with the material.  

Within this paper, we build automated detectors of affect for 
Cognitive Tutor Algebra I, a widely used learning environment. In 
doing so, we restrict ourselves to the data generally available for 
this learning environment in the PSLC DataShop [cf. 24], making 
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it feasible to apply the resultant detectors to hundreds of 
thousands of hours of student data. Ground-truth labels are 
obtained using field observations of affect [7] conducted using a 
handheld app for the Android platform, and then synchronized 
with log files. The detectors are constructed using only log data 
from student actions within the software occurring at the same 
time as or before the observations. Affect is known to have 
different prevalence following specific behaviors [cf. 7; 11; 35], 
suggesting that a detector that takes this information into account 
may be more effective than one that does not. By using only 
information from before and during the observation, our detectors 
can be used for fail-soft interventions, as well as discovery with 
models analyses.  

2. METHODS 
2.1 Data Collection 
Data on student affect was collected from 89 students who were 
using Cognitive Tutor Algebra I as part of their regular 
mathematics curriculum. The students were using a lesson on 
systems of algebraic equations. Cognitive Tutors are a popular 
type of interactive learning environment now used by around half 
a million students a year in the USA. In Cognitive Tutors, 
students solve problems with exercises and feedback chosen based 
on a model of which skills the student possesses. Cognitive Tutor 
Algebra has been shown to significantly improve student 
performance on standardized exams and tests of problem-solving 
skill [25].  

Each of the students studied in this paper were enrolled in one of 
four classes in a high school in rural Western Pennsylvania. In this 
school, 67% of students are rated as proficient or higher on the 
PSSA standardized exam, moderately higher than the state 
average. Students in this school are 96% Caucasian, typical in 
rural schools in this region, but higher than the state average. 18% 
of students are eligible for free or reduced-price lunch, 
approximately half of the state average. Students studied were 
approximately balanced in terms of gender. 
 

 
Figure 1: The Systems of Equations A lesson, from Cognitive 

Tutor Algebra I, used in this study. 
Two expert field observers coded student affect and 
engaged/disengaged behaviors as students used the learning 
software. In this paper, we focus solely on the affect codes, as 
models of relevant engaged and disengaged behaviors were 
already available for this tutoring system (see discussion of 
features below). The coders used software on a Google Android 

handheld computer, which implemented an observation protocol 
developed specifically for the process of coding behavior and 
affect during use of educational software, replicating the protocol 
in [7]. All coding was conducted by the fourth and fifth authors. 
These two coders were previously trained in coding behavior and 
affect by the first author and have achieved inter-rater reliability 
with the first author of 0.72 (first and fourth authors, affect) and 
0.83 (first and fifth authors, behavior [cf. 6]) in previous research 
conducted with students using other learning environments. This 
degree of reliability is on par with Kappas reported by past 
projects that have assessed the reliability of detecting naturally 
occurring emotional expressions [7; 13; 27; 32]. 

Observations were conducted in the school’s computer laboratory, 
where students typically use the Cognitive Tutor software. 
Students were observed across 2 class days. Students were coded 
in a pre-chosen order, with each observation focusing on a 
specific student, in order to obtain the most representative 
indication of student affect possible. At the beginning of each 
class, an ordering of observation was chosen based on the 
computer laboratory’s layout, and was enforced using the hand-
held observation software. Setting up observations took a few 
minutes at the beginning of each class. A total of 408.51 minutes 
of observations were conducted across sessions, across the two 
coders. During this time, 763 observations were conducted across 
all students, not counting observations of students who were not 
logged into the software or not present in the classroom, for an 
average of 8.57 observations per student (SD = 2.84). 
Each observation lasted up to twenty seconds, with observation 
time automatically coded by the handheld observation software. If 
affect and behavior were determined before twenty seconds 
elapsed, the coder moved to the next observation. Typically, each 
student observation involved 5 taps to the handheld screen, with 
the coder choosing affect and behavior codes from a pair of pop-
up menus, and then clicking to confirm their selection. As such, 
data entry by an experienced coder took approximately 3 seconds 
per observation.  

Each observation was conducted using peripheral vision or side-
glances to reduce disruption. That is, the observers stood 
diagonally behind the student being observed and avoided looking 
at the student directly [cf. 5; 7; 32], in order to make it less clear 
when an observation was occurring. This method of observing 
using peripheral vision was previously found to be successful for 
assessing student behavior and affect, achieving good inter-rater 
reliability [cf. 6, 7; 32]. To increase tractability of both coding and 
eventual analysis, if two distinct affective states were seen during 
a single observation, only the first state observed was coded. Any 
affect of a student other than the student currently being observed 
was not coded. 

The observers based their judgment of a student’s state or 
behavior on the student’s work context, actions, utterances, facial 
expressions, body language, and interactions with teachers or 
fellow students. These are, broadly, the same types of information 
used in previous methods for coding affect [e.g. 13], and in line 
with Planalp et al’s [31] descriptive research on how humans 
generally identify affect using multiple cues in concert for 
maximum accuracy rather than attempting to select individual 
cues. The judgments of affect were based on a sub-set of the 
coding scheme used in [7; 21], selected based on importance for 
learning. Within an observation, each observer coded affect with 
reference to five categories:  
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• Boredom 

• Confusion 

• Engaged concentration (the affect associated with the 
flow state [cf. 7])   

• Frustration 

• “?” (which refers to any affect outside the coding 
scheme, including eureka, delight, and surprise. It also 
includes cases where it was impossible to code affect, 
such as when a student went to the bathroom or the 
software crashed.)  

Delight and surprise were removed from the earlier coding 
scheme in [7; 21], due to the relative rarity of these affective 
states in prior research [e.g. 7; 21; 32].  

Within the observations, the affective states had the following 
frequencies: boredom was observed 5.9% of the time, engaged 
concentration was observed 84.5% of the time, frustration was 
observed 0.9% of the time, and confusion was observed 1.8% of 
the time. The remaining observations were coded as “?”. This 
distribution of affect is in line with prior studies – engaged 
concentration is typically the most common affect in classroom 
learning [cf. 7; 10; 34]. However, confusion, which tends to be 
relatively rare in most cases, was somewhat less frequent than has 
been typically seen in previous classroom studies [cf. 7; 10; 34].  

2.2 Feature Distillation 
In order to distill a feature set for detectors of affect, student 
actions within the software were synchronized to the field 
observations. Only the types of data available in standard PSLC 
DataShop log files [cf. 24] were used, towards producing 
detectors that could be applied retrospectively to existing data at 
scale. 

During data collection, both the handhelds and the educational 
software server were synchronized to the same internet-time 
server. Actions during the twenty seconds prior to data entry by 
the observer were collected as a clip.  

A total of 58 features were developed using the student’s behavior 
both during and prior to the 20-second window. Some features 
were completely about the current action, such as whether it was 
correct or not. Other features, such as the number of previous 
actions on the current skill that involved help requests, involved 
data from the student’s past performance. These 58 features were 
aggregated across the actions within the clip using mean, min, 
max and sum aggregators, hence a total of 232 features were used 
in the development of the detectors. Features involving past 
behavior (such as the number of previous actions on the current 
skill that involved help requests) are likely to have little change 
during the course of a clip, but were aggregated in the same 
fashion for simplicity of implementation.  

Using both features on the current clip and features involving past 
data has the potential to help us detect affect more effectively, as 
there is evidence that the prevalence of specific affective states is 
different following specific behaviors [7; 10; 35] during real-
world learning.  
Features were drawn from two sources:  

• Features developed during our group’s past work to 
develop behavior detectors in Cognitive Tutors [cf. 2; 4; 
8], averaged across actions in the clip (or min or max 
across actions), or across actions prior to the clip. 

• Prior models of disengaged and engaged behaviors 
previously developed for this tutor or related tutors [cf. 
2; 4; 8; 36]. Engaged and disengaged behaviors are 
known to precede and co-occur with affect, giving 
potential leverage for detecting affect. 

Examples of features used can be seen in Table 2. 

2.3 Machine Learning Algorithms 
Each affective state was predicted separately – e.g. BORED was 
distinguished from NOT BORED (e.g. all other affective states), 
FRUSTRATED was distinguished from NOT FRUSTRATED 
(e.g. all other affective states), and so on. This resulted in four 
detectors, one for boredom, confusion, engaged concentration, 
and frustration respectively.  

Each detector was evaluated using six-fold student-level cross-
validation [cf. 17; 34]. In this process, students are split randomly 
into six groups. Then, for each possible combination, a detector is 
developed using data from five groups of students before being 
tested on the sixth “held out” group of students. By cross-
validating at this level, we increase confidence that detectors will 
be accurate for new students.  

For each construct being detected, a separate student-level cross-
validation was conducted, which stratified students based on the 
dependent variable. This procedure was used in order to guarantee 
that each fold had a representative number of observations of the 
majority and minority class. In addition, for unbalanced classes, 
re-sampling was used to make the class frequency more equal for 
detector development. However, all goodness calculations were 
made with reference to the original data set, as in Sabourin et al. 
[34]. 

We attempted to fit sensor-free affect detectors using eight 
common classification algorithms that have been successful for 
past educational data mining problems, including J48 decision 
trees, step regression, JRip, Naïve Bayes, and REP-Trees. 

Feature selection for machine learning algorithms was conducted 
using forward selection, where the feature that most improves 
model goodness is added repeatedly until adding additional 
features no longer improves model goodness. During feature 
selection, cross-validated kappa on the original (e.g. non-re-
sampled) data set was used as the goodness metric. Prior to 
feature selection, all features with cross-validated kappa equal to 
or below zero in a single-feature model were omitted from 
consideration, as a check on over-fitting. 

Detector goodness was assessed using two metrics: Cohen’s 
Kappa [17] and A’ [23]. Cohen’s Kappa assesses the degree to 
which the detector is better than chance at identifying which clips 
involve a specific affective state. A Kappa of 0 indicates that the 
detector performs at chance, and a Kappa of 1 indicates that the 
detector performs perfectly.  For example, a Kappa of 0.31 would 
indicate that the detector is 31% better than chance. A’ is the 
probability that the algorithm will correctly identify whether a 
specific affective state is present or absent in a specific clip. A' is 
equivalent to both the area under the ROC curve in signal 
detection theory, and to W, the Wilcoxon statistic [23]. A model 
with an A' of 0.5 performs at chance, and a model with an A' of 
1.0 performs perfectly. In these analyses, A’ was computed at the 
level of clips, rather than students, using the AUC (area under the 
curve) approximation. 
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3. RESULTS 
Detector performance for all four constructs studied was better 
than chance (see discussion of cross-validation methodology in 
the previous section), but left room for improvement. Full results 
are shown in Table 1. For engaged concentration, the best 
algorithm was K*. The engaged concentration detector achieved 
an A’ of 0.71 and a Kappa of 0.31. For confusion, the best 
algorithm was JRip. The confusion detector achieved an A’ of 
0.99 and a Kappa of 0.40. For frustration, the best algorithm was 
REPTree. The frustration detector achieved an A’ of 0.99 and a 
Kappa of 0.23. For boredom, the best algorithm was Naïve Bayes. 
The boredom detector achieved an A’ of 0.69 and a Kappa of 
0.28. 
Several of these detectors showed an imbalance between A’ and 
Kappa. Imbalance of this nature typically indicates a detector 
which is better at getting the relative order between classes correct  
(in its confidence estimates) than at drawing an optimal line 
between classes. Using detectors of this nature, whether for 
intervention or discovery with models analyses, will be more 
effective if confidence is taken into account. 

Features automatically selected for each of the detectors during 
machine learning are listed in Table 2. Full detail on models, 
including runnable versions of the models (for RapidMiner 4.6) 
can be found in the PSLC DataShop [24], in data set “Baker – 
Closing the Loop on Gaming – Hopewell Spring 2011”, at 
(https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=479). 
This data set also includes all data used in the analysis, distilled 
features used to develop the detectors, data from the field 
observations synchronized with the student interaction data, and 
the detector’s predictions for actions not initially labeled through 
the field observations.  

The features for engaged concentration involve actions where the 
student was more likely to have a history of few errors and help 
requests on the skills in the clip. When a student is in engaged 
concentration and requests help, they typically do not follow it up 
with an error (e.g. they read the hints carefully; while they might 
also have been gaming the tutor’s hints, gaming typically results 
in some proportion of errors, as students do not read hints  

 
 A’ Kappa 
Engaged Concentration 0.71 0.31 
Confusion 0.99 0.40 
Frustration 0.99 0.23 
Boredom 0.69 0.28 
Average Across Constructs 0.85 0.30 
Table 1: The goodness of each final model, under student-level 

cross-validation, for the original data set. 
 
carefully). These features suggest a student who is closely 
engaged and working effectively. 

The features for confusion suggest a struggling student [cf. 26]. A 
confused student is more likely to have a pattern of slower actions 
after making two errors and tend to have a history of more 
incorrect actions and help requests. Furthermore, his or her correct 
actions are relatively more likely to represent guesses,  
 

Engaged Concentration 
The minimum number of previous incorrect actions and help 
requests for any skill in the clip.   
Among the skills involved in the clip, the minimum value for 
previous incorrect actions and help requests for that skill. 
The duration (in seconds) of the fastest action in the clip. 
The percentage of clip actions involving a hint followed by an 
error. 

 
Boredom 

The average time the student took to respond on the current step 
prior to the clip, averaged across all the actions with a clip.  
The average time the student took to respond, unitized across time 
taken by all students on the same problem steps, within sequences 
of three actions in a row. 
The maximum product of the probability of moment-by-moment 
learning P(J) [9], and the probability of guess P(G) calculated 
using the contextual guess model [4] for any action in the clip. 
This can be interpreted as actions where the student learned after 
guessing.  
The maximum number of previous incorrect actions and help. 
requests for any skill in the clip.    
 

Confusion 
The percentage of clip actions involving actions taking longer 
than 5 seconds after two incorrect answers.  
The percentage of actions in the clip that were hint requests.  
The minimum number of previous incorrect actions for any skill 
in the clip.  
The maximum product of the probability of guess P(G) as 
computed using contextual guess model [4], across sequences of 
three actions in a row. 
The average time the student took to respond, unitized across time 
taken by all students on the same problem steps, within sequences 
of five actions in a row that were correct.   
 

Frustration 
The percent of past actions on the skills involved in the clip that 
were incorrect. 
Were there any actions in the clip where the student made a wrong 
answer rather than requesting help when their probability of 
knowing the skill was under 0.7?  
Table 2. The features in the final detectors of each construct.  

 
using the contextual guess model from [4]. On the other hand a 
student who is not confused tends to be able to successfully 
answer 5 items in rows, working slowly. 

The features for frustration involve incorrect actions and help 
avoidance. In particular, frustrated students tend to have a history 
of past incorrect actions and help requests. Curiously, frustrated 
students are more likely to avoid help and make errors when they 
do not know the skill. It is unclear whether this behavior is a result 
of frustration, or whether it is perhaps a cause of frustration. 
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The features for boredom are interestingly different than the 
features for other constructs. Bored students were more likely to 
guess than other students. Interestingly, though, they were also 
relatively likely to learn from their guesses. Compared to other 
students, bored students were relatively less likely to have a 
history of many errors and help requests. In addition, students 
who were bored had a past history of working slowly, and worked 
slowly while they were bored, across multiple actions within the 
tutor software. 

4. DISCUSSION AND CONCLUSIONS 
In this paper, we have presented automated detectors that are a 
step towards identifying student affect solely from log files, in a 
Cognitive Tutor for Algebra. These detectors are better than 
chance at identifying engaged concentration, confusion, 
frustration, and boredom, among a population of students using 
the Cognitive Tutor as part of their regular mathematics classes.  

These detectors achieve goodness values that are moderately 
better than past values obtained through sensor-free detectors, 
when averaged across constructs. In this study, the average 
detector Kappa was 0.30. The detectors closest in validation to 
this study within D’Mello et al. [19], albeit in a different domain, 
achieved an average Kappa of 0.16. The detectors closest in 
validation to this study within Conati & Maclaren [18] achieved 
an average accuracy below the base rate, and detectors validated 
on re-sampled data achieved an average accuracy that was 19% 
better than the base rate (approximately comparable to Kappa of 
0.19). The detectors in Sabourin et al. [34], validated in the same 
fashion as these detectors, achieved an average accuracy that was 
16% better than the base rate (approximately comparable to 
Kappa of 0.16). Individual detectors from previous studies 
performed better than the detectors presented here (e.g. frustration 
in [19], focused/engaged concentration in [34]), but on the 
average the detectors presented here performed better than 
detectors presented in previous papers. While comparison of 
model goodness obtained in different software platforms, age 
groups, and populations should be done with caution, the 
detectors presented here appear to represent further progress 
towards effective, sensor-free detectors of affect.  

It is possible that at least part of this progress is the result of a 
greater degree of feature engineering in this detector’s 
development, including the use of features previously used to 
detect disengaged behaviors, and existing models of several 
potentially relevant constructs such as guessing [4]. These results 
suggest that by using both the detectors of disengaged behaviors 
known to be associated with affect as features and the features 
used to produce those detectors, increased detector goodness can 
be obtained with acceptable construct validity.  

At the same time, our affect detectors are clearly still imperfect.  
These new features have only achieved 30% of potential progress 
towards perfect detection, and, while perfect detection is probably 
infeasible (after all, even expert coders only achieve Kappa values 
around 0.6 or 0.7), there is clearly substantial room for 
improvement. Further work should consider further feature 
engineering, and potentially alternate methods for aggregating 
data. Continued improvement in terms of feature engineering may 
be supported by further research on the behaviors that correspond 
to specific affective states [cf. 7; 11; 35].  

In addition, there is considerable work needed in the area of cross-
validation. The detectors presented here are developed and 
validated for a single, fairly homogenous population. As such, 

their validity for the broad and diverse population of learners 
using Cognitive Tutor Algebra in the USA has not yet been fully 
established. Likewise, the detectors are developed within the 
context of a single Cognitive Tutor lesson. As such, the detector’s 
validity for new curricular materials has not been established. The 
detectors may indeed be generalizable and usable in new contexts, 
as past detectors of disengaged behaviors have often been found 
to be (for instance, in their use within the detectors presented 
within this paper), but establishing generalizability will be an 
important area of future work.  

One positive note for the applicability of these detectors in other 
populations and domains is that the behaviors identified by each 
detector have reasonable construct validity, suggesting that the 
detectors may be less accurate in these contexts, but are unlikely 
to provide meaningless predictions. For this reason, it may still be 
appropriate to use these detectors in discovery with models 
analyses, with the expectation that the strength of correlations 
may be reduced, but that findings with high strength are unlikely 
to be wholly spurious. The detectors can also be used immediately 
in the development of detectors of other constructs, as behavior 
detectors were used here.  In these cases, the validity of the 
detectors is shown by their relevance to detecting other constructs. 
Thus, though the detectors are imperfect, they still may prove a 
useful component for EDM research. As these detectors predict 
affect solely using log file data, they can be applied to existing 
data from Cognitive Tutor Algebra in the PSLC DataShop and 
elsewhere. As hundreds of thousands of students use this software 
each year, we believe that many analyses can be accomplished 
with these detectors and look forward to working with colleagues 
to accomplish this goal. 

Similarly, it may be possible to incorporate these detectors into 
the Cognitive Tutor software for fail-soft interventions, which 
could be used to advance learning outcomes.  

In the long-term, detectors of this nature are likely to provide a 
useful tool for understanding and automatically adapting to 
differences in learner affect. We see the work here as an 
incremental step, following on the pioneering work of D’Mello 
and colleagues [19], Conati and Maclaren [18], and Sabourin, 
Mott, and Lester [34] towards this goal.  
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ABSTRACT
We have assembled a large corpus of student submissions
to an automatic grading system, where the subject matter
involves the translation of natural language sentences into
propositional logic. Of the 2.3 million translation instances
in the corpus, 286,000 (approximately 12%) are categorized
as being in error. We want to understand the nature of
the errors that students make, so that we can develop tools
and supporting infrastructure that help students with the
problems that these errors represent.

With this aim in mind, this paper describes an analysis of
a significant proportion of the data, using edit distance be-
tween incorrect answers and their corresponding correct so-
lutions, and the associated edit sequences, as a means of
organising the data and detecting categories of errors. We
demonstrate that a large proportion of errors can be ac-
counted for by means of a small number of relatively simple
error types, and that the method draws attention to inter-
esting phenomena in the data set.

1. INTRODUCTION
As reported in [2], we have developed a large corpus of stu-
dent submissions to an automatic grading system, where the
subject matter involves the translation of natural language
(nl) sentences into first-order logic (fol). The translation
exercises are a subset of the exercises in Language, Proof and
Logic (LPL; [6]), a courseware package consisting of a text-
book together with desktop applications which students use
to complete exercises.1 The translation exercises contain a
total of 275 distinct translatable sentences; an abridged ex-
ample of such an exercise is shown in Figure 1.2 We refer
to each translation of a sentence submitted by a student
as a translation instance; the corpus contains 4.5 million
translation instances, collected from more than 55,000 indi-
vidual students over the period 2001–2010. In this paper,
we focus on that subset of the data concerned with trans-
lations into propositional logic; this accounts for 2,340,306
translation instances. The Grade Grinder, our automatic
grading system, categorizes 286,106 of these (approximately
12%) of these instances as being in error; Figure 2 shows
some common incorrect solutions for the first sentence in

1See http://lpl.stanford.edu.
2The ‘∆’ column is explained later.

the exercise shown in Figure 1.

Currently, our grading system simply indicates whether
or not the student has obtained a correct answer. Our inter-
est is in (a) developing tools and supporting infrastructure
that can help students with these errors by providing better
feedback; and (b) using the evidence from the errors that
students make to drive broader pedagogical improvements.
In order to achieve these goals, we first need to acquire an
understanding of the kinds of errors that students make.

Of course, any teacher of logic has intuitions about what
aspects of logic students find hard and why. Any good logic
textbook embodies a distilling of what is essentially folk wis-
dom based on teacher experience. In contrast, our goal is
to use our large dataset of errors as part of an evidence-
based approach to diagnosing, assisting and correcting a
wide range of errors. There have been data-driven stud-
ies in the past (see, for example, our own [3]), but these
have been based on relatively small amounts of data, and so
there is a risk that they are essentially anecdotal.

Our goal, then, is to see what we can learn by looking at
larger and more comprehensive sets of student behaviour in
this domain. In this paper, we look at how edit distance
can be used as a tool for characterising the nature of the er-
rors in our dataset. We demonstrate that a large proportion
of errors can be accounted for by means of relatively simple
error types, and discuss how some of these errors correspond
to specific kinds of problems that students struggle with.

The structure of the remainder of this paper is as fol-
lows. In Section 2, we briefly review related work, describe
the data we work with, and outline our general approach
to its analysis. In Section 3, we provide some summary
statistics on the subset of the data that it is the focus of the
present paper. We then move on in Sections 4 and 5 to a de-
tailed analysis of the errors in this data set, and make some
observations based on our analyses. Finally, in Section 6,
we draw some conclusions and outline our future plans.

2. BACKGROUND

2.1 Related Work
Students have particular difficulty with the formalisation
tasks that underpin logic, and so it is not surprising that
there is a body of work that seeks to understand the nature
of these difficulties, often with the aim of improving on-line
tutoring systems; for example, Barnes et al. [5] studied stu-
dents’ logic learning trajectories in order to extend Deep
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ö Exercise 7.12 (Translation) Translate the following En-
glish sentences into fol. Your translations will use all of the
propositional connectives.

(1) If a is a tetrahedron then it is in front of d.

(2) a is to the left of or right of d only if it’s a cube.

(3) c is between either a and e or a and d.

. . .

(19) a is large just in case d is small.

(20) a is large just in case e is.

Figure 1: An example exercise (7.12) from LPL

Ex. N Correct Incorrect ∆
1 429 Tet(a) →

FrontOf(a, d)
Tet(a) →
FrontOf(a, b)

1

2 254 ¬FrontOf(a, d) →
¬Tet(a)

FrontOf(a, d) →
Tet(a)

2

3 160 Tet(a) →
FrontOf(a, d)

Tet(a) →
FrontOf(d)

1

4 96 Tet(a) →
FrontOf(a, d)

Tet(a) ↔
FrontOf(a, d)

1

Figure 2: Correct and incorrect solutions to Exercise 7.12.1

Thought, a logic proof tutor, by adding a hint generator.

The work carried out by various groups has helped to
identify specific categories of error that recur in formalisa-
tion tasks.

Logical misunderstandings are cognitive misconcep-
tions, such as when a student substitutes the biconditional
(if and only if) for material implication (if . . . then), or when
they reverse the antecedent and consequent of an implica-
tion, writing A → B when the correct answer is B → A.
These misunderstandings are often related to what we might
think of as natural language transfer errors, where some
property true of the natural language sentence, typically to
do with its structure or ordering of elements, is also as-
sumed to be true of the formal translation. An early study
by Clement, Lochhead and Monk [8] investigated such trans-
lation difficulties in mathematics: students were instructed
to write an equation representing the statement There are
six times as many students as professors at this university,
and were told to use S for the number of students and P for
the number of professors. The most common error consisted
of reversing the variables in the equation, writing 6S = P.
An explanation of this phenomenon offered by Clement et
al. was word-order matching, in which the student or-
ders terms in their equation in a way that matches the order
of keywords in the problem statement.

A more general source of difficulty for students lies in
the stance they must adopt towards formal language, which,
compared to everyday discourse, is more concise, less redun-
dant, and has high information density and precision. Oth-
erwise everyday terms are often used in formal contexts with
quite specific meanings; Pimm [13] provides numerous ex-
amples of such ‘borrowed terms’ in mathematics (e.g., face,
mean, real, natural). Consequently, a student may bring ex-
pectations in regard to the use of particular terms that are
not in fact borne out.

Of course, errors which are not unique to formalisation
also manifest themselves in formalisation tasks. Slips [14]
are such a type of error; in the context of the translation of
natural language into logic, an example would be an atten-
tional lapse resulting in a student using the wrong letter to
denote a constant (e.g., b instead of d).

Our own work to-date has focussed upon characterizing
logic translation tasks in terms of the grammatical and other
features of the English sentences to be translated, and upon
the elucidation of the nature of errors made by students
on those tasks. In previous work we have carried out a
detailed analysed of the errors that students make when
performing translation tasks using data from just one of the
LPL exercises [3], and we have compared the errors that
students make when translating into logic as compared to
diagrammatic form [9], together with the effects of visual
and spatial content [4]. We have also looked at students’
individual learning trajectories by examining their repeated
submissions to the Grade Grinder [1].

2.2 The Data
LPL contains 33 exercises that involve translations of natu-
ral language into logic. Each exercise involves multiple sen-
tences to be translated, so these 33 exercises consist of 275
distinct natural language sentences that students are asked
to translate. A complete list of the sentences to be trans-
lated, together with the number of translation instances we
have for each natural language sentence, and the proportion
of instances that were deemed by the Grade Grinder to be in
error, is provided in [2], along with other detailed statistics.

When a student submits an exercise, the Grade Grinder
assigns a status to each sentence in that exercise. An exer-
cise is considered correct if every sentence in the submission
is assigned a status of correct, which indicates that the
sentence is provably equivalent to a gold-standard correct
answer. Other common statuses include incorrect, which
indicates that the sentence is not provably correct, and ill-
formed, which indicates that the student’s submission is
not a well-formed formula of first-order logic.

Each entry in our corpus records the identity of the sen-
tence being translated, a unique identifier for the student,
the particular string submitted by the student, and the sta-
tus that it was assigned by the Grade Grinder. Auxilliary in-
formation concerning the time at which the submission was
made, and other similar meta-information, is also recorded,
but plays no role in the current study.

LPL introduces the language of first-order logic in two
stages. In the first, the quantifier-free fragment (proposi-
tional logic) is introduced, while consideration of the full
first-order language is deferred until the second stage. All
of the data for this study is drawn from exercises in propo-
sitional logic, i.e., from Chapters 1–8 of the textbook; this
results in a subcorpus of 286,106 translation instances.

2.3 Approach
In our earlier explorations of the data [1; 3; 4; 9], we used
a somewhat labor-intensive approach to uncovering the na-
ture of the errors that students make: this involved writ-
ing exercise-specific regular expressions to pick out relevant
properties of each submitted answer. Such an approach is
appropriate for initial forays into large datasets, since it
gives a sense of the range and variety of the data; but it
doesn’t scale up to data collections like the one focussed on
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here. We need a way to manage the dataset that provides
some structure, and provides some means for determining
how subsequent more-detailed analyses might be prioritised.

Given our pedagogical aims, a sensible strategy is to
focus on what is common and repeated in the data; if there
are some mistakes that many students make, it obviously
makes sense to develop techniques to address these issues,
rather than focussing on much rarer errors whose probabil-
ity of reoccurrence is small. But this immediately presents
us with a problem. The natural language sentences that
students are asked to translate are deliberately and neces-
sarily quite varied, often combining a variety of phenomena
both in their surface forms and in their corresponding log-
ical translations. This is entirely appropriate if we want to
test a student’s ability to deal with non-trivial formalisation
problems that are not unidimensional; but this property of
the data also makes it difficult to identify and characterise
the important features that are shared across instances of
error. Put simply: any given incorrect solution provided
by a student may simultaneously represent a number of dif-
ferent errors, and the same error or misunderstanding may
manifest itself in different sentences in different ways.

Our approach is to seek a method of characterising, for
any pairing of a correct answer and an incorrect translation
provided by a student, the delta between the two. This delta
captures the essence of the particular error or set of errors
that the student made; we can then look for similarities
across the deltas found in different contexts, with the aim
of identifying common problems that recur. Essential to
making this work is the availability of a representation that
abstracts out just the right characteristics of the delta.

An approach to characterising error that has been used
in other domains—most notably in the context of natural
language spelling correction—is that of edit distance [12].
The idea here is much-studied and well-known: the dif-
ference between two objects can be characterised by a se-
quence of edit operations (typically, the insertion, deletion
and transposition of elements), and the length of this se-
quence is the edit distance between the two objects.3 In the
context of spelling correction, the objects are strings whose
constituent elements are characters; the edit operations are
therefore the insertion, deletion and transposition of char-
acters. The misspelling teh is then correctable to the by a
single transposition, giving an edit distance of 1. An oft-
cited finding is that 80% of spelling errors are edit distance
1 from their corresponding correct forms [10], supporting
a view that most errors are simple; in the interface to a
spelling correction program, this provides a basis for order-
ing potential corrections in terms of increasing edit distance.

Technically, the approach just described uses the no-
tion of string edit distance. However, our sense is that
the tree structure of well-formed logic sentences will play a
role in characterising the nature of the errors that students
make; we already saw hints of this in our earlier work [3],
where we identified antecedent–consequent reversal (where,
effectively, two subtrees in a formula are transposed) as a
common error type. Consequently, rather than string edit
distance, we use tree edit distance. Here, the edit dis-
tance is defined between ordered labelled trees, i.e., trees

3Substitution is also sometimes considered an atomic oper-
ation, but this can be achieved by a deletion followed by an
insertion.

→

Tet

a

Tet

d

⇒ ∧

Tet

a

Tet

d

Figure 3: Relabelling

∧

Tet

a

¬

LeftOf

a c

Dodec

c

⇒ ∧

Tet

a

LeftOf

a c

Dodec

c

Figure 4: Node deletion/insertion

in which each node has an associated label, and the order
of the children of a node is considered significant. We will
use the term tree as a shorthand for ordered, labelled trees.
The edit distance between two trees is defined as the min-
imum number of edit operations that must be applied to
one tree, the source, to make it identical to another, the
target. Critical to this definition is a set of edit operations
that we have available to make this transformation. In our
formulation, which is typical, three edit operations are avail-
able: relabeling, in which the label on the node of a tree is
changed; deletion, in which a node is deleted from the tree,
with any children of the deleted node becoming children of
the deleted node’s parent (in order); and insertion, the in-
verse of deletion. Figure 3 shows a relabelling operation
applied to a tree; Figure 4 shows a case where a node has
been deleted in the move from left-to-right, or equivalently
inserted from right-to-left.

The edit distance problem in trees has been studied
extensively (see [7] for a survey); our implementation is of
the algorithm due to Klein [11]. More efficient algorithms
exist, but the additional complexity of these algorithms is
not justified in our context primarily because our trees are
quite small.

It is important to note that translation exercises do not
have unique solutions. Student submissions are graded as
correct if they are provably equivalent to a gold-standard
correct answer known to the system. Consequently, the cor-
pus contains a set of submitted correct answers in addition
to the set of submitted incorrect answers. This presents a
problem for our approach: which of the possible correct an-
swers should we compute the distance from when consider-
ing a given incorrect answer? Our response to this problem
is to choose the correct answer for which the edit distance is
minimized. This strategy essentially embodies the assump-
tion that simple errors are more likely.

Figure 2 shows some example pairs for translations of
Sentence 7.12.1 in Figure 1. Example 1 demonstrates an er-
ror with edit distance 1, as indicated by the column headed
‘∆’. Here, the student has used the constant b when a was
required by the correct answer. Note that a different cor-
rect answer is used in Example 2: a simple description of
this error is that the student has reversed the order of the
antecedent and consequent, but an alternative explanation
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Figure 5: Cumulative coverage by error type

Figure 6: Proportions of data by edit distance

is the one shown here, which is that they have omitted nega-
tion symbols from the contrapositive of the answer in Ex-
ample 1. This transformation has an edit distance of 2, and
is ‘cheaper’ than the corresponding reversal.

3. ERROR DISTRIBUTION
An error instance is an occasion of a particular student
submitting a particular incorrect translation for a given nl
sentence; an error type is a pairing of an incorrect transla-
tion with the correct translation of that sentence, abstracted
away from its particular occurrences in the data. The point
here is that the data manifests varying numbers of instances
for each distinct error type: some incorrect translations are
very common (i.e., many students provide the same incor-
rect translation) and some are rare (i.e., only one or two
students produce that particular error).

Our 286,106 error instances are distributed across a total
of 27,151 error types, but the distribution is very skewed:
the 19 most frequent error types account for 20% of the
data, and 142 types account for 50% of the data. Figure 5
shows the cumulative coverage of the error types in order of
their frequency in the data.

A note is in order here in regard to our use of abso-
lute counts of errors, rather than proportions of incorrect
solutions for each translation. It might be thought that the
latter would provide a more realistic measure of where the

difficulties lie for students: if only 10 students attempt one
question and nine get it wrong, this suggests that the ques-
tion is more difficult than one where 1000 students attempt
the question and 500 get it wrong, despite the larger abso-
lute count of errors in the second case. However, the fact
remains that some sentences are translated more often than
others; and if we want to maximise the impact of our work,
it is the questions which generate high numbers of errors,
irrespective of the number of attempts, that are most im-
portant. Consequently, in this paper we report statistics in
terms of absolute counts, although for other purposes pro-
portions will be more informative.

We note that the most frequent error types in the data are
edit distance 1 from their respective correct translations. We
call such errors unit errors or units. Unit errors account
for 42.24% of the incorrect answer instances, and errors with
edit distance 2 account for a further 24.97% of the incorrect
answer instances, for a total of 67.22%. Figure 6 breaks
down the error instances by edit distance. There is a long
tail, and so the graph in this figure is truncated: the largest
edit distance represented in the corpus is 73 (with one in-
stance).

Given the preponderance of relatively simple errors, in
the remainder of this paper we focus on the simple and eas-
ily detectable edit sequences as a means of organising and
analysing the data. This is not to say that the more complex
errors are not important; they still account for a significant
proportion of the data. However, the analyses required to
identify the relevant patterns are correpondingly more com-
plex. Our strategy is therefore to explore the simpler errors
first, with the possibility of subsequently factoring these el-
ements out from the more complex errors to further assist
in managing the complexity.

4. HOMOGENEOUS EDITS
Our goal is to use edit distance as a way of organising the
errored data in the corpus. We are interested in two things
here, both of which are explored further below.

1. We want to see whether edit distance as a metric pro-
vides a useful way to organise and analyse the data;
for example, we might expect that it would allow us
to organise the data in terms of the complexity of the
errors contained.

2. In terms of exploring the particular errors that stu-
dents make, it is conceivable that the edit sequences
required to transform an error into its corrected form
might reveal something about the nature of the errors
made.

As a first step, we organise relabellings into three sub-
categories: relabelConn, relabelConst, and relabelPred.
The basis for this categorization is the syntactic category of
the tokens that participate in the relabeling. The tree edit
distance algorithm is domain-independent, and thus it has
no information about the roles of the symbols at the nodes of
the trees. At the logical level, we distinguish between con-
stant symbols, which serve to name objects, predicate
symbols, which serve to name properties and relations, and
logical connectives, which connect together sentences into
larger sentences. When a node relabeling operation involves
symbols which are both of the same syntactic category, then
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Ex. Correct Incorrect Instances Edit Sequence

1
¬Between(c, a, b) ∧
¬(FrontOf(c, a) ∨
FrontOf(c, b))

¬Between(c, a, b) ∨
¬(FrontOf(c, a) ∧
FrontOf(c, b))

521
[relabelConn ∨ at 〈〉 to ∧ at 〈〉,
relabelConn ∧ at 〈.2.1〉 to ∨ at 〈.2.1〉]

2
(LeftOf(a, d) ∨
RightOf(a, d)) → Cube(a)

(LeftOf(a, d) ∨
RightOf(a, d)) → Cube(d)

899 [relabelConst d at 〈.2.1〉 to a at 〈.2.1〉]

3
SameCol(b, e) ∧
SameRow(e, d) ∧
SameCol(d, a)

SameCol(b, e) ∧
SameCol(e, d) ∧
SameCol(d, a)

769
[relabelPred SameCol at 〈.2〉 to SameRow at
〈.2〉]

4 Cube(a) Cub(a) 1 [relabelPred Cub at 〈〉 to Cube at 〈〉]
5 ¬Cube(b) → Tet(c) Cube(b) → ¬Tet(c) 1262 [insert ¬ at 〈.1〉, delete ¬ at 〈.2〉]

Table 1: Some representative error types

we categorize this relabeling as the appropriate subcate-
gory above. A relabeling which involves labels from more
than one syntactic category—for example, a constant be-
ing replaced by a connective—is called relabelMixed. The
relabelMixed edit is very rare in the corpus; in fact there
are only three homogeneous relabelMixed edit sequences,
each of which accounts for one error instance. We note that
a similar subtyping of the insert and delete is possible,
but we have not yet made use of this granularity.

Example 1 in Table 1 presents an instance of relabelConn,
where the student wrote ∨ when ∧ was expected; Example
2 in that table presents an instance of relabelConst, where
the student wrote d where a was expected; and Example 3
in the table presents an example of relabelPred, where the
student wrote SameCol in place of SameRow.

Having identified these different classes of edit operations,
we can distinguish two kinds of edit sequences: those that
are homogeneous and those that are heterogeneous. We
call an edit sequence homogeneous if all of the edit oper-
ations in the sequence are of the same type: for example,
they might be all insert or all relabelConn operations.
Any edit sequence that is not homogeneous is heteroge-
neous.

Homogeneous edit sequences are significant from our point
of view because they have the potential to be identified and
analysed more easily. For example, a homogeneous edit se-
quence that contains only relabelConst edits indicates that
the student has made a mistake concerning only the con-
stants and their positions within the answer sentence, but
the other features of the sentence are correct. The analysis
of these errors based on the information in the edit sequences
that they produce is likely to be more tractable, while the
analysis of heterogeneous edit sequences, by contrast, will
be more involved.

Moreover, homogeneous edit sequences account for more
than 60% of the error instances in the corpus. Focussing on
these edit sequences enables us to make significant headway
in understanding the nature of the errors that students make
without having to interpret convoluted edit sequences.

Within the homogeneous edits, we distinguish two cat-
egories: relabellings, and insertions and deletions. A
homogeneous relabeling edit consists only of relabelling op-
erations of a single type (for example, all relabelConst or
all relabelConn), indicating that the structure of the for-
mula tree that the student produced was identical to that
which was expected (as in Figure 3 shown earlier). Homoge-
neous insertion and deletion sequences, on the other hand,

consist of only insert or delete operations (although with
possibly different operands), meaning that the structure of
the formula tree produced by the student was different from
that which was expected (Figure 4 shows a case where a
single delete has occurred).

4.1 Relabellings

4.1.1 relabelConn

The largest category of homogeneous relabellings in the data
are sequences of one or more relabelConn edits. These
account for 25.10% of the error instances, with 23.45% of
the total data set being units; this indicates that students
often get the overall structure of the solution correct, but
are confused about which logical connectives to use to cap-
ture the intended meaning. A simple example of a pair
of sentences exhibiting this pattern is the student sentence
Tet(a) ∧ Tet(b) being provided when the correct answer is
Tet(a) → Tet(b); as shown in Figure 3, here the connective
relabeling occurs at the root of the tree.

It is interesting to look more closely at the particular
relabellings that students use. Table 2 presents a confu-
sion matrix that shows, for each pair of connectives, how
often one connective is found when the other is expected.
The numbers here indicate the proportion of attempts that
generated the error in each case; so, for example, the pair
〈Found: ↔, Expected: →〉 has a value of 10.33%, indicat-
ing that in 10.33% of the situations where a biconditional
was expected, the student instead used an implication.4 Ex-
ample 4 in Figure 2 provides an example of this extremely
common error type.

The other notable confusion here is the use of conjunc-
tion when disjunction is required; this occurs in 2.74% of
possible cases. For both these confusions, the inverse sub-
stitution is also quite prominent, but in neither case to the
same extent. This data provides insights into the particular
connectives that cause problems for students, and suggest
where in the data more detailed analysis might be performed
to build an understanding of student misconceptions.

4Note that these numbers are for homogeneous relabellings
only, i.e., cases where the structure of the formula provided is
otherwise correct. It is highly likely that this same error oc-
curs as part of more complex heterogeneous edit sequences,
but these are harder to isolate.
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expected
found ⇓ ∧ ∨ → ↔

∧ – 2.74% 0.50% 0.44%
∨ 0.79% – 0.07% 0.06%
→ 0.45% 0.09% – 10.33%
↔ 0.20% 0.09% 2.54% –

Table 2: Confusion of connectives

4.1.2 relabelConst

Our results show that 13.20% of the error instances are ac-
counted for by homogenous relabelConst edits, of which
the first 3.32% are units. A confusion matrix illustrating
students’ constant substitutions is provided in Table 3.

In [3], we reported data from a smaller-scale study of
constant substitutions based on data from just one of the
LPL exercises. We noted that this kind of error seemed to
interact with (1) the use of the constant a in a sentence; (2)
whether a was the first-mentioned constant in the sentence;
and (3) whether the constant names were alphabetically ad-
jacent (e.g. 〈a, b, c〉) as opposed to being alphabetically
‘gappy’ (e.g. 〈b, e, d〉). What we referred to as the gap-
piness effect was statistically significant, being magnified
when (1) the letters used as constants were not alphabet-
ically adjacent; and (2) the first constant name mentioned
in the sentence was a. Table 3 shows that the most com-
mon constant substitution is 〈Found: b, Expected: e〉. The
nl sentence with which this substitution is most frequently
associated is Neither e nor a is to the right of c and to
the left of b. The next two most common substitution pat-
terns are 〈Found: c, Expected: e〉 and 〈Found: b, Expected:
d〉. These three frequent substitutions are ones in which
the substituted constant appears earlier in the alphabetic
sequence than the expected constant; this is consistent with
the operation of a gappiness effect.

Table 3 shows that the fourth largest proportion is as-
sociated with 〈Found: a, Expected: f〉. An inspection of
the nl sentences suggests that this is associated with cases
where they contain a and another constant, b. This partic-
ular substitution is rarer when a is present as the only other
constant, or when the other constants are not a and b (e.g., c
and d). This apparent trend warrants further investigation.

The fifth most frequent substitution is 〈Found: d, Expected:
a〉. One sentence (a is to the left or right of d only if it’s
a cube) stands out in relation to this error. Here there is
anaphoric reference to an object that is a cube; the inten-
tion is that the cube should be labelled a, but clearly many
students resolve it to the cube with identity d.

4.1.3 relabelPred

The relabelPred operation appears relatively infrequently
in the data corpus. Only 4.51% of the error instances are
accounted for by homogenous relabelPred edits, of which
the first 3.32% are units.

An interesting example of this is where the correct sentence
is SameCol(b, e) ∧ SameRow(e, d) ∧ SameCol(d, a) while the
incorrect answer is SameCol(b, e) ∧ SameCol(e, d) ∧ SameCol(d, a).
This is the second most frequent homogeneous relabelPred
sequence, accounting for 769 error instances. Like gappiness,
this appears to be the result of students’ inability to adopt
a sufficiently careful stance toward the formalization task.

found ⇓ expected
a b c d e f

a - 0.11% 0.20% 0.07% 0.10% 0.31%
b 0.05% - 0.15% 0.47% 0.48% 0.04%
c 0.05% 0.13% - 0.12% 0.42% 0.02%
d 0.20% 0.08% 0.09% - 0.13% 0.05%
e 0.07% 0.05% 0.10% 0.08% - 0.08%
f 0.02% 0.01% 0.01% 0.04% 0.02% -

Table 3: Confusion of constants

In this case, one predicate from the expected language
(here, the Blocks World language) is replaced by another
from the same language;5 however, we also find cases where
a predicate is replaced by one from outside the language. In
the most common instance of this type, instead of the ex-
pected answer 2 : 00 < 2 : 05 we find the answer Earlier(2 : 00, 2 : 05):
The student has here used a predicate derived from the lex-
ical content of the nl sentence, but this predicate does not
exist in the expected formal language (the Pets World lan-
guage). This error type accounts for 1976 error instances.6

4.2 Insertions and Deletions
So far we have discussed only relabeling operations, but the
tree edit distance computation also allows for the inclusion of
insert and delete operations in the edit sequences. Each
such edit operation inserts or deletes a node into the source
tree as it is transformed to the target. Unlike relabeling
operations, insert and delete modify the structure of the
trees in order to align them. Just as a homogeneous
relabeling edit sequence may relabel nodes at various points
in the tree, a homogeneous sequence of delete operations
could delete many nodes from the tree. However, we might
expect that deletions would come in groups. For example,
consider again the error in Example 2 of Figure 2, but this
time computing the distance from the correct answer shown
for Example 1 in that table. A simple description of this
pair is that the incorrect answer has the antecedent and
consequent of the implication switched. The shortest edit
sequence that achieves this is one which: (1) deletes the node
labelled Tet from its position in the consequent (one opera-
tion); (2) inserts it as the new antecedent (one operation);
(3) removes the node labelled a from its original position
(one operation); and (4) inserts a as a child of Tet in its new
location, for a total edit distance of 4. But notice that here
the insert and delete operations come in pairs, and that
the deleted nodes form a subtree of the original tree. We
call these local insert or delete sequences. We believe that
these local sequences may be of particular interest, because
they appear to aggregate as higher level operations.

There is an interesting asymmetry in our data. There
are many more homogeneous edit sequences involving in-
sert (15.51% of all error instances, with the first 4.34%
being units) than there are using delete (only 2.16% of all
error instances, with the first 1.10% being units). This in-
dicates that students are more likely to provide translations

5Most exercises in LPL use the language of a Blocks World;
there are also exercises that make use of a ‘Pets World’ of
pets and their owners.
6Note that the notion of being outside the language also in-
cludes the possibility that a student commits a simple typ-
ing error, such as typing Cub where Cube is expected; see
Example 4 in Table 1.
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that omit information present in the nl sentence than they
are to add information. This seems plausible, since any addi-
tional information would have to come from somewhere, and
this would have to be from outside the source sentence. It is
much more likely that students misread the sentence, failing
to notice or express relevant information that is present.

One example of students providing ‘extra’ information
in their answer is in an exercise containing the sentence No-
tice that f (the large dodecahedron in the back) is not in front
of a. Use your first sentence to say this. In this exercise,
students are looking at a picture of a situation in which the
sentences are true. We intend the student to translate f is
not in front of a, and provide a parenthetical hint to help
them identify f in the picture. 687 students additionally pro-
vide the information that f is a large dodecahedron. This
finding suggests that some students are so focussed on the
operations required by the translation task that their aware-
ness of problem context is diminished, a process akin to the
phenomenon of suspension of sense-making proposed in
[15].7

5. HETEROGENEOUS EDITS
As noted above, homogeneous edit sequences account for
just over 60% of the data; consequently, 40% of the error
instances are heteregeneous, i.e. they consist of more than
one type of edit operation.

Our intuition is that particular subsequences (or, more
likely, particular subsets) of the edits that make up these edit
sequences will correspond to characteristic errors. Identify-
ing these patterns would then allow us to detect the same
or similar errors occurring in quite different contexts. How-
ever, we observe that, as with so many pattern recognition
problems, getting the representation right is crucial, and it
is quite likely that the particular set of edit operations we
have chosen to use is not optimal for this purpose.

As a case in point: in our earlier work, we identified
antecedent–consequent reversal as a particularly prevalent
error. From the perspective of tree manipulation, this cor-
responds to a swapping of two subtrees. Such an operation
is only indirectly perceptible in terms of our current edit
operations. Although we could derive a characterisation of
this error in terms of the lower-level operations, an alter-
native would be to ‘reify’ it in terms of higher-level tree
manipulation operations; in particular, we might make tree
insertion and deletion be primitive operations in determin-
ing edit sequences and the corresponding edit distances. The
technical challenge here is to retain the tractability of the
edit distance computation if these more complex operations
are permitted.

As an exploration of the potential of such higher-level
edit operations, we observe that one characteristic of the
relocation of a subtree is that it will consist of n delete
operations paired with n insert operations.8 It turns out
that 4.94% of the error instances in our data set consist
of n inserts and n deletes, which we might think of as
the simplest form of heterogeneous edits. Note that this

7As a result of finding this phenomenon in the data, we have
subsequently configured the Grade Grinder to accept this as
a correct answer.
8There are, of course, a number of other constraints, most
notably the relationship between the addresses of the nodes
in each pair of inserts and deletes.

delete insert Count
¬ ¬ 8581

folly folly 1406
a a 410

Figure 7: The three most common symbol movements

category does not include longer edit sequences that contain
equal numbers of inserts and deletes in conjunction with
other edits, so the actual number of such pairs is likely to
be larger.9

One must be careful in interpreting such numbers. It
is certainly not the case, for example, that all of these cor-
respond to subtree movements: apart from the fact that
other constraints must be met for a subtree movement to
be in evidence, the reality is that the vast majority of these
paired inserts and deletes consist of exactly one instance
of each, and so they correspond to movements of single sym-
bols rather than larger structures: such movements account
for 4.58% of the error instances in the corpus. But even this
simpler observation is an important finding: Figure 7 shows
the three most common symbol movements that occur in the
data set. This reveals that by far the most common error
of this type is misplaced negation, as in Example 5 in Ta-
ble 1; this is clearly a place where students need assistance.
The other two cases shown in this table are most likely to
be instances of argument movement (although it is conceiv-
able that there are other causes of the phenomena), which
arises whenever a student provides an answer that has the
arguments in the wrong order.

6. CONCLUSIONS
Students find formalisation hard; but the ability to formalise
problems underpins many fields, and so any means we can
find to improve student abilities in this regard is important
and valuable. Our ultimate goal is to develop evidence-based
pedagogy in this area, and so we want to take advantage
of our large data set of student translations to guide this
activity.

Unfortunately, there are no established analytical tools
for exploring this kind of data. In this paper, we have pre-
sented the results of an initial exploration that uses the no-
tions of edit distance and edit operation sequence as a means
to better understanding what it is that students do wrong
when they make mistakes in nl to fol translation. We have
been encouraged by the outcomes:

1. Unit errors and edit distance 2 errors account for ap-
prox 67% of our data, permitting tractable use of tree
edit distance as a useful data mining method in our
domain.

2. Results from the application of tree edit distance vali-
date our earlier, pilot findings from analyses of a sub-
sample of the data analysed in this paper. In par-
ticular, the analysis provides support for our earlier

9We say only likely because it is correspondingly more dif-
ficult to determine whether the inserts and deletes are
related to each other; in more complex sequences, it is also
possible that some inserts or deletes belong to some other
higher-level transformation.
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observations in regard to gappiness in constant substi-
tutions, and antecedent–consequent reversal [3]. Vali-
dating previous results by triangulation using different
methods promotes confidence in the findings.

As noted throughout this paper, a number of more specific
findings provide important stepping-off points for developing
a better understanding of the nature of common student
errors.

Of course, much remains to be done. So far, we have
shown that the techniques described here allow us to identify
particular errors that manifest themselves in many different
circumstances; but this is really a descriptive analysis of the
data, and does not necessarily correspond to the kinds of
explanations for these errors that we might need if we want
to provide appropriate assistance to students. In some cases
the explanation may seem to follow straightforwardly from
the description, but in other cases we need to dig deeper into
the context (what are the characteristics of the nl sentence
being translated? what is the student’s history of error?) in
order to provide an explanation. Moving in this direction is
a major priority in our future work.

Orthogonal to this line of development, we should note
also that we have focussed here on what we call homoge-
nous edits, these being the simpler to identify and anal-
yse. As noted earlier, these account for 60% of the data, so
they allow us to make considerable headway; but this leaves
the 40% of the data that correspond to heterogeneous edits
still to be explored. One strategy we aim to pursue here
is to see whether we can decompose heterogeneous edit se-
quences into partitions, some of which may correspond to
the homogenous edit sequences we have already explored;
this would then leave a simpler residue still to be char-
acterised. However, we suspect that there may be more
mileage to be gained by revising the set of edit operations
used to be closer to the kinds of operations that are more
conceptually valid in the domain; for example, allowing in-
sertion and deletion of entire subtrees as atomic operations
may provide a better way of characterising some of the mis-
takes that students make.

Armed with these kinds of tools, we hope to be able to
develop a better understanding of the mistakes that students
make, and to provide appropriate assistance.
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ABSTRACT
In complex problem solving domains, correct solutions are
often comprised of a combination of individual components.
Students usually go through several attempts, each attempt
reflecting an individual solution state that can be observed
during practice. Classic metrics to measure student perfor-
mance over time rely on counting the number of submissions
or focusing on time taken to complete the problem correctly.
These metrics are not robust to the correction of errors that
may increase problem solving time, and do not reflect topical
misunderstandings on the part of the student. In this paper
we propose a metric to measure the probabilistic distance
between an observed student solution and a correct solu-
tion. Students working in an online programming environ-
ment completed four practice problems. Their submissions
were then evaluated against a model of the algorithmic com-
ponents necessary for a correct solution. A Markov Model
was used to generate a problem state graph. Our proposed
Probabilistic Distance to Solution (PDS) metric was applied
to the graph to determine the distance, in program states,
from an observed program model to the model of a correct
solution. Results indicate that the PDS is useful in deter-
mining if an edit or student path is (a) typical of students
who have mastered content, and (b) productive in progress-
ing toward a solution. We offer implementation details of
PDS and implications for future work based upon current
observations.

1. INTRODUCTION
Modern data mining and classification techniques allow for
increasingly complex solution spaces to be automatically
modeled and assessed. For example, automated essay grad-
ing[10], mathematical proofs[1], and even complex computer
programs[3] can be analyzed for completeness and scored.
In these complex problem spaces, novices will often attempt
several unique edits and approaches in order to create a fin-
ished correct solution. Intelligent Tutoring Systems (ITS)
can be used to provide feedback for these attempts based on
the scoring criteria used for the assessment. Although the
models, feedback strategies and mechanisms used by each
domain vary, it is still important for researchers to assess
students’ progress and make comparisons between research
conditions in order to refine and improve such tutoring sys-
tems.

In complex problem solving spaces, such as natural language

production or computer programming, students may make
edits or submit attempts that are not directly related to the
specific learning outcomes of the tutoring task[4]. For ex-
ample, in computer programming, a student may struggle
with a compilation error, such as having a parenthesis out
of place, which is not reflective of their understanding of the
desired learning goal. Students may also produce submis-
sions that progress through multiple skills, creating a com-
plex path to solution, with many possible states[8]. We pro-
pose that normal indicators of student performance within
tutoring activities, such as time to completion or number of
submissions, are too coarse-grained to distinguish between
conceptual misunderstanding and syntactical or parsing mis-
takes that take time and multiple submissions to debug and
correct.

In this paper we propose a new metric, Probabilistic Dis-
tance to Solution (PDS) and describe its implementation
in assessing student progress on an introductory program-
ming assignment. We then apply this metric to a dataset
and highlight cases where PDS offers additional insight into
misconceptions and problem solving paths.

2. PERFORMANCE METRICS
Within-tutor measures of performance are sometimes used
instead of running pretests and posttests outside of the tu-
tor, when the creator of the tutor wants more immediate
learning feedback. Some within-tutor metrics have already
been created and used effectively in tutors; for example,
number of submissions and amount of time taken to get to
a correct state were used in a system focused on improv-
ing math scores[2]. These metrics are not as effective in
complex problem solving domains, however, due to the va-
riety of strategies used to solve problems and the difficulty
of merging them[5].

Other Intelligent Tutoring Systems use constraint-based mod-
eling to determine how well a program matches up to the
expectations of the problem; for example, Mitrovic built an
ITS for SQL that used over six hundred constraints to pro-
vide accurate and useful hints to students[7]. Le and Men-
zel also describe techniques for building constraint-based
tutors in ’ill-defined domains’, similar to the complex do-
mains we describe[6]. However, both of these approaches
require that the author of the ITS generate the constraints
by hand, which becomes very time-consuming when applied
to a broad domain (such as programming). The metric we
propose aims to improve on these models by examining more
fine-grained aspects of the problem states in a potentially
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automatable way1.

3. THE DATA
During the fall of 2011 and winter of 2012, eighteen par-
ticipants solved four programming problems in an online
tutor[9] for computer science. The problems were presented
in the same order for each student so that comparison’s be-
tween students’ performances on problem X could be made
without the confound of which problems preceded it. Each
submission recorded data on the program’s text, start and
finish time, whether the attempt was successful, and the
feedback that was given. Participants’ submissions were
then evaluated under the model described above and were
coded appropriately. Participants generated 354 submis-
sions with 63 observed distinct model states.

3.1 Feature Space
For each program submission, the participant’s code was
translated to a vector of binary features representing the in-
clusion of semantic program features, correctness outcomes,
and compilation success. The semantic program features fo-
cuses on the inclusion of algorithmic components such as a
looping structure, decision structure, use of the loop con-
trol variable in an array access, and inclusion of a return
statement. The data collected represents a model of pro-
gramming as a time series within a high dimensional binary
space. The algorithms required by the four problems were
similar in terms of features required. This model of required
algorithmic elements was based upon the thesis proposal of
the first author, and employs identifying the use of semantic
structures as well as correctness testing using JUnit.

3.2 Two similar solutions
Figure 1 illustrates two participants’ paths from an empty
start state to a correct finished state. State A represents
code that has all of the correct algorithmic components, is
compilable, but does not return the appropriate value. State
B represents code that has all of the correct algorithmic com-
ponents, but does not compile, so it cannot check the final
return state. Participant 5 corrected a sign error (step 2),
then a syntax error (step 3), and finally another sign error
(step 4), which resulted in a correct solution. Participant
12, on the other hand, initially submitted code that did not
contain a return statement, indicating a misunderstanding
about how information is communicated back from the func-
tion. State C represents an observed model state where three
of the features are marked incorrect for the submission. The
participant then made a small change resulting in the same
model state for the code (step 2), then added a return state-
ment based on a compile message (step 3), and finally fixed
another compile error and submitted a correct solution (step
4). Although these two participants have the same number
of submissions, the reasons for and the nature of the sub-
missions are very different and expose a misconception by
Participant 12.

Because each submit may represent multiple edits or steps
in the problem solving process, simply counting the number
of submits as a measure of errors across steps is not informa-
tive enough to express the difference between students who
make errors with regard to the learning goals of the activity,

1Automation of this model’s generation will be done in up-
coming work, as proposed in [9].
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Figure 1: Comparing two student paths - Problem 2

and errors that do not inform measures of desired learning
outcomes.

3.3 Traditional Measures of Performance
Students tended to reduce overall time taken to solve prob-
lems as they moved through the set of problems (see Table 1,
where SD is the standard deviation for the indicated prob-
lem). Students were performing think-aloud protocols while
completing the problems, making the time to submit slightly
exaggerated due to verbalization.

Problem # Mean/Median Min Max SD
1 4.06 / 3 1 14 3.13

# of 2 7.44 / 4 1 49 11.35
Submits 3 4.56 / 2 1 23 5.71

4 3.61 / 3 1 9 2.45
1 625 / 452 93 2121 510

Overall 2 571 / 364 134 1795 490
Time 3 437 / 331 103 1438 349
in Seconds 4 363 / 315 53 1199 279

Table 1: Traditional Statistics for Student Data

The ability level of individual participants varied greatly,
with some participants submitting final solutions with min-
imal modifications from their first attempt, while other par-
ticipants struggled and progressed through multiple incor-
rect model states before arriving at a correct solution. In-
dividual participants were consistent in their performance
across problems either doing well or struggling with all of
them. The traditional measurement metrics can be used to
separate participants into two groups: high performers (stu-
dents who were able to quickly solve the problems), and low
performers (students who needed time and several attempts
to get a problem right).

Of the seven students requiring more than six submissions to
solve at least one problem, only two averaged fewer than six
submissions per problem. These seven students also tended
to take more than 500 seconds (8.33 minutes) overall to solve
their problems, apart from the two mentioned above, who
have individual outliers above that line. This disjoint group-
ing suggests that we can subdivide the low performing group
into students who performed uniformly badly and students
who struggled only with a specific problem.

The eleven high performers all averaged four or fewer sub-
missions to reach a correct answer, and all clustered under
an average of 400 seconds (6.66 minutes), with the exception
of one student who took nearly eighteen minutes to finish
the first problem, but only needed to submit once.
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4. PROBABILISTIC DISTANCE TO
SOLUTION

In order to draw generalizations about how program states
correspond to student performance and other latent factors
such as learning, we aggregated all student submission paths
for each problem into a network (see Figure 2). The network
nodes S1 · · ·Sn−1 are possible program states with an end
state node E, and the edges are the observed transitions
between states.

For each node, we use our observations to compute a Max-
imum Liklihood Estimate (MLE) transition probabilities to
every other node. Given the number of observed transitions
from state x to state y (Tx,y), we estimate the probability
of being in state y at time t, with the MLE:

p̂(Sy(t)) = P (Sy(t)|Sx(t− 1)) =
Tx,y∑
i

Tx,i
(1)

This is a equivalent to a Markov chain estimate with a 1-
state history.2

By modeling each edge as a transition probability and dis-
tance between states, we use a set of linear equations to
calculate a mean distance from each state to the end (suc-
cessful completion) state. With

• n− 1 non-terminal states S1 · · ·Sn−1 and an end state
E,

• and with each state S having transition probabilities
Ps,1 · · ·Ps,n−1 and Ps,e,

• and transition distances Ds,1 · · ·Ds,n−1 and Ds,e,

a system of equations for the mean distance to the end state
de(S) is:

de(S1) =

[
n−1∑
s=1

P1,s(D1,s + de(Ss))

]
+ P1,eD1,e (2)

de(S2) =

[
n−1∑
s=1

P2,s(D2,s + de(Ss))

]
+ P2,eD2,e (3)

... (4)

de(Sn−1) =

[
n−1∑
s=1

Pn−1,s(Dn−1,s + de(Ss))

]
+Pn−1,eDn−1,e (5)

de(E) = 0 (6)

For the case where we are interested only in the mean num-
ber of submissions to the end state, each Dx,y = 1, and the
calculation simplifies to the system of dot products:

2We believe that the student’s state transitions will be bet-
ter represented by a higher-order Markov process; however
our current data set is too small to provide appropriate
power for more than a first-order analysis.

de(S1) = ~P1 • de(~S) + 1 (7)

de(S2) = ~P2 • de(~S) + 1 (8)

... (9)

de(Sn−1) = ~Pn−1 • de(~S) + 1 (10)

de(E) = 0 (11)

There are several variations on the algorithm that we would
like to explore, given a larger dataset with more statical
power. In particular, these variations include treating state-
features differently, so that transitions between states that
differ in particular features (e.g., compilability) will be able
to indicate different latent variables of the students, (e.g.,
example concept understanding).

5. APPLYING PDS
The PDS metrics accompanied by the transition graph are
rich sources of information about the paths that participants
pursued in order to arrive at a correct solution. Figure 2
includes a table illustrating the observed model states in the
binary vector, as well as the PDS for each state. In problem
4, S56 is the solution state and S0 the initial starting state.
Before even evaluating the student paths, we can observe
that an additional state, S63, was also a terminal state for a
participant. This participant located a bug in the evaluation
system that has since been corrected.3

By looking at the PDS combined with the Program State
Graph (PSG) we can identify more productive edits by par-
ticipants. For example one participant’s first submission was
observed as S55 (PDS 2.99), and next state was S57 (PDS
4.43). This edit would be less productive as it resulted in a
transition to a state with a greater probabilistic number of
submits required to obtain a correct solution.

With the possibility of including terms in the algorithm for
syntactic but not model changes (i.e. two states that are
identical except for a compilation error would not be counted
as a full step), PDS can be adapted to focus on model state
transitions that indicate misconceptions or other model-based
goals of the data miner.

6. CONCLUSIONS
Within these early results, we have already identified model
states on productive and unproductive PDS paths. Using
the actual PDS values we can determine if a student is mak-
ing a productive edit, engaging in either guessing behavior,
or pursuing a misconception. An edit resulting in an ob-
served state with a higher PDS than the prior submission
indicates a move away from a correct answer.

These values can be invaluable to tutor designers as they
seek to develop feedback and support tools for complex so-
lution domains. Within computer programming tutors, the
PDS could offer implications for more-than-compiler sup-
port, and perhaps even prompt the introduction of a similar
worked example or code comprehension problem highlight-
ing the incorrect features of the model.

3The bug was identified as a part of the think aloud protocol,
however the PDS and Student Program States Graph would
have identified the bug for the tutor designers as well.
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Figure 2: Student program states for problem 4. Table columns Fx are binary program features. Table rows Sx are observed
combinations of those features in program submissions. Only observed states (nodes) and transitions (edges) are shown. Node
self-transitions also exist in the model, but are not shown here. The thicknesses of the edges are proportional to the log of
observed transitions in the data. The lengths of the edges are arbitrary and do not relate to the model.

Although tested against data from a computer program-
ming dataset, the authors believe that the PDS metric could
be valuable across many domains with complex solutions
demonstrating multiple skills. Future work is planned to
use the PDS metric on a larger dataset to extract common
paths and evaluate differences between tutoring conditions.
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ABSTRACT 
This paper proposes a classification via clustering approach to 
predict the final marks in a university course on the basis of forum 
data. The objective is twofold: to determine if student 
participation in the course forum can be a good predictor of the 
final marks for the course and to examine whether the proposed 
classification via clustering approach can obtain similar accuracy 
to traditional classification algorithms. Experiments were carried 
out using real data from first-year university students. Several 
clustering algorithms using the proposed approach were compared 
with traditional classification algorithms in predicting whether 
students pass or fail the course on the basis of their Moodle forum 
usage data. The results show that the Expectation-Maximisation 
(EM) clustering algorithm yields results similar to those of the 
best classification algorithms, especially when using only a group 
of selected attributes. Finally, the centroids of the EM clusters are 
described to show the relationship between the two clusters and 
the two classes of students.  

Keywords 

classification via clustering, prediction, classification, social 
networks analysis, forums 

1. INTRODUCTION 
Forums have recently become one of the leading means of peer 
communication on the internet. An internet forum is a web 
application for publishing user-generated content in the form of a 
discussion. Internet forums are sometimes called web forums, 
discussion boards, message boards, discussion groups, or bulletin 
boards [10]. The most important feature of internet forums is their 
social aspect. Many forums are active for a long period of time 
and attract a group of dedicated users, who build a tight social 
community within the forum. These social aspects of a discussion 
can highlight user interest in a specific topic. Current research 
activities use data mining to discover this information, especially 
in educational contexts, where online discussion forums are the 
best way to share ideas, post problems, comment on posts by 
other students, and obtain feedback [13]. In fact, mining group 
activities in a learning context provides quantifiable group 
profiles, which allow us to (1) evaluate the collaborative activity 
that the participants carry out, (2) analyse the link structure of the 
group, (3) compare the collaborative performance of different 
groups, and (4) predict behaviours and reveal link patterns [6] and 
collaboration trends. Mining data generated by students 
communicating using forum-like tools can help reveal aspects of 
their communication [14]; for example, the more students 
participate in the forum for a certain course, the more involved 
they will be in the subject matter of that course. Following this 
line, in this study we try to test whether or not there is a 
correlation between the participation of students in Moodle [4] 

forums and their final course marks. We have developed a new 
and specific Moodle module in order to obtain directly both 
statistics and social network information based on student forum 
usage data. We also propose the use of a classification via 
clustering approach to predict the final marks on the basis of our 
forum dataset. 
The rest of the paper is organised as follows: a short theoretical 
background is presented in Section 2, the proposed methodology 
is outlined in Section 3, Section 4 describes the forum data used, 
Section 5 presents the experimental results, and conclusions and 
future research are outlined in Section 6. 

2. BACKGROUND 
Forums are one of the most commonly used tools in web-based 
teaching-learning environments because they play an important 
role in students’ collaborative learning [12]. In fact, student 
activity in discussion threads can be a relevant source of 
information that facilitates the monitoring of tasks during the 
course by providing teachers with relevant indicators of student 
needs and weaknesses [3]. The use of data mining is a potential 
strategy for discovering and building alternative representations 
for the data underlying discussion forums [5]. The literature 
encourages analysis of forum interactions to reveal student 
characteristics and behaviour [1]; however, there is less published 
work on the use of data mining to predict student performance 
based on forum usage data. Classification is one of the oldest and 
most useful data mining tasks used to predict student outcomes, 
marks, or scores [15], and some works have used all the tracking 
data provided by Learning Management Systems (LMSs) in 
relation to visits and times, resources viewed, assessments, and 
activities in chat rooms, forums, etc. [2],[16]. However, the use of 
clustering for classification has not yet been applied in an 
educational context. Although clustering is normally an 
unsupervised process for grouping similar elements (students in 
this case) into clusters, classification can be performed based on 
clustering if we use the class information to evaluate the obtained 
clusters. This approach has been used to develop an anomaly-
based network intrusion detection system [11], to predict heart 
disease in medical diagnosis [7], and to develop an effective 
system for classification of multidimensional data via clustering. 
[9]. However, we have found no work that uses only forum-usage 
data to predict final marks or that uses a classification via 
clustering approach in an educational context. 
 

3. PROPOSED APPROACH 
In this work, we propose to use a meta-classifier that uses a 
cluster for classification approach based on the assumption that 
each cluster corresponds to a class (see Figure 1). Firstly, the 
usage and interaction forum data have to be collected and 
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preprocessed. Then, an optional attribute selection process can be 
applied (B), or not (A), in order to select only a group of 
attributes/variables or to use all available. Next, a clustering 
algorithm is executed using the training data, after removal of the 
class attribute, and the mapping between classes and clusters is 
determined. This mapping is then used to predict class labels for 
unseen instances in test data. In other words, the class attribute is 
not used in clustering, but it is used to evaluate the obtained 
clusters as classifiers. 

 
Figure 1: Proposed classification via clustering approach 
For all cluster algorithms, it is important to ensure that the number 
of clusters generated is the same as the number of class labels in 
the dataset in order to obtain a useful model that relates each 
cluster with one class. We use this approach to test if student 
participation in forums is related to whether they pass or fail the 
course. 

4. DESCRIPTION OF THE DATA USED 
The dataset used in this work was gathered from a Moodle forum 
used by university students during a first-year course in computer 
engineering in 2011 (see Table 1).  

Number of 
students 

Number of 
messages  

Number of 
threads 

Number of 
replies 

114 1014 81 933 
Table 1: Some forum statistics  
We developed a new module for Moodle specifically to obtain a 
summary dataset file with basic forum usage statistics (see Figure 
2), to perform some analysis of social networks, to facilitate 
teacher evaluation of the messages, and to add the final marks of 
the students. 

 
Figure 2: Screenshot of Moodle forum module 
This tool not only enables us to visualise a list of variables for 
each student (see Table 2) but also allows us to save this summary 
information in a PDF file for report purposes or in an Excel file 
for data mining purposes.  
 

Attribute Description 
nMessages Number of messages sent per student 

nThreads Number of threads created per student 

nReplies Number of replies sent per student 
nWords Number of words written by student 

nSentences Number of sentences written by student 

nReads Number of messages read on the forum 

tTime Total time, in hours, spent on forum 
aEvaluation Average score of the messages 

dCentrality Degree centrality of the student 

dPrestige Degree prestige of the student 

fMark Final mark obtained by the student 
Table 2: Variables of a student in a forum 
The variables relating to forum usage are nMessages, nThreads, 
nReplies, nWords, nSentences, nReads, and tTime. The variable 
aEvaluation is the average score of the messages sent by the 
student. This evaluation of the contextual meaning of the 
messages has been done manually by the course teacher, who has 
read all the messages and assigned a score between 0 (bad) and 3 
(very good). The two social network analysis measures are 
dCentrality and dPrestige, which are closely related to hyperlink 
analysis [8]. Both centrality and prestige are measures of the 
degree of prominence of an actor in a social network. Central or 
prominent actors are those that are extensively linked or involved 
with other actors. A person with extensive contacts (links) or 
communications with many other people in the organisation is 
considered more important than a person with relatively fewer 
contacts. Prestige is a more refined measure of the prominence of 
an actor than centrality. A prestigious actor is defined as one who 
is the recipient of extensive ties.  
Finally, the class or attribute to be predicted in this study is fMark, 
that is, the final mark obtained in the final exam at the end of the 
course. It has two possible values or labels: PASS or FAIL. 
 

5. EXPERIMENTAL RESULTS 
All our experiments were performed using Weka [17] and the 
previously described forum dataset. In order to test the accuracy 
of obtained classification models we used the 10-fold cross-
validation method. All classifiers in Weka work in the same way 
under cross-validation. The model is built using just the instances 
in the training fold. The classification via clustering approach is 
based on the "clusters to classes" evaluation routine in the cluster 
evaluation code, which finds a minimum-error mapping of 
clusters to classes. 
In the first experiment, we executed the following clustering 
algorithms provided by Weka for classification via clustering 
using all the available attributes (see Table 2): EM, FarthestFirst, 
HierarchicalClusterer, sIB, SimpleKMeans, and XMeans. 
In the second experiment, we repeated all the previous executions 
using fewer attributes, based on the assumption that not all the 
available attributes are discriminative factors in the final marks. A 
process of feature selection was used to identify which attributes 
could have the greatest effect on our class (final mark). Weka 
provides a range of feature-selection algorithms from which we 
selected ten:CfsSubsetEval, ChiSquaredAttributeEval, 
ConsistencySubset-Eval, FilteredAttributeEval, 
FilteredSubsetEval, GainRatio-AttributeEval, 
InfoGainAttributeEval, OneRAttributeEval, ReliefFAttributeEval, 
and SVMAttributeEval. To rank the attributes, we counted the 
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number of times each attribute was selected by each attribute-
selection algorithm (see Table 3). Finally, we selected as the best 
attributes the first six attributes in the ranking, because these were 
selected by at least half (5) of the algorithms.  

Attribute Frequency 
dCentrality 9 
nMessages 8 

nReplies, nWords 7 

dPrestige 6 

aEvaluation 5 

nSentences, nReads, nThreads  3 

tTime 1 
Table 3: Attributes ranked by frequency of appearance 
The previous clustering algorithms were then executed for 
classification via clustering but using only the six selected 
attributes (see Table 3, above the bold line). Table 4 shows the 
overall accuracy (rate of correctly classified students) using all the 
available attributes (A) and using only the six selected attributes 
(B). 

Clustering algorithm (A) (B) 
EM 0.842 0.894 
FarthestFirst 0.526 0.535 
HierarchicalClusterer 0.578 0.570 

sIB 0.710 0.578 

SimpleKMeans 0.666 0.640 
Xmeans 0.666 0.640 

Table 4: Accuracy of classification via clustering approach 
An analysis of the results shown in Table 4 reveals that only one 
algorithm obtained a good level of accuracy. In fact, the EM 
algorithm obtained the highest accuracy in both cases (A and B) 
and the best overall accuracy (89.4%) when using only the six 
selected attributes. All the other clustering algorithms obtained 
much worse accuracy values (50%–70%) than EM, and, in 
general, there was no improvement by using only six attributes. 
In the third experiment, we compared the accuracy of the previous 
classification via clustering approach with that of traditional 
classification algorithms by executing a representative number of 
classifications of different types: 

 Rules-based algorithms: DTNB, JRip, NNge, and Ridor  

 Trees-based algorithms: ADTree, J48, LADTree, and 
RandomForest 

 Functions-based algorithms: Logistic, MultilayerPerceptron, 
RBFNetwork, and SMO 

 Bayes-based algorithms: BayesNet and NaiveBayesSimple 
Table 5 shows the accuracy obtained by the previous 
classification algorithms using all the attributes (A) and only the 
six selected attributes (B). 
 
 
 

Algorithms (A) (B) 
DTNB 0.859 0.833 

JRip 0.833 0.815 

NNge 0.842 0.807 

Ridor 0.833 0.842 
ADTree 0.859 0.842 

J48 0.824 0.807 

LADTree 0.868 0.850 

RandomForest 0.850 0.833 
Logistic 0.859 0.850 

MultilayerPerceptron 0.842 0.868 

RBFNetwork 0.868 0.886 

SMO 0.868 0.886 
BayesNet 0.877 0.842 

NaiveBayesSimple 0.859 0.894 
Table 5: Accuracy of classification algorithms 
All the algorithms obtained a good accuracy with more similar 
values (80%–90%) than those obtained previously by the 
classification via clustering approach. The results indicate that 
some algorithms improve when using only six attributes, but 
others do not. The highest results are obtained by BayesNet when 
using all the attributes (87.7%) and NaiveBayesSimple when 
using only six attributes (89.4%), which is the best overall 
accuracy and is equal to that obtained by the EM algorithm. 
Finally, we show the cluster centroids for the EM algorithm when 
using the six selected attributes that have yielded the best 
accuracy (see Table 6). The clusters-to-classes mapping done by 
the EM algorithm is such that cluster 0 is mapped to FAIL class 
and cluster 1 is mapped to PASS class. 

Attributes Cluster 0 Cluster 1 
nMessages 1.2199 14.8905 

nReplies 1.1599 13.6718 

nWords 18.4599 668.8039 
aEvaluation 0 0.7751 

dCentrality 0.0011 0.1565 

dPrestige 0 0.1021 

Table 6: Cluster centroids obtained by EM algorithm 
Cluster centroids describe the typical student for each group or 
cluster (see Table 6). We can see that the obtained clusters can be 
very informative from the point of view of classifying good and 
bad students. In fact, students who show a great level of 
participation in the forum (cluster 1) are classified as PASS, and 
students who show a very low level of participation in the forum 
(cluster 0) are classified as FAIL. 
 

6. CONCLUSIONS 
This paper demonstrates the potential of the classification via 
clustering approach in an educational context, using it to predict 
students’ final marks on the basis of their participation in forums.  
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Based on the results obtained using several clustering and 
classification algorithms, we can answer the two initial questions:  
a) Yes, student participation in the course forum was a good 

predictor of the final marks for the course. Another 
advantage of classification models based on mapping clusters 
to classes is that they are very simple and interpretable to 
instructors. In the case presented here, instructors only have 
to analyse the cluster centroids to know that students active 
in the forum pass the course and passive students fail. 

b) Yes, the proposed classification via clustering approach 
obtained similar accuracy to traditional classification 
algorithms using our forum data. However, our proposed 
approach only had to obtain a good accuracy when using the 
EM algorithm (compared with traditional classification 
algorithms). On the other hand, the feature selection process 
can be useful to in reducing the number of attributes without 
losing reliability in classification. However, although some 
algorithms improved their classification performance when 
using only the selected attributes, the accuracy of other 
algorithms decreased. 

However, in order to generalise the result obtained, the 
experiments must be repeated using different forum data to test if 
the same results are obtained or not, that is, if the EM clustering 
algorithm obtains again a high accuracy comparable with 
traditional classification algorithms. In the future, we hope to 
automate the process of evaluating student messages, because 
evaluating messages manually is a very difficult and time-
consuming task for instructors. A data text mining algorithm 
could be used to automatically detect and classify types of 
messages and evaluate them. Finally, we are working on 
improving our Moodle forum module. We hope to develop a 
network analysis tool to graphically depict the forum interaction 
(sociograms) and to identify further measures than the two 
currently used (centrality and prestige) to provide valuable 
information for predicting students’ final marks. 
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ABSTRACT 

In recent years, machine-learning software packages have made it 
easier for educational data mining researchers to create real-time 
detectors of cognitive skill as well as of metacognitive and 
motivational behavior that can be used to improve student 
learning. However, there remain challenges to overcome for these 
methods to become available to the wider educational research 
and practice communities, including developing the labels that 
support supervised learning, distilling relevant and appropriate 
data features, and setting up appropriate cross-validation and 
configuration algorithms. We discuss the development of an 
Educational Data Mining (EDM) Workbench designed to address 
these challenges. 
Keywords 
Educational data mining workbench 

1. INTRODUCTION 
In recent years, educational data mining methods have afforded 
the development of detectors of a range of constructs of 
educational importance, from gaming the system [5] to off-task 
behavior [3] to motivation [8] to collaboration and argumentation 
moves [11]. The development of these detectors has been 
supported by the availability of machine learning packages such 
as RapidMiner [12], WEKA [15], and KEEL [1]. These packages 
provide large numbers of algorithms of general use, reducing the 
need for implementing algorithms locally, however they do not 
provide algorithms specialized for educational data mining, such 
as the widely used Bayesian Knowledge-Tracing [7]. 
Furthermore, effective use of these packages by the educational 
research and practice communities presumes that key steps in the 
educational data mining process have already been completed. For 
example, many of these detectors have been developed using 
supervised learning methods, which require that labeled instances, 
indicative of the categories of interest, be provided. Typically, 
many labeled instances – on the order of hundreds, if not 
thousands – are required to create a reliable behavior detector. 
Labeling data is a time consuming and laborious task, made even 
more difficult by the lack of tools available to support it.  
A second challenge is the engineering and distillation of relevant 
and appropriate data features for use in detector development [15]. 
The data that is directly available from log files typically lacks 
key information needed for optimal machine-learned models. For 
instance, the gaming detectors of both [5] and [14] rely upon 

assessments of how much faster or slower a specific action is than 
the average across all students on a problem step, as well as 
assessments of the probability that the student knew the cognitive 
skills used in the current problem step. This information can be 
distilled and/or calculated by processing data across an entire log 
file corpus, but there are currently no standard tools to accomplish 
this. Feature distillation is time-consuming, and many times a 
research group re-uses the same feature set and feature distillation 
software across several projects (the second author, for instance, 
has been using variants of the same feature set within Cognitive 
Tutors for nine years). Developing appropriate features can be a 
major challenge to new entrants in this research area. To address 
this “data labeling bottleneck” and the difficulty in distilling 
relevant features for machine learning, we are working to develop 
an Educational Data Mining (EDM) Workbench. A beta version 
of this Workbench, now available online at 
http://penoy.admu.edu.ph/~alls/downloads, is described in this 
paper. The workbench currently allows learning scientists to  

1) label previously collected educational log data with 
behavior categories of interest (e.g. gaming the system, 
help avoidance), considerably faster than is possible 
through previous live observation or existing data 
labeling methods.  

2) collaborate with others in labeling data.  
3) automatically distill additional information from log 

files for use in machine learning, such as estimates of 
student knowledge and context about student response 
time (i.e. how much faster or slower was the student’s 
action than the average for that problem step).  

Through the use of this tool, we hope that the process of 
developing a detector of relevant metacognitive, motivational, 
engagement, or collaborative behaviors can eventually be sped up. 
Just the use of “text replays”, on previously collected log data has 
been shown to speed a key phase of detector development by 
about 40 times, with no reduction in detector goodness [5].  

2. EDM WORKBENCH 
Version 1.0 of the EDM Workbench interfaces with some of the 
tools discussed in Section 1, filling some of the functional gaps 
that, without the Workbench, require manual intervention or 
require hand-coding of custom tools and cumbersome and 
complex actions by the user in packages such as Excel. Version 
1.0 of the Workbench has five functionalities: Log import, feature 
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distillation, data sampling, data clipping and labeling, and data 
export. We discuss each of these functions in turn. 

2.1 Log import  
The EDM Workbench allows users to import logs in DataShop 
text format [9] and CSV. The data is assumed to be stored in a flat 
file, organized in rows and columns. The first row of the import 
file is assumed to contain each column’s name. Each succeeding 
row represents one logged transaction, usually between the 
student and tutor but possibly between two or more students as in 
the case of collaborative learning scenarios. If the user specifies 
that the imported data is in DataShop text format, the Workbench 
will check whether the table contains the columns it requires to 
distill 26 pre-defined features (discussed in 2.2). The successfully-
imported logs may be saved in the Workbench’s format for work 
files—a compressed file containing the data in CSV format plus 
metadata specific to the EDM Workbench.  
The Workbench can also import nested folders of data, where 
each folder level represents a meaningful subset of the data. For 
example, if data from a section of students is collected several 
times over a school year, the researcher may have one folder for 
the school year, one subfolder for each section within the school 
year, one subfolder for a session within each section, and finally 
one file or folder for each student within a session. The 
Workbench allows users to label each level of subfolder, creating 
new columns for these labels, appending them to the data tables 
during importation process. 

2.2 Feature distillation 
Assuming the necessary columns exist in the imported file, the 
Workbench can automatically distill 26 features from the data. 
The Workbench also has capacity for defining new features for 
future analyses. The 26 features distilled come from features used 
in past automated behavior detectors using DataShop data and 
related intelligent tutoring system data [2, 5, 13, 14]. The features 
include (but are not limited to) estimates of the student’s 
knowledge of the current skill [7]; the time the student spent on 
the problem (both in absolute and relative terms); and the types, 
number and proportion of correct, wrong, or help actions for the 
current skill for the last n steps, for the skill, or for the student. 
The current EDM Workbench uses 21 generic functions to 
compute the 26 automatically distilled features. Some functions 
correspond directly to a single feature while others are reusable, 
i.e. users can vary input parameters to compute for different 
features. Figure 1 is an excerpt of the EDM Workbench 
configuration file that specifies the features to be distilled and the 
functions used to distill them. It shows the specification of two 
features: timeSD and timelastnSD. These features have 
been used in several behavior detectors [2, 3].  
The first example in the excerpt is the specification for the feature 
timeSD, which makes use of a generic function also named 
timeSD. <group_col> refers to a sub-grouping criterion. In 
this case, the data is grouped by type of step, as specified in the 
Step Name column. The <range_col> is the column that 
contains the duration values that will be used to compute 
timeSD. Finally, <out> specifies the feature and output column 
name.  
The second example in the excerpt is the specification for 
timelastnSD. It uses the function sumLastN. 

<sort_col> refers to the column by which the data should be 

sorted before computing the feature. The two sets of 
<group_col>s imply that data sub-grouping in this case is 
based on two criteria, the Anon Student Id and the 
Problem Name. The <range_col> refers to the timeSD 
column, computed earlier. The <n> refers to the number of steps 
to be used in the computation. As with the first example, <out> 
specifies the feature and output column name.  

Figure 1. Excerpt from the EDM Workbench configuration 
file. 

<feature_set> 

 <timeSD> 

  <group_col>Step Name</group_col> 

  <range_col>Duration</range_col> 

  <out>timeSD</out> 

 </timeSD> 

 <sumLastN> 

  <sort_col>Row</sort_col> 

  <group_col>Anon Student Id</group_col> 

  <group_col>Problem Name</group_col> 

  <range_col>timeSD</range_col> 

  <n>3</n> 

  <out>timelastnSD</out> 

 </sumLastN> 

</feature_set> 

 
At the moment, adding new features for distillation requires some 
programming: If the feature can be computed by using one of the 
21 existing functions, the user can modify the EDM configuration 
file to define the new function and how it is derived.  If a feature 
requires a new function, the user can add the new function to the 
EDM Workbench’s source code, after which the new feature can 
be defined in the configuration file. It is our long-term objective to 
foster a user community that will eventually make new features 
available for others to use, similar to the open source software 
community, increasing the EDM Workbench’s usefulness to the 
broader research community. 

2.3 Clip generation 
In different projects, text replays have been implemented in 
several different ways [5, 10, 13]. Two of the key ways that text 
replays have differed has been in terms of the information and 
grain-size of the data presented to the coder. For coding, data is 
subdivided into smaller units, termed clips — subsets of student-
tutor transactions defined based on criteria for when they begin 
and end, and what information is included. For example, in 
various projects, clips have been defined as 20-second intervals 
[5], segments of 5 or 8 actions [10], and in terms of defined 
“begin” and “end” events in the learning software [13].  
The EDM Workbench allows the user to define the set of features 
by which the data should be grouped, so that clips do not contain 
rows from different groups. For example, if the data should be 
grouped by student, a single clip will contain data from only one 
student and not multiple students. The workbench also specifies 
the clip size, either by time or by number of transactions. 
Delineation of clips by beginning and ending events is not yet 
possible, but is a feature planned for future implementation. The 
Workbench then generates the clips for analysis, according to a 
sampling scheme discussed in the next section. 

Feature 
timeSD 

Feature 
timelastnSD 

Proceedings of the 5th International Conference on Educational Data Mining 153



 

2.4 Data sampling 
The data sampling feature of the Workbench allows the user to 
specify how clips are sampled from the data set. (It can also be 
used to sample at the action/transaction level). The user can 
specify the sample size, and whether the Workbench will 
randomly take the sample across the entire population or whether 
the workbench will stratify the sampling based on one or more 
variables.  
Note that the Workbench allows the user to sample the data at any 
point of the process — after importing, after clipping, or after 
labeling – depending on the user’s analytical goals.  

2.5 Labeling  
Once the sample has been taken, the user must then specify a 
subset of the clip columns that should be displayed in the text 
replay. It is possible that the user does not want all the clip 
columns displayed in the text replay. In the example shown in 
Figure 2, the user specified that only three columns will be 
displayed: COMPILE_SUCCESSFUL, MSG_MESSAGE and 
MSG_LINE_NUMBER. The user also specifies the labels that the 
observer or expert will use to characterize each clip. Figure 3 
(bottom) shows that expert or observer will have three labels to 
choose from: Confused, Not Confused or Bad Clip – the coding 
scheme from [10]. The circumstances under which an expert or 
observer labels a clip as “bad” changes depending on the data set, 
but typically indicate cases that should not be coded. For example, 
in the case of [10], a clip was labeled “bad” if the transactions 
contained instructor-supplied programming examples rather than 
programs that the students had written themselves. 

Figure 2. Specification of clip columns and labels. 

 
The Workbench then displays text replays of the clips together 
with the labeling options (Figure 3). A coder reads through the 
text replay and selects the label that best describes the clip. The 
labels are saved under a new column in the data set.  
Because a coder may have to label tens of thousands of clips [5], 
the coder may save his or her work and can continue the labeling 
process in a later session. 

2.6 Feature distillation and export 
Once data labeling is complete, the user can create clip-level data 
features to associate with the clips, facilitating later development 
of detectors. The user first selects the feature or column of 
interest. The user then specifies whether he/she would like the 
Workbench to compute for the minimum, maximum, average or 

standard deviation of that feature [13]. The Workbench will add 
the new column and corresponding computed value results to the 
clip dataset 

Figure 3. Text replay and label options. 

 
Finally, once processing is complete, the Workbench allows the 
user to save the logs in CSV format, for re-importation into an 
appropriate data mining tool, such as RapidMiner or WEKA. The 
user is then able to use that tool to build a detector of the construct 
they labeled, using the features they distilled.  

3. FUTURE WORK 
In this paper, we have presented the Educational Data Mining 
Workbench, a tool that researchers can use to facilitate the 
development of detectors of varying forms of student behavior. 
Version 1.0 of the Workbench supports two key steps of the 
detector development process that are relatively difficult and time-
consuming to do with existing tools: data labeling and feature 
distillation. By scaffolding users in conducting either or both of 
these steps, the tool may make it easier and quicker for a wider 
range of learning scientists and educational software developers to 
develop and use automated detectors of student behavior. 
It is worth noting that the current version of the Workbench is still 
limited. Each of the limitations discussed here are scheduled for 
implementation in the coming months. (1) The automatically-
distilled features are hard-coded; future releases will make it 
easier to alter the feature list. (2) The process of amending XML 
to create new features will be made more user-friendly. (3) The 
coders cannot change the way in which the text replays are 
displayed; future releases will support configuration of different 
ways to pretty print the text replays, towards highlighting the most 
important information for the coder’s specific current purpose. (4) 
Users can currently only sample data and assemble it into clips in 
a limited number of fashions; we intend to implement more 
sophisticated sampling and clip-creation strategies [13].  
A final direction for future work is to add support for researchers 
creating and validating models appropriately. Within the 
educational data mining community, there has emerged 
considerable know-how about how to set up tools such as 
RapidMiner to afford appropriate validation. (For example, 
batching data in order to support k-fold student-level cross-
validation, and then using a BatchXValidation operator in 
RapidMiner to implement it). We plan to add support for 
automatically creating appropriately stratified batches to realize 
several common cross-validation strategies, and automatically 
export RapidMiner code that is set up to read in the correct data 
and use appropriate cross-validation to build a detector of the 
construct that was labeled. 
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Development of the EDM Workbench remains ongoing, and we 
look forward to collaborating with a range of EDM researchers 
and learning scientists in making this tool as useful as possible for 
the EDM community. We welcome comments and suggestions – 
as well as contributions – from any interested colleague. 
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ABSTRACT 
Self-regulated learning behaviors such as goal setting and 
monitoring have been found to be crucial to students’ success in 
computer-based learning environments. Consequently, 
understanding students’ self-regulated learning behavior has been 
the subject of increasing interest. Unfortunately, monitoring these 
behaviors in real-time has proven challenging. This paper 
explores a variety of data mining approaches to predicting student 
self-regulation capabilities. Students are classified into SRL-use 
categories based on evidence of goal-setting and monitoring 
activities. Prior work on early prediction of these categories 
pointed to logistic regression and decision tree models as effective 
techniques. This paper builds on these findings by exploring 
techniques by which these models can be combined to improve 
classification accuracy and early prediction capabilities. By 
improving classification accuracy, this work can be leveraged in 
the design of computer-based learning environments to provide 
adaptive scaffolding of self-regulation behaviors.  
Keywords 

Self-regulated learning, early prediction, machine learning 

1. BACKGROUND 
Understanding and facilitating students’ self-regulated learning 
behaviors has been the subject of increasing attention in recent 
years. This line of investigation is fueled by evidence suggesting 
the strong role that self-regulatory behaviors play in a student’s 
overall academic success [1]. Self-regulated learning (SRL) can 
be described as “the process by which students activate and 
sustain cognitions, behaviors, and affects that are systematically 
directed toward the attainment of goals” [2]. Unfortunately, 
students can demonstrate a wide range of fluency in their SRL 
behaviors [3] with some students lagging behind their peers in 
their ability to appropriately set and monitor learning goals. 
Findings that students with low SRL skills are less likely to 
achieve academic success have prompted efforts to mediate these 
differences [1,4]. 
Identifying and scaffolding SRL strategies has also been a focus 
of much work in the intelligent tutoring systems community. For 
example, in MetaTutor, a hypermedia environment for learning 
biology, think-aloud protocols have been used to examine which 
strategies students use, while analysis of students’ navigation 
through the hypermedia environment helps to identify profiles of 
self-regulated learners [5]. Similarly, researchers have identified 
patterns of behavior in the Betty’s Brain system that are indicative 
of low and high levels of self-regulation [6]. Prompting students 
to use SRL strategies when these patterns of behavior occur has 

shown promise in improving student learning. For example, 
Conati et al. have examined the benefits of prompting students to 
self-explain when learning physics content and how these 
explanations can be facilitated in a computer-based learning 
environment [7].   
Such work has focused primarily on examining SRL in highly 
structured problem-solving and learning environments. However, 
understanding and scaffolding students’ SRL behaviors is 
particularly important in open-ended learning environments where 
goals may be less clear and students do not necessarily have a 
clear indicator of their progress [8]. In order to be successful in 
this type of learning environment, students must actively identify 
and select their own goals and evaluate their progress accordingly. 
While the nature of the learning task may have implicit 
overarching goals such as ‘completing the task’ or ‘learning a lot,’ 
it is important for students to set more specific, concrete and 
measurable goals [9]. Unfortunately, students do not consistently 
demonstrate sufficient self-regulatory behaviors during 
interactions with these environments, which may reduce the 
educational potential of these systems [10,11]. Consequently, 
identifying and scaffolding students with low SRL skills is a 
necessary next step to ensure that these systems can be used as 
effective learning tools.   
This paper reports on an investigation of self-regulatory behaviors 
of students in a game-based science mystery, CRYSTAL ISLAND. 
During interactions with the CRYSTAL ISLAND environment, 
students were prompted to report on their mood and status in a 
way that is similar to many social networking tools available 
today. Though students were not explicitly asked about their goals 
or progress, many students included this information in their 
short, typed status statements. This data is used to classify 
students into low, medium, and high self-regulated learning 
behavior classes. Prior work has pointed to the importance of 
being able to identify and scaffold the low SRL students [4]. 
While logistic regression and decision tree models have been 
found to be effective at early prediction of these classes, this work 
expands upon these findings by exploring ways in which these 
models can be combined to improve classification accuracy and 
early prediction capabilities. Ensemble methods have been found 
to be effective at a variety of predictive tasks including predicting 
student knowledge [12]. By improving classification accuracy, 
this work can be leveraged in future systems to provide adaptive 
scaffolding of self-regulation behavior early into interaction with 
the environment, offering the possibility for timely intervention. 
The implications of these results and areas of future work are then 
discussed.  
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2. METHOD 
The investigation of students’ SRL behaviors was conducted with 
students from a middle school interacting with CRYSTAL ISLAND, a 
game-based learning environment being developed for the domain 
of microbiology that follows the standard course of study for 
eighth grade science in North Carolina. 

2.1 CRYSTAL ISLAND 
CRYSTAL ISLAND features a science mystery set on a recently 
discovered volcanic island. Students play the role of the 
protagonist, Alex, who is attempting to discover the identity and 
source of an unknown disease plaguing a newly established 
research station. The story opens by introducing the student to the 
island and the members of the research team for which her father 
serves as the lead scientist. As members of the research team fall 
ill, it is her task to discover the cause and the specific source of 
the outbreak. Typical game play involves navigating the island, 
manipulating objects, taking notes, viewing posters, operating lab 
equipment, and talking with non-player characters to gather clues 
about the disease’s source. To progress through the mystery, a 
student must explore the world and interact with other characters 
while forming questions, generating hypotheses, collecting data, 
and testing hypotheses. 

2.2 Study Procedure 
A study with 296 eighth grade students was conducted. After 
removing instances with incomplete data or logging errors, there 
were 260 students remaining. Among the remaining students, 
there were 129 male and 131 female participants varying in age 
and race. Participants interacted with CRYSTAL ISLAND in their 
school classroom, although the study was not directly integrated 
into their regular classroom activities. Pre-study materials were 
completed during the week prior to interacting with CRYSTAL 
ISLAND. The pre-study materials included a demographic survey, 
researcher-generated CRYSTAL ISLAND curriculum test, and 
several validated instruments. Personality was measured using the 
Big 5 Personality Questionnaire, which indexes subjects’ 
personalities across five dimensions: openness, conscientiousness, 
extraversion, agreeableness and neuroticism [12]. Goal orientation 
was measured using a 2-dimensional taxonomy considering 
subjects’ mastery or performance orientations along with their 
approach or avoidance tendencies [13]. Subjects’ affect regulation 
tendencies were measured with the Cognitive Emotion Regulation 
Questionnaire [14] though features from this survey were not 
included in the current models. 
Immediately after solving the mystery, or after 55 minutes of 
interaction, students moved to a different room in order to 
complete several post-study questionnaires including the 
curriculum post-test.   
Students’ affect data were collected during the learning 
interactions through self-report prompts. Students were prompted 
every seven minutes to self-report their current mood and status 
through an in-game smartphone device. Students selected one 
emotion from a set of seven options, which included the 
following: anxious, bored, confused, curious, excited, focused, 
and frustrated. After selecting an emotion, students were 
instructed to briefly type a few words about their current status in 
the game, similarly to how they might update their status in an 
online social network.  

2.3 SRL Classification 
The typed status reports were later tagged for SRL evidence using 
the following four ranked classifications: 1) specific reflection, 2) 
general reflection, 3) non-reflective statement, or 4) unrelated 

(Table 1). This ranking is motivated by the observation that 
setting and reflecting upon goals is a hallmark of self-regulatory 
behavior and that specific goals are more beneficial than those 
that are more general [9]. Students were then given an overall 
SRL score based on the average score of their statements. An 
even tertiary split was then used to assign the students to a Low, 
Medium, and High SRL category. 
From the 260 students, a total of 1836 statements were collected, 
resulting in an average of 7.2 statements per student. All 
statements were tagged by one member of the research team with 
a second member of the research team tagging a randomly 
selected subset (10%) of the statements to assess the validity of 
the protocol. Inter-rater reliability was measured at κ = 0.77, 
which is an acceptable level of agreement. General reflective 
statements were the most common (37.2%), followed by unrelated 
(35.6%), specific reflections (18.3%) and finally non-reflective 
statements (9.0%).  
The tertiary split of students into Low, Medium, and High SRL 
classes has yielded interesting findings in prior work [4]. One 
important finding is that Medium and High SRL students have 
both higher prior knowledge and higher learning gains than Low 
SRL students. This suggests that Low SRL students begin with 
some disadvantage and that the overall gap in knowledge is 
increased after interactions with CRYSTAL ISLAND. Though all 
groups have significant learning gains, Low SRL students are not 
experiencing the same advantages of interaction with CRYSTAL 
ISLAND. This finding points to the strong need to provide these 
students with additional scaffolding to improve the quality of their 
interaction.  

2.4 SRL Prediction 
The difference in learning between Low, Medium, and High SRL 
students has motivated the goal of early prediction of students’ 
SRL skills. Prior work [4] has shown promise in being able to 
predict SRL class early into the interaction. This work compared 
the ability of naïve Bayes, neural network, logistic regression, 

Table 1.  Categories of SRL tags 
 

SRL 
Category Description Examples 

Specific 
reflection 

Student evaluates 
progress towards a 
specific goal or area of 
knowledge 

“I am trying to find the food 
or drink that caused these 
people to get sick.” 
“Well...the influenza is 
looking more and more right. 
I think I'll try testing for 
mutagens or pathogens – [I] 
ruled out carcinogens” 

General 
reflection 

Student evaluates 
progress or knowledge 
but without referencing 
a particular goal 

“I think I’m getting it” 
“I don’t know what to do” 

Non-
reflective 

Student describes what 
they are doing or lists a 
fact without providing 
an evaluation 

“testing food” 
“in the lab” 

Unrelated 

Any statement which 
did not fall into the 
above three categories 
is considered unrelated, 
including non-word or 
unidentifiable 
statements 

“having fun” 
“arghhh!” 
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support vector machine, and decision tree models to predict SRL 
class at different time intervals. Overall it was found that logistic 
regression and decision trees offered the best performance, with 
the best model correctly predicting 57% of students’ classes after 
one-third of their interaction with CRYSTAL ISLAND. Compared 
with a most-frequent-class baseline of 34%, this offers a 
significant improvement in the ability to recognize SRL skill. 
However, while both logistic regression and decision tree models 
significantly outperformed other modeling techniques, neither of 
the two best performers consistently outperformed the other. This 
raised the question of whether some method of combining these 
two learned models might offer improved or more stable 
performance.  

2.4.1 Original Models 
The original logistic regression and decision tree models were 
trained using 10-fold cross validation with the WEKA machine 
learning toolkit [15]. For the original models, a total of 49 features 
were used to train machine-learning models. Of these, 26 features 
represented personal data collected prior to the student’s 
interaction with CRYSTAL ISLAND. This included demographic 
information, pre-test score, and scores on the personality, goal 
orientation, and emotion regulation questionnaires. The remaining 
23 features represented a summary of student’s interactions in the 
environments. This included information on how students used 
each of the curricular resources, how many in-game goals they 
had completed, as well as evidence of off-task behavior. 
Additionally, data from the student’s self-reports were included, 
such as the most recent emotion report and the character count of 
their “status”. 
In order to examine early prediction of the students’ SRL-use 
categories, these features were calculated at four different points 
in time resulting in four unique datasets. The first of these 
(Initial) represented information available at the beginning of the 
student’s interaction and consequently only contained the 26 
personal attributes. Each of the remaining three datasets 
(Report1-3) contained data representing the student’s progress at 
each of the first three emotion self-report instances. These 
datasets contained the same 26 personal attributes, but the values 
of the remaining 23 in-game attributes differentially reflected the 
student’s progress up until that point. The first self-report 
occurred approximately 4 minutes into game play with the second 
and third reports occurring at 11 minutes and 18 minutes, 
respectively. The third report occurs after approximately one-third 
of the total time allotted for interaction has been completed, so it 
is still fairly early into the interaction time. 

2.4.2 Combining Multiple Models         
To combine the predictions of multiple models, a variety of 
different voting schemes were used in which both the predicted 
class from the original decision tree and logistic regression 
models were taken into account: 

 Standard: The prediction from each model is weighted 
equally. 

 Weighted by Accuracy: The prediction from each model is 
weighted by the model’s overall predictive accuracy. 

 Weighted by Precision: The prediction from each model is 
weighted by its precision at predicting the class for which it is 
voting. 

 Select Lowest Class: The model predicting the lowest SRL 
skill is selected. 

The final model of always selecting the lowest level prediction is 
based on the assumption that we would rather underestimate 
students’ abilities and provide additional scaffolding than 
overestimate their abilities. Additionally, in all of the above 
voting schemes, the lower class was chosen in case of a tie. 

3. RESULTS  
For each time slice, we compared the original models with the 
combined models by evaluating overall predictive accuracy as 
well as recall on the Low-SRL class. The first metric represents 
how well the model does overall at correctly identifying each 
class, while the latter represents the proportion of Low-SRL 
students who were correctly identified. This second metric is 
especially important given the proposed style of intervention. 
These metrics for each model are shown in Table 2. 
The results indicate that the most successful voting model was the 
Weighted by Precision model. It offered statistically 
significantly (p < 0.05) better accuracy than any other model, and 
better Low-SRL recall than either original model for all time-
slices, with the exception of the Initial prediction. It also offered 
improved stability of performance over the original models and 
other ensemble models, with both accuracy and recall improving 
as more data became available. The Select Lowest Class 
combined model had the highest recall of the Low-SRL class 
which is to be expected given its favoritism for low 
classifications. The Select Lowest Class model identified almost 
exactly half of all students as Low-SRL However, it was able to 
correctly identify up to 85% of the actual Low-SRL students, 
making it a promising contender for identifying cases where 
additional scaffolding would be beneficial. 

Table 2. Predictive models and evaluation metrics 

  Predictive Accuracy Low-SRL Recall 

  Initial Report1 Report2 Report3 Initial Report1 Report2 Report3 

Original Models                 

Decision Tree 37.7 46.5 51.6 53.4 0.36 0.58 0.63 0.70 
Logistic Regression 40.8 55.0 53.1 57.2 0.43 0.65 0.68 0.77 

Combined Models                 

Standard Voting 38.1 50.0 54.3 54.1 0.45 0.67 0.75 0.79 
Weighted by Accuracy 37.1 53.1 55.0 54.5 0.33 0.56 0.65 0.65 
Weighted by Precision 40.1 57.3 57.0 59.1 0.44 0.67 0.75 0.80 
Select Lowest Class 36.9 51.5 52.3 51.4 0.58 0.81 0.79 0.84 
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With the exception of the Weighted by Precision model, the 
predictive accuracy of each ensemble model tended to fall 
somewhere between accuracy of the original decision tree and 
logistic regression models. This suggests that these models did not 
have enough additional information in their weighting scheme to 
offer improvements in performance. It is especially interesting 
that weighing votes by overall accuracy was not beneficial. This is 
likely due to the high and mostly equivalent accuracies of both the 
original models. However, the Weighted by Precision model 
takes into account each model’s likelihood of correctness given a 
particular prediction which varied between models. Specifically, 
the logistic regression model was generally better at Low and 
High SRL predictions while the decision tree model was stronger 
at Medium SRL predictions. 

4. CONCLUSION 
Predicting students’ self-regulated learning skills can form the 
basis for effective scaffolding strategies. Combining multiple 
machine learned models can be used for early prediction of 
students’ self-regulated learning skills, as was shown in an 
investigation with the narrative-centered learning environment, 
CRYSTAL ISLAND. Results indicate that early prediction of self-
regulation skills is feasible and that combining multiple models 
can offer improvements over individual models alone. 
Specifically, logistic regression and decision tree models were 
combined using a variety of voting strategies. Some of these 
strategies were able to offer significant improvements in both 
predictive accuracy and Low-SRL recall.  
These findings point to several directions for future work. The 
most prominent of these is developing intervention mechanisms 
for aiding student self-regulation. Early prediction of SRL skills is 
not useful unless we are able to act intelligently upon this 
prediction. Therefore, the development of appropriate and 
effective scaffolding strategies is an important next step in this 
line of investigation. These techniques could then be used in 
conjunction with several of the top-performing models in order to 
determine which optimizations have the best impacts on students 
overall learning. 
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ABSTRACT
The interaction behaviours of successful, high-achieving learn-
ers when using a Learning Management System (LMS) are
different than the behaviours of learners who are having
more difficulty mastering the course material. This paper
explores the idea that conventional Learning Management
Systems can exploit data mining techniques to predict the
success or failure of students without requiring the results
of formal assessments. This paper describes a study with a
second semester computer science class that shows that the
success or failure of a learner can be predicted using infor-
mation about learner interactions with course materials and
learner self-reports of subject matter confidence.

1. INTRODUCTION
A Learning Management System gathers and records a rich
set of data about the educational materials for a course and
about the learners using the course. The data is used by the
LMS in producing reports about the learners and the educa-
tional materials. Data gathered by a LMS is also frequently
used in data mining applications to make predictions about
learners. Three common uses for the data are: to predict the
learners’ likely academic performance and adjust either the
LMS or the face to face instruction accordingly, to automat-
ically adapt the LMS or the content to the needs or learner
preferences of individual learners, or to predict learner affect
in an effort to monitor and react appropriately to learner en-
gagement with the course.

This paper presents a study that shows that successful learn-
ers exhibit different interaction behaviours with the LMS
than less successful learners. Our results indicate that the
results of formal assessments are unnecessary to accurately
predict which learners will be successful with the course con-
tent and which learners will struggle with the course.

2. MINING LMS METADATA
A common goal for mining the metadata produced by learn-
ing management systems is to predict learner achievement.
Most achievement-predicting systems produce a prediction
of final grade (see for example [?]). Others predict or model
the knowledge that the learner has mastered, with the goal
of adapting the materials in the course to more closely match
the learner’s immediate learning needs (see for example [?]).
The data mined by such systems almost always include the

correctness or score for learning objects that generate grades,
elapsed times for completing activities, and the learner in-
teractions with the LMS.

LMS interaction data usually consists of a list of the ele-
ments viewed by learners as well as dates and timestamps
to identify the viewing. Also, in many LMS the specific
types of LMS objects (ie. forums, quizzes, help pages) are
identified in the logs, making the type of learning object an-
other piece of metadata that is frequently collected. All of
this data can be used in learner classification activities.

3. MINING FOR LEARNER SUCCESS
A study was conducted during the winter of 2011 in a sin-
gle semester computer science class on programming in the
C language. 122 learners participated in the study, which
captured a wide variety of data for the entire duration of
the course. The work presented in this paper looks at the
relationship between the learner’s activities on the LMS and
their ultimate success in the course. For this portion of the
study, the learner’s final grade was used as the ground truth
representation of overall learner success. A ranking of final
grades in a single course, regardless of the grade distribu-
tion, will most likely result in the more successful learners
appearing in the top ranks, and the less successful learners
appearing in the bottom ranks.

3.1 Data Collection
Throughout the semester experimenters collected informa-
tion about participant interactions with course material.
Data was obtained from the course LMS, from the Subver-
sion (SVN) server, from in-class clickers, and from formal
observations.

Data included information about the learners habits with re-
spect to lecture attendance and participation, starting and
finishing labs and assignments, and studying from online
materials. The resulting data set included the dates and
time(s) that participants read a lab or assignment descrip-
tion, dates and times that assignments and labs were sub-
mitted, the date and time that a participant had their lab
graded (labs were graded in-person), lecture attendance, the
dates that problem sets were completed, and the amount of
time taken to complete quizzes and exams. Additional data
was generated through the collection of self assessment sur-
veys, which asked learners to rate their own confidence and
mastery of the course material.

Each week, along with the self-assessment questions, learn-
ers were given an ungraded set of multiple choice problems
to help them evaluate their understanding of the course con-
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tent. The weekly problem set consisted of seven randomly
selected questions. Every problem set consisted of 2 hard, 2
medium and 3 easy questions that spanned the entire course
content. Learners had the option of indicating that a ques-
tion was about content they had yet to learn rather than
guess at an answer. A measure of the participant’s self-
reported confidence as well as the participant’s success with
problem sets was calculated for each week of the course.

Because participation in this study was voluntary, and not
all students in the course participated, the data collection
process could not interfere with the normal activities of
the learners in the course. As a result, the study activi-
ties were ungraded and did not affect the academic grade
of the learner. One of the side-effects of this restriction
was that participants sometimes placed little importance
on the study-specific activities (the problem sets and self-
evaluation).

3.2 Analysis
A goal of this work is to determine if learner success (or fail-
ure) can be predicted using data that is passively, or semi-
passively captured as the learner works through the course.
For the purposes of this work, passively and semi-passively
captured data is data that can be collected exclusively from
the learner’s interactions with the LMS, and without the
need for separate action on the part of the course instructor
or teaching assistants. In some cases the data may come
from log files and in others it may be directly captured from
questions asked of the learners.

3.2.1 Self Assessments
Independent self-assessment activities such as ungraded prob-
lem sets for self-checking and opportunities for self-reflection
about personal confidence and progress are one type of data
that can be semi-passively captured. The data capture re-
quires input from the learner, but not from course adminis-
tration or instructors.

During this study, participants completed weekly problem
sets that were kept at the same difficulty for the entire
semester. The problem sets were difficult for learners at the
beginning of the semester and should have seemed easier as
the learners mastered the course material. No problem sets
were assigned in weeks 11 and 12. The data collected dur-
ing the study shows that the median scores on the problem
sets slowly increased over the semester. The increase is not
dramatic, nor is it consistent every week, but higher median
scores did occur in the last third of the semester as can be
seen in Table 1.

The participants’ weekly scores on the problem sets show
a weak correlation with their final grade, however the total
problem set score shows a higher correlation ( .73) with final
grade (see Figure 1).

Participants also assessed their own confidence in program-
ming skills each week. When examined week-by-week, the
correlation between learner confidence and final grade is con-
sistently positive except for a one week anomaly shortly after
a difficult quiz. The scores from the weekly confidence as-
sessments were averaged across two separate 5 week periods
in the course, weeks 0 through 5 and weeks 5 through 10
(no confidence assessments were done in weeks 11 and 12).
The correlation between those mean confidence scores and
participant final grade was calculated. The results can be
seen in Table 2.

Table 1: Median Scores for Problem Sets by Week

Week Mean Median

0 3 3
1 4 4
2 4 4
3 4 4
4 4 5
5 4 4
6 4 4
7 5 5
8 4 4
9 5 5
10 4 5

N = 112, 2012−02−10, R 2.14.1
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Figure 1: Problem Set Scores vs Final Grade

The increased correlation coefficient for the latter weeks of
the course suggests that participants became more realis-
tic about their own programming abilities as the semester
progressed, and that in the latter half of a semester, par-
ticipants may be a good source of estimations of their own
success with the course.

3.2.2 Independent Course Work Habits
Learners with strong independent work habits are often more
successful. Since assignments were the largest ‘problems’
given as independent homework in this course, the learner’s
interactions with assignment related information was exam-
ined to better understand the relationship between indepen-
dent coursework interactions and overall success. As can be
seen in Figure 2, there is a relationship between the total
number of times assignments were viewed and the partici-
pant’s final grade (a positive correlation coefficient of .42).
Even though the correlation is moderate, the relationship
between final grade and assignment reading habits bears
more investigation.

In order to further investigate work habits, two additional
pieces of data about student work habits were calculated
from the LMS logs: the number of times participants used
the course LMS (views), and the number of individual days
that participants used the course LMS (days active). Days
active is a count of the number 24 hour periods that the
participant logged in to the site at least once. Views is a
count every logged interaction that a participant had with
the LMS.

The number of views of LMS material has a clear relation-
ship with the final grade of the participant (see Figure 3)
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Table 2: Mean Confidence Correlations with Final Grade

Weeks Final Grade Correlation

0 through 4 .34
5 through 10 .60

Whole Semester .52

N = 121, 2012−02−10, R 2.14.1
Total number of Assignment Views
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Figure 2: Total Assignment Views vs Final Grade

While the relationship is positive, a wide variance in grades
is evident, especially around the 500 views point in the
graph, indicating that a simple count of number of inter-
actions is unlikely to discriminate between successful and
unsuccessful learners. However, the total number of LMS
views has a positive correlation coefficient of .56 with final
grade.

N = 110, 2012−02−10, R 2.14.1
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Figure 3: Total Course LMS Views vs Final Grade

The relationship between the number of days a participant
was active on the LMS and their final grade is even stronger.
As can be seen in Figure 4, the relationship appears to be
nearly linear and the variation is similar for the entire graph.
The correlation coefficient between the total number of days
active and the participants’ final grade is .73. It is as strong
a relationship as the problem set scores, but the data cap-
ture requirements are completely passive, while problem set
scores require direct action from the learner and the ability
to automatically grade the practise problems.

A deeper analysis of days active provides even more fodder
for consideration. When a cumulative total for days active is
calculated at quarterly intervals (i.e. weeks 3, 6, 9, and 12)
and a correlation coefficient is calculated for each subtotal,
we find that after only three weeks of the course, the num-
ber of days active has a correlation coefficient of .53 with

N = 112, 2012−02−10, R 2.14.1
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Figure 4: Total Days Active vs Final Grade

participant final grade. After six weeks of class the correla-
tion coefficient is .62 and after nine weeks of class it is .70.
Students who are active in the LMS across a number of days
appear to be more successful with the course material.

3.3 Predicting Success
To further investigate the role of participant activity in pre-
dicting student success, decision trees were constructed us-
ing some of the study data. The trees were constructed with
Rattle, a data-mining addon for the stats package R. This
tree construction used the rpart(recursive partioning) model
builder with the default parameters.

Table 3 shows the list of data available to the model builder.

Table 3: Data Available to Decision Tree Model Builder

final grade categories
participant mean confidence for the overall semester
participant mean confidence for weeks 0-4 and 5-10
participant mean expertise for the semester
total LMS visits
total days active
cumulative days active for weeks 0-3, 0-6 and 0-9
mean time taken to complete problem sets

For this particular set of students, there were far more final
grades of A and F than of B, C or D. In particular, very few
participants received a grade of C. As a result, the grade
categories of C and D were clumped together prior to con-
structing the decision tree and the first decision tree (Figure
5) was constructed for final grade categories of A, B, C&D,
F. The discriminating attributes for the decision tree turned
out to be the total number of days the participant was active
on the LMS for the course, the average time a participant
took to complete the weekly problem sets, and the partic-
ipant’s own confidence in his/her programming ability (in
one case averaged over the entire semester, in others aver-
aged over weeks 5 through 10). Two of these discriminators
(days active and confidence) had high correlations with fi-
nal grade, but the time taken to solve the weekly problem
sets showed no correlation with final grade when examined
in our preliminary work.

The decision tree shows that with passively and semi-passively
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collected data, and with no direct measurement of partic-
ipant domain knowledge, the extremes of success (the A
learners and the F learners) can be identified with high con-
fidence. Of particular note is the prediction of a final grade
of F simply from the number of days active and the par-
ticipant’s own confidence in their abilities at the end of the
semester. Also interesting is the predictability of a final
grade of A for a confident participant who is active on the
LMS for the course for more than 55 days. A high number
of active days alone is enough to predict student success.

Figure 5: Decision Tree for Final Grade with D and C
Clumped

A slightly different decision tree results if the aggregate bins
for final grade are changed so that B and C grades are con-
sidered together, but the discriminating attributes remain
the same. The second decision tree, built with the same
algorithm and parameters is shown in Figure 6.

This tree predicts that if a participant used the course LMS
for fewer than 40.5 days, the participant is most likely to get
a D or an F as a final grade, and that the difference between
a prediction of D and F is the participants own confidence
in their programming. B or C grades are discriminated from
A grades by the average time taken to complete the weekly
problem sets (participants who spent more than 5 minutes
on average were more likely to get an A).

While this analysis is still preliminary and further work will
hopefully increase the confidence in the predictions, the ca-
pability to predict the extremes of success using data that
can be automatically collected while students are working
within a course is quite exciting.

4. MOVING FORWARD
This work has shown that it is possible to predict learner
success without requiring data about student mastery of
content (i.e. grades).

Two pieces of data stand out as a result of this investigation,
the total number of days a learner is active in the course, and
the scores on self-check problem sets. While both of these

Figure 6: Decision Tree for Final Grade with B and C
Clumped

pieces of data can be captured automatically, given suit-
able self-check questions, the number of days active meets
our secondary objective of finding relevant measures that do
not require examination of the learner’s domain knowledge
and, as such, will be the subject of our immediate detailed
investigations.

This work is part of a larger effort to enhance existing Learn-
ing Management Systems with the ability to react intelli-
gently to learner behaviours. For example, a LMS that could
use its own log files to identify learners who appeared to be
struggling with a courses would be extremely valuable to in-
structors. It could notify course instructors about students
who might need extra help, and it could offer help to stu-
dents. Because the underlying models in this work are based
on learner behaviour rather than on evaluations of domain
knowledge, such an enhanced LMS would require no sub-
ject matter knowledge and would be reusable across subject
domains. The potential for such a system to improve stu-
dent retention and success in both distance education and
in LMS-supported face to face courses might be quite high.
We are optimistic about our future endeavors.
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ABSTRACT
We introduce a novel data structure, the Interaction Net-
work, for representing interaction-data from open problem
solving environment tutors. We show how using network
community detecting techniques are used to identify sub-
goals in problems in a logic tutor. We then use those com-
munity structures to generate high level hints between sub-
goals. The preliminary results show that using network anal-
ysis techniques are promising for exploring and understand-
ing user data from open problem solving environments.

1. INTRODUCTION
This paper introduces a data structure for the analysis of
interaction-data collected from open problem solving envi-
ronments. This structure embeds meaningful information
into a complex network, which is subject to analysis through
network science techniques. We apply a method of network
community clustering to derive subgoals in problems. These
clusters allow us to derive high-level hints, which direct stu-
dents to subgoals in the open problems.

Other methods for modeling students, such as the Bayesian
knowledge tracing model [5] are difficult to apply to ill de-
fined domains, such as open problem solving tutors. First,
Bayesian knowledge tracing requires each interaction to be
labeled as correct or incorrect. Second, each interaction
needs to be assigned a single knowledge component. For
open procedural problems, both of these assumptions are
challenging. As each interaction represents a step towards
a goal, it is difficult to address the correctness of an indi-
vidual step. While errors in the application of actions can
be easily marked, errors in obtaining the correct solution
require special attention. The open nature of the environ-
ment makes it possible for each interaction to provide op-
portunities to apply several skills. Furthermore, the skills
needed for an interaction include action-application, action-
opportunity recognition, and problem-solving skill.

For these reasons, many of the traditional methods for data
mining on problem solving environment tutor data is either
non-applicable or difficult to structure in appropriate ways.
We propose using an Interaction Network as a method of
structuring tutor data from problem solving environments
and show one example of how this has been useful.

Next, we use the interaction network in a method for auto-
matically generating high level hints. This is an extension

of previous work where automated feedback was generated
from student data [2]. We extend that work by using net-
work community clustering on a interaction network derived
from student data; this allows us to generate higher level
hints based on derived subgoals. Automatically generated
hints have shown positive educational results [10], and have
been applied across domains [8].

2. PROBLEM SOLVING ENVIRONMENTS
The effect that the tutor has on how students solve problems
is important. While the pedagogical benefits of scaffolded
problems are well known, open problem solving environment
based tutors may encourage learning in higher ’levels’ of cog-
nitive domains [4]. For this work, we define problem solving
environments as non-scaffolded tutors, where students are
free to apply one of many different actions and are required
to complete many steps to solve a single problem, as in the
Deep Thought tutor [6].

One advantage to these types of environments, compared
to scaffolded problems, is that less time is required for the
authoring of problems, as scaffolding is less necessary. Also
there are several existing simulations and educational en-
vironments that were developed without intelligent feed-
back. Our goal is to provide data-driven techniques to auto-
matically generate intelligent feedback based on previously
recorded data from such environments.

3. INTERACTION NETWORK
In sequential problem solving environments a solution path
describes a sequence of state changes from a starting posi-
tion towards a desired end position. For this work we will
only consider discrete time environments with deterministic
state transitions. An interaction network is a data structure
designed to concisely describe the information contained in
a large number of such sequences. This structure is modeled
as a complex weighted network, in which information rele-
vant to educational data mining is encoded into the edges
and vertices. Interaction networks provide a structure on
which to perform data mining, and are also useful for visu-
ally displaying information via state diagram visualizations.
The interaction network, in terms of ACT-R, is primarily
concerned with the results of the Manual Control module
[1]. We mention this to make a distinction between the
Imaginal module, which contains steps the user makes in
internal cognition. That is, the interactions are empirical
observations between the subject and the tutor and do not
represent internal cognitive states which may occur between
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recorded actions.

An interaction network is based on individual student-tutor
interactions, as recorded in the log file of the tutoring en-
vironment. We define an interaction, I, is a 5-tuple I =
(St, A., St+1, U, I), where

• St is the state at step t

• As is the action performed on St

• St+1 is the resulting state after A has been performed

• U is the unique case ID responsible for this interaction

• I is a set of additional information about the interac-
tion. For example, Itime would return a value for how
long this interaction took. Included here are Ierror,
which stores the error value, and Igoal, which is true if
this action resulted in a goal state.

A case represents an individual user of the tutoring system,
specifically a case is a ordered pair c = (U, I), where

• U is a unique identifier

• I is a set of additional information about the individ-
ual. For example, Ipretest would return a value for this
case’s pretest score.

Finally, we define the interaction network for a problem P
is as,

INP = (C, S,A, t, s, S0, G, IA,M), where

• C is a set of cases.

• S is the set of observed tutor program states

• A is the set of observed actions, which connect two
states

• s : A→ S and t : A→ S are two maps indicating the
source and target states of an action

• S0 is the starting state of the problem

• G is the set of goal states

• IA : A→ I is a map to the source set of Interactions

• M is the set of maps, which allow the lookup of rele-
vant state, action, and case information. For example:
MFreq : S → Frequency will map from the state x to
the frequency value for that state.

We model a solution attempt as a ordered set of interac-
tions. We use case to refer to individual students, as well
as student specific information. We create the interaction
network for a problem by conjoining the set of all the path
graphs. We use state to describe the state of the software
environment, representing enough information so the pro-
gram’s state could be regenerated in the interface. We use
actions to describe user interactions and their relevant pa-
rameters. We also store the set of all cases who visited any
particular state-vertex or action-edge, allowing us to count
frequencies and connect case specific information to the in-
teraction network representation.

This representation results in a sparse, weighted, directed,
labeled pseudograph, which can contain loops and cycles;
with states as vertices, directed action edges to connect the

Figure 1: An Interaction Network from the Deep Thought
data set. Error actions are shown as red edges, edge width
depicts frequency, green squares are goal states.

states, and cases that provide additional information about
states and edges. This representation allows us to build a
interaction network model from any system that logs inter-
actions in state, action, resulting-state tuples. This results
in a network graph which represents the interactions of a
large number of users in a relatively concise space.

4. THE DEEP THOUGHT TUTOR
We apply the interaction network to data from Deep Thought,
a propositional logic tutor in which students are tasked with
performing first-order logic proofs [6]. Students are given a
set of premises and a desired conclusion; the student must
then use the basic logic axioms to prove the conclusion. As
the student works through the proof, the tutor records each
interaction. We model the application of axioms as the ac-
tions. We model the state of the logic tutor as the conjoined
set of each premise and derived proposition.

For example a student starts at state A ∨ D,A → (B ∧
C),¬D ∧ E, where each premise is separated by a comma.
The student performs the interaction SIMP (¬D ∧ E), ap-
plying the simplification rule of logic to the premise ¬D∧E
and derives ¬D. This leads to the resulting-state of A ∨
D,A→ (B ∧C),¬D ∧E,¬D. Errors are actions performed
by students that are illegal operations of logic and the tu-
tor. For example: The student is in state A ∨ D,A →
(B ∧C),¬D∧E,¬D. The student performs the interaction
SIMP (A ∨ D) in an attempt to derive A. The resulting-
state would remain A ∨ D,A → (B ∧ C),¬D ∧ E,¬D, the
log-file would mark this edge as an error.

4.1 Working Backwards
Deep Thought allows students to work both forward and
backwards in the logic domain to solve problems [7]. Work-
ing backwards allows a student to select the goal premise and
use actions to change the conclusion by adding unjustified
propositions. Since students can solve a problem completely
by only a single direction or a hybrid approach, the size of
our state space is much larger than if only a single direc-
tion were possible, however this provides opportunities for
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Figure 2: The Interaciton Network from figure 3 represented
as a cluster graph. This network is used for the high level
hinting process.

diverse problem solving techniques.

4.2 Data
We have six sections of student data from the year 2009,
between three professors. Students were required to solve
13 problems from in the Deep Thought tutor as part of the
coursework in a introduction to logic class. The problems
were generally solved in order, but students could access any
problem at any time. In total we have data for 303 students
who submitted 1454 attempts across 13 problems totaling
64677 interactions.

5. GENERATING HIGH LEVEL HINTS US-
ING NETWORK CLUSTERING

By formulating our data into an interaction network and
using network invariants and metrics, we theorized we could
identify sub-goals and in turn student strategies. We also
theorized that problems would have underlying structures
of sub-goals. We used the Girvan-Newman algorithm to
cluster our interaction networks [9]. This algorithm is used
to detect communities in networks, where a community has
dense node-node connectedness and the edges to nodes in
other communities are sparse. Since our data represents
interactions, states which are similar are clustered into the
same community. Performing similar actions will result in
similar states. Performing similar actions in varying orders
results in states which are more connected. This causes

Figure 3: An Interaction Network from Deep Thought with
clustering applied. This interaction network has nine clus-
ters. Green nodes are goal states, errors are denoted by red
looping edges. Blue edges are deletions where students re-
turned to their previous state. Node size and color is based
on node betweenness, and used for visual clarity.

similar interaction orders to be highly connected and result
in the same community. For each sub goal, sequences of
actions to reach those subgoals will be similar. Different
strategies will separate different subgoals into distinct sub-
populations, ie. communities. Since actions are defined by
edges and Girvan-Newman separates communities by edge-
betweenness, in our interaction network we are separating
communities based on dominating actions.

5.1 Cluster Graph
In order to generate high level hints, we first divide the
network into community clusters using the Girvan-Newman
algorithm. This allows us to create a cluster graph, where
the clusters are communities of states, highlighting impor-
tant nodes we will use as sub-goals, see figure 3. The clus-
ters can be interpreted as problem solving strategies. We
manually annotated each cluster based on the strategies we
observed the students using, see figure 2. We found the gen-
eral strategies of working forward and backwards, as well as
hybrid approaches.

To determine which hint a student receives we perform the
Bellman backup algorithm to assign values to the clusters,
similar to previous works by Stamper et al. [3]. Next, when
a student requests a hint, we first offer a high level hint
directing them to a different cluster, which represents the
student’s next sub-goal.

We treat each cluster as a node, with edges connecting clus-
ters, with the same weights as in the interaction network.
Each goal state is connected to a virtual exit-edge outside of
it’s original cluster. We assign positive values to the virtual
exit-edges. Other edges are assigned a cost, to incentive

Proceedings of the 5th International Conference on Educational Data Mining 166



shorter solution paths. We then perform Bellman backup
to generate cluster values, as is done by Stamper et al. [3]
with the key distinction of using the clusters rather than
using individual states. The Bellmen backup algorithm will
iterate until the cluster values converge, and we use these
values to provide our next cluster policy.

5.2 High Level Hints
By generating high level hints we can provide students with
hints towards sub-goals in the problem, suggesting different
strategies. We add two additional hints to Stamper’s hint
template, where the first two hints are based on strategies.
The first hint directs students to the connected node of the
’next’ cluster, if there are multiple out-degree edges from
the current cluster, we can offer multiple ’next’ clusters, so
the student can progress along their desired strategy. Since
strategies are at a higher level then individual steps, offering
multiple strategies is reasonable, whereas offering multiple
next steps is likely less beneficial. Students can request a
second hint; this hint is based off of the parameters required
to derive the first hint.

After that, if a student is unable to consider their high level
strategy, we provide local hints. These hints provide imme-
diate next steps towards the desired exit node of the current
cluster. This is done by setting the exit edges of the cur-
rent cluster with positive weight and performing Bellman
backup. These hints are provided using the method de-
scribed in Stamper [3], however it is performed locally in
the current cluster, with the edges leading out of the cluster
receiving the highest reward values.

All previously observed states are assigned to some cluster.
If a new state is observed we can assign hints based on that
student’s last known cluster. This means we can still offer
hints level 1 and 2 to students in states that we have not pre-
viously observed. Should students request lower level hints
we can recommend students to go back to the entry point
of their previous cluster. In Deep Thought students can
do this by deleting prepositions from their solution through
a delete action. While the interaction Network, clustering
procedure, and the hint policy are domain independent, the
hint templates are specific to the tutor and domain.

6. CONCLUSIONS
This work makes three contributions. The first is the Inter-
action Network, a novel data structure for modeling interaction-
data from open problem solving environments. By placing
interaction data into a network and encoding meaning in
the network relationships, we can derive educational insight
from network analysis techniques. The second contribution
is the application of community detection, detecting sub-
populations of the state space, to derive sub-goals in which
the nodes and actions are similar. The final contribution is
the method of using the community structure in the inter-
action network to generate both high and low level hints.

7. FUTURE WORK
The current algorithm used for detecting community struc-
ture, via edge betweenness, does not directly take into ac-
count problem solving specific characteristics. For example,
in the Deep Thought data we have defined start and goal
states. By incorporating those characteristics into the clus-
tering algorithm more meaningful clusters may emerge.
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ABSTRACT 
The goal of this paper is to use Knowledge Tracing to augment 
the results obtained from an experiment that investigated the 
effects of practice schedules using an intelligent tutoring system 
for fractions. Specifically, this experiment compared different 
practice schedules of multiple representations of fractions: 
representations were presented to students either in an interleaved 
or in a blocked fashion. The results obtained from posttests 
demonstrate an advantage of interleaving representations. Using 
methods derived from Knowledge Tracing, we investigate 
whether we can replicate the contextual interference effect, an 
effect commonly found when investigating practice schedules of 
different task types. Different Knowledge Tracing models were 
adapted and compared. A model that included practice schedules 
as a predictor of students’ learning was most successful. A 
comparison of learning rate estimates between conditions shows 
that even during the acquisition phase, students working with 
interleaved representations demonstrate higher learning rates. This 
finding stands in contrast to the commonly found contextual 
interference effect when interleaving task types. We reflect on the 
practical and theoretical implications of these findings.  

Keywords 
Knowledge tracing, intelligent tutoring system, practice 
schedules, multiple representations, contextual interference. 

1. INTRODUCTION 
Educational data is highly complex, not only because learning is a 
complex process, but also because educational materials are 
complex. Learning materials in realistic educational settings 
generally cover a number of educational topics and use multiple 
representations. There is a substantial amount of evidence 
demonstrating that the use of multiple representations has a 
significant impact on students’ learning [2,12]. When designing 
educational software that uses multiple representations, designers 
must decide how to temporally sequence the representations. In 
particular, it may matter whether representations are presented in 
a “blocked” manner (e.g., A – A – B – B) or in an interleaved 
manner (e.g., A – B – A – B). Research on contextual interference 
shows that interleaving task types leads to better learning results 
than blocking task types [7]. When working with multiple 
representations, a relevant question is whether practice with the 
different representations should be blocked or interleaved.  
In the present paper we use log data obtained from an in vivo 
experiment (i.e., a rigorously controlled experiment in a real 
educational setting) that uses a successful type of intelligent 
tutoring system to help students learn about fractions while 
varying the practice schedule of multiple graphical 
representations. The experiment investigated the effect of practice 
schedules of graphical representations on students’ knowledge of 
fractions assessed by posttests after they worked with the tutoring 
system. The goal of the present paper is to augment the findings 

from the traditional analysis of posttest data by applying a 
Knowledge Tracing algorithm to the log data. Analyzing student 
performance during the acquisition phase is particularly 
interesting when investigating the effects of practice schedules: a 
common finding is that interleaved practice schedules lead to 
better long-term retention and to better transfer than blocked 
schedules, but they often lead to worse performance during the 
acquisition phase [7]. Knowledge tracing, which tracks student 
knowledge over time, can be used to investigate learning 
differences between conditions during the acquisition phase [9].  
In order to analyze the effect of practice schedules of multiple 
graphical representations on students’ performance during the 
acquisition phase, we use a Bayesian Network model based on 
Knowledge Tracing [5]. Knowledge Tracing uses a two state 
Hidden Markov Model assumption of learning which uses correct 
and incorrect responses in students’ problem-solving attempts to 
infer the probability of a student knowing the skill underlying the 
problem-solving step at hand. Previous research has demonstrated 
that extensions of knowledge tracing can be used to analyze 
effects of experimental conditions [9]. We combined this model 
with several other extensions to Knowledge Tracing to each of the 
four experimental conditions of the experimental study to 
investigate differences in model learning rates between the 
conditions in the Fractions Tutor. 
The findings from the present paper are applicable to many other 
settings. Multiple graphical representations are used in a large 
variety of domains including science and mathematics. Whether 
to block or interleave representations is an important practical 
question in all of these domains.  

2. THE FRACTIONS TUTORING SYSTEM   
The Fractions Tutor used in the experiment was a type of 
Cognitive Tutor. Cognitive Tutors are grounded in cognitive 
theory and artificial intelligence. Cognitive Tutors have been 
shown to lead to substantial learning gains in a number of studies 
[6]. We created the tutors used in the present experiment with the 
Cognitive Tutor Authoring Tools (CTAT [1]. The design of the 
interfaces and of the interactions students engage in during 
problem-solving are based on a number of small-scale user studies 
that we conducted in our laboratory, as well as on Cognitive Task 
Analysis of the learning domain [3].  
The Fractions Tutor included three interactive graphical 
representations of fractions (circles, rectangles, and number lines) 
and covered a comprehensive set of task types ranging from 
identifying fractions from graphical representations, creating 
graphical representations, reconstructing the unit of unit fractions 
and of proper fractions, identifying improper fractions from 
graphical representations, and creating graphical representations 
of improper fractions. Students solved each problem by 
interacting both with fractions symbols and with the interactive 
graphical representations. As is common with Cognitive Tutors, 
students received error feedback and hints on all steps. In 
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addition, each problem included conceptually oriented prompts to 
help students relate the graphical representations to the symbolic 
notation of fractions. These prompts were shown to be effective in 
an earlier study with the Fractions Tutor [12]. 

3. EXPERIMENT AND DATA 
T Blocked Moderate Interleaved Increased 
1 c-c-c-c-c-c c-c-c-r-r-r c-r-n-c-r-n c-c-c-c-c-c 
2 c-c-c-c-c-c r-r-r-n-n-n c-r-n-c-r-n c-c-c-c-c-c 
3 c-c-c-c-c-c c-c-c-r-r-r c-r-n-c-r-n r-r-r-r-r-r 
4 c-c-c-c-c-c r-r-r-n-n-n c-r-n-c-r-n r-r-r-r-r-r 
5 c-c-c-c-c-c n-n-n-c-c-c c-r-n-c-r-n n-n-n-n-n-n 
6 c-c-c-c-c-c c-c-c-r-r-r c-r-n-c-r-n n-n-n-n-n-n 
1 r-r-r-r-r-r r-r-r-n-n-n c-r-n-c-r-n r-r-r-n-n-n 
2 r-r-r-r-r-r n-n-n-c-c-c c-r-n-c-r-n n-n-n-c-c-c 

… … … … … 
1 n-n-n-n-n-n n-n-n-c-c-c c-r-n-c-r-n c-r-n-c-r-n 
2 n-n-n-n-n-n c-c-c-r-r-r c-r-n-c-r-n c-r-n-c-r-n 

… … … … … 
Table I. Practice schedule for each condition for all six task types 
(T). Each T was revisited three times. Students worked on nine 
problems per T. Each letter stands for one tutor problem and its 
representation: circle (c), rectangle (r), or number line (n). 
The data used in this paper is based on an experimental study 
conducted with the Fractions Tutor during the end of the school 
year of 2009/2010. A total of 527 4th- and 5th-grade students 
from six different schools (31 classes) in the Pittsburgh area 
participated in the study during their regular mathematics 
instruction. We excluded students who missed at least one test 
day, and who completed less than 67% of all tutor problems (to 
ensure that students in the blocked condition encountered all three 
representations). This results in a total of N = 230 (n = 63 in 
blocked, n = 53 in moderate, n = 52 in fully interleaved, n = 62 in 
increased). Students worked with the Fractions Tutor for about 5h. 
Table I illustrates the practice schedules of task types and 
representations for the experimental conditions. In all conditions, 
students worked on the same sequence of task types and revisited 
each task type three times. Students were randomly assigned to 
one of four conditions. In the blocked condition, students 
switched between the graphical representations after 36 problems. 
In the moderate condition, students switched representations after 
every three or six problems. In the fully interleaved condition, 
students switched representations after each problem. In the 
increased condition, the length of the blocks was gradually 
reduced from twelve problems at the beginning to a single 
problem at the end. To account for possible effects of the order of 
graphical representations, the order in which students encountered 
graphical representations was also randomized. 
For the experiment, students’ knowledge of fractions was assessed 
at three test times: before their work with the Fractions Tutor, 
immediately after, and one week after students finished working 
with the Fractions Tutor. The tests included four knowledge types: 
area model problems (i.e., problems that involved circles and 
rectangles), number line problems, conceptual transfer, and 
procedural transfer. The results from the test data (described in 
more detail by [11]) showed that the fully interleaved condition 
performed significantly better than the blocked condition, the 
moderately interleaved, and the increasingly interleaved 
conditions on conceptual transfer at the delayed posttest. 
Furthermore, there was a marginally significant advantage for the 
increasingly interleaved condition compared to the blocked, 
moderately interleaved, and fully interleaved conditions on 
number line items at both the immediate and the delayed posttests.  

The analyses presented in the current paper are based on the tutor 
log data obtained from the Fractions Tutor. The log data provide 
the number of correct steps at a student’s first attempt at solving a 
step in the tutor, the number of attempts until a step was correctly 
solved, the number of hints requested per step, and the time 
students spent per attempt. 

4. BAYESIAN MODEL 
We evaluated four Bayesian models based on the experiment log 
data. Two of the models were created for the purpose of analyzing 
the learning rates of the conditions in the experiment while the 
other two were used as baseline models to gauge the relative 
predictive performance of the new models.  

4.1 Learning Analysis Models 
One of the simplifying assumptions made by the standard 
Bayesian Knowledge Tracing model [5] is that there is a 
probability that a student will transition from the unlearned to the 
learned knowledge state at each opportunity regardless of the 
particular problem just encountered or practice schedule of the 
student. Our model hypothesis corresponds to the hypothesis of 
the experiment that different practice schedules within a task type 
may be more or less effective at allowing students to acquire the 
skill being practiced. Thus, we depart from the Knowledge 
Tracing assumption of a single learning rate per skill and instead 
fit a separate learning rate for each of the four different practice 
schedule conditions defined in the experiment.  
To model different learning rates within Knowledge Tracing, we 
adapted modeling techniques from prior work which evaluated the 
learning value of different forms of tutoring in (non-experiment) 
log data of an intelligent tutor [9]. Different representations of 
fractions are expected to result in different degrees of difficulty in 
solving the tutor problem [4]. In our condition and representation 
analysis model we used techniques from KT-IDEM [10] to model 
different guess and slips for problems depending on the 
representation used in the tutor problem. 
We employed two models which served as benchmarks for model 
fit and designed two novel models for evaluating learning 
differences among the experiment conditions. We compared four 
Bayesian models all of which were based around Knowledge 
Tracing. Figure 1 provides an overview of the different models 
that we compared. The Prior-Per-Student Model [8] includes the 
students’ individualized prior knowledge, the Condition-Analysis 
Model includes students’ prior knowledge and models the effect 
of experimental condition (C). Finally, the Condition-
Representation-Analysis Model incorporates students’ prior 
knowledge (S), condition (C), and the graphical representation 
encountered by each student in each problem (R). 

4.2 Model Fitting Procedure 
In order to determine model fit by task type, we analyzed the log 
data by tasks type. For the evaluation of predictive performance, 
reported in the next section, a 5-fold cross-validation at the 
student level was used. For the reporting of learning rates by 
practice schedule, all data was used to train the model. 
The parameters in all four models were fit using the Expectation 
Maximization algorithm implemented in Kevin Murphy’s Bayes 
Net Toolbox. For the Condition-Representation-Analysis Model 
the number of parameters fit per task was 12 (2 prior + 4 learn rate 
+ 3 guess + 3 slip). Probabilities of knowledge are fixed at 1 if the 
skill was already known,  (    ) = 1, to represent a zero chance 
of forgetting, an assumption made in standard KT.  
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Fig. 1. Overview of the four different Bayesian Networks tested, with observed (o.) and hidden (h.) nodes. 

5. EVALUATION RESULTS 
 Model RMSE AUC 

1 Condition-Representation-Analysis Model  0.3427 0.6528 

2 Standard-Knowledge-Tracing Model  0.3445 0.6181 

3 Condition-Analysis Model 0.3466 0.5509 

4 Prior-Per-Student Model 0.3469 0.5604 

Table II. Cross-validated prediction results summary of the four 
models using RMSE and AUC metrics 
To evaluate the predictive accuracy of each of the student models 
mentioned in section 2, we conducted a 5-fold cross-validation at 
the student level. By cross-validating at the student level we can 
have greater confidence that the resulting models and their 
assumptions about learning will generalize to new groups of 
students. The metric used to evaluate the models is root mean 
squared error (RMSE) and Area Under the Curve (AUC). Lower 
RMSE equals better prediction accuracy. For AUC, a score of 
0.50 represents a model that is predicting no better than chance. 
An AUC of 1 is a perfect prediction.  
As shown in Table II, the Condition-Representation-Analysis 
Model has the lowest RMSE with .3427 as well as the best AUC. 
We conclude that the Bayesian Network that includes students’ 
prior knowledge (S), experimental condition (C), and 
representations used for a certain problem (R) provides the best 
model fit. All predictions were statistically significantly different 
from one other by a paired t-test of squared errors. 
Table III provides the learning rates obtained from the Condition-
Representation-Analysis Model for each condition for each of the 
task types that the tutoring system covered. Overall, the learning 
rate estimates align with the results obtained from the posttest 
data: the interleaved condition demonstrates higher learning rates 
than the blocked condition. The task types were as follows: (1) 
identifying fractions from representations, (2) making 
representations of fractions, (3) reconstructing the unit from unit 
fractions, and (4) reconstructing the unit from proper fractions. On 
task type (5) identifying improper fractions from representations 
and (6) making representations of improper fractions. 

TT Blocked Moderate Interleaved Increased 

1 0.0061 0.0061 0.0080 0.0072 

2 0.0019 0.0032 0.0065 0.0036 

3 0.0149 0.0059 0.0337 0.0030 

4 0.0037 0.0022 0.0035 0.0014 

5 0.0108 0.0220 0.0124 0.0130 

6 0.0043 0.0107 0.0078 0.0090 

Overall 0.0062  0.0056 0.0120 0.0062 

Table III. Learning rates by task type (TT) and condition from 
the Condition-Representation Analysis Model. 
The learning rates by task type provide more specific information 
on the nature of the differences between conditions in learning 
rates. For all but the fourth task type, the fully interleaved 
condition demonstrates a higher learning rate than the blocked 
condition. This difference was statistically significant for tasks 1, 
2 and 3 (p < 0.05) and moderately significant for task 5 (p = 0.06). 
The same binomial test as was used in [9] was employed here to 
test for significance. The interleaved condition achieved the 
highest overall learning rate which was twice that of any other 
condition. This was despite having the second lowest percent 
correct among responses in the acquisition phase. 

6. DISCUSSION 
The findings from the Bayesian Networks support and augment 
the findings from the posttest data in several ways. First, the 
finding that the Condition-Representation Analysis Model 
provides the best fit to the log data confirms the overall finding 
from the posttest data of the experiment that practice schedules of 
multiple representations matter. It also highlights that per item 
level parameters are greatly beneficial, especially when the 
problem opportunities involve different cognitive operations, such 
as solving problems with different representations. Furthermore, 
the finding that the representation used in a tutor problem is a 
useful predictor of learning confirms that different graphical 
representations provide different conceptual views on fractions in 
a way that influences how students understand fractions [4].  
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Second, the learning rate estimates per condition support the 
finding from the posttest data that interleaved practice schedules 
of multiple graphical representations of fractions lead to better 
learning than blocked practice schedules. This finding is 
interesting, because the literature on contextual interference shows 
that interleaved practice schedules often impair performance 
during the acquisition phase [7]. It is assumed that temporal 
variation between consecutive problems interferes with immediate 
performance since students have to adapt their problem-solving 
procedures each time they encounter a new task. This interference 
leads to higher processing demands and lower performance during 
the acquisition phase, but results in better long-term retention and 
transfer performance later on. Hence, one might expect that higher 
learning gains in the interleaved condition become apparent only 
in the posttest data, but not during the acquisition phase, because 
they might be “masked” by impaired performance due to 
interference. Our findings show, however,  that an intervention 
that is assumed to lead to impaired performance during the 
acquisition phase nonetheless leads to a learning advantage that is 
not only detectable in higher posttest performance but also during 
the acquisition phase using our experiment adapted Bayesian 
model. Bayesian Network analyses allowed us to detect learning 
gains that may be too subtle to detect during the acquisition phase 
when relying on performance. We believe this was able to be 
achieved thanks to the item level modeling that distinguished 
learning from variation in problem difficulty. 
Finally, the differences between learning rate estimates between 
task types yield important insights into the effectiveness  of the 
tutor task types that will help improve the tutoring system in 
future iterations. Bayesian Network analysis provides us with a 
useful tool that can help us evaluate this iterative improvement of 
the tutoring system at a much finer grain size than through the 
traditional analysis of posttest data. This technique also allowed 
for analysis to be accomplished without pre or post test data. 
The results from the Bayesian Network analysis presented in this 
paper yield interesting insights that are both of theoretical and 
practical significance. Our results confirm the finding from our 
previous experiment [18] that interleaving representations leads to 
better learning than blocking representations and extend the 
finding by demonstrating that the advantage of interleaved 
practice is apparent also during the acquisition phase. This finding 
is of practical relevance as it demonstrates that face-value 
methods, such as percent correct during the acquisition phase, do 
not provide sufficient information to evaluate an educational 
intervention. Since many domains use multiple graphical 
representations to augment instructional materials, we believe that 
our findings have the potential to generalize across a wide range 
of learning materials. Furthermore, the analysis of learning rates 
by condition allows us to identify parts of the Fractions Tutor 
curriculum that need to be improved as they do not seem to help 
students learn. Bayesian Network analyses can help us make sense 
of the complex educational data that we obtain from the rich 
settings in which education takes place, and hence, help us 
understand complex learning processes.   
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ABSTRACT 

OperationARIES! is an Intelligent Tutoring System that teaches 
scientific inquiry skills in a game-like atmosphere. Students 
complete three different training modules, each with natural 
language conversations, in order to acquire deep-level 
knowledge of 21 core concepts of research methodology (e.g., 
correlation does not mean causation). The student first acquires 
basic declarative knowledge and then applies the knowledge by 
critiquing case studies on scientific methodology and finally 
generating questions that reflect the core topics. A study using a 
pretest-training-posttest design was conducted in which 46 
college students interacted with the modules of 
OperationARIES!, resulting in thousands of logged measures. 
The goal of this investigation was to discover the different 
trajectories of learning within 11 of these core concepts by 
evaluating 3 main constructs (e.g., discrimination, generation, 
and time on task) represented by key logged measures. Different 
constructs showed relationships with specific core concepts. 
Three core concepts were analyzed with stepwise regression and 
5-fold cross-validation in order to discover contributing factors 
to learning gains for these core concepts.   
 

Keywords  
Intelligent Tutoring Systems, reasoning, serious games, research 
methods, discourse 

 
1.  INTRODUCTION 
Social scientists often emphasize differences among 
students in their analyses of learning. The present research 
acknowledges such differences among students and 
aptitude-treatment interactions [1]. However the salient 
message in this study puts the magnifying glass on 
differences between core concepts in a subject matter. 
Simply put, the learning trajectories of core concepts may 

differ substantially depending on their content, 
complexity, and difficulty.   
1.1 Cognitive Constructs Predicting Learning  
The cognitive and learning sciences have identified 
principles of learning that offer likely hypotheses 
regarding differences in learning trajectories for core 
concepts [2]. Some concepts are learned by simply 
spending time reading and studying the material, a factor 
called time on task [3]. Time on task is normally 
optimized when concepts are presented on multiple 
occasions and distributed over time rather than 
concentrated in one time block [2, 4, 5].    Some concepts 
are learned primarily by actively generating the associated 
information about the concepts [2,4], particularly 
explanations [2, 5, 6, 7, 8].  Some  concepts are best 
learned by testing experiences [9 ] and feedback on their 
answers [10],  whereas others are best learned by either 
tutorial interaction [8, 11, 12, 13], scaffolding to get the 
student to generate good questions about difficult 
conceptualizations [14, 15], or tasks to get the student to 
make important discriminations among alternatives [8,  
11, 13, 14]. The present study investigates the training 
events and experiences that contribute to the acquisition 
of critical core concepts. Our central point is simple. Core 
concepts have idiosyncratic characteristics that lend 
themselves to particular learning activities that optimize 
their acquisition.  
The goal of this investigation is to discover the cognitive 
factors that predict the learning of core concepts in 
research methodology. The concepts range from concrete 
to abstract topics [8, 11, 14] and may require the student 
to utilize different skills. For example, understanding the 
meaning of an operational definition may be quite shallow 
in nature and possibly only require more time on task. 
Conversely, a more challenging abstract topic such as 
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correlation vs. causation may not be mastered by simply 
memorizing a definition but rather by higher level 
reasoning, discrimination among similar constructs, and 
generating ideas or questions. The learning environment is 
a serious game called Operation ARIES, as described next 
[12]. Although we have considered thousands of measures 
collected during 20 hours of training in ARIES, our 
analyses converged on three  broad time-honored 
constructs in the cognitive and learning sciences: time on 
task, discrimination, and generation.   

1.2 Operation ARIES: A Serious Game  
OperationARIES! (called ARIES for short, an acronym 
meaning Acquiring Research Investigative and Evaluative 
Skills) is an Intelligent Tutoring System that has an 
embedded storyline and game-like elements to engage 
students as they learn research methodology. The 
narrative includes alien invaders who have come to take 
over the world by presenting bad science. The student 
player joins forces with the Federal Bureau of Science in 
order to save the world from this threat. The storyline and 
the iterative presentation of these topics are presented to 
the students across three specific ARIES modules (i.e., 
Training module, Case Study module, and Interrogation 
module), each focusing on different types of knowledge 
acquisition: didactic knowledge, application, and question 
generation. The learner interacts in natural language 
conversations with multiple artificial agents in order to 
learn 21 core concepts of research methodology. 
In the Training module students learn didactic knowledge 
by reading an E-text, answering multiple choice questions, 
and having dynamic tutorial conversations with two 
pedagogical agents about the 21 core concepts. In the 
Case Study module, students apply the knowledge by 
conversing with three artificial agents while identifying 
flaws in research cases with the aid of both a list of 12 
potential flaws and the E-book. Finally, in the 
Interrogation module, students pose questions to an 
artificial agent in order to decide if the research case is 
sound. The learner is aided by a score-card which 
provides immediate feedback as well as suggested 
questions. The flaws covered in the Case Study module 
and Interrogation module are aligned with the core 
concepts in the Training module.  
This paper explores the specific cognitive activities in this 
serious game that predict learning of a subset of the 21 
core concepts.  These cognitive activities are part of the 
Training, Case Study, and Interrogation modules.   

2.   METHODS 
The participants were 46 students at 2 separate schools in 
Southern California. There was a pretest-training -posttest 
design, with two versions of a test that were 
counterbalanced between pretest and posttest. All of the 
students were enrolled in research methodology courses 
taught by the same instructor. The pretest and posttest 

consisted of open-ended and multiple-choice questions 
about the 21 core concepts. The participants interacted 
with the Training module in pairs, alternating between 
actively typing into the system and passively observing 
their human partner interacting (a difference that was not 
analyzed in this study). The participants intermittently 
answered survey questions about the storyline and tutorial 
conversations, but these measures are not investigated in 
the current study. The alternation between partners as well 
as the surveys did not occur in the latter two modules 
(Case Study and Interrogation).  

 2.1 Measures 
The log files of ARIES had thousands of measures 
including fine-grained measures for each module. 
Measures include latency measures, string variables and 
virtually every aspect of the typed interaction. With so 
many variables, the focus of this particular investigation 
will be on those measures that funnel into the three 
constructs of time on task, generation, and discrimination.  
Each of the 3 constructs was represented by a unique 
indicator for each module. Specifically, time on task was 
represented in the Training module by reading times per 
page in the E-Text, whereas the time spent on cases was 
the measure for the Case Study and Interrogation modules. 
In order to assess generation, the measures consisted of 
the number of words articulated by the student in 
conversational turns for each module. Discrimination 
scores were collected in each module. The Training 
module used the multiple-choice performance scores (0 to 
1). In the Case Study module, a discrimination score was 
calculated by subtracting the proportion of false alarms 
from hits as reflected by the match scores of the language 
processing algorithms within the system. The 
Interrogation module also used signal detection 
components derived from student performance on the 
score-card that discriminated whether a flaw was or was 
not present in a study.  
In order to measure learning gains, we computed 
proportion scores for the pretest and posttest. Each test 
consisted of a multiple-choice and short-answer question 
corresponding to each of the 21 concepts. Proportional 
learning gains scores [(posttest-pretest)/(1-pretest)] were 
calculated in order to adjust for the variation of prior-
knowledge across the students. These scores were 
available for each of the 21 concepts.   

3.   ANALYSES 
Although this original dataset consisted of 46 participants, 
10 of the subjects were removed due to extensive amounts 
of missing data (i.e. usually more than one module). Of 
the remaining 36 students, mean values were used to 
replace the missing data for discrimination scores. 
However, time on task and generation scores were simply 
left as 0’s.The most complete set of original data, prior to 
mean replacements were available for 11 core concepts.  
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These core concepts were presented and tested across all 
three modules, so they were selected in the subsequent 
analyses.  .  

3.1 Correlations 
The proportional learning gain scores ranged from .17 
(Causal Claims) to .50 (Subject Bias), with a mean of .34 
over the 11 core concepts. We computed correlations 
between these gain scores and the training process 
measures.  We found a number of significant correlations, 
but the more important conclusion is that the profile of 
process to learning correlations differed greatly among 
core concepts.   
It is beyond the scope of this report to present the full set 
of data.  Instead, we will focus on a few core concepts that 
illustrate the differences.  For example, the Training 
module reigned in the learning of one core concept 
(Objective Scoring of the Dependent Variable) when 
inspecting the correlations, which were significantly 
positive for the three measures: reading time, words 
generated, and discrimination. In contrast, the 
Interrogation module was most important for Subject 
Bias, where the corresponding three measures had 
significant correlations.    
The differences in learning process profiles among core 
concepts underscores our central claim that core concepts 
vary considerably in learning trajectories.   

3.2 Stepwise Regressions and Cross-
Validation 
We performed analyses on three core concepts that had 
distinctive profiles of correlations. These included 
Objective Scoring, Subject Bias, and Causal Claims. Each 
of these core concepts was analyzed separately using 
stepwise regressions with predictor variables that included 
those with the highest correlations (r >|.2|) with 
proportional learning gains. The resulting model was then 
cross- validated using a 5-fold procedure with 4 folds for 
training and 1 for test..       

3.2.1 Objective Scoring of the Dependent Variable 
This core concept showed correlations with the 
proportional learning gains for the reading times (time on 
task measure, r = .32, p<.05) and the multiple choice 
questions (discrimination score, r = .32, p<.05) in the 
Training module. In all 3 modules, the number of words 
generated significantly correlated with proportional 
learning gains (Training (r = .42, p<.05); Case Study(r 
=.28, p<.05); Interrogation (r =.28, p <.05). When these 
significant correlates were entered into a stepwise 
regression, the analysis removed the time allocated to 
multiple choice questions (time on task) and the words 
generated in the Training module, thereby converging on 
a model that includes words generated in the Interrogation 
module and the Case Study module and the reading times 
from the Training module (F (3, 33) = 4.91, R2 = .31, 

p<.05). In the full model, the words generated in the 
Interrogation module had a marginally significant main 
effect (F (3, 33) = 3.61, p = .06); the words generated in 
the Case Study module did not have a significant main 
effect (F (3, 33) = 2.45, p = .13), but reading times were 
significant (F (3,33) = 8.67, p<.05).  Given these results, a 
second model was created using the generation score for 
the Interrogation module and the reading times.  The 
model was significant (F (2, 34) = 4.338, R 2= .20, p<.02) 
with a marginally significant main effect for generated 
words (F (2, 34) = 3.23, p = .08) and a significant main 
effect for reading times (F (2, 34) = 5.45, p<.05). When 
this model was cross validated, the training set accounted 
for 26% of the variance (R 2= .26), and a test set 
accounted for 25% of the variance (R2 = .25) 

3.2.2 Subject Bias  
For this core concept, the variables with the highest 
correlations with learning gains were the multiple choice 
discrimination score from the Training module (r =.20, 
p<.10), and the discrimination (r = .20, p<.1), generation 
(r =.33, p<.05), and time on task (r = .26, p<.05) 
measures from the Interrogation module. With all 
predictors entered into a stepwise regression, the resulting 
significant model included only the words per case 
(generation) and the discrimination score from the 
Interrogation module (F (2, 34) = 3.304, R 2= .16, p<.05). 
Upon further examination, there is a significant main 
effect for generation (F (2, 34) = .498, p<.05) but not for 
the discrimination score (F =1.63, p>.05). A second linear 
model with just the generation score was significant model 
(F (1, 35) = 4.368, R 2= .11, p <.05). Next, the significant 
generation predictor only was cross-validated using a 5-
fold cross validation procedure resulting in a training set 
predicting 8% of the variance (R2 =.08) and a test set 
predicting 6% of the variance (R2 = .06). However, we are 
still tentative about drawing strong conclusions from this 
because of the low power in detecting differences in the 
regression. 

3.2.3 Causal Claims 
This core concept had low learning gains (.17) compared 
with the other topics. The two variables with highest 
correlations for learning were discrimination from the 
Case Study module (r = .28, p<.05) and the generation 
metric in the Interrogation module (r = .23, p <.1). 
However, a follow-up analysis with stepwise multiple 
regression was only marginally significant (F (2, 34) = 
2.863, R2 = .14, p=.07) and cross validation assessments 
were not significant.  

4.  CONCLUSIONS 
Our analyses revealed very different learning profiles for 
specific core concepts in research methodology. The value 
of the didactic Training module was most pronounced for 
Objective Scoring of Dependent Variables, whereas the 
Interrogation module was most successful for Subject 
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Bias, and Case Study was most promising for Causal 
Claims.  The constructs of time on task, generation of 
information, and discrimination were also quite different 
for the different core concepts. Moreover, students did not 
learn much about differentiating causal from correlational 
claims. This topic may be very abstract to many students, 
difficult to comprehend, and in need of substantially more 
training.   
One important implication of this study is that the 
different core concepts might be assigned different 
modules or a different amount of training allocated to 
each module.  For some core concepts, it may be 
sufficient to have them read text and prompt them to 
articulate propositions in language.  For other core 
concepts, they need a large number of case study 
examples to apply their knowledge in a discriminating 
fashion.  Simply put, training experiences need to be 
optimally allocated to the constraints of content.    
There are a number of limitations in this study that 
prevent us from making more definitive claims about the 
type of training that should be matched to our core 
concepts.  The study had a low number of participants and 
a moderate number of missing values for observations. 
However, we can confidently state that correlations 
between learning gains and the key constructs of 
generation, discrimination and time on task do vary across 
core concepts of research methodology in 
OperationARIES!.It is important to explore different 
learning trajectories of specific core concepts in addition 
to differences among students. 
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ABSTRACT 

The field of educational data mining has been using the 
Knowledge Tracing model, which only look at the correctness of 
student first response, for tracking student knowledge. Recently, 
lots of other features are studied to extend the Knowledge Tracing 
model to better model student knowledge. The goal of this paper 
is to analyze whether or not the information of student first 
response time of a question can be leveraged into Knowledge 
Tracing model and improve Knowledge Tracing’s prediction 
accuracy. In our experiments, we used discretized first response 
time data to predict students’ correctness of the next question, and 
leveraged the result into a Knowledge Tracing model. Our 
analysis confirmed the value of student first response time in 
modeling student knowledge. 
Keywords 

Educational data mining, intelligent tutoring systems, student 
modeling, first response time. 

1. INTRODUCTION 
Modeling student behavior is crucial for education. For decades, 
researchers in the field of educational data mining (EDM) have 
been developing various methods of modeling student behavior 
using their performance as observations. One example is one of 
the dominant student model called Knowledge Tracing (KT) 
model built by Corbett and Anderson in 1995[1], which uses a 
dynamic Bayesian network to model student learning. Recently, 
lots of other features are studied in the framework of the 
Knowledge Tracing model to extend the Knowledge Tracing 
model to better model student knowledge. These features include 
the difficulty of problems [2], if it is a new day since a student last 
saw a problem [3], the assistance students require in answering a 
problem [4], etc. This paper analyses another piece of 
information: student first response time. We want to find out if 
students’ first response time of a question can be used for improve 
KT’s prediction accuracy. 
Student response time, as an important feature that characterizes 
student behavior, is studied in the field of Intelligent Tutoring 
Systems in various models either due to its subjective importance 
or after some data analysis. 
Some of these models use response time for understanding 
students’ behaviors during problem solving in tutoring systems. 
Beck J.E. 2005 [5] used response times to model student 
disengagement; Shih B. et al. 2008 [6] built a response time 
model for bottom-out hints as worked examples; Arroyo I. et al. 
2010 [7] used time required to solve a problem to model student 
effort. 

Some models use different time information as one of many 
features in their models to indicate student knowledge. Such as 
Rai and Beck 2011[8] used the average time spent on each 
attempt in modeling their game-like math tutor.  
Those works did not focus on using student first respond time as a 
direct indicator of student knowledge. 

1.1 The Tutoring System 

 
Figure 1 A typical senerio in ASSISTments system. 

 
The data used in the analysis came from the ASSISTments 
system, a freely available web-based tutoring system for 4th 
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through 10th grade mathematics (approximately 9 through 16 
years of age). The system is mainly used in urban school districts 
of the Northeast United States. Students use it in lab classes that 
they attend periodically, or for doing homework at night.  
The system provides tutorial assistance as buggy messages or 
scaffolding questions if a student makes a wrong attempt, and hint 
messages if a student asks for help. Figure 1 shows an example 
scenario in the ASSISTments system.  
 

1.2 The KT Model 
The Knowledge Tracing model shown in Figure 2 has been 
widely used in ITS and many variants have been developed to 
improve its performance (Baker et al. 2010, Pardos and Heffernan 
2010). It uses 4 parameters for each skill, with two for student 
knowledge and the other two for student performance. The 
parameters prior knowledge and learning are called learning 
parameters. Prior knowledge is the likelihood the student knows 
the skill when he/she first uses the tutor. Learning is the 
probability a student will acquire a skill as a result of an 
opportunity to practice it. The parameters slip and guess are called 
the performance parameters in the model. An assumption of this 
model is that even if a student knows a skill, there is a chance 
he/she might still respond incorrectly to a question of that skill. 
This probability is the slip parameter. Conversely, a student who 
does not know the skill might be able to generate a correct 
response. This probability is referred to as the guess parameter. 

 
Figure 2. Knowledge Tracing model 

Prior Knowledge = Pr (K0=True) 
Guess = Pr (Cn=True | Kn=False) 
Slip = Pr (Cn=False | Kn =True) 
Learning rate = Pr (Kn =True | Kn−1=False ) 
In our experiment, we used the Bayes Net Toolbox for Matlab 
developed by Murphy (2001) to implement Knowledge Tracing, 
and the Expectation Maximization (EM) algorithm to fit the 
model to the dataset. The EM algorithm finds a set of parameters 
that maximize the likelihood of the data by iteratively running an 
expectation step to calculate expected likelihood given student 
performance data and a maximization step to compute the 
parameters that maximize that expected likelihood. There have 
been reported issues of local maxima when using the EM 
algorithm. Pardos and Heffernan (2001) concluded, based on a 
simulation study, that with the initial parameters of this algorithm 
in a reasonable range (the sum of initial guess and slip value is 
smaller than 0.5), the algorithm will always converge to a point 
near the true parameter value. In our experiments, we choose 
initial parameters for each skill as follows: initial knowledge = 

0.5, learning = 0.1, guess = 0.1, slip = 0.1. These initial 
parameters are set to be similar with the results of previous 
experiments that estimated the Knowledge Tracing model 
parameters on some other datasets from the ASSISTments system. 

2. PROBLEM AND APPROACH 
Although there has been study done in both student response time 
and student knowledge, there is no research in using student 
response time to indicates student knowledge. In this paper, we 
focus on leveraging student first response time into the 
Knowledge Tracing model to see whether or not student first 
response time is valuable in modeling student knowledge and 
enhance KT model’s prediction accuracy of student performance. 
There are various explanations in different student first response 
time. For example, a short first response time could either mean 
the student is proficiency on the skill or the student is guessing 
the result or gaming the system; also, a long first response time 
could either mean the student is thinking about the given problem 
or he/she is just doing some off task behavior. As a result, the 
connection between student first response time and student 
knowledge could be blurred by many other factors. However, 
since student response time is one of the most important 
information of student behavior that could be easily gathered by 
Intelligent Tutoring Systems, analyses on its ability of modeling 
student knowledge and improving performance prediction is still 
meaningful to this field. To handle the other factors that could 
influence the result, we discretized the first response time data to 
eliminate unnecessary details of the information, and aim for 
finding the general indication of this information towards student 
knowledge and future performance. 

2.1 Data 
The data we analysed are from school year September 2010 to 
September 2011, which consisted of 15931 students who solved 
at least 20 problems within ASSISTments. We filtered out skills 
that have fewer than 50 students and randomly selected 2015 
student users.  As a result, we have 498 ,988 data records. Each 
data record is recorded right after a student answered a problem, 
and logged relevant information including the identity of the 
student, the problem identity and skills required to solve it, the 
correctness of the student’s first response to this problem, the first 
response time the student spent on this problem, and the 
timestamp when the student start and finish solving this problem.   

2.2 Discretization of First Response Time 
As we discussed before, since student first response time includes 
information other than student knowledge. To eliminate 
unnecessary details of the information, which could be relevant to 
other factors, we discretized student first response time data into 
several bins. 
Our goal is to find out if the main character of student first 
response time contains unique information about student 
knowledge in compare with other features. We discretized student 
first response time data into four categories. The way we define 
these categories are based on the follows assumptions. 
The first assumption is, in general, students that need more time to 
first respond to a problem have lower knowledge than students 
that need less first response time, because the former require more 
time to answer the question. 
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The second assumption is, in general, the data records that show 
extremely little time of student first response time are likely to 
indicate some special behaviors such as gaming, thus, the first 
response time in those data records may not be as useful in 
indicating students knowledge. 
The third assumption is, in general, the data records that show 
extremely long time of student first response time are also likely 
to indicate special behaviors such as off task behaviors, thus, the 
first response time in those data records may also not be useful in 
indicating student knowledge. 
According to these assumptions, the four categories of student 
first response time are: extremely short, short, long, extremely 
long. 
Also, considering student first response time highly varies by 
problem, we computed different cut points of these four categories 
for each problem. 
In our experiments, for each problem, we put all of the 
corresponding first response time that are in the shortest 5% range 
for that problem into the first bin: the extremely short time bin; 
the student first response time within 5% to 50% range went into 
the second bin: the short time bin; the 50% to 95% range went 
into the third bin: the long time bin; and the top 5% went into the 
forth bin: the extremely long time bin. These four bins are 
denoted as bin1 to bin4 in our training dataset. This numbers 5%, 
50% and 95% are selected based on experimenting with a few 
different sets of values. We did not try more sophisticated criteria, 
such as standard deviation, which might be able to further 
improve the result.  
This method allows us to consider the main trend of the student 
response time per problem, without being affected by rare and 
extreme situations or data. 

2.3 Predicting Student Performance 
In this section, the purpose of our analysis is to find out if student 
first response time is valuable in modeling student knowledge and 
predicting student performance. We want to model only student 
first response time in this step, so that the result won’t be affected 
by other additional features. Also, we want the model to be very 
simple so that it can be easily computed and leveraged into other 
existing student models that using other features for modeling 
student knowledge. 
We choose to use a purely data driven tabling model that is 
similar to our previous work [4], which makes no assumptions 
about how the new information reflects student knowledge. To do 
so, we simply built a one by four parameter table, in which 
column index represents the category of student first response 
time in the previous question, and each cell contains the 
probability that the student will answer the current question 
correctly. For that value, we simply use the percentage of students 
who answered the current question correct when the previous 
question fell into the corresponding category. 
Table 1 shows the parameter table we computed from the training 
data.  

Bin 1 Bin 2 Bin 3 Bin 4 

0.3829 0.7103 0.6428 0.5389 
 
Table 1. Parameter table computed from the training dataset. 

 
This model is very simple and easy to compute. But also, it is very 
limited. The only information it takes into account is the student 
first response time and the difficulty or the type of question. The 
information of the question is included in the model for when we 
discretized the first response time, we choose different bin cut 
points for different questions. 
To evaluate how well this simple model fits the data compare to a 
baseline of always guessing the mean value of the data as a 
prediction. We used Root Mean Squared Error (RMSE) as a 
metric to examine the predictive performance on an unseen test 
set. The RMSE of the baseline prediction is 0.4589 and the 
RMSE of the student first response time model is 0.4552, which 
indicates this value is indeed contain some predictive power, 
although the benefit of this information is not obvious. 

2.4 Leveraging First Response Time into KT 
In this section, our goal is to find out whether or not leveraging 
the result of the simple model above into an existing student 
model which does not take into account student first response 
time information could help improve the existing student model, 
and thus result in better prediction accuracy. We choose the KT 
model in our experiments. 
By combining the student first response time model with the KT 
model, we leverage new information into the KT model. To find 
out the result of this method, we used a linear regression model to 
combine the simple model we built with the traditional KT model 
by making the student performance as the dependent variable in 
the regression model, and the prediction results from the student 
first response model and the KT model as independent variables. 
We again used the RMSE to examine the predictive performance 
of the KT model and the combination of these two models. The 
result is shown in Table 2. The FRT in Table 2 represents the first 
response time model, KT represents the Knowledge Tracing 
model, and the Comb represents the linear regression combination 
of these two models. This table also provides the comparison of 
the number of parameters of each model. Since the data set has 
220 skills, KT generated in total 4*220 parameters.  

  FRT KT Comb 

RMSE 0.4552 0.4251 0.4213 

#of params 4 880 886 
 
Table 2. Comparision of the RMSE result of different models. 

The linear regression formula for combining two models tells us 
the information about the weight of each model in regarding with 
their impact to the final model. The formula generated from our 
training process of the linear regression is: 
-0.1227 + 0.1928 * FRT_prediction + 0.9821 * KT_prediction. 
from which we can tell that the influence of the student first 
response time model to the final result is small. However, the 
RMSE shows an improvement from the KT model. 
To find out if this improvement is statistically reliable, we did 
reliability analysis by computing the student level RMSE to 
account for the non-independence of each student and their 
actions and then compared the KT and the Comb model using a 
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two tailed paired t-test. The p value is 0.0389, which indicates 
that although the improvement is small, it is reliable. 

3. CONTRIBUTIONS 
This paper makes two main contributions. First, we analysed the 
predicting power of student first response time on student 
performance. In compare with other work on the student response 
time, which focus on explaining student in task or off task 
behavior, this work shows that student first response time contains 
certain information about student knowledge. 
The second contribution this paper makes is to show that by 
leveraging the student first response time information, we can 
improve the prediction accuracy of the traditional KT model. In 
compare with other more complicated and time consuming 
methods, this model is very flexible and easy to apply to any 
existing student modeling techniques to incorporate into them the 
new information of student first response time. 

4. FUTURE WORK AND CONCLUSIONS 
The model we proposed for using student first response time to 
improve KT model is a simple and fast way of utilizing additional 
information. However, experiments show using student first 
response time alone did not provide a good performance 
prediction.  There are several questions that we are interested in 
exploring. 
One question is if the prediction accuracy of using student first 
response time can be improved by taking into account student and 
skill information. Currently we use only four parameters for all of 
the data. This can be easily extended to deal with 
individualization and separate skill by computing parameter tables 
for each skill or each student separately. 
Another question we want to explore is a way to combine the 
response time and other information that gathered when a student 
answers a question, such as the number of hints and attempts a 
student need to answer the question. We are interested in combine 
these features because they seem to be highly related. We built a 
tabling model using the assistance student needs for answering a 
question in 2010[4], and searching for a method to merge these 
two models together is a reasonable next step. 
In conclusion, in this paper, we use a method that is easy to 
compute and apply to leverage discretized student first response 
time information into the KT model to improve the prediction 
accuracy of the KT model. The result shows a clear value of 
student first response time in indicating student knowledge.  
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ABSTRACT 
This paper proposes to the use of a meta-learning approach for 
automatic parameter tuning of a well-known decision tree 
algorithm by using past information about algorithm executions. 
Fourteen educational datasets were analysed using various 
combinations of parameter values to examine the effects of the 
parameter values on accuracy classification. Then, the new meta-
dataset was used to predict the classification accuracy on the basis 
of the value parameters and some characteristics of the dataset. 
The obtained classification models can help us decide how the 
default parameters should be tuned in order to increase the 
accuracy of the classifier when using different types of 
educational datasets. 

Keywords 
parameter tuning, classification, J48 algorithm 

1. INTRODUCTION 
One of the objectives of Educational Data Mining (EDM) [10] 
must be to design easy-to-use tools and algorithms for educators 
and non-expert users of data mining. Traditional data mining 
tools, such as Weka, Rapid-Miner, Clementine, DB-Miner, etc., 
are normally designed more for power and flexibility than for 
simplicity. Therefore, these tools can be complex, with features 
well beyond the scope of an educator’s needs.  Most current data 
mining algorithms used by these tools need to be configured 
before they are executed. In other words, users have to provide 
appropriate values for the parameters in advance in order to obtain 
good results or models; therefore, the user must possess a certain 
amount of expertise in order to find the right settings. To resolve 
this problem, data mining can be used to learn from past 
executions of the algorithms in order to improve the future 
selection of parameters according to the past behaviour of the 
algorithm. 
In this paper, we propose a meta-learning approach for tuning 
parameters. Meta-learning is the study of principled methods that 
exploit meta-knowledge to obtain efficient models and solutions 
by adapting machine learning and the data mining process [1]. 
In our case study, we used a meta-learning approach to support 
the user in tuning the parameter values of a decision 
tree classification model when using different types of educational 
datasets. The decision tree model has some parameters that 
influence the amount of pruning. By trimming trees, the 
computational efficiency and classification accuracy of the model 
can be optimised. As a case study, we used a set of educational 
datasets and the J48 [9] (improved version of the C4.5 
classification algorithm) to predict a discrete variable or class 
(accuracy variations) based on the values of the parameters and 
some features of the datasets. We executed some combinations of 

parameter values to examine their effects on a classification 
quality metric. 
This paper is organised as follows: Section 2 provides background 
information from related works on applying data mining for 
parameter tuning; Section 3 describes the methodology used in 
this work; Section 4 includes the list of educational datasets used 
as a case study; Section 5 describes the experiments, results, and 
model obtained; and finally, conclusions and future works are 
outlined in Section 6. 

2. BACKGROUND 
In data mining, it is generally necessary to set the parameters used 
by the algorithm in order to achieve the best possible model and 
results [7]. Experiments show a substantial increase in accuracy 
when the right parameters are used. However, there is 
an associated problem in adjusting the parameters of most data 
mining algorithms.  This task may involve a high  computational 
cost for finding the optimal parameters or else risk relying on 
assumptions that may bias the results. Achieving optimal 
parameters automatically is not an easy task, therefore, and it 
often requires help from an expert. Some possible solutions 
include providing default values to the user (the most simple and 
common solution), reducing the number of parameters, tuning 
parameters automatically (the chosen option in this paper), and 
developing parameter-free data mining [6] algorithms (the ideal 
but most difficult solution). 
The area of automatic parameter tuning research has gained much 
interest in recent years [13]. The definition of automatic parameter 
tuning used in this paper is to automatically find parameter 
settings that are better than the defaults. Different methods and 
techniques have been proposed for automatic parameter tuning 
[2], such as optimisation techniques (racing algorithms, local 
search, experimental design, etc.), machine learning and/or data 
mining. In fact, classifiers have been used to learn the values of 
parameters needed to set the configuration. Maimon, Rockach, 
and Edel [7] describe a classification model for meta-based 
parameter tuning. Srivastava and Mediratta [11] suggest the use of 
decision trees for automatic tuning of search algorithms. Pavon, 
Diaz, Laza, and Luzon [8], have automated the parameter tuning 
process through classification of previous runs of the algorithms. 
Dakovski and Shevked [3] consider an algorithm for learning 
from examples from the view point of improving classification 
accuracy by determining influencing parameters and optimal 
values. 
This paper focuses on automatic parameter tuning by supporting 
the selection of the parameter values of a J48 classifier. The 
obtained model can help us make decisions about how we can 
tune the default parameters to increase the accuracy of the 
classification when using different types of educational datasets. 

Proceedings of the 5th International Conference on Educational Data Mining 180



 

3. METHODOLOGY 
We propose a methodology that uses a meta-learning approach to 
support the selection of parameter values for the algorithms (see 
Figure 1). 
 

 
 
Figure 1. Meta-learning approach 

In our meta-learning approach (see Figure 1), the meta-database 
consists of educational datasets. Then, we defined properties that 
are important for characterising datasets and developing meta-
features (the number of instances, attributes, and classes). We 
selected a base algorithm, and parameters, to evaluate its 
performance. In this case, we selected the J48 algorithm and two 
parameters (confidenceFactor and minNumObj) to obtain the 
meta-dataset with meta-features, parameters, and performance 
(classification accuracy). Finally, meta-learning (a meta-
algorithm) was applied to the previous meta-dataset in order to 
obtain a classification model for predicting whether an increase or 
decrease in estimated accuracy is to be expected for a given 
record. Each record of the meta-dataset represents a type of 
dataset and a certain parameter setting. 

4. DATASETS 
We used a set of 14 educational datasets based on the traditional 
classification problem for predicting students’ final performance 
[10]. These datasets (see Table 1) contain as input attributes a 
variety of information about students and as classes (the output 
attribute to predict) the categorical final marks obtained by 
students in different types of courses: 

 Moodle 1 to 7: Data about first, second, and third–year 
students for a degree in computer science at Cordoba 
University during the years 2007–2010, obtained from 
Moodle (accesses, assignments, and activities in 
questionnaires, forums, etc.) 

 Higher 1 and 2: Data about first–year Cordoba students for a 
degree in computer science during 2010, obtained from 
several sources (admission and progress in subjects, Moodle, 
and a survey) 

 Secondary 1 to 5: Data about students of secondary 
education in Zacatecas, Mexico, during 2010, obtained from 
several sources (admission information,  scores in subjects, 
and a specific survey) 

Table 1 shows the list of educational datasets and three features of 
these datasets: the number of attributes (Nattributes), the number 
of instances (Ninstances) and the number of classes (Nclasses). 
Clearly, there is a wide range of values in the features of each 
dataset. In fact, there are datasets with a low, medium, or high 
number of attributes, instances, or classes. 

Dataset Nattributes Ninstances Nclasses 

Moodle1 4 1000 5 

Moodle2 10 103 3 

Moodle3 41 103 3 

Moodle4 6 2708 3 

Moodle5 6 9554 3 

Moodle6 10 438 4 

Moodle7 10 438 2 

Higher1 24 88 6 

Higher2 24 88 2 

Secondary1 77 670 2 

Secondary2 14 670 2 

Secondary3 60 419 2 

Secondary4 17 386 2 

Secondary5 53 419 3 

Table 1. Features of the educational datasets 

5. EXPERIMENTS 
Experiments were conducted to predict how to increase or 
decrease the accuracy of a well-known classification algorithm, 
depending on the parameters used and the features of the 
educational datasets used, using past information about algorithm 
executions. The decision tree learner selected was J48, which has 
several parameters but only two of which influence the amount of 
pruning [12]: 

 confidenceFactor is the confidence factor for pruning, and it 
influences the size and predictability of the tree constructed. 
For each pruning operation, it defines the probability of error 
in the hypothesis that deterioration due to this operation is 
significant. The default value is 0.25. The lower this value, 
the more pruning operations allowed. 

 minNumObj is the minimum number of instances per leaf. 
The default value is 2. 

We executed the algorithms using different settings and stored the 
accuracy obtained in each execution as part of the meta-database. 
In fact, J48 was executed several times for each dataset by 
modifying these parameters into a range (in a similar way that an 
optimiser works). Each setting was evaluated using 10-fold cross-
validation, and the accuracy (rate of correctly classified instances) 
obtained from test data was stored. The settings used were: 
confidenceFactor (0.1, 0.25, and 0.5) and minNumObj (1, 2, and 
10), that is, a total of nine different combinations of parameters 
for each dataset. Next, in order to have a classification problem 
(that is, a class), we transformed the continuous value (float) of 
the obtained accuracy to a discrete or categorical value (label) in 
the following way: 

 The accuracy value obtained when using the two default 
parameters together (0.25 and 2) was used as a control value; 
therefore, it was not discretised and was not used later for 
predicting (only the remaining eight executions). 

 All the other accuracy values obtained were used as 
experimental values and transformed to the labels Equal, 
Increase, Decrease, Increase+, and Decrease- depending on 
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the variation of accuracy with respect to the control accuracy. 
In other words, each value was compared with the accuracy 
obtained using the default settings, and the label describes 
the difference: no difference (Equal), a higher or lower 
accuracy (Increase or Decrease, respectively), a much higher 
or lower accuracy (Increase+ or Decrease- respectively). 

Finally, all the previous information was stored in a meta-dataset 
with 112 instances/examples and six attributes (five numerical 
attributes (three meta-features and two parameters) and one class 
(accuracy variation)). However, in order to create a different 
version of the same meta-dataset, we discretised all the numerical 
values. The labels used by ConfidenceFactor are LOWER to 0.1, 
DEFAULT to 0.25, and HIGHER to 0.5. The labels used by 
MinNumObj are LOWER to 1, DEFAULT to 2, and HIGHER to 
10. The labels used by Nattributes, Ninstances, and Nclasses are 
shown in Table 2. 
 

 LOW MEDIUM HIGH 

Nattributes  ≤10  >10 AND ≤30 ≥ 30  

Ninstances  ≤ 100  >100 AND ≤1000  > 1000  

Nclasses = 2  >2 AND ≤ 4  > 4  

Table 2. Discretisation of the meta-features 

Based on the two previous meta-datasets, meta-learning (discrete 
and numerical classification) was used to predict the variation of 
the accuracy depending on the meta-features of the dataset and the 
values of the parameters. We used different types of classification 
algorithms provided by Weka [12]:   

 Bayes-based algorithms: BayesNet, NaiveBayes 

 Functions-based algorithms: Logistic, RBFNetwork, and 
MultilayerPerceptron 

 Rules-based algorithms: JRip, NNge, PART, and Ridor  

 Trees-based algorithms: LADTree, SimpleCART, 
REPTree,and J48  

All these algorithms were executed using default parameters and 
10-fold cross-validation, and their accuracy when using the 
original numerical attributes (A) was compared with their 
accuracy when using the categorical attributes (B) (see Table 5).  
In general, none of the meta-learning classification algorithms 
obtained a very high accuracy, with values varying between 50% 
and 75% of correctly classified instances (see Table 3). From the 
results using original numerical attributes (column A) and those 
using categorical attributes (column B), it is apparent that all the 
algorithms obtained better results when using the original 
numerical attributes. Finally, the algorithm that obtained the 
highest accuracy in both cases (A and B) was the J48 classifier. 
 
 
 
 
 
 
 

Algorithm (A) (B) 

BayesNet 0.573 0.492 

NaiveBayes 0.573 0.492 

Logistic 0.617 0.573 

RBFNetwork 0.617 0.537 

MultilayerPerceptron 0.537 0.519 

JRIP 0.573 0.528 

NNge 0.671 0.492 

PART 0.671 0.600 

RIDOR 0.600 0.591 

LADTree 0.671 0.582 

SimpleCart 0.689 0.564 

REPTree 0.635 0.573 

J48 0.751 0.698 

Table 3: Accuracy of classification algorithms 

Next, we describe the two classification models obtained by the 
J48 algorithm. These decision trees can easily be interpreted by a 
human and can help in making decisions about how to tune 
parameter values in order to increase the accuracy of the 
classification when using different types of datasets. Figure 2 
shows part of the J48 pruned tree obtained when using the meta-
datasets with numerical attributes. 
 

 
Figure 2. Part of the decision tree using numerical attributes 

As we can see, all the input attributes (the three meta-features and 
the two parameters) appear in the decision tree; therefore, all 
show a relationship with the variations of accuracy. For example, 
the first two rules of the tree show that if the number of instances 
is less than 103 and the number of classes is greater than 4, then 
the value of the minNumObj parameter can decrease the accuracy 
a little (for a value less than or equal to 1) or can increases it quite 
a lot (for a value greater than 1).  
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Figure 3 shows part of the J48 pruned tree obtained using the 
meta-datasets with discrete attributes. 

 
Figure 3. Part of the decision tree using categorical attributes 

As we can see in Figure 3, very similar rules are obtained and, 
again, all the input attributes appear in the decision tree. The three 
first rules of the tree show that if the number of instances is low 
and the number of classes is high, then the value of the 
minNumObj parameter can decrease the accuracy a little (for a 
value lower than the default value) or can increase it quite a lot 
(for a value equal to or higher than the default value). In our 
opinion, this second decision tree is a little more comprehensible 
to a human for two main reasons:  

1. The tree is much smaller. The first decision tree (Figure 2) 
has 47 nodes and 24 leaves (rules), and the second decision 
tree (Figure 3) has 28 nodes and 19 leaves (rules). We 
maintain that a small decision tree with fewer and shorter 
rules is more comprehensible. 

2. Although the accuracy of the classification is lower when 
discretising (see Table 3), the use of labels instead of 
numbers and operators (equal, greater than, less than, etc.) 
provides more simple rules. We maintain that a decision tree 
with labels or linguistic variables is more comprehensible.   

6. CONCLUSIONS 
In this paper, we have shown that a meta-learning approach can be 
used for parameter tuning of decision tree algorithms. We used 14 
educational datasets because there are no more datasets on 
classification tasks in education available. Although there are 
some public and well-known data repositories, such as the UCI 
machine learning repository [4] and the PSLC DataShop [5], there 
are no educational datasets available in UCI and the PSLC 
datasets are oriented to predicting student step-level performances  
and not to the classification problem/task of predicting final 
marks. The ideal would be to use a great number of educational 
classification datasets from different types of education systems, 
such as primary, secondary, higher, special education, and so on, 
both in traditional face-to-face and in on-line education (learning 
management systems, adaptive educational hypermedia systems, 
intelligent tutoring systems, etc.). We selected the J48 algorithm 
and only two of its parameters, but in the future, other well-known 
algorithms and a great number of parameters may be used to 
broaden the research on the relationship between parameters and 
performance (accuracy). Finally, we used only three basic 
characteristics of the datasets (number of instances, number of 
attributes, and number of classes). However, future research may 
use other characteristics, such as level of missing data, level of 
imbalance in data, level of complexity, and so on. 
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ABSTRACT
Concept maps, visual representations of knowledge, are used
in an educational context as a way to represent students’
knowledge, and identify mental models of students; how-
ever there is a limitation of using concept mapping due to
its difficulty to evaluate the concept maps. A concept map
has a complex structure which is composed of concepts and
their relationships that often have a weighted direction. This
work explores the feasibility of the analysis of concept maps
using data mining methods, and investigate the possibility of
using concept maps as a research tool to understand college
student’s learning. A total of 111 college students partic-
ipated in this study. The findings from frequent concept
mining and sub-concept map mining suggest that students
expect a traditional way of learning. The study also shows
a promising area of further study in the area of data mining
in education.

1. INTRODUCTION
Understanding how students learn is an important issue in
college education [14; 15]. Perhaps, the most common meth-
ods to be used to understand learning of college students
were both interviews [14] and self-reporting measurements
such as Learning and Study Strategies Inventory (LASSI) [20]
or Motivated Strategies for Learning Questionnaire (MSLQ)
[15]. Recently, however, researchers agreed upon the impor-
tance of alternative methods to understand students’ learn-
ing [21; 24].

Concept maps which are visual representations of knowl-
edge are used in educational contexts, as a way to repre-
sent students’ knowledge, and identify mental models of stu-
dents [13]. It includes concepts, usually enclosed in circles
or boxes of some type, and relationships between concepts
indicated by a connecting line that links two concepts [12].
Figure 1 shows an example of concept map. The map de-
picts the way a student studies or prepares for an exam. Us-
ing nodes and links, students can visualize their ideas and
understanding of the content. Because the concept maps
represent students’ mental models of content and their ways
of problem solving, concept mapping has been widely used
in teaching and learning process in academia ranging from
K-12 to higher education [7; 11].

Although concept mapping is a powerful tool, there is a
limitation of using concept mapping due to its difficulty to

evaluate the concept maps.

The most common method to evaluate students’ concept
maps in educational setting might be using rubrics; how-
ever, this also has limitations. First, although educators
may have a general understanding of their students’ mental
models from using rubrics, educators are not provided spe-
cific and detailed information about the relationships among
the concepts. Second, although rubrics reduce the amount of
time educators spend evaluating concept maps, evaluation
is still very time-consuming using the concept maps, par-
ticularly, in a large classroom where students number over
50. Third, when using rubrics, evaluation may not be easy
for the educators to determine certain patterns of the stu-
dents’ mental models. Each person’s concept map will look
differently, although they may have similar patterns. Con-
sequently, there is a strong need of computerized methods
to evaluate students’ concept maps.

In educational science, Yin et al. [23] examined the equiva-
lence of two construct-a-concept-map techniques: construct-
a-map with created linking phrases and construct-a-map
with selected linking phrases. Some works [10; 18] explored
different scoring systems for concept maps. In educational
engineering, several studies [5; 19; 4] describe the construc-
tion of concept maps. Alves et al. [2] presents a system
called TextStorm, which extracts raw concept maps from
text. Shen et al. [16] works on the automatic generation of
concept maps through text mining techniques. These stud-
ies concern the generation of concept maps rather than the
analysis of concept maps.

Data mining is the process of automatically extracting new
and useful knowledge hidden in large datasets. Performing
data mining on concept maps can provide useful informa-
tion in understanding the thought processes which generate
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Figure 1: An example of concept map
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them. In this study, we explore the feasibility of the analysis
of concept maps using data mining methods, and investigate
the possibility of using concept maps as a research tool to
understand college student’s learning.

2. DATA COLLECTION
We first describe participants in this study, concepts pro-
vided to them, and data collection procedure.

2.1 Participants
Data were collected from 10 college Critical Inquiry (CI)
courses designed to help underprepared students to either
acquire study skills or efficacy/motivation. The CI courses
was chosen due to the large enrollment members, of approx-
imately 300 students per semester, and they provide specific
learning contexts through pairing the CI courses with other
subject courses such as psychology, chemistry, biology, edu-
cation, and archeology. The primary purpose of pairing the
CI courses with other subjects courses is to facilitate stu-
dent to learn better in a specific subject area. A total of 111
students participated in the study by drawing their concept
maps. Based on the information students provided, 58 stu-
dents were females, most students were Caucasian (n=83),
and most students were freshmen (n=94).

2.2 Concepts
A total of 112 concepts were designed for this study. We
reviewed the concepts with the two instructors who taught
the study skill course. The 112 concepts consist of seven
categories including classroom learning (e.g., listening, read-
ing, or discussion, total 41 concepts), action for study (e.g.,
self-explanation, annotations, or memorization, total 18 con-
cepts), learning tools (e.g., notes, charts, or textbooks, total
22 concepts), internal trigger (e.g., inquiry, curiosity, or cre-
ativity, total 4 concepts), motivation (e.g., will, confidence,
or inspire, total 12 concepts), school facilities (e.g., library,
web, or writing center, total 7 concepts), or people (e.g.,
teacher, classmate, or parent, total 8 concepts).

2.3 Procedures
Two weeks after mid-term exam week, we visited each class
and administered the concept maps to students. In each
class, we provided a 10-minute orientation about concept
maps and drew one map for students on a whiteboard as
a demonstration. Students were asked to respond to the
question “how do you learn in a college class?”. They drew
their concept maps with pen and pencil since the class room
was a regular class room that didn’t have computers for
individual students.

3. CONCEPT MAP MINING
Through discussions with education researchers, we listed
their interesting queries to the students’ concept maps. In
this work, we focused on two problems: “Which concepts are
frequently used in students’ concept maps?” and “Which
sub concept structures are commonly observed in students’
concept maps?”. For answering the first question, we con-
ducted frequent item set mining task [1] to the concept map
data, and for the second question, we used sub-graph mining
task [9].

3.1 Data preprocess

1     {Repetition, Listening, Attendance, Me, Confidence, Teacher}
2     {Prepare, Lecture, Me,  Quiz, Teacher, Flash cards, Charts}
3     {Assignments, Study, Friend,  Teacher, Notes, Activities}

ItemsTID

4
. . . . . .

{Quiz, Prepare, Lecture, Creativity, Me, Teacher, Time, Note}

(a) Transaction data

ConfidenceMe

Attendance

t
v 0 Me 
v 1 Confidence
v 2 Attendance
u 0 1 E
u 0 2 E
u 1 2 E

(b) Graph data

Figure 2: Input data formats for data mining

After collecting students’ hand-drawn concept maps, we dig-
italized them. Concept maps can be represented by graphs,
consisting of nodes( or vertices), which represent concepts,
and arcs( or edges), which represent relationships between
the concepts. In the graphs of concept maps, vertices should
have labels associated with them. Edges may have associ-
ated labels and directions represented by arrows. Vertices
and edges may have their own weighted value to designate
their significance.

Although a list of predefined concept names and relation-
ship names were provided, students misspelled some names
or gave wrong concept and relationship names different from
the predefined names. We also noticed, that in several in-
stances synonyms or plurals of the same word were used as
labels, and that some students did not follow a standard
in the labeling of nodes and edges or in the use of arrows
to denote direction on the edges. Our digitalization pro-
cess checked all inconsistent concept names and relationship
names in the concept maps.

3.2 Frequent association concept mining
In order to find common concepts students have used for
their concept maps, we applied a methodology known as
association analysis to the concept data. Association anal-
ysis task in data mining is useful for discovering interesting
relationships hidden in large data sets. The uncovered rela-
tionships are represented in the form of association rules or a
sets of frequent items [17; 1]. For example, a frequent item
set, {Lectures, Notes} suggests that a strong relationship
exists between lecture and note in learning strategy. The
frequency of the associated items is often measured with
support. The support of an item-set x is defined as the frac-

tion of all transactions that contain x, i.e., s(x)= sc(x)
N

, where
N is the total number of transactions, and sc(x) is the sup-
port count of x, sc(x) =|{ti|x ⊆ ti, ti ∈ T}|. If the support
of item-set x is greater than a given support threshold, x is
called a frequent item-set.

For the association analysis, data should be prepared with
transaction data format. We transformed our digitalized
concept map data to concept transaction data as shown in
Figure 2 (a). Each row in this table corresponds to a trans-
action that contains a unique identifier labeled TID, and a
set of concepts used by a student in drawing his/her con-
cept map. Here, a relationship between two concepts is not
included in the transaction. There are many algorithms for
association analysis [1; 3; 17]. We used Apriori algorithm [1]
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for our analysis. Four different minimum frequency thresh-
olds 30%, 40%, 50% and 60% were used.

3.3 Frequent sub-concept map mining
The second analysis is performed in order to derive a set
of common sub structures among the collection of concept
graph data. We applied frequent sub-graph mining task [17;
6] to our concept map data. Each concept map can be
represented as a graph data as shown in Figure 2 (a). A
concept graph G = (V, E) is composed of a concept ver-
tex set V and a set of edges E connecting between pairs of
vertices. A graph G′ = (V ′, E′) is a sub-graph of another
graph G = (V, E) if its concept vertex set V ′ is a subset of
V and its edge set E′ is a subset of E. The frequency of
a sub-graph is also measured by support. The support for
a sub-graph g is defined as the fraction of all graphs that

contain g as its sub-graph, i.e., s(g)= sc(g)
|GD|

, where GD is a

collection of graphs, and sc(g) is the support count of g, i.e,
sc(g)=|{Gi|g ⊆ Gi, Gi ∈ GD}|. Sub-graphs (sub-concept
map structures) g such that s(g) ≥ minsup are frequent
sub-graphs. There are several algorithms for frequent sub-
graph mining such as FSG [9], gSpan [22] and SPIN [8]. We
fed the concept graph data to the FSG algorithm [9]. Fig-
ure 2 (b) shows an example of input data format for the
FSG algorithm. The required order for a valid graph data
begins with ‘t’ followed by all vertexes in the graph and fi-
nally by all the edges. Three different frequency thresholds,
10%, 20% and 30% were used for our analysis.

4. RESULTS
107 concept maps among 111 maps were analyzed. Four con-
cepts maps were deleted because the concepts were not rec-
ognizable or students did not follow the instructions. Given
the 112 concepts, a total number of 110 concepts were used.
The maximum number of concepts and lines a student used
were 39 and 31 respectively in each concept map, and the
average concepts and lines students used were 13 and 14
respectively.

Given 112 concepts, only 15 concepts: ‘teachers’, ‘me’, ‘notes’,
‘lectures’, ‘time’, ‘repetition’, ‘textbooks’, ‘listening’, ‘flash-
card’, ‘parents’, ‘reading’, ‘annotation’, ‘study’, ‘tutor’ and
‘activity’ concepts are used by students with 30% frequency.
Among association patterns having two concepts, {teachers,
me}, {teachers, notes} and {me, notes} showed very high
frequency of over 60%. Among patterns having three con-
cepts, {teachers, me, time}, {teachers, lectures, repetition}
and {teachers, textbooks, repetition} showed over 50% fre-
quency. Two concept sets having four items, {teachers, lec-
tures, repetition, time} and {teachers, textbooks, repetition,
time} showed around 30% frequency.

In the sub-graph mining, the size of the patterns is measured
by the number of edges. Table 1 shows sub-concept map
structures with at least 10% frequency. When the threshold
was set to 30%, three types of frequent sub-concept map
patterns were found such as “me-listening”(sc = 34 out of
107), “teacher-lectures”(sc = 44), and “me-notes”(sc = 49).
When the threshold comes to 20%, a total of 15 frequent
sub-concept map structures were observed. Among them, 12
sub-graph structures were about ‘me’ strategies or actions,
2 sub-graphs were about ‘teacher’ related patterns, and 1
sub-graph was between me and teacher. Last, when the
threshold was 10%, a total of 47 simple sub-graphs were

discovered where 36 sub-graphs were ‘me’ initiated concepts,
6 sub-graphs were ‘teacher’ related concepts, 5 sub-graphs
explain between teacher and me, with one or more of the
other elements.

5. DISCUSSION
In this study, it was found that most students learn through
‘me’ initiated behaviors (e.g., “me-listening” or “me-ask”)
or using learning tools (e.g., “me-notes” or “me-textbooks”).
Learning through active interaction with teachers or peers
was not observed. This indicates that early level college
students focus on individual learning rather than learning
through interaction with others. It may also reflect lecture
oriented college courses. However, readers should consider
that too many concepts given to students may have resulted
in difficulty identifying patterns between students and oth-
ers.

From this initial research, we found both possibilities and
challenges when using concept maps in this capacity in an
educational context. First, when used with data mining
techniques, concept maps can be useful to interpret large
sets of concept maps. As can be seen in our data analysis,

Relevant Frequency Frequent sub-concept
concept (Support map patterns

count)
Me(Students) 49 Notes - Me

34 Listening - Me
Teachers 44 Lectures - Teachers

Me(Students) 31 Teachers - Me
30 Textbooks - Me
29 Flashcards - Me
29 Lectures - Me
29 Reading - Me
28 Study - Me
27 Attendance - Me
24 Annotation - Me
21 Pay attention - Me
22 Flashcard - Me -Notes

Teachers 22 Notes - Teachers
Etc. 21 Teacher - Lecture - Me

Me(Students) 16 Questions - Me
16 Review - Me
16 Discussions - Me
15 Assignments - Me
14 Study - Me
14 Memorization - Me
13 Classmates - Me
12 Asking - Me
12 Class - Me
18 Lecture - Me - Notes
16 Listening - Me - Reading
15 Reading - Me - Notes
15 Attendance - Me - Notes
14 Notes - Me - Teacher
14 Annotation - Me - Notes
13 Study - Me - Notes
12 Listening - Me - Notes
11 Textbooks - Me - Flashcard
11 Annotation - Me - Textbook
11 Reading - Me - Teacher
11 Lecture - Me - Textbooks
11 Attendance - Me - Textbooks
11 Listening - Me - Pay attention

Teachers 15 Discussion - Teacher
14 Questions - Teacher
13 Teach - Teachers
12 Listening - Teacher

Etc. 18 Teacher - Notes - Me
13 Lectures - Teacher - Me
11 Teacher - Questions - Me
12 Teacher - Lecture - Me - Note

Table 1: Frequent sub concept map patterns
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when using different thresholds, we were able to find cer-
tain patterns of students’ learning in a college classroom.
Although most of the patterns were simple such as “me-
listening” or “me-annotations”, this does not mean the con-
cept mapping was an ineffective method to capture sophis-
ticated pictures of students’ learning. The simple patterns
can be attributable to the large list of 112 predesigned con-
cepts. Because students had too many choices, students’
concept maps became very diverse. However, through this
initial phase of study, we were able to find the most fre-
quently referenced concepts for future study. With limiting
the number of concepts, e.g., 30 concepts, we may be able
to find more detailed pictures of college students’ learning.

In our future study, we will compare and contrast patterns of
concept maps to students’ self-report motivation or metacog-
nition. For example, we can divide students into several
groups based on their self-report questionnaires, and then
compare how the patterns of concept maps are similar or
different between groups. We are also planning to use stu-
dents’ final grades as a way to validate the patterns of learn-
ing. The study will be appealing to those who are interested
in concept maps as an alternative tool for research as well
as data mining in education.
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ABSTRACT
In this paper we combine a logistic regression student model
with an exercise selection procedure. As opposed to the
body of prior work on strategies for selecting practice op-
portunities, we are working on an assumption of a finite
amount of opportunities to teach the student. Our goal
is to prescribe activities that would maximize the amount
learned as evaluated by expected post-test success. We eval-
uate the proposed approach using an existing dataset where
data was collected performing random skill selection. Our
results cautiously support the hypothesis that using poli-
cies designed to optimize the post-test score associated with
higher learning outcomes, but more work is needed.

1. INTRODUCTION
Recently there has been significant interest in logistic-regression
based student modeling methods, including Performance Fac-
tors Analysis [3], Instructional Factors Model [2], and Con-
textual Factors Analysis [4]. Such models can flexibly incor-
porate skill difficulties and individualized student parame-
ters. There is evidence that such models outperform Knowl-
edge Tracing in terms of predicting student performance [2].
However, to our knowledge there has been no work that
uses such student models with instructional decision making
about what skills students should practice or what activity
to perform next to maximize learning.

For example, consider selecting between the following prob-
lems when teaching a student least common multiples:

1 (Product). Sally visits her grandfather every 2 days and
Molly visits him every 7 days. If they are visiting him to-
gether today, in how many days will they visit together again?

2 (LCM). Sally visits her grandfather every 4 days and Molly
visits him every 6 days. If they are visiting him together to-
day, in how many days will they visit together again?

Problem 1 can be solved by simply multiplying the given
numbers (hence the tag Product). Problem 2 is an LCM
and multiplication will not work. An open question is which
problem type should be selected, and at what point in the
student’s learning progress. The seemingly obvious approach
of presenting the easier Product problem earlier, and the
harder LCM later on may not be best as emphasis on the
use of a partial strategy of solving problems on least common

multiples could lead to learning misconceptions. However,
starting with harder LCM problems too early could be too
challenging and might delay learning. In addition, it is likely
that which activity to choose should depend on the student’s
current understanding and student ability.

In this paper we consider automatically selecting among
such problems based on an online estimate of the student’s
probability of getting these problems correct. Our work dif-
fers from work on strategies for selecting practice opportu-
nities (or more generally, pedagogical activities) to help the
student reach mastery. Instead in our work we assume that
the objective is to select a fixed number of activities to give
to the student in order to maximize the amount learned,
as evaluated by expected post-test success. This may be
a useful objective in some classroom settings where a fixed
amount of time is available.

One important challenge when considering new methods for
problem selection is how to evaluate these methods. Typi-
cally student tutoring data is collected using a fixed policy
for selecting problems, and if the proposed new policy differs
from the prior policy, it can be hard to evaluate it using the
prior dataset. In this work we leverage an existing dataset
where part of the data was collected by performing random
skill selection. This allows us to evaluate the policies we
compute by finding existing examples in the dataset that
happen to match the proposed policy. We can then com-
pare the empirical performance of the matching examples
to the performance of the students’ whose policy did not
match the proposed policy. In this way we can use existing
randomized data to perform a post-hoc analysis of alternate
policy strategies that can be used.

Though the size of our data prevents any strong conclusions,
our preliminary results are promising. They suggest that se-
lecting policies designed to optimize the post-test score are
associated with higher post-test scores than other policies.
Further work is required to examine this in more detail.

2. APPROACH
We now describe how we model student learning, and then
describe how we use these models to create adaptive policies
for what activity to select.

2.1 Student Modeling
We use the Contextual Factors Analysis (CFA) [4] frame-
work to model student learning. CFA is an educational data
mining model. It was developed as an elaboration on a se-
ries of other cognitive models, namely Performance Factors
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Algorithm 1 BestNextSkill

Input: for student i, no. successes on skill 1 and 2,
si1, si2, and no. failures fi1, fi2, all other parameters ψi,
no. problems given d, no. problems left to give D
Output: expected post-test score score for best skill to
practice, bskill
if d = D then
score=0;
for j = 1 : 2 do
{predict post-test score}
score = score+ p(c|skillj)
skill = NULL {No more time to practice}

end for
else

for j = 1 : 2 do
f ′ij = fij + 1 {practiced skill j, failed}
fscorefailj =BestNextSkill(for k 6= j : 〈sik, fik〉,
sij ,f

′
ij ,ψi,d+1,D)

s′ij = sij + 1 {practiced skill j, success}
fscoresucj =BestNextSkill(for k 6= j : 〈sik, fik〉,
s′ij ,fij ,ψi,d+1,D)

score(j) = p(f |si1, si2, fi1, fi2, ψi) ∗ fscorefailj +
p(s|si1, si2, fi1, fi2, ψi) ∗ fscoresucj

end for
score = maxj score(j)
bskill = arg maxj score(j)

end if

Analysis model [3], Additive Factors Model (AFM) [1], and
Rasch 1PL IRT model [6]. In addition to account for the
number of correct and incorrect attempts to apply a skill
separately (as PFA does in contrast to AFM), it captures
transfer effects of prior attempts with one skill on the other.
A logistic regression form of CFA is given in Equation (1):

logit(pij) = θi+
∑
a∈Qj

(βa+γasia+ρafia)+
∑
b/∈Qj

(γbsib+ρbfib)

(1)
Here, pij is probability that student i solves problem j cor-
rectly, θi is student’s ability parameter, and Q is a so-called
Q-matrix [5] that encodes what skills are associated with jth

problem (or a problem step). βa, γa, and ρa are complexity,
success learning rate, and failure learning rate respectively;
they pertain to the skill(s) that is (are) addressed in jth

problem (or problem step). γb, and ρb are success and fail-
ure transfer rates respectively; they capture transfer from
skill b to skill a. six and fix are the number of prior success
and failures with xth skill. In our prior work with CFA (rf.
[4]) we found it to be superior to PFA, whether or not the
transfer parameters (γb and ρb ) were significant. It is due
to these reasons that we used CFA.

2.2 Adaptive Instructional Policies
We now consider how to use our student model to automat-
ically create adaptive instructional policies. Consider the
scenario where we have 2 different skills we would like the
student to learn, and we have a fixed number of opportu-
nities D when we can give the student practice on either
skill. We assume as input we are provided the CFA stu-
dent learning parameters. The objective is to compute an
adaptive policy for D skill opportunities should be provided
to the student in order to maximize his expected post-test

Give 
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problem
Correct
answer

Wrong
answer

Give 
LCM 

problem
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Wrong
answer

Give 
Product 
problem

Correct
answer

Wrong
answer

Give 
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Give 
LCM 

problem

Give 
Product 
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Figure 1: Example adaptive instructional policy.

performance on 1 question per skill. The policy computed
is an adaptive, conditional policy, because it depends on the
responses made by the student: as the student responds to
each practice opportunity, we update the number of success
and failures of the student over each skill. This in turn will
change what is the next best skill practice opportunity to
give to the student. The way we compute the policy can
be thought of as constructing a forward search tree, where
we alternatively consider all possible skill practice oppor-
tunities to provide next, and then the possible responses
(success or failure) of the student. We repeat this expan-
sion for the desired number of D practice opportunities. At
the end of this, at a tree leaf, we compute the expected
post-test performance, given the successes and failures of
the tree path to this leaf. This simply involves predicting
the probability that the student will get a question about
skill 1 correct plus the probability they will get a question
about skill 2 correct. Both these quantities can be computed
using the student model. We repeatedly take expectations
and maximizations to use these leaf scores to decide what
skill should be practiced at the current student state: see
Algorithm 1 for details.1 Two-steps of a sample adaptive
policy are shown in Figure 2.1.

Note that the computed “optimal” policy that is expected
to maximize the student’s post test performance is a direct
function of the input student parameters. Therefore, the
optimal policy can be different for different students.

3. DATA
The data comes from an experimental study conducted at
Pinecrest Academy Charter Middle School. Students from
6th and 7th grades were exposed to a modified Carnegie
Learning Bridge to Algebra (BTA) tutor. The part of the
experiment we analyzed consisted of 10 sessions. In each
of the sessions students were given 16 problems randomly
drawn from a pool of 24 without replacement. One of the
experimental conditions only included 8 problems to be de-
livered and it was removed for the sake of uniformity. Each
session addressed a separate topic. Within a topic there were
two or four skills, and the problems covered one or two of
them. For example, one session was on least common multi-
ples, and the skills were divided by: 1) whether the problem
was formulated as a story or not (“story” or “word” prob-
lems), and 2) whether a solution can be obtained by mere
multiplication or not (“product” and “true least common

1An alternative, but equivalent, method is to have Algo-
rithm 1 return a complete conditional policy tree showing
what skill to give after each possible student response.
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(11-12)
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(7-10)
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(5-6)

Figure 2: A topic session of 12 problems was divided into
sections that we used to fit student models and consider pre
and post performance after a period of 4 problems.

multiple” problems). In our analysis we group problems so
that we considered only 2 alternate skills at a time.

4. EXPERIMENT
To evaluate our approach, we segmented each student’s ses-
sion data as follows (cf. Figure 3). Problems 1-6 were used
to train the CFA models. These models were used to com-
pute the instructional policy for a student to maximize ex-
pected post test score after doing 4 problems. The student’s
performance on problems 5-6 were used as a pretest score,
then problems 7-10 were considered the tutoring/instructional
phase, and the student’s performance on problems 11-12
were considered a post test. Recall that the problems were
selected randomly in the dataset that we used. We only used
the first 12 problems (with a 4 problem “instructional” pe-
riod) so that we could increase the likelihood of finding some
overlaps in the data with the computed optimal 4-problem
adaptive policies. Therefore we selected the subset of stu-
dents who happened to get 1 problem for each of the 2 skills
we considered in both the pretest and the post-test.

For comparison we also considered two alternate policies.
One policy is to always give the student a problem for the
skill that the student is more likely to solve correctly. We
will call this policy an “easier problem” policy or just an
“easy” policy. Our second comparison policy is to always
provide the student with a problem that is for the skill that
the student is less likely to solve correctly. We will call this
policy a “harder problem” instructional policy or a “hard”
policy. This harder policy is very similar to a common in-
structional approach used in Knowledge Tracing mastery
learning in which a student is given an exercise for a skill
that the student is least likely to have mastered.

We will compare the learning gains of students whose pro-
vided problems happened to match the 3 policies of interest
(optimal, easy, or hard).

5. RESULTS
Data restriction. We focused our attention on the subset
sessions where students improved between the pre- and post-
test trials. The summary of learning effects between pre- and
post-test trials is given in Table 1. Some sessions are listed
twice (sessions 1, 3, and 6) because they contained multiple
skills that will be divided into groups (e.g. Story-Word vs.
Product-LCM in session 1). Sessions 5, 8, 9, and 10 were not
considered because they contained errors in the data. We
excluded sessions 2, 3 (both 3.1 and 3.2 versions), and 6.1
because students did not make measurable learning gains.

Policy Performance. A summary of the results of com-
puting optimal policies for the students is given in Table 2.
Recall that we compute an optimal policy for each student
based on their student parameters. We then find instances in
the data where the provided problems happened to match

Table 1: Learning between pre-test (trials 5 and 6) and post-
test (trials 11 and 12)

Sess-
ion

No.
stud.

Mean
pre-test
score

Mean
post-test
score

Learn.
effect
size

Learning
t-test
p-val

1.1 48 1.06 1.52 0.73 0.000***
1.2 61 1.10 1.43 0.44 0.004**
2 51 1.76 1.80 0.09 0.299
3.1 60 0.93 0.93 0.00 0.500
3.2 47 1.00 1.09 0.11 0.280
4 44 1.23 1.55 0.45 0.009**
6.1 53 0.98 1.21 0.29 0.038*
6.2 57 0.86 1.07 0.29 0.035*
7 44 1.41 1.77 0.59 0.002**

the optimal policy we computed. We repeat this process
with the easy policy and the hard policy. Note that it is quite
unlikely that the randomly selected problems will happen to
match any of the 3 policies. Therefore it is not surprising
that the number of matches we find in the data for each of
the 3 policies is quite low, ranging from 1 to 14 for optimal
policies and from 0 to 7 for comparison policies. Table 2
also lists number of students that follow overlaps of optimal
and ad hoc policies.

The last 5 columns of Table 2 show the comparison be-
tween students that received a particular policy versus all
other students. Though we caution against making sweep-
ing claims because the number of students that followed any
of the policies is very low, there remain some encouraging
results. First, for session 1.1 and 1.2, students that received
the optimal policy did better than than students that did
not. The results were not significant, but trending that way
(paired t-test p-value=0.090). In the other 3 sessions it is
extremely difficult to assess any trends, as there were very
few students that followed any policy at all.

It is not yet clear if optimal policies are significantly better
than the comparison policies. In session 1.2 9 matches to the
optimal policy are on average only 0.31 standard deviations
apart from the rest, while the 5 matches to hard policy are
more than 1 standard deviation different from others. Inter-
estingly, here matches of the hard ad hoc policy are a subset
of those who received the optimal policy. It may be that
those who received the hard ad hoc policy that drive most
of the distinctive power of optimal policy. In session 1.1, 7
recipients of the hard ad hoc policy are a subset of followers
of optimal policy as well. In both session 1.1 and session
1.2, receiving a harder item at every step during a period
of interest seems to be universally beneficial with respect to
post-test result. In contrast, in session 7, where complying
or not with the easy ad hoc policy distinguishes students
far better than optimal policy. Here, an easier problem at
each of the trials of interest is more beneficial. Note that
in general the optimal policy is just aiming to maximize the
expected student post test performance, and it may not out-
perform other policies in particular individual cases.

Qualitative Assessment. We also wished to further as-
sess the resulting optimal instructional policies, using in-
sight from the student model parameters. Table 3 shows
the CFA model parameters that were fit using all 16 prob-

Proceedings of the 5th International Conference on Educational Data Mining 190



Table 2: Summary of student policy data.

Table 3: Session 1, Product problems vs. LCM problems.
User modeling parameters of recessed (CFA1−6) and full
(CFA1−16) models with respective p-values

Parameter CFA1−6 CFA1−16

bias -1.558(0.000***) -0.824(0.000***)
βProduct 1.575(0.000***) 1.143(0.000***)
γProduct 0.109(0.482) 0.124(0.020*)
ρProduct 0.861(0.000***) 0.219(0.002**)
γLCM 0.155(0.235) 0.389(0.000***)
ρLCM 0.397(0.000***) 0.080(0.019*)
γProduct→LCM 0.071(0.563) -0.003(0.948)
ρProduct→LCM 0.554(0.000***) 0.032(0.582)
γLCM→Product -0.272(0.087.) 0.094(0.036*)
ρLCM→Product 0.209(0.067.) 0.089(0.021*)

lems in a session focused on teaching least common multi-
ples. This model (CFA1−16) has parameters that indicate
learning from successes and failures for both LCM and Prod-
uct problems. Transfer learning is significant and positive
from a harder LCM to an easier Product problem, but the
reverse direction (from Product to LCM ) does not show sig-
nificant transfer. This suggests that LCM problems help
the student improve on both LCM and Product problems,
but Product problems only produce improvement on LCM
problems. Further this suggests that during tutoring it is
likely to be more beneficial to provide LCM problems than
Product problems.

For the LCM topic there were 14 out of 94 students that
followed their respective optimal policies. The paths that
these students took during trials 7 through 10 consisted of
LCM problems only. This matches what we might expect
given the CFA1−16 model that demonstrates the particular
transfer benefit of LCM problems. None of the paths of
other 80 students were composed of solely LCM problems.

6. DISCUSSION
It is too preliminary to draw any definitive conclusions from
this work because of the limitations of our dataset. From
about 200-250 students in each session we had to select a
subset that met our criteria of receiving different problem
items on pre- and post- test trials. As a result the numbers
shrunk to 70-100 students. Within this restricted set the
student recipients of the 3 policies were very few.

There needs to be further work to better understand if sim-
ple policies are equally effective to the optimal policies. In
this dataset we saw several instances of this. However, this
could be due to fitting CFA models on a small data set cov-
ering only a few hundred students. It also could be because
there was only a very small number of students where the
problems selected matched any of the considered policies.

As part of the future work, we would like to repeat described
experiments on several other datasets, potentially from dif-
ferent subject domains, where randomized data is available.
Should the results turn out to continue support the prelimi-
nary evidence that optimized policies lead to better post-test
performance, we would like to design an experiment using
these policies to select skill practice for students.
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ABSTRACT 
In recent years, the educational data mining and user modeling 
communities have been aggressively introducing models for 
predicting student performance on external measures such as 
standardized tests as well as within-tutor performance. While 
these models have brought statistically reliable improvement to 
performance prediction, the real world significance of the 
differences in errors has been largely unexplored. In this paper we 
take a deeper look at what reported errors actually mean in the 
context of high stakes test score prediction as well as student 
mastery prediction. We report how differences in common error 
and accuracy metrics on prediction tasks translate to impact on 
students and depict how standard validation methods can lead to 
overestimated accuracies in these prediction tasks. Two years of 
student tutor use and corresponding student state test scores are 
used for the analysis of test prediction while a simulation study is 
conducted to investigate the correspondence between performance 
prediction error and latent knowledge prediction. 

Keywords 
Evaluation, Cross-validation, Interpretation of error, Simulation 

1. INTRODUCTION 
An open question among EDM researchers and policy makers 
with an interest in EDM techniques is what impact the techniques 
reported on will have on students and what performance to expect 
under real world model training constraints. The majority of 
analytical papers presented in the literature using educational 
datasets use n-fold cross-validation. This has become an expected 
standard and a justifiable one which offers clear statistical 
reliability benefits over a single test and train hold out strategy. 
However, as an applied field it is important to take a step back 
from the manipulation of datasets and consider what factors may 
impact the expected performance in a real world deployment of a 
method. Often the culprit of inflated cross-validated accuracy is 
the disregard for time constraints in temporal data. Because this 
type of data is predominant in the field due to the temporal nature 
of studying learning, it is especially important to keep violations 
of time in mind in the evaluation and reporting of our models.  
Data leakage [1] is the more general term for using information 
during training or prediction that should not legitimately be 
available. This kind of leakage of data from the future has been 
prevalent in many data mining competitions including the 2010 
KDD Cup on educational data [2]. In that competition, for 
example, a student’s answers from Unit 2 could be used to predict 
her responses to questions of a related skill in Unit 1. While the 
models which were designed to predict that type of test set may 
very well also push the state of the art in real world prediction 
scenarios, the prediction accuracies reported in that competition 
do not reflect real world performance expectation. Furthermore, 

the relative rankings of algorithms in the competition may vary 
when future information is not available. We investigate the effect 
of leakage on the task of predicting end of year state test scores in 
section 2. 
Removing leakage from evaluation adds confidence in replicating 
the reported error in real world deployment, however; of equal 
significance to deployment considerations is the real world 
meaning of the error and its implications for students. Recent 
work on ensemble learning with educational data [3] chronicles 
the various models introduced in the past years which track 
student knowledge. A common practice among these papers has 
been to compare the error of a newly introduced method to that of 
a longer established method. Generally, the merit of the new 
method is compelling if it demonstrates a statistically reliable 
improvement in error over the established method. With larger 
educational datasets becoming widely available, such as the 20M 
row 2010 KDD Cup dataset1 [2] or the 1M row ASSISTments 
Platform dataset2, finding statistical differences in models can be 
achieved even with prediction error differences among models 
only discernible at the third or fourth decimal. This raises the 
question of whether or not statistical tests are a useful yard stick 
when large datasets are being analyzed and more importantly it 
raises the question of what errors and various magnitudes of 
differences in errors actually mean in terms of their impact on 
students. The most practical application of these models, and a 
reason for their high relevancy in the literature, is to predict when 
a student has attained mastery of a particular skill. Improved 
accuracy of these knowledge tracing models is appealing because 
it presumes that the prediction of mastery will also be more 
accurate and thus reduce the amount of over and under practice on 
skills, a time saving benefit that teachers greatly appreciate. In 
section 3 we run a simulation study to investigate the meaning of 
errors in terms of knowledge assessment. In the simulation study 
both student knowledge and response data is generated from a 
standard model of learning. We evaluate the generated response 
data with several models to evaluate the correspondence between 
performance prediction metrics and accurately inferring when 
mastery was attained.    
Best practices for calculating statistically reliable difference 
between predictions is an open question, however, a frequent 
approach is to calculate a paired t-test of prediction squared errors 
[2] or a Wilcoxn signed rank sum test on per student Area Under 
the Curve (AUC) also referred to as A’ [3].  
 

                                                                 
1http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp 
2http://teacherwiki.assistment.org/wiki/Assistments_2009-
2010_Full_Dataset 
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2. PREDICTION OF STATE TEST SCORES 
In this section we evaluate the effect of leakage in predicting state 
test scores and also provide an analysis of the impact of error 
differences on student test score prediction.  

2.1 Dataset 
We used two datasets [4] collected from the 2004-2005 and 2005-
2006 school years usage of the ASSISTments Platform among 8th 
grade math students in four Massachusetts high schools. The 
datasets had 627 and 760 students respectively. Both datasets 
were organized with one row per student and six features 
summarizing each student’s usage in the system for that year. The 
per student features were: overall percent correct, number of 
problems answered, percent correct on scaffold questions, average 
time spent per problem, average attempts per problem, and 
average number of hints requested per problem. The seventh 
feature is the student’s end of year math state test score, which is 
the target being predicted. The state test is the Massachusetts 
Comprehensive Assessment System (MCAS). The minimum raw 
score for the test is 0 and the maximum score is 54. The raw score 
is scaled to a score between 200 and 280. The scaled score 
contains four ranges that correspond to the following proficiency 
categories shown in Table 1. 

Score Range Category 
200-218 Failing 

220-238 Needs Improvement 
240-258 Proficient 

260-280 Advanced 

Table I. Proficiency categories for the MCAS test 
While the scaled score ranges always map to the same categories, 
the raw score mapping to scaled score changes yearly and is only 
computed after all tests are received and evaluated by the state. 
This presents an additional challenge for category prediction; 
however, scaling is just one of many sources of change between 
the two years’ data. Changes in the tutor as well as changes in 
student instruction outside the tutor also contribute variance and 
are a part of why a two year train/test procedure might be more 
difficult to predict than a one year cross-validated. 
The MCAS test is a high stakes test because of the significance of 
scoring in the Failing or Advanced categories. Failing category 
students cannot graduate high school, regardless of their class 
grade, while students who score in Advanced receive an automatic 
state college scholarship. For this reason, interested parties want 
to know a prediction of the student’s category, not just raw score. 

2.2 Methodology 
Two prediction algorithms were used and two hold out strategies. 
Multiple algorithms were chosen not for the sake of comparison 
but rather to see if the relative performance of the algorithms 
changes between hold out strategies. An algorithm that does not 
fit the cross-validated set very well may capture the appropriate 
level of generality to be better in the train/test scenario. The two 
prediction algorithms chosen were linear regression, used in prior 
work with this dataset [4] and Random Forests [6], a highly 
affective algorithm from the machine learning community. We 
also include a K-means clustering technique that claimed to 
improve prediction accuracy of algorithms on this same dataset 
[5]. This K-means enhancement is an ensemble technique [3] and 
we include it to see if it underperforms in the train/test hold out. 

Two hold out strategies were used, one to demonstrate a typical 5-
fold cross-validation hold out which contains future information 
leakage and the other strategy uses the previous year’s data to 
train the algorithm and uses the next year’s data to test on. For the 
cross-validation, the 2005-2006 data was used. The second hold 
out strategy represent a realistic scenario where only historic data 
is able to be used to train a model whereas the cross-validated 
hold out allows information about test outcomes and scaling 
which the algorithms should not legitimately have access to.  
The actual distribution of students in the different categories is 
presented as well as the predicted distribution according to the 
various algorithms paired with the two hold out strategies. The 
error metrics used are Mean Absolute Difference (MAD) and 
Root Mean Squared Error (RMSE). The formula for RMSE is: 

√
∑ (                  )

  
   

 
 where n is the number of students. 

2.3 Results 
The results presented in Tables II and III are the algorithm errors 
in predicting the raw test scores. Scaled score false positive and 
negative evaluation is reported in Tables VI and V. 

Algorithm RMSE MAD 
Linreg + K-means 9.193 7.240 

Linreg 9.262 7.358 
RF + K-means 9.399 7.463 

RF 9.420 7.540 

Table II. MCAS prediction error using 5-fold cross-validation on 
the 2005-2006 data 
Linear regression with bagged K-means resulted in the most 
accurate prediction of test scores according to RMSE and MAD 
error metrics. The more complex prediction technique of random 
forests did not fare as well with regular linear regression beating 
random forests with bagged K-means and random forests alone. 
The RMSE difference between the best and worse algorithm was 
0.227, or 2.4% worse than the best score. 
We now compare to the other hold out strategy where the same 
2005-2006 test scores are being predicted except using data from 
2004-2005 to train. Prediction results of this second hold out 
strategy are shown in Table III.  

Algorithm RMSE MAD 
Linreg + K-means 9.748 7.957 

Linreg 9.817 8.044 

RF + K-means 9.941 8.204 
RF 10.106 8.337 

Table III. MCAS prediction error of 2005-2006 test scores using 
2004-2005 data. 
Table III shows that the relative rankings of the algorithms have 
not changed using this hold out strategy but the overall errors 
have increased. The RMSE difference between the best score 
using cross-validation versus using the previous year’s data is 
0.555, or 6% worse than the better score. This difference is more 
than twice the difference between the best and worse algorithms 
in Table II. What does this level of difference mean to actual 
student score prediction? To investigate this we look deeper at the 
predicted score category compared to the actual category of the 
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two best algorithms using each hold out strategy. For the train/test 
hold out strategy we used the ’04-’05 scaling to transform the ’05-
’06 raw predictions to categorical predictions. 

 real pred. false pos. false neg. sensitivity 
Adv. 0.083 0.016 0.003 (2) 0.841 (53) 0.159 

Prof. 0.176 0.140 0.099 (62) 0.672 (90) 0.328 

Need. 0.364 0.530 0.444 (215) 0.321 (89) 0.679 

Fail. 0.377 0.315 0.171 (81) 0.445 (128) 0.554 
Table IV. Statistics for Linear regression + bagged K-means 
prediction of the cross-validated 2005-2006 data 
Table IV shows the real percentage of students that fall in to the 
four proficiency categories as well as the predicted percentages 
according to the prediction algorithm. False positives, false 
negatives and sensitivity are also shown. Sensitivity is the 
probability that students who belong to that category will be 
properly placed into that category. We can observe that not many 
students scored in the advanced category and that the majority of 
the distribution (74.1%) lies in the Needs Improvement and 
Failing categories. Two students were placed in advanced that did 
not belong there and 53 students were not placed in that category 
that belonged there. For failing, 81 students were placed there that 
did not belong there and 128 were not placed there who belonged 
there. 

 real pred. false pos. false neg. sensitivity 
Adv. 0.083 0.000 0.000 (0) 1.000 (63) 0.000 

Prof. 0.176 0.152 0.1132 (71) 0.664 (89) 0.336 

Need. 0.364 0.654 0.654 (286) 0.235 (65) 0.765 

Fail. 0.377 0.193 0.089 (42) 0.634 (182) 0.366 

Table V. Statistics for Linear regression + bagged K-means 
prediction of 2005-2006 data using 2004-2005 data to train 
In Table V we can see a different distribution that places the bulk 
of the classification into the Needs Improvement category. 
Looking again at the most important categories, the advanced had 
no false positives but had 63 (100%) students placed outside of 
advanced that should have been in advanced. For failing, 42 
students were improperly classified into that category while 182 
were improperly left out of the category.  
The cross-validated hold out misclassifies more students into 
Failing while the non cross-validated hold out fails to correctly 
classify more students as Failing. Both hold out strategies fail to 
classify all or most of the advance students as advanced. 
This analysis demonstrates the areas of improvement for this test 
score prediction task, particularly in correctly identifying 
Advanced students. The hold out analysis also shows that while 
the previous year training strategy resulted in 6% worse error, it is 
still performing reasonably well compared to the cross-validated 
result in important category classification areas according to the 
statistical analysis. This more in-depth analysis gives us 
confidence that deployment of this prediction method in a real 
world setting would result in raw test score predictions of within 
12% of actual (8/54). Misclassification of Advanced and Failing 
students is an aspect that needs improvement on the algorithm 
end, perhaps with ensemble techniques or the addition of more 
features engineered from the logged data. 

3. INFERRING STUDENT KNOWLEDGE 
In this section we conduct a simulation study to observe the 
correspondence between performance prediction error and 
knowledge inference error. In particular, at which opportunity 
does the model infer knowledge has been attained compared with 
the opportunity at which the simulated student attained knowledge 
in the synthesized data. This correspondence is compared with the 
prediction error of each model. The significance of performance 
prediction is looked at from a different angle than in the previous 
section. Instead of measuring the effect of leakage on prediction, 
we look at how performance prediction corresponds to a different 
objective, that of inferring student knowledge. This type of 
inference of knowledge is used in the Cognitive Tutors [8]. 
Reported performance prediction improvements often come with 
the presumption that knowledge inference accuracy is also 
improved.  

3.1 Dataset 
For this dataset we synthesized data for 500 simulated students 
answering 50 questions each of the same skill. The simulation 
generated 50 responses per student in addition to 50 knowledge 
states per student. Student responses are either 0, representing an 
incorrect answer, or 1, representing a correct answer. Student 
knowledge states are also 0 or 1 corresponding to the skill being 
known or not known.  

3.2 Methodology 
The standard Bayesian Knowledge Tracing [7] model was used to 
simulate data. This is a Hidden Markov Model of learning where a 
student is either in the learned or unlearned state and evidence of 
their past response history can be used as evidence to infer the 
probability of their current knowledge state as well as the 
probability of a correct answer on the next problem opportunity. 
The model has four parameters: prior, learn, guess and slip and 
these parameters were fixed to values of 0.30, 0.09, 0.14 and, 0.09 
respectively for the generation of the data.  
A 5-fold student level cross-validation was run using six different 
knowledge tracing models to attempt to recover the parameters 
and predict simulated student response and also infer the 
probability of knowledge at each opportunity. The six models 
included: 1) the ground truth model (GT) using the real generating 
parameters 2) a model that let Expectation Maximization (EM) 
iterate until convergence 3-6) these models kept three parameters 
at their ground truth values and increased the fourth by 0.20. For 
example, model “gt_guess”  has the guess parameter set to 0.34 
instead of 0.14 while all other parameters remain at ground truth 
level. These models were included so we may observe the 
sensitivity of the various parameters on performance and 
knowledge prediction. RMSE was again used to evaluate results 
as this has been a popular metric to evaluate within-tutor 
prediction and was the metric used to score results in the 2010 
KDD Cup challenge [2]. AUC was used in place of MAD as AUC 
has also been popular in the user modeling literature to score 
prediction accuracy. AUC can only be used with binary prediction 
classes and so it was not applicable to the MCAS scoring. AUC is 
an accuracy metric with a 0.50 score being no better than chance 
and a score of 1 being a perfect prediction. Statistics comparing 
the correspondence between the time that simulated student knew 
the skill and the time that the inferred probability of knowledge 
was 0.95 or above were also calculated. The threshold of 0.95 is 
common in Cognitive tutors [8] for determining that a student has 
mastered a skill and allowing them to move on in the curriculum.  
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3.3 Results 
model RMSE AUC 

EM 0.4273 0.7260 

GT 0.4296 0.7191 

gt_prior 0.4307 0.7154 

gt_guess 0.4367 0.7998 

gt_slip 0.4373 0.7241 

gt_learn 0.4773 0.6480 

Table VI. Cross-validated simulation performance prediction 
results for the eight models.  
Table VI shows that the best model according to RMSE was the 
EM model. The gt_guess model was best according to AUC. It is 
somewhat surprising that the ground truth model, although close 
in RMSE, was not the best. The EM model converged to within 
0.01 of GT parameter values, so the slightly improved accuracy 
may be due to chance that this particular simulated population 
skewed towards the EM converged parameters. AUC is a rank 
order estimation of accuracy and thus, so long as predictions 
correlate with responses, the predictions can be poor and still 
attain high AUC. Nevertheless, this result is surprising. The worse 
model, according to both AUC and RMSE, was the model which 
increased the learn rate parameter by 0.20. This suggests that learn 
rate is a sensitive parameter to prediction error and a potentially 
worthwhile area to focus on for student prediction improvement. 

 Median 
un/over 
predicted 

Mean 
absolute 
difference 

students 
over 
practiced  

students 
under 
practiced  

gt_learn 1 2.37 409 56 

GT 2 2.53 469 21 

gt_prior 2 2.53 469 21 

gt_slip 2 2.64 473 17 

EM 2 2.68 475 18 

gt_guess 4 4.81 494 0 

Table VII. Under and over practice amounts on average caused 
by model inference in students’ knowledge using a mastery 
threshold of 0.95 probability.  
Table VII shows how each model performed at inferring when a 
student has mastered the skill. The median un/over practice 
column shows the median number of over or under practice 
opportunities. Average of absolutes column calculates the average 
absolute under/over prediction which takes the absolute value of 
the residual between inferred mastery opportunity and actual 
mastery opportunity. The lower this value, the better the model 
did at inferring exactly when a student learns and not letting them 
over or under practice the skill. As we can see by the “number 
over practiced” column, the vast number of simulated students are 
inferred to learn the skill after they have actually learned it. The 
worse over predictions was by the gt_guess model caused 
decreased confidence in knowledge when observing positive 
performance which further exacerbated the under prediction bias.  

4. DISCUSSION 
We have investigated the significance of performance prediction 
in the context of test score prediction and within-tutor knowledge 

inference. We have raised the issue of leakage in prediction 
evaluation and its role in cross-validation accuracy inflation. The 
result of leakage was a 6% increase in error from the best cross-
validated model to the best model trained on the previous year’s 
data. A 6% increase is reasonable for training on a separate cohort 
of students. An additional analysis of the results using a confusion 
matrix revealed a decrease in prediction of proficiencies at the 
extremes, and a tendency to predict more towards the average 
proficiency category with the previous year hold out. 
Our simulation study revealed a clear bias towards knowledge 
under prediction among the knowledge tracing models. The 
inflated learning rate model, gt_learn, worked to offset some of 
this bias, reducing the median over prediction from 2 to 1 
opportunity, which provided a better knowledge inference 
estimate but also resulted in the worst performance prediction 
score. This discord underscores the motivation behind studying 
the real impact of performance prediction on the intended 
objectives, although this magnitude of disparity warrants further 
investigation. 
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ABSTRACT 

Traditional experimental paradigms have focused on executing 

experiments in a lab setting and eventually moving successful 

findings to larger experiments in the field. However, data from 

field experiments can also be used to inform new lab experiments. 

Now, with the advent of large student populations using internet-

based learning software, online experiments can serve as a third 

setting for experimental data collection. In this paper, we 

introduce the Super Experiment Framework (SEF), which 

describes how internet-scale experiments can inform and be 

informed by classroom and lab experiments. We apply the 

framework to a research project implementing learning games for 

mathematics that is collecting hundreds of thousands of data trials 

weekly. We show that the framework allows findings from the 

lab-scale, classroom-scale and internet-scale experiments to 

inform each other in a rapid complementary feedback loop.   

Keywords 

eScience, experiment design, internet scale 

1. INTRODUCTION 
Web-based software is creating an explosive growth in the use of 

randomized controlled experiments in education, due to the 

relative ease with which users can be randomly assigned to 

different experimental conditions. Scientists are beginning to 

recognize the coming data surge and developing new ways of 

analyzing data at "internet scale." The vastly increased scale of 

subject populations online can produce a categorically different 

mode of experimentation in education. For this reason, we 

propose a new experimental framework that takes advantage of 

rapid internet-scale experimentation, while retaining the control of 

lab-scale and classroom-scale experiments.  

Randomized controlled trials are regularly used to drive design 

decisions on the internet. In its simplest form, A/B testing is a 

form of experimentation where one of two advertisements are 

randomly delivered to each incoming site visitor. This allows 

advertisers to determine which advertisement results in improved 

outcomes (such as a greater click-through rate) [3]. Multiple tools 

exist to support website optimization, including the free Google 

Site Optimizer that supports both A/B tests and multi-variable 

testing. Recently, free-to-play online game companies, such as 

Zynga, have made use of large-scale optimization experiments 

with their large number of online players. By randomly assigning 

players to hundreds of different game design configurations, they 

can optimize the game design to maximize the conversion of 

players to paying customers [7].  

2. INTERNET SCALE RESEARCH IN 

EDUCATION 
Internet-scale research introduces new potential methods in 

Educational Research. For instance, optimization experiments like 

Response Surface Methods, are a common applied research 

method for improving industrial process outcomes. These 

experimental designs showed early promise for improving 

educational outcomes [5], but because the designs would have 

required many hundreds of students, they were expensive and 

impractical. Internet-scale research can now support these 

optimization experiments, along with these other experimental 

advantages: 

Increased number of conditions. With tens of thousands of “user-

subjects,” internet-scale research studies present the opportunity 

for researchers to run dozens—even hundreds—of different 

experimental conditions simultaneously. This easily contrasts with 

lab or field-scale studies, where available resources and subject 

pools typically constrain experimental designs to fewer than 8 

experimental conditions. Furthermore, with fewer conditions, 

experiments can be conducted within days, rather than months. 

Ability to measure “true” task engagement. Internet-scale 

research is also uniquely suited for measuring task engagement. 

Because the researcher typically lacks control over participants 

(they can quit far more easily than in lab or classroom 

experiments), the internet is an ideal setting for investigating user 

motivation. If players assigned to condition A play significantly 

longer than players in condition B (i.e., were engaged in the task 

for longer), then condition A can be said to be more engaging than 

condition B. The ability to measure and compare engagement 

makes it possible to measure how different design elements and 

configurations affect player engagement.  

Increase in external validity. A third advantage of internet-scale 

research is the high external validity—experiments are conducted 

with actual “real-world” users. While the lack of control over 

subjects can result in noisy data, this noise is useful for preventing 

over the over-fitting of predictive models that constructed for use 

“in the wild.”  

Greater access to all users. A fourth advantage of internet-scale 

research is the fact that informed consent is not required if the 

users are anonymous. Even with educational exemptions to 

informed consent, parental opt-out forms can still pose a barrier to 
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many field-based educational studies. While researchers could 

potentially make use of informed consent (and thus obtain non-

anonymous data), anonymous data collection is likely to remain a 

characteristic of most large internet-scale research. 

Of course, the lack of information about participants is also a key 

drawback of internet-scale research. Broadly speaking, internet 

scale studies cannot collect rich information about participants. 

Therefore, these studies are unlikely to be suitable when research 

questions require demographic data, detailed pre/post tests, 

participant observation, talk-aloud protocols, or any kind of 

psychophysiological measure. Finally, the lack of participant 

control means that internet scale studies may not be appropriate if 

repeated participation over time is required. 

Given these drawbacks, it is clear that traditional lab based 

experiments and structured field trials still provide valuable data 

that internet scale experiments cannot. However, there is much to 

be gained from internet scale studies. The Super Experiment 

Framework (SEF) seeks to illustrate how different scales of 

experimentation can productively inform one another. The SEF 

framework, seen in Figure 1, is split into three general 

experimental parts that are roughly delineated by scale. Lab-Scale 

experiments are smaller highly controlled studies that take place 

in a lab or single classroom, generally not exceeding 50 

participants. School-Scale experiments are formal experiments 

that take place in multiple classrooms or schools consisting of 

hundreds to thousands of participants. Internet-Scale experiments 

are informally delivered online to thousands to millions if 

participants. 

 

Figure 1. The Super Experiment Framework showing how 

each of the component scales informs the others. 

In the SEF framework, each component provides an experimental 

level that can be used to answer specific questions that might be 

difficult or impossible to answer using one of the other 

components. Further, the various components can be used to 

expand or validate findings of the other components. A feedback 

loop can also be used with the framework where internet scale 

experiments can identify areas of focus for lab scale experiments, 

which can then be validated in school scale experiments. An 

overview of each of the SEF components can be seen in Table 1. 

School scale and lab scale experiments typically recruit subjects 

and then randomly assign them to different experimental 

conditions as part of a single experiment. However, internet-scale 

research creates situations where multiple experiments are 

randomly drawing from the same pool of subjects. Just as a single 

experiment contains multiple experimental conditions, the SEF 

contains multiple experiments. Because the different experiments 

are derived from the same pool of random assignment, 

experimental conditions that are not part of the same experiment 

may still be compared to one another, if desirable. While there 

may be few immediate benefits of this comparison, the super 

experiment is a unique characteristic of internet-scale research. 

Therefore, the use of the term “super experiment” in the super 

experiment framework simply refers to the broad network of 

information flow between different scales of experimentation, 

from the lab scale, to the school scale and to the internet scale. 

Type Benefits Drawbacks 

Lab Scale 

(1-75) 

Rich user data, Formal, 

Controlled CTA, Talk 

alouds, Psycho-

physiological studies 

Effect Size, Replication, 

Scalability, 

Experimenter effects, 

Threats to external 

validity  

School 

Scale  

(25-

10,000) 

Formal, Controlled, 

Validation, Good 

randomization, Surveys, 

Enforced participation 

Expensive, Difficult to 

replicate, Threats to 

external validity 

 

Internet 

Scale 

(10,000-

millions) 

Informal, Large data 

collection, Rapid, High 

external validity, 

Decreased Type II error 

rate, High power 

Anonymity, High 

attrition, Data overload, 

Threats to internal 

validity 

Table 1. Components of the Super Experiment Framework 

3. IMPLEMENTATION EXAMPLE 
The need for the SEF framework was initiated through our work 

in creating online games for learning. The number of potential 

experiments was large and the opportunity to field the games at 

each of the scales identified in the SEF framework provided the 

need to build a feedback loop to execute many experiments at 

internet scale in order to narrow down the potential experiments to 

test at the more controlled school scale. “Battleship Numberline” 

(BSNL), an online educational game, benefits from the super 

experiment framework.  

Designed to improve number sense among elementary and middle 

school students, BSNL provides practice estimating numbers on a 

number line within four content domains: whole numbers, 

fractions, decimals and measurement [4]. The game narrative 

involves defending Numbaland Island from invading robot pirates 

by firing projectiles at their ships and submarines. BSNL involves 

two basic modes: naming numbers and placing numbers. In the 

naming condition, players type a number that corresponds to the 

location of an enemy ship that is positioned on a number line 

between two marked endpoints. In the placement mode, the player 

is given the numeric location of a hidden submarine (e.g., 

“Submarine spotted at 1/3”) and needs to click on the location that 

they believe corresponds to the number. After the player has typed 

a number or clicked on the number line, a projectile drops 

vertically from the top of the screen to the designated location on 

the number line. Animation and text-based feedback 

communicates the player’s accuracy after every round.  

A primary goal of our research has been to understand how 

different game design factors affect player learning and 

engagement. In order to systematically investigate these factors, 

we implement these design factors as flexible xml-based 
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parameters that can be determined at the game runtime. We are 

then able to create online experiments that randomly assign new 

players to a set of different game sequences.  

During gameplay, BSNL generates an online data log of the task 

context (the above xml parameters) along with data describing the 

player’s performance on each opportunity. On each item, we log 

the player’s reaction time, their accuracy, and a binary field 

indicating whether the player was successful or not. Logs are then 

imported into the PSLC Datashop [2], which allows for the 

secondary analysis of player performance and learning. The hit 

rate measure is essential for enabling Datashop to plot learning 

curves of error rate over time. By labeling different items in the 

game with different knowledge components (e.g., reducible 

fractions, unit fractions, etc), we can plot learning curves for each 

knowledge component. Learning curves can also be described 

based on fluency [1], where we plot the reduction of reaction time 

over opportunities played. In addition to these measures of 

learning and performance, we investigate player engagement 

through two measures: the total number of items played and the 

total amount of time spent playing. These two metrics correspond 

with our construct of intrinsic motivation or player engagement.  

The number of potential parameter settings in BSNL makes it a 

great tool to answer many research questions, but at the same time 

the number of possible settings make it difficult to decide on what 

settings to in traditional lab or school settings. For this reason, it is 

a perfect candidate for use in the SEF. Next, we show how the 

results of different types of experiments at one scale inform new 

experiments on a different scale. 

Lab Scale informing School Scale. The use of a lab experiment to 

inform a field trial at a school is one of the most common types of 

experimental design. It is still an important part of the SEF. We 

performed a lab scale experiment, which is now being validated at 

the school scale. This experiment was conducted at a small 

Catholic liberal arts University. Although the college is co-

educational, its focus is on women’s education, and 89% of the 

participants were women. Participants were 18 students in an 

eight-week first-year seminar course, which met once per week. 

Students chose for this seminar period to focus on mathematics 

games. Over 5 weeks, we administered a short (typically one 

minute) paper-and-pencil pretest, asked students to play a specific 

fluency game for approximately one-half hour and then gave a 

posttest which was identical in content to the pretest. In all but the 

first week, the pretest was preceded by a delayed post-test, which 

was a repeat of the posttest from the previous week’s materials.  

In four of the five experiments significant improvement was 

shown on a delayed post-test, and three of the five showed 

immediate results. Effect sizes were also quite large, ranging from 

0.4 to 2.4, indicating that these results are not only significant but 

substantial. Prior to the first experiment, students were given a 

survey about their confidence in mathematics (containing 

questions like “I am sure that I can learn math.”) and about text 

anxiety (containing questions like “I am so nervous during a test 

that I cannot remember facts that I have learned”). The two scales 

were mixed in a 16-item form. Students were asked to rate each 

statement from 1 (“strongly disagree”) to 5 (“strongly agree”). 

Student confidence increased significantly, t(14)=-3.2, p<.01, 

d=0.4, but there was no change in test anxiety, t(14)=-3.1, n.s. 

Due to the success of this lab scale experiment, a similar school 

scale experiment is now being conducted in multiple college 

classrooms over an entire semester. Unlike the lab scale, the 

researchers are not present in these classrooms, but we expect to 

see similar results. 

School Scale informing Internet Scale. BSNL was designed based 

on an existing body of literature that investigated number line 

estimation in the laboratory [6]. The game was playtested with 8 

elementary school students, to refine usability issues in the design. 

Following this, a school scale study was conducted with 119 

students in grades 4-6. Students showed significant improvement 

in hit rate form the first to second opportunity (see Figure 2), and 

students demonstrated significant improvements in the estimation 

of fractions on a number line after 20 minutes of gameplay. 

Moreover, 82% of players (74% females, 92% males) reported 

that they wanted to play the game again [4]. The data from these 

classroom studies was imported into the PSLC Datashop to test 

various knowledge component (KC) models. We identified a KC 

model based on the various regions of the number line. This 

knowledge component model was then used to produce a 

Bayesian Knowledge Tracing adaptive sequencing algorithm. 

This algorithm was then tested online in comparison with a 

randomly sequenced level. Preliminary results suggest that the 

BKT adaptive sequence did not result in significantly greater 

player engagement than the random sequence. 

 

Figure 2. Illustrates the average improvement from the first 

opportunity to the second opportunity, by item presented. The 

clear patterns of difficulty are used to generate knowledge 

component models in Datashop. 

Internet Scale informing School Scale or Lab Scale. Internet-scale 

experiments can be useful for documenting the difficulty of 

different task configurations. This is useful in the field of EDM, 

as it allows for the generation of knowledge component models. 

Different tasks are said to require different knowledge 

components if and only if the tasks result in different performance 

rates or learning curves.  Therefore, by assessing the difficulty of 

instances over a broad task design space, we can understand how 

the task design space maps to various KC models. 

For example, Rittle-Johnson, Siegler and Alibali found that 

tickmarks supported the estimation of decimals on a number line 

[6]. In order to replicate this work and extend it, we randomly 

assigned online players to 6 different conditions in both the 

decimal and whole number domain. Players either encountered 

tickmarks dividing the number line into tenths, fourths, thirds, 

halves (midpoint), or no tickmarks at all. Finally, an additional 

two conditions looked at the interaction of an adaptive sequencing 

algorithm with tickmarks at the midpoint. An overview of the 

experiments and conditions can be seen in Table 2. Over 80,000 

internet users participated in the experiment.  

An experiment with this many conditions would be difficult to 

replicate in a lab or classroom. This broad investigation of the 

effects of guides enabled us to observe two unusual outcomes. 

First, there was an apparent interaction effect between our 

adaptive sequencing condition (termed “ITS”) and the midpoint 
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guides. Neither Second, the 10th guides apparently increased 

player engagement in the decimal condition, but decreased 

engagement in the whole number condition. These insights have 

led us to execute similar lab scale experiments to replicate and 

better understand these specific results. 

Experiment Name Conditions Players 

Adaptive Sequencing 15 19,856 

Difficulty Sequencing 6 6,302 

Difficulty Comparison 6 6,234 

Expanded fraction set 4 5,596 

Guides Engagement  10 11,386 

Guides Learning  20 22,441 

Measurement Study 3 10,014 

Total  64 81,829 

Table 2. List of experiments running concurrently with a total 

of 64 conditions. 

4. CONCLUSIONS AND FUTURE WORK 
Technology is forever changing the way we conduct experiments. 

The traditional paradigm is no longer the best way to do things. 

Data is coming in faster, larger, and more fine grained. Instead of 

focusing eScience efforts in just analyzing we have created a 

framework to exploit internet scale experiments, while still 

creating valid findings in real classrooms. 

The main contribution of this work is the development of the 

Super Experiment Framework which incorporates a feedback loop 

allowing for experiments of different scales to inform each other. 

This has become possible, and even necessary, with the use of the 

internet to collect a large amount of experimental data. Internet 

scale allows for optimization experiments that would be too 

expensive to do at field level. This is truly applied educational 

research that, as we have shown, provides insights that can inform 

more controlled lab or school scale experiments. We also 

explained our initial implementation of the SEF with a large 

project with broad scope and many interesting research questions. 

Traditional "one-way street" experiments of lab to school are slow 

to findings and outdated. Our work shows how utilizing all three 

scales of experiments leads to rapid findings that can lead to real 

implementable insights efficiently. 

Making the framework possible is the accessibility of internet 

scale experiments. The key barrier to internet scale educational 

research is attracting large numbers of users. Research projects 

rarely invest in high-quality software design and usability, which 

is usually necessary to achieve widespread adoption. However, 

once this quality is developed, large numbers of users can be 

reached through collaborations with one of many internet portals 

that seek to aggregate educational content (e.g., Brainpop.com). 

Another challenge is instrumenting software for generating data 

logs that measure player performance, learning and engagement. 

Log files should capture not only correctness information, but the 

amount of time that players spend on an activity, as well as the 

number of opportunities attempted to make these measures.  

A third challenge is the configuration of the software to allow for 

experimental designs. This involves the abstraction of design 

variables in the software’s design space, such that different 

instances of the software can be created quickly. For instance, we 

use xml to define game levels at run-time. These configurations 

can then serve as different experimental conditions that can be 

randomly deployed to online users.  

Finally, one unusual new challenge in internet scale research is 

the efficiency of subject-pool utilization. While lab or school scale 

researchers expend significant effort to recruit a sufficient number 

of subjects in order to achieve statistical significance, internet 

scale researchers increasingly face the challenge of making use of 

tens of thousands of subjects in an efficient manner. Certain types 

of experimentation may result in inconsistent user experiences 

that reduce overall participation.  

Some challenges will be particular to individual experiments. For 

instance, in our online experiments we observe strong seasonal 

effects of weekends and school holidays, where the number of 

players is greatly reduced. This suggests that certain experimental 

comparisons should be sensitive to the time period of the study, 

not merely the number of subjects.  

Many of these challenges can be mitigated by validating the 

results of internet scale experiments with controlled classroom 

experiments. As shown in the experiment section, we are 

continuing to run a number of experiments of scales based on 

findings of different scales. This feedback loop will continue in 

the future as we strive to optimize the games to maximize 

learning. We believe this framework will rapidly lead to 

significant discoveries that are replicable at each of the scales. 
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ABSTRACT 

The goal of predicting student behavior on the immediate next 

action has been investigated by researchers for many years.  

However, a fair question is whether this research question is 

worth all of the attention it has received. This paper investigates 

predicting student performance after a delay of 5 to 10 days, to 

determine whether, and when, the student will retain the material 

seen.  Although this change in focus sounds minor, two aspects 

make it interesting.  First, the factors influencing retention are 

different than those influencing short-term performance.  

Specifically, we found that the number of student correct and 

incorrect responses were not reliable predictors of long-term 

performance.  This result is in contrast to most student-modeling 

efforts on predicting performance on the next response.  Second, 

we argue that answering the question of whether a student will 

retain a skill is more useful for guiding decision making of 

intelligent tutoring systems (ITS) than predicting correctness of 

next response. We introduce an architecture that identifies two 

research topics that are meaningful for ITS decision making. Our 

experiments found one feature in particular that was relevant for 

student retention:  the number of distinct days in which a student 

practiced a skill.  This result provides additional evidence for the 

spaced practice effect, and suggests our models need to be aware 

of features known to impact retention.    

Keywords 

Educational data mining, intelligent tutoring systems, student 

modeling, knowledge retention. 

1. INTRODUCTION 
The field of the educational data mining (EDM) has been focusing 

on predict correctness of the next student response for many years 

(e.g. .[2]). Very little work has been done with respect to longer-

term prediction. Two common approaches for student modeling 

are knowledge tracing [5] and performance factors analysis [10].  

Both of these approaches focus on examining past student 

performances, and predicting whether the student’s next response 

will be correct or incorrect.  The source of power for both of these 

techniques is the student’s pattern of correct and incorrect 

responses.  In fact, that input is the only piece of information 

knowledge tracing (KT) uses (beyond which skill the problem is 

associated with).  KT observes whether the student responds 

correctly or not, and uses its performance parameters, guess and 

slip, to update its estimate of the student’s knowledge.  KT takes 

the form of a dynamic Bayesian network, where each time slice 

represents an item the student is working on.   

Performance factors analysis (PFA) works similarly, and keeps 

track of the number of correct and incorrect responses the student 

has made on this skill.  In addition, some versions of PFA also 

make use of an item difficulty parameter to account for item 

complexity.  PFA takes the form of a logistic regression model, 

predicts whether the student will respond to an item correctly, and 

estimates coefficients for the number of correct and incorrect 

responses that maximize predictive accuracy. 

A connection with student modeling is mastery learning.  In a 

mastery learning framework, a student continues to practice a skill 

until it is “mastered.”  The exact definition of mastery varies, but 

typically involves recent student performance.  For example, the 

KT framework suggests that the probability a student knows a 

skill exceeds 0.95, then the student has mastered the skill.  The 

ASSISTments project (www.assistments.org) uses a simpler 

heuristic of three consecutive correct responses to indicate 

mastery.   

However, there is evidence that strictly local measures of student 

correctness are not sufficient.  Specifically, students do not always 

retain what they have learned.  Aside from the psychology 

literature (e.g. [1,4,7,8]) there has been work within student 

modeling that demonstrated students were likely to forget some 

material after a delay.  Qiu et al. [12] extended the Knowledge 

Tracing model, to take into account that students exhibit 

forgetting when a day elapses between problems in the tutor.   

Researchers in the ITS field are currently using short-term 

retention as an indicator for mastery learning. However, for a 

cumulative subject like mathematics, we are more concerned with 

the ability of the students to remember the knowledge they 

learned for a long period of time. Pavlik and Anderson [9] studied 

alternative models of practice and forgetting, and confirmed the 

standard spacing effect in various conditions and showed that 

wide spacing of practice provides increasing benefit as practice 

accumulates, and less forgetting afterwards as well, which is 

consistent with classic cognitive science results [3]. 

2. PROBLEM AND APPROACH 
Although the fields of student modeling and EDM have focused 

on short-term student performance, there is nothing inherent in 

student modeling or in EDM that requires such a focus.  

Conceptually, it is possible to construct models that predict other 

constructs of interest, such as whether the student will remember a 

skill after a period of time.  Why would we want to construct such 

a model?  We argue that whether a student will not only respond 

correctly on an item right away, the mastery approach used by KT, 

but whether the student will remember enough to respond 

correctly, after taking a break from working with the tutor, is a 

better definition of mastery.  At best, it is unclear how to apply a 

short-term model such as KT or PFA for such a decision-making 

task.  However, if we could build such a detector, we could 
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deploy it in a computer tutor and use it to decide when to stop 

presenting items to students.  Perhaps a student who gets several 

items correct in a row, and masters the skill by traditional 

definition, will be predicted to not retain the skill and should 

receive additional practice.   

The approach we use is straightforward:  rather than attempting to 

predict every next student performance, instead we focus on 

student performances that occur after a long delay.  In this way, 

even though we are not explicitly modeling the forgetting process, 

our student modeling approach captures aspects of performance 

that relate to student long-term retention of the material.  It is 

reasonable that the field of student modeling did not start with 

long-term retention, as only a small minority of student practice 

opportunities take place after a long delay.  Therefore, such 

restrictions would result in a too-small data set to train the student 

model parameters.  However, with the advent of large educational 

sets, such restrictions become less relevant.   

The data used in this analysis came from the ASSISTments 

system, a freely available web-based tutoring system for 4th 

through 10th grade mathematics (approximately 9 through 16 

years of age). The system is mainly used in urban school districts 

of the Northeast United States. Students use it in lab classes that 

they attend periodically, or for doing homework at night. 

We collected data from school year September 2010 to September 

2011, which consisted of 15931 students who solved at least 20 

problems within ASSISTments. We filtered out skills that have 

fewer than 50 students.  As a result, we have 2,363,982 data 

records. Each data record is recorded right after a student 

answered a problem, and logged relevant information including 

the identity of the student, the problem identity and skills required 

to solve it, the correctness of the student’s first response to this 

problem, the duration the student spent on this problem, and the 

timestamp when the student start and finish solving this problem. 

For this task, we defined a student as retaining a skill if he was 

able to respond correctly after approximately a week.  We 

instantiated a week as any duration between 5 and 10 days. and 

choose the time interval of 5-10 days as our objects to analyze. 

We randomly selected one fourth of the students as training data, 

which result in 27,468 final data records.  Note that less than 5% 

of the data are relevant for training a model of student retention.  

Thus, this problem requires large data sets.   

3. STUDENT RETENTION ANALYSIS 

3.1 RQ1:  Is student retention predictable? 
To answer this question, we built a logistic regression model, 

using the 27,468 data points with delayed practice opportunities 

described previously.  The dependent variable is whether the 

student responded correctly on this delayed outcome.  We used 

user identity (user_id) and skill identity (skill_id) as factors (fixed 

effets) in this model.  We used the following features as 

covariates, treating incorrect responses as a 0 and correct 

responses as a 1: 

• n_correct: the number of prior student correct responses 

on this skill; This feature along with n_incorrect, the 

number of prior incorrect responses on this skill are 

both used in PFA models; 

• n_day_seen: the number of distinct days on which 

students practiced this skill. This feature distinguishes 

the students who practiced more days with fewer 

opportunities each day from those who practiced fewer 

days but more intensely, and allow us to evaluate the 

difference between these two situations. This feature 

was designed to capture certain spaced practice effect in 

students data; 

• g_mean_performance: the geometric mean of students’ 

previous performances, using a decay of 0.7. For a 

given student and a given skill, use opp to represent the 

opportunity count the student has on this skill, we 

compute the geometric mean of students’ previous 

performance using formula: g_mean_performance(opp) 

= g_mean_performance(opp-1)*0.7 + 

correctness(opp)*0.3. The geometric mean method 

allows us to examine current status with a decaying 

memory of history data. The number 0.7 is selected 

based on experimenting with different values.   

• g_mean_time: the geometric mean of students’ previous 

response time, using a decay of 0.7. Similar with 

g_mean_performance, for a given student and a given 

skill, the formula of the geometric mean of students’ 

previous response time is: g_mean_time(opp) = 

g_mean_time(opp-1)*0.7 + response_time(opp)*0.3; 

• slope_3: the slope of students’ most recent three 

performances. The slope information helps capture the 

influence of recent trends of student performance; 

• delay_since_last: the number of days since the student 

last saw the skill. This feature was designed to account 

for a gradual forgetting of information by the student;  

• problem_difficulty: the difficulty of the problem. The 

problem_difficulty term is actually the problem easiness 

in our model, since it is represented using the percent 

correct for this problem across all students. The higher 

this value is, the more likely the problem can be 

answered correctly. 

It is important to note that the features were computed across all 

of the data, not just the items on which the student had not 

practiced the skill for 5 to 10 days.  For example, the n_correct 

feature is computed across all of the student practices on the skill, 

not just those practices with a 5 to 10 day delay interval.  

However, we only create a row in our data set for such delayed 

retention items (thus there are 27,468 rows).  After training the 

model on the ASSISTments data, we got a R2 of 0.25.  Since this 

model fit represents training-data fit, it is optimistic.  But the 

model fit is at least strong enough to conclude that student 

retention appears to be predictable.   

The Beta coefficient values and p-values for each covariate are 

shown in Table 1. 

In this table, the positive B values mean the larger the covariate is, 

the more likely the student respond to this problem correctly. To 

our surprise, the influence of the n_correct and the n_incorrect 

features are not reliably different than 0. The features n_day_seen 

and g_mean_performance, on the contrary, are reliable predictors 

of student retention. In other words, for predicting long-term 

retention, the number of days on which the student practiced the 

skill is important, as is his recent performance. This result is 

consistent with cognitive “spaced practice effect” result [11].  The 

raw number of correct and incorrect responses is not a meaningful 
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predictor.  We expected that response time would be relevant to 

retention, due to its connection to automaticity and mastery [1]. 

 

Covariate B p-
value 

n_correct -0.003 .330 

n_incorrect -0.005 .245 

n_day_seen 0.055 .000 

g_mean_performance 0.813 .000 

g_mean_time 0.073 .043 

slope_3 -0.033 .444 

delay_since_last -0.015 .182 

problem_difficulty 5.926 .000 
 

Table 1.  Parameter table of covariates in Model1. 

From the likelihood ratio tests of the training set, we found that 

the skill_id and user_id are also both important features in this 

model. This indicates that student performance on retention items 

varies by skill and by student.  It is tempting to claim that 

retention varies by student, but this claim is premature as the 

user_id factor models student performance on retention items.  

However, such performance is composed of how well the student 

learned the material as well as how much of that knowledge was 

retained.  A student could have a strong memory, but if he never 

learned the material his user_id factor would be low.  Therefore, 

user_id does not solely represent retention.   

To strengthen the results, we built test set to validate the model. 

Since the users of testing set are different from those of the 

training set, we cannot look up user parameters directly for users 

in the testing set. Instead, we use the mean value of user 

parameters of the model as an approximation of the user 

parameter in the testing set. We also did the same thing for the 

skills that only appear in the testing set. 

The R2 of this model on the testing set is 0.17, indicating a 

reasonable model fit in-line with other attempts at using PFA  

3.2 RQ2:  Does forgetting vary by student? 
We would like to separate the impact of the user_id feature into 

student knowledge and student retention.  To accomplish this 

task, first, we started from the logistic regression model that we 

used in section 3.1, removed the factor user_id and substituted a 

covariate non_1st_pcorrect. The feature non_1st_pcorrect is the 

percent of a student’s non-first attempts of the day that are correct. 

The intuition is that a student’s first attempt on a skill each day is 

the one that is most affected by retention.  By considering the 

student’s overall performance, but excluding these items, we are 

estimating the student’s proficiency in the domain in a way that is 

less contaminated with forgetting, and is thus a purer estimate of 

the student’s knowledge.  We trained this model on the same data 

as the previous model.  The feature non_1st_pcorrect has an 

estimated Beta coefficient of 3.878, with a p-value 0.000. We got 

an R2 of 0.210 on the data, which is a reasonable model fit.  The 

difference in model fit is caused by the substituting the percent 

correct, on non-first encounters, for user_id.   

We were curious as to the cause of this difference in model fits, 

and investigated the residuals from our model.  The question is 

whether the residual was systematic, and could be predicted by 

user_id.  We fit a general linear model with user_id as a random 

effect, and the residual as the dependent variable.  The R2 of this 

model is 0.235. Thus, the residual in our model, after accounting 

for student overall percent correct in contexts where forgetting 

was minimal, does vary systematically by user_id.  Thus it appears 

that there is some construct beyond performance, such as 

forgetting, that varies by student.   

Although it is tempting to claim this term represents student 

forgetting, it is necessary to validate the construct [6] we have 

modeled.   To test whether we have modeled retention, we first 

extracted the student random effects from our GLM.  We then 

computed the correlation between that term, and each student’s 

difference in performance between the first and second question 

on a skill that occurs each day.  Our belief is that this difference in 

performance is related to student forgetting, since a large increase 

in performance from the first to the second item suggests the 

student is remembering old information.  Unfortunately, the 

correlation between these terms was negligible, so we are still 

searching for what our per-student effect is actually modeling.   

4. CONTRIBUTIONS 
This paper makes three main contributions. First, the mastery 

learning notion is expanded to take into account the long-term 

effect of learning. In comparison to the traditional view that 

Corbett and Anderson brought up in their seminal work [5], 

which looks at only the immediate knowledge, this paper looks at 

broader notion of knowing a skill. 

The second contribution this paper makes is extending the PFA 

model [10] with features that are likely to be relevant for 

retention. Most prior work has focused on concepts such as item 

difficulty or amount of assistance required to solve a problem.  

However, those features focus on student performance and 

properties of items, not on broad characterizations of 

performance. Our study confirmed that the long-term knowledge 

appears to vary by skill, and possibly by student.  In addition, the 

number of days on which a student practiced a skill is relevant, 

and could be an important feature in directing ITS decision 

making to enhance retention.  This result confirms the spaced 

practice effects in a larger scope; also we found that the number of 

correct responses seem to be not so important in predicting 

knowledge retention. 

The third contribution this paper makes is on discovering a new 

problem that is actionable by ITS.  Previous student models focus 

on estimating student current knowledge, which is powerful for 

EDM, and an efficient use of data for testing a model, but 

provides limited guidance for tutorial decision making. This paper 

proposed a diagram of ITS action cycle that can be used to 

discover new problems in the EDM field that can lead to higher 

mastery learning rate in ITS systems. 

One goal of EDM is to address questions that are relevant for 

tutorial decision making of ITS. Currently, many ITS simply 

present a sequence of problems and evaluate student performance 

right after the student finished these problems to see if the student 

mastered the given skill. This process does not have the 

mechanism for the system to review students’ knowledge after a 

time period, nor know about students’ long term performance. It 

is dangerous for ITS to promote a student on the basis of short 

term performance. We propose the follows diagram shown in 
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Figure 1, which allows ITS to aim for students long-term mastery 

learning. 

 

 

Figure 1.  Enhanced ITS mastery learning cycle 

This paper focuses on the diamond on the left side, whether the 

student has mastered a skill.  Rather than using local criteria to 

decide whether mastery has occurred, we trained a model to 

decide mastery based on predicted performance.  Beyond this 

EDM work, some review mechanism for ITS seems warranted, as 

for cumulative domains, such as mathematics, ensuring that 

student’s have retained their knowledge is critical.  

Correspondingly, we have added a review mechanism to 

ASSISTments [13]. 

Another interesting EDM problem is the diamond on the right:  

when is a student likely to fail to master a skill in a timely manner 

and (statistically) exhibit negative behaviors such as gaming?  We 

have made progress on this problem as well, and dubbed the 

phenomenon “thrashing.” If a student is unlikely to master a skill 

via problem solving, it is essential to do something else, such as 

peer tutoring, having the teacher intervene, or providing 

instruction within the ITS.   

What we like about both of these problems is that they are rich 

challenge problems for EDM, and provide actionable information 

for ITS to make use of in their decision making.  If a student 

appears likely to retain a skill, it is probably not necessary to keep 

presenting items.  If a student is likely to not master a skill, it is 

probably not productive to keep presenting problems.   

5. FUTURE WORK AND CONCLUSIONS 
There are three questions that we are interested in exploring. First, 

do students vary in how quickly they forget? Our first attempt at 

teasing apart the user_id factor gave inconclusive results, but this 

area is important enough to warrant further study.  Another issue 

that we are interested in addressing is what are additional features 

that relate to forgetting?  The field of psychology is rich in ideas, 

but there has been little existing work in student modeling. 

Finally, we would like to deploy this model to a working ITS in 

the field. On one hand, this can help verify the model; on the 

other hand, this could be used to improve the ITS systems to help 

student achieving long-term mastery learning. 

This paper present an ITS mastery learning diagram, which brings 

up useful problems in EDM that needs more work. In this paper 

we concentrate on estimating student knowledge retention and 

discovered some useful features for this task. Also, we were able 

to conclude student long-term performance is predictable, even 

when a student’s ability to remember a skill comes in to play.  
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ABSTRACT
Predicting the students’ performance is still a challenging
task despite being one of the oldest and most popular ap-
plications of data mining in education. One of the problems
encountered when analyzing data from e-learning platforms
is that it presents statistical outliers as a consequence of how
students work in online courses. It causes that classifiers are
built with less accuracy than desired. To solve this problem
we propose a new method to eliminate outliers as previous
step to build the classifier. In this work we describe our
meta-algorithm and compare its performance with respect
to several well-known classification techniques. The compar-
ison is evaluated in terms of accuracy, true positive and true
negative rate. The results obtained shows that our approach
produces more accurate models.

1. INTRODUCTION
Since the advent of learning platforms, their use in educa-
tional centers has been constantly growing. Unlike tradi-
tional teaching, one of the advantages which these systems
have is they store a huge quantity of data which, adequately
analysed, can help both instructors and students: instruc-
tors can discover information to evaluate the teaching-learning
process [6]; and, students can receive suitable feedback about
their dedication in the course [4] and recommendations in
order to achieve the learning objectives [5].

In the literature, there are several works which compare clas-
sification techniques using educational datasets but none of
them analyse the data distribution in order to detect out-
liers [3; 1]. In our experimentation, we have detected that
despite the data is clean (free of human errors), there are
instances which can be considered as outliers in the sta-
tistical sense (e.g. students with one learning session can
pass the course and students with a high time spent in the
course fail) and these must be eliminated in order to im-
prove the classifier accuracy. Therefore, we have designed
and implemented a meta-algorithm which carries out both
tasks: pre-processing and modelling. Our goal is to offer
this meta-algorithm to educational community so they can
build more accurate classification models.

Next, we describe our meta-algorithm and compare its ac-
curacy, TPR and FPR with respect to that obtained with 5
of the most frequently used classification algorithms [7].

2. METAALGORITHM DESCRIPTION AND
EXPERIMENTATION

Before explaining our meta-algorithm, we show why a re-
moval outlier phase is necessary. In this experimentation
we work with a course hosted in Blackboard and taught in
2009, 2010 and 2011 at University of Cantabria, entitled
”Introduction to Multimedia”. We generated two different
datasets. Dataset1 includes the following attributes: total
time spent, number of sessions, average time per session,
average time per week and average number of sessions per
week. Dataset2 includes the same attributes but aggregated
by month and by tool (content-page, forum and mail). For
instance, total time spent in January reading content-pages.
Both data sets have 194 instances (one per each student)
and they don’t contain missing data. We show in Figure 1,
the distribution of students who passed and failed with re-
spect to the total time spent and the total number of sessions
carried out. As can be observed, there are a few students
who failed despite spending a lot of time in the course and
often connect, and students who passed (see red squares be-
tween lines draw in Figure 1) with an average time and a
number of sessions similar to those who failed. The reasons
of this bad behavior is intrinsic to the way of working in
the web. Students connect to the e-learning platform and,
after some clicks, they open another URL out of the course,
and work in parallel in both. So that the total time does
not correspond with the total time of work. And viceversa,
students who work hardly but in a disconnected mode since
they download the materials. Thus, if we want to improve
our classification models we have to minimize the effect of
this problem.

Our meta-algorithm works as follows. First, it carries out
a correlation study and removes those attributes which are
dispensable. Next, it builds a two-class classifier with all in-
stances and determines which are the incorrectly classified
instances of both classes. Next, it calculates the prototype
of each class and the euclidean distance of each instance
to its prototype. Then it obtains the average distance in
each class, ED, and chooses that class which has a big-
ger value of ED. Once chosen the class with higher ED,
named K, the incorrectly classified instances of the K class
are selected and the meta-algorithm carries out a clustering
using Kmeans in order to separate these instances in two
groups. Built the two clusters, it calculates the centroid in
both clusters and names N and M respectively. Then it re-
moves from the training sets the instances belonging to the
cluster whose centroid has a larger euclidean distance to the
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Figure 1: Class distribution according to total time and
number of sessions

Table 1: Comparison of models obtained with Dataset1
Alg. Orig. Malg

Acc. TPr TNr Acc. TPr TNr
J48 81.44 95.62 71.68 82.47+ 96.30+ 72.57+
NB 77.84 64.20 87.61 83.51+ 83.95+ 83.18-

OneR 78.87 87.65 72.57 78.35- 86.42- 72.57-
RTree 78.35 75.31 80.53 80.93+ 91.36+ 73.45-
JRip 81.95 92.59 74.34 85.05+ 97.53+ 76.11+

Avg. 79.69 83.07 77.34 82.06+ 91.11+ 75.57-

instances of the selected K class. That means, it eliminates
the bad-classified instances, those that have a more irregular
distribution with respect to the distribution of the instances
set of K class. After removing the instances considered as
outliers from the training sets using 10-CV, it builds the fi-
nal classifier. Of course, outliers are only removed from the
training sets, leaving the test sets with all initial instances.

Table 1 shows the results of applying our meta-algorithm
(Malg) using 5 different classification algorithms on Dataset1.
As can be observed, our meta-algorithm improves in accu-
racy (Acc.) and TPrate (TPr) the results obtained with
respect the original (Orig.) classification algorithm with-
out removing instances, except with OneR. TNrate (TNr)
is sometimes lower due to the fact that the negative class was
chosen by the meta-algorithm in the preprocessing phase in
this dataset. In particular, the instances with negative class
eliminated correspond to the blue diamonds behind the sec-
ond vertical line in Figure 1. We obtain similar results when
we use Dataset2 (see Table 2). Using this dataset, our meta-
algorithm improves the results of accuracy in all cases and
sometimes worsens the TNrate with respect to the original
classification algorithm.

3. CONCLUSIONS AND FUTURE WORK
The experimentation carried out in this work allow us to
conclude that the preprocessing tasks generally improve the
classification models when data sets suffer from statistical
outliers. In our case study this is traduced to find students
with both, a high total time spent and a high number of
sessions in a virtual course who, at the end, failed.

Table 2: Comparison of models obtained with Dataset2
Alg. Orig. Malg

Acc. TPr TNr Acc. TPr TNr
J48 87.11 96.29 80.53 87.63+ 95.06- 82.30+
NB 77.84 65.43 86.73 80.93+ 87.65+ 76.11-

OneR 86.08 97.53 77.87 88.66+ 100.00+ 80.53+
RTree 82.47 76.54 86.73 87.63+ 87.65+ 87.61+
JRip 86.08 93.83 80.53 88.14+ 98.77+ 80.53=

Avg. 83.92 85.92 82.48 86.59+ 93.87+ 80.53-

The meta-algorithm implemented allows us to build more
accurate classifiers, so instructors can predict better the stu-
dent’s performance of their courses and improve the teaching
process. Nevertheless we are working in some improvements
such as extending the meta-algorithm in order to work with
a multi-valued class (more than two) or adapting it for work-
ing with multi-instance predictors, which will allow us to
combine instances of courses whose organization is different
and to obtain a common model for all of them. Finally, we
implement a new template for our ElWM tool [2] which uses
this meta-algorithm.

Out of educational data mining context, this meta-algorithm
offers an opportunity to improve any classification model
which presents statistical outliers in its training datasets.
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1. INTRODUCTION
In the recent literature, several data mining models have
been proposed to understand and improve the educational
performance and assessment of a student learning process.
For example, in [1] the authors illustrate a classification
model to investigate the profile of students which most likely
leave university without ending their study; in [2], the au-
thor uses association rule mining for assessing student re-
sults. Data mining techniques have been also applied in
computer-based educational systems (see, e.g., [3]). In our
research we present a data mining approach to analyze a
database containing information about students, in particu-
lar, their personal but anonymous data and their exams. We
consider the path of a student, that is, the way the student
implement her or his exams over the degree-learning time:
a student can take an exam immediately after a course, the
ideal choice, or later.1 The aim of this work is to under-
stand how this order affects the performance of the students
in terms of graduation time and final grade. See [4] for a re-
cent research in the field of choices in learning. We consider
the ideal path, i.e., the path of a student which has taken
each examination just after the end of the corresponding
course, without delay. Therefore, the ideal path matches
the curriculum settled by the academic degree. The path
of a generic student is then compared with the ideal path
by using two different approaches: the first one uses the
Bubblesort distance while the second is based on the com-
putation of the area between the two paths. Students who
have taken the exams in the same order, that is, students
with the same path, can have different final grade and grad-
uation time. The idea is to understand if there exists a re-
lation between these distances and the success of students.
If the students having small distances achieve good perfor-
mance, then we may conclude that the academic degree is
well structured but if there exist many good students with
large distances, then can mean that the organization should
be modified. Once the distances have been computed, they
can be inserted in the database, as new attributes of each
student, and a clustering analysis can be performed, for ex-
ample by using the K-means implementation of WEKA (see,

1
We refer to an organization which allows students to take an

exam in different sessions after the end of the course, as in Italy.
A drawback is that students end up graduating with a significant
delay. Some constrains between exams can be fixed in order to
force students to take exams in a specific order, however, usually
students have many degrees of freedom.

e.g., [5]). By using this methodology on our database, with
both approaches and K = 2, we obtained two clusters char-
acterized by small and large distances. The first one cor-
responds to the group of students who graduated relatively
quickly and with high grades; the second cluster corresponds
to students who obtained worst results. Our analysis shows
that the more students follow the order given by the ideal
path the more they get good performance in terms of grad-
uation time and final grade. In conclusion, no student with
a large distance achieves good results; we can conclude that
the academic degree under consideration was well scheduled.

2. THE METHODOLOGY
We consider a database containing the data of N students,
each student characterized by a sequence of n exams iden-
tifiers. We consider a particular path I = (e1, e2, · · · , en),
the ideal path, corresponding to a student which has taken
every examination just after the end of the corresponding
course, without delay. Without loss of generality, we can
assume that ei = i, i = 1, · · · , n, that is, I = (1, 2, · · · , n).
The path of a generic student J can be seen as a sequence
J = (eJ1

, eJ2
, · · · , eJn

) of n exams, where eJi
, i = 1, · · · , n,

is the identifier of the exam taken by the student at time i.

Therefore, J can be seen as a permutation of the integers 1
through n. In order to understand how the order of the ex-
ams affects the final result of students, we compare a path J
with I by using two different approaches. The first approach
uses the Bubblesort distance, which is defined as the number
of exchanges performed by the Bubble sort algorithm to sort
an array containing the numbers from 1 to n. The number of
exchanges, bounded above by n(n− 1)/2, can be computed
easily since it is exactly the number of inversions in the
permutation. Our second approach concerns the graphical
representation of the paths; we represent them in the inte-
ger lattice, the x-axis denotes the number of exam and the
y-axis the exam identifier, according to the order of the ideal
student. The ideal path is defined by the sequence of points
τI = ((0, e0), (1, e1), (2, e2), · · · , (n, en), (n+1, en+1)), where
e0 = 0 denotes the starting point of the path and en+1 =
n + 1 denotes the final examination taken last by all stu-
dents. Therefore, τI can be represented as the bisecting line
of the first quadrant. The path of a generic student J, is then
represented by a broken line corresponding to the sequence
of points tJ = ((0, eJ0

), (1, eJ1
), (2, eJ2

), · · · , (n, eJn
), (n +

1, eJn+1
)). By convention, we have eJ0

= 0 and eJn+1
= n+1

for every student J, that is, the resulting trajectory begins at
(0, 0) and finishes in the point (n+ 1, n+ 1) . We then com-
pare a path J with I by computing the area AJ ,I between
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Figure 1: The path (2, 1, 3, 5, 4) : σ(J ) = 2 and AJ ,I = 3.

τI and tJ . In Figure 1 we illustrate the path (2, 1, 3, 5, 4)
and its distances from the ideal path (1, 2, 3, 4, 5).

2.1 Cluster analysis
The database we analyze contains data of students in Com-
puter Science at the University of Florence beginning their
studies during the years 2001-2004 and graduated up to now.
The academic degree in Computer Science at the University
of Florence is structured in three years (Laurea triennale)
and students can choose among different curricula. Every
year is organized in two semesters; there are several courses
in each semester and at the end of a semester students can
take their examinations. Exams can be taken in different
sessions during the year and students can try to pass their
exams in any of these sessions, after the end of the course.
In the years under consideration, no constrains between ex-
ams were fixed, so students could take their exams almost in
any order. For each student, the database contains the iden-
tifier of the student, the grade obtained at the high school
level, the year of enrollment at the university, the date and
the mark of final examination and the sequence of exams;
each exam is described by an identifier, a date and a grade.
We considered students belonging to two slightly different
curricula: databases and distributed systems. In particular,
we analyzed the paths of N = 100 students characterized by
a sequence of n = 25 exams. For each curriculum we com-
puted the ideal path through an important pre-processing
phase, which allowed us to identify the semester in which
courses were originally hold by the teacher. In fact, the
original database did not contain the information about the
semester, which is fundamental for our purposes. In the
ideal path, courses relative to the same semester were sorted
by taking into account the preference of students. Therefore,
we obtained two different ideal paths of length 25. Then, for
each student J of both curricula we computed the distances
σ(J ) and AJ ,I from the ideal path and inserted these val-
ues into two fields Bubblesort and Area of the database.
We tried to sort our data according to both fields and we
found some pairs of paths having values of Bubblesort and
Area in reverse order. Therefore, these two distances are not
completely equivalent; however, this difference seems not to
be important for the clustering analysis, as we will see later.
To understand how the order of the exams affects the path

of the students, we have performed several tests by using
the K-means implementation of WEKA. We first analyzed the
paths of students separately for the two curricula. In par-
ticular, in both cases, we obtained significant result with
K = 2 and by selecting as clustering attributes the grad-
uation time, Time, expressed in days, and the final grade,
Grade, an integer between 66 and 110. In fact, with these
parameters we can see that students are well divided into
two groups: the group of students who graduated relatively
quickly and with high grades and the group of students who
obtained worst results, respectively. Luckily, we observed
that students in the first group are characterized by small

values of Bubblesort and Area while students in the second
group have larger values. Our analysis shows also that the
path of a student seems not to be affected by the results
achieved at the high school level. We performed similar
tests by adding the distance values as attributes of clus-
tering, and we obtained two more distinct clusters, which
divide students more precisely in terms of Time, Grade and
Bubblesort (or Area) distance. We finally analyzed together
the students belonging to the two curricula obtaining 2 clus-
ters with the following characteristics:

Attribute Full data Cluster 1 Cluster 2

Bubblesort 89.7 71.8 119.2
Area 121.5 96.8 162.2
Time 2156.7 1841.9 2678.1
Grade 98 101 94

This result confirms that, regardless of the curriculum, the
more students follow the order given by the ideal path, the
more they obtain good performance in terms of graduation
time and final grade. We point out that we obtained similar
results by using either distance. In conclusion, the method-
ology proposed in this research can be used to valuate the
organization of an academic degree in terms of the schedul-
ing of the courses.
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ABSTRACT 
In this paper, we analyze the interactions in a Web 2.0 platform of 
teachers from 60 schools integrating the Kelluwen network. This 
network is a part of a project aimed to introduce the Web 2.0 as a 
pedagogical tool for the development of socio-communicative 
skills in middle school students from Southern Chile. Clustering 
analysis was performed to understand the behavior of teachers in 
the network. The results allow us to distinguish two major groups. 
One characterized with a longer execution time of pedagogical 
activities -compared with the mean case- and the other one 
characterized by rating participation of their colleagues more 
frequently. 

Keywords 
Clustering analysis, teacher network, Web 2.0  

1. INTRODUCTION 
The increasing number of on-line services supporting teacher 
activities requires the analysis of their impact on targeted users. 
There is little information on the use that teachers make in these 
environments [1].  In the particular case of a teacher network, one 
of the challenges is to discover the factors that allow the network 
to grow over the time. Kelluwen network is part of a project 
aimed to introduce the Web 2.0 as a pedagogical tool for the 
development of socio-communicative skills, in middle school 
students from Southern Chile [3]. The network is supported by an 
on-line platform that provides several services related to the use, 
development, evaluation, execution and sharing of collaborative 
didactical designs. In each of these activities, the teachers can 
interact on the platform with their students, other colleagues and 
other classes (twin classes) which are executing the same 
didactical design. For instance, in the managing module teachers 
register the beginning and the end of each activity performed with 
their students, in the worklog teachers communicate with their 
students. In the Kelluwen wall teachers interact with other 
colleagues talking about the shared didactical experiences, etc. 
The last version of the platform is available at 
http://www.kelluwen.cl/app. In this work, we perform a clustering 
analysis to discover patterns in teachers according to the 
interaction activities that they undergo in the Kelluwen platform. 
Clustering is an unsupervised learning model usually applied in 
educational data mining for discovering groups of users in the 
context of e-learning environments [1].  This study applies Latent 
Class Analysis (LCA) [2], and also the classical K-means 
clustering algorithm, using procedures of R statistical in both 
cases. This is a first study of the interactions in this teacher 
network which intends to discover factors that would allow the 
Kelluwen community of practice to grow over the time. 

2. DATA ANALYSIS AND RESULTS 
The data from Kelluwen network of teachers executing a 
didactical design during year 2011 were used in this study.  From 

this, those who realised less than 20% of any didactical design 
were excluded. Finally, 55 teachers were considered of a total of 
68 teachers registered in the network. We identified nine measures 
which are related to the principal interaction activities of the 
teachers in the platform. A first measure is the number of 
didactical designs executed for each teacher, named NºDD in the 
analyses. From the Management module we computed the mean 
and standard deviation of time between the beginning of two 
sequential activities over the didactical designs executed by a 
teacher (Mean time and SD time respectively). At the Worklog 
module, the teacher interacts with their students and with 
colleagues from twin classes. Three related measures are defined 
in this case: Number of messages, number of answers to 
messages, and rating of messages that a teacher has written in the 
Worklog, during all the didactical designs executed by her (named 
Worklog messages, responses and ratings respectively). At the 
Kelluwen wall the teacher interact with their colleagues sharing 
her experiences in the execution of didactical designs. Three 
related measures are defined in this case: Number of messages, 
number of answers to messages, and rating of messages that a 
teacher has written in the Kelluwen wall, during all the didactical 
designs executed by her. We named these variables Wall 
messages, responses and ratings respectively in the analyses. 

2.1 K-means analysis 
To calculate the appropriate number of cluster, we plot the within-
groups sum-of-squares by number of clusters extracted. The plot 
in Figure 1 suggests K=5 or 6.  

  
Figure 1: sum of squares within groups as a function of 

number of clusters in K-means clustering 

Using the kmeans function from R, we compute the clustering 
with both values of K and we plot the obtained clusters jointly 
with the projection of original variables (red rows) in the principal 
component plane. Figure 2 shows the obtained clusters for K=5. 
There is one main group (4) with 43 individuals without 
distinctive features. Interestingly, two groups follow a more 
defined pattern: one group (3) of five individuals who spend more 
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time between sequential activities, and another group (2) of 3 
individuals that use the social services of the platform to interact 
with other teachers. Two singleton groups are 1 and 5 which 
correspond to two teacher characterized by an intensive use of the 
Virtual worklog.  

Figure 2: K-means cluster analysis with k=5 

2.2 Latent cluster analysis 
Following [4], we use the function mclustBIC from mcluster 
package of R to compute different models for latent cluster 
analysis. Two optimal models satisfying a maximum Bayesian 
Information Criterion (BIC) are obtained (see Figure 3). Both are 
multivariate models with independent variables of different 
variances and equal shape (VEI), with 3 or 4 components in the 
mixture. The values of BIC are -1943.008 and -1943.832. We 
select the model with 4 component because is more comparable 
with the k-means analysis.  

 
Figure 3: BIC as a function of components in LCA 

The corresponding clusters are computed with the mclustModel 
function, which gives a probability to each individual to be 
extracted from each cluster. We consider values upper 0.5 to 
assign a cluster to each individual. The resulting clusters are 
plotted jointly with the projection of original variables (red rows), 
in the principal component plane in Figure 4. We observe two 
main groups (2 and 4), with 34 and 12 individuals respectively, 
without distinctive features, and two other groups of teachers that 

follow a more defined pattern: one group (3) of three individuals 
who spend more time between sequential activities, another group 
(1) of 6 individuals that use the social services of the platform to 
interact with other teachers. 

Figure 4: Latent cluster analysis with 4 components. 

3. CONCLUSION AND DISCUSSION 
The Kelluwen network is supported by a Social Web collaborative 
learning platform which contains meaningful information 
enclosed in their system dynamics. In this work we performed 
initial cluster analyses using the teacher interactions in the 
platform to characterize their behavior. The results in both 
analyses show a major group of teachers more or less 
homogeneous and two secondary groups with some key features. 
One of them characterized with a longer execution time of 
didactical activities -compared with the mean case-, and the other 
one characterized by rating participation of their colleagues more 
frequently. Furthermore in the principal component plane, both 
features are represented as orthogonal. This finding allow us to 
hypothesize that the more the teacher uses the Web 2.0 services of 
the Kelluwen platform, the more regular is her behavior executing 
the didactical design. 
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ABSTRACT
Automatically identifying the various roles (e.g., mentor,
player) in multi-party collaborative chat is a challenging
task. To better understand the conversational demands of
mentors and players, this paper investigates the dynamics
and linguistic features of multi-party chat in the context
of an online educational game. In this paper we introduce
a novel computational linguistics method using a machine
learning algorithm to automatically classify utterances of
players and mentors in a serious game, where players act
as interns in an urban planning firm and discuss their ideas
about urban planning and environmental science in written
natural language. Our results are promising and our model
can be extended to any multi-party environment that lead-
ers (Mentors) are needed to be distinguished based on their
conversation.

Keywords
serious game, natural language processing, machine learn-
ing, multi-party chat

1. INTRODUCTION
Individuals in a collaborative learning environment often
adapt to specific roles, whether organically or directly as-
signed. Automatic role detection would provide a crucial
step in understanding the impact these roles have in col-
laborative learning dynamics [2]. Multi-party chat presents
an especially challenging task, as the tone is conversational,
and distinguishing between roles is relatively difficult (as
opposed to email, for example).

Previous research suggests that humans quickly infer a speaker’s
intentions, often within the first few words of an utterance
[3]. Thus, we selected UNIGRAMS and BIGRAMS as our
units of analysis. Our results also show that UNIGRAMS
perform much better than BIGRAMS. In our automated ap-
proach, we investigated the problem as supervised learning
in set of features and then we used machine learning algo-
rithms to learn the parameters of the model from annotated
training data.

In this paper, we analyzed four chat room conversations be-
tween 21 players and two mentors as they interacted within
the epistemic game Urban Science [4].

In this research, we introduce an automated method to ex-
plore a component of natural language processing, using ma-

chine learning techniques, to classify online chat room ut-
terances into one of two categories, player or mentor. The
proposed automated method relies on a model that empha-
sizes the use of the UNIGRAMS or tokens in an utterance
to decide: players vs mentors. For instance, chat utterances
such as; “What should I do?” and “Please check your in-
box.”, our automatic approach can detect that first chat said
by player and second was posted by mentor.

The resulting models and content feature sets (i.e., UNI-
GRAMS and BIGRAMS) were tested against an intercept-
only model (i.e., the baserate) to determine if it was possible
to accurately classify utterances according to the role of the
speaker (player or mentor).

2. METHODOLOGY

Participants and Procedure
Twenty-one high school-aged participants and two mentors
played Urban Science for ten hours over three days as a part
of a week-long Conservation Leadership Pro-gram. Play-
ers had no prior experience in urban planning and were re-
cruited by out-reach specialists at the Massachusetts Audubon
Society’s Drumlin Farm Wildlife Sanctuary. Players con-
versed with their planning team and a human mentor via a
chat window. The chat room corpus contained 1963 total
utterances, with 972 and 991 utterances from players and
mentors, respectively.

Data Processing and Feature Extraction
Before extracting features, we first addressed the issue of
chat-specific terms and emoticons (e.g., ”lol”, ”:)”). These
Chat-specific terms and emoticons were treated as individ-
ual tokens, as they were intended to convey emotion. Also
obvious misspellings (e.g., “Helo”) were corrected prior to
analysis.

The actual feature vectors were then generated on the basis
of this linguistic information by using a “bag of n-grams”
approach, i.e. by constructing n-grams (UNIGRAMS and
BIGRAMS). In addition to these n-gram counts, we also
included punctuation counts, average word length and av-
erage utterance length. The part of speech (POS) tagging
used the Penn Treebank tagset with some additions specific
to the problems related to a chat corpus.

Automated Classification
We used three automated approaches to classify the utter-
ances of players and mentors, each of which utilizes clas-
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Table 1: Automated classifier performance for three approaches based on 10-fold cross-validation experiments. Reported:
Accuracy, Precision, Recall and F-measure (baseline ∼= 50.48%).

Player Mentor
Features Acc. P R F P R F

CLASSIFIERS

UNIGRAMSsvm 81.03% 0.776 0.872 0.821 0.854 0.749 0.798
BIGRAMSsvm 76.82% 0.723 0.862 0.786 0.833 0.676 0.747
UNIGRAMSnb 75.58% 0.721 0.835 0.774 0.804 0.677 0.735
BIGRAMSnb 75.60% 0.711 0.854 0.776 0.822 0.66 0.732
UNIGRAMSj48 75.65% 0.727 0.814 0.768 0.793 0.70 0.744
BIGRAMSj48 60.98% 0.562 0.961 0.709 0.874 0.265 0.407

sifiers trained on the dataset. Our classification approach
provides us to model both content and context with n-gram
features. Specifically, we consider the following two n-gram
feature sets, with the corresponding features lowercased and
unstemmed: UNIGRAMS and BIGRAMS. Features from
the our approaches are used to train Näıve Bayes, Support
Vector Machine classifiers, and Decision Tree.

3. RESULTS AND DISCUSSION
The accuracy of the induced classifiers were measured using
a 10-fold cross-validation method, under its default setting
in Weka [1]. The parameters for our model were chosen
for each test fold based on standard cross-validation exper-
iments on the training dataset. Table 1 shows the results
of the top scores that we managed to achieve with each of
the three classifiers. We also used the combination of fea-
tures and learner parameters that were determined to give
the best accuracy by the classifiers. However the results
indicated that feature combination had the highest perfor-
mance. In Table 1, the “Features” column indicates which
features were used, and the following columns indicate the
results based on Accuracy, Precision, Recall, and F-measure
(Acc., P, R, F) for the two roles, player and mentor.

The resulting models from the automated classifiers were
quite successful, as each outperformed the 50.48% accuracy
attained by the intercept-only model (i.e., selecting ’mentor’
for every utterance). However one exception would be the
j48 model with BIGRAMS features. Here, we have reduction
in performance under the Mentor Recall column in Table 1.

The models based on the SVM method performed the best
overall, with 81.03% accuracy on UNIGRAMS and 76.82%
accuracy on the BIGRAMS feature set.

In our educational game, the conversation between players
and mentor are short, an average three tokens. It proves
us that BIGRAMS features performed more significant in
short conversations, since BIGRAMS features maybe per-
forms lower due to same features in both classes (however,
SVM performs better even in BIGRAMS).

Interestingly, the Näıve Bayes approach performs almost
25% more accurately than baseline (∼=50.48%) on both UN-
IGRAMS and BIGRAMS feature set. It also performed
higher than j48, but only on BIGRAMS features.

Overall, all the standard text categorization approach pro-
posed in Section 2 performed between 10% and 31% more
accurately than baseline. However, the best performance
overall was achieved by SVM on both UNIGRAMS and BI-
GRAMS features with accuracy of 81.06% and 76.82%, re-
spectively.

Overall, we have presented some preliminary evidence that

it is possible to automatically classify individuals’ roles in
multi-party chat within the context of the serious game Ur-
ban Science.

However, it remains to be seen whether these findings will
generalize to other serious games. Furthermore, the spe-
cific individual roles in this context were preassigned; when
peers interact in a collaborative learning environment with-
out predefined roles, certain roles or personalities may arise
organically.

Although this presents a significantly more challenging task,
it represents a critical step in understanding interaction dy-
namics in a collaborative learning environment.
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ABSTRACT
We show how students’ response patterns can be quanti-
fied both globally and locally using the concept of fractal
dimension. This metric allows us to identify students who
respond to a series of questions and problems in a persistent
or anti-persistent manner with implications for personalized
just-in-time teaching and learning.

1. INTRODUCTION
The motivation behind the present study lies in our obser-
vation that students’ responses considered as a time series
exhibit random walk- or Brownian motion-like characteris-
tics [1]. This observation naturally led to the question of
the quantification of such behaviors. Since fundamentally, a
random walk-like behavior exhibits irregularities or fluctu-
ations about the expectations, a concept that attempts to
look at such irregularities was deemed necessary. One such
concept is the fractal dimension [2]. In this paper we show
how students’ response patterns can be categorized using
the concept of fractal dimension, thereby identifying stu-
dents who do not exhibit persistent response patterns, and
hence most likely are struggling with a concept domain.

2. THE DATA AND THE METHOD
The response data analyzed in this study originated from
a class of about 250 students using MasteringChemistryr

(www.masteringchemistry.com) in an introductory chemistry
class at a large public university in the United States. Mas-
teringChemistry is an online Socratic homework tutor which
allows instructors to assign homework for their students,
which are then automatically graded by the platform.1 The
homework problems of tutorial nature in the Mastering sys-
tem provides students with automated feedback, followup
comments, and the opportunity to request declarative and
procedural hints at impasses.

The correct (graded 1) or incorrect (graded 0) first attempt
responses by students were tracked at the part level (e.g.,
part A, part B, etc.) of a given online homework question
or problem (we will collectively call these items from now

1The MasteringTM platform was originally conceived and
developed by David E. Pritchard and coworkers at the Mas-
sachusetts Institute of Technology, USA. It became part of
Pearson’s suite of online learning products in 2006.

on). The “first attempt” was defined as a correct or an in-
correct response by a given student to a given part of an
item without requesting any hints beforehand. Such inter-
actions were then tracked throughout the semester resulting
in about 550 first attempt interactions per student on av-
erage, which is the starting point of the retrospective data
mining and analysis task that we describe in this paper.

From the first attempt responses described above we de-
rived the “net-score”, which is the difference between the
number of correct and the number of incorrect first attempt
responses at any given instance. The net-score can thus be
considered as the displacement from the origin for a one
dimensional walker with a step to the right considered as
a correct response and a step to the left considered as an
incorrect response. If the walker is random walking, then
the fluctuations in the displacements against the number of
steps, and hence the fluctuations in the net-score against the
number of first attempt interactions – the response pattern
– would be rough or irregular.

2.1 Response Patterns & Fractal Dimension
How can we quantify the differences in the response pat-
terns? The concept of fractal dimension can be used to
quantify the degree of regularity or roughness of a student’s
response pattern, which is the variation of the net-score
against the number of first attempt interactions (which we
will call the net-score space) [3]. Thus, we use fractal dimen-
sion as a measure of the roughness of a curve rather than
its degree of self-similarity. A student having a perfect net-
score (i.e., all correct first attempt responses) would show a
straight line in the net-score space, and hence would have a
fractal dimension of 1 (this is equally applicable to a student
who has all incorrect first attempt responses). In contrast,
a student who is randomly responding would show a very ir-
regular pattern, which would ideally cover the 2-dimensional
net-score space, and hence would have a fractal dimension
of 2. Thus, the fractal dimension values would range from 1
to 2, with lower values corresponding to regular, and higher
values corresponding to irregular response patterns. Simu-
lation studies that we have conducted show that it is reason-
able to categorize a student as random walking when their
fractal dimension reaches a value of 1.8 or above (typical
errors are of the order of 0.1).

2.2 Global & Local Estimates
The fractal dimension characterization of a student’s re-
sponse pattern can be obtained either globally or locally.
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The former means that we can characterize the response
pattern of the entire semester. The latter means that we
can characterize subsets of interactions within the semester.
We have found that 16% of the students in the class under
consideration were random walking globally; that is, these
students were responding in a random fashion throughout
the semester. The local characterization was done by choos-
ing a first attempt interaction window of length 33 (which
roughly corresponds to about 10 items – the typical number
of items within an assignment) and shifting this window to-
wards higher interaction values whenever 4 new interactions
(which roughly corresponds to the number of first attempt
interactions within an item) become available. The time se-
ries of a student, with the local fractal dimension estimates
and the net-score (i.e., the response pattern) superimposed
on the same graph is shown in Figure 1.
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Figure 1: The changes in the fractal dimension and the net-
score (blue) along the response pattern for a student having
a global fractal dimension of 1.74. Only the first attempt
interactions up to the mid-semester are shown. The scale
(window of length 33) is also shown.

The particular student shown has a response pattern that
can be globally quantified as having a fractal dimension of
1.74, and hence this student cannot be considered as ran-
dom walking overall throughout the semester. However, the
response pattern locally shows interesting features, the most
prominent being the onset (around the 150th interaction) of
an increasing trend in the fractal dimension, and hence, an
increasing trend in the irregularity of the response pattern.
This shows that the student is struggling around this time.
It is worth noting that this difficulty (onset) for the student
starts at the beginning of encountering a new concept (stoi-
chiometry), and then showing signs of random response be-
havior (having a fractal dimension > 1.8) only 5 items later.
The concept areas where students act as random walkers
can then be clearly distinguished for just-in-time teaching
and learning.

3. CONCLUSIONS
We have shown that students’ response patterns can be
quantified using the concept of fractal dimension in a net-
score space either locally or globally. We are then able to
identify instances where they are in effect responding ran-
domly to a set of items imitating a random walk in one-
dimension. It can be questioned whether the net-score or
a traditional score alone would not be sufficient to identify
students who are struggling. In this context we note that
a typical net-score can be reached in many ways leading to
different response patterns, and hence, different fractal di-
mensions. Similarly, a traditional (say, percentage) score
provides only a point estimate and also raises issues of what
score would indicate mastery. The fractal dimension of a
response pattern encodes how a student has achieved that
score, which provides more finer-level information than a
single score. (The fractal dimension alone would not suf-
fice to identify a struggling student when that student has
a consistent but decreasing net-score. The combination of
the two would accomplish this task.)

The concept and method we have described and demon-
strated above can thus be used as an alert system to identify
students at risk and who are struggling within a given con-
cept domain. The method is easily scalable since it only re-
lies on students’ response patterns, and hence, a specific stu-
dent learning model or an instructional model is not needed.
Since the method is fundamentally reliant on the responses
it is important that the careless errors or lucky guesses are
accounted for. Given the complex non-multiple-choice na-
ture of the items with which the students have interacted in
this study, the likelihood of lucky guesses can be considered
to be negligible. Although the careless error rate may not
be as negligible, the correlations that we have investigated
with the end-of-term examination show that we are not tap-
ping into noise, and the responses that we have considered
are valid. We hope to understand how to correct for care-
less errors and lucky guesses, and the effect of factoring in
the second responses on the fractal dimension of a student’s
response pattern in the future.
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ABSTRACT
Curriculummining includes three main kinds of tasks: (i) ac-
tual curriculum model discovery, i.e. constructing complete
and compact academic curriculum models that are able to
reproduce the observed behavior of students, (ii) curriculum
model conformance checking, i.e. checking whether the ob-
served behavior of students match their expected behavior
as defined by the previously discovered or pre-authored cur-
riculum model, and (iii) curriculum model extension, i.e.
projecting information extracted from the observed data
onto the model, to make the tacit knowledge explicit, facil-
itate better understanding of the particular academic pro-
cesses and enable decision making processes. We discuss stu-
dent and education responsible perspectives on curriculum
mining and present the achievements of the ongoing project
aiming to develop curriculum mining software including pro-
cess mining, data mining and visualization techniques.

1. INTRODUCTION
An academic curriculum is a (legal) document defining a
specific learning program that puts certain types of con-
straints on how students are expected to take the courses.
These constraints typically describe a set of courses and a
set of relationships between these courses. The rule “Al-
gorithms must be passed before Advanced Algorithms can be
taken” can, for example, be seen in a computer science cur-
riculum.
In the current practice however, the rules in a curriculum
are usually stated informally, in a natural language, and are
thus subject to multiple interpretations. A curriculum is
considered simply as the range of courses from which stu-
dents choose what courses to study. It is not uncommon
that students have to approach their study advisors to ask
whether they are allowed to enroll in a certain course or
what would the impact be if they did. The advisors, on the
other hand, are themselves often confused and must ask the
board of education for clarification.
To alleviate the above problem we consider formal modeling
of a generic academic curriculum. The problem of curricu-
lar modeling has been widely recognized as an important an
nontrivial task, and so far there have been a few attempts to
address it. The problem of authoring and formal modeling
of curriculum constraints and personalized study curricu-
lum was addressed in [1]. Modeling an academic curriculum
plan as a mixed-initiative constraint satisfaction problem

was proposed in [7]. In [5] we identified some typical con-
straints defined in the existing curriculum and used the for-
mal language of Colored Petri nets (CPNs) to encode these
constraints in form of patterns, thus giving a precise and
unambiguous semantics to the study rules.
The advantages of having a formal and executable model
of a curriculum are not only in its elimination of ambigu-
ity, but in the fact that through the use of CPN Tools and
ProM (http://www.processmining.org), such a model al-
most directly o↵ers a wide range of possibilities: students
can automatically check, by themselves, whether they are
allowed to do something or not; historic data stored in the
log of the educational information system can be compared
against the model (in this way we could see whether the
curriculum was always respected in the past); the same his-
toric data can be used to equip the model with quantitative
information (probabilities, delays, etc.) enabling all kinds
of performance analysis (finding, e.g., the average time to
graduation, the most common paths, etc.) and casting rec-
ommendations; and online simulation of the model can fa-
cilitate real-time detection of curriculum violations.
In this poster we consider our current ongoing and further
planned work on the curriculum mining tools and techniques
development. We take both student and education respon-
sible perspectives on curriculum mining that correspond to
di↵erent information needs.

2. CURRICULUM MINING
Figure 1 illustrates the general ideas behind the curriculum
modeling and analysis. An information system that sup-
ports an educational institution generates event logs that are
stored in a database and represent e.g. student performance
and enrolment into the courses and corresponding exams.
Educators, responsible e.g. for curriculum development and
monitoring its e↵ectiveness, can help to identify typical con-
straints that should be enforced in the study process. Given
the event log reflecting historical data and pattern templates
we can mine all the patterns present in the database satis-
fying the templates. The resulting pattern set can be post-
processed in a semi-automatic way, and then a unique pro-
cess model can be assembled into a graph structure. On the
process model we can next perform standard task of process
mining, like e.g.: (i) determining popular paths and the most
important parts in the curriculum, (ii) extending the model
with additional information or modifying it, (iii) executing
various what if scenarios to facilitate real time decision mak-
ing, and (iv) real-time monitoring of the process flow as well
as monitoring for the changes in the flow or the curriculum.
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Figure 1: A conceptual view on the formal modeling of the
study curriculum.

Figure 2 gives an example how the prerequisite constraints
and follow up dependencies for the selected or currently rec-
ommended key course in the second year are projected to
the study curriculum of a particular student. A warning for
not having a high enough grade (8) for one of the prerequi-
site courses as recommended for taking C is highlighted in
red.
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Figure 2: Projecting patterns on the study curriculum.

3. ONGOING AND FUTURE WORK
Our current e↵orts are focused on making the simplest ele-
ments of curriculum mining work in practice such that stu-
dents, study advisors and directors of education would find
them useful. To achieve this we conduct a case study on min-
ing the studying behavior of students at Eindhoven Univer-
sity of Technology over the past 10 years. A typical set of the
educators’ questions to answer with CurriM include: “What
is the real academic curriculum (study program)? “How
do students really study?”, “Do current prerequisites make
sense?”, “Is the particular curriculum constraint obeyed?”,
“How likely is it that a student will finish the studies success-
fully or will drop out?. And students’ questions like “What
are the typical (or the best) ways to study?”, “What is my
expected time to finish?” and “Should I take courses A and
B or courses B and D now?”.
Besides the relatively straightforward tasks of conformance
checking for the known constraints [6], analyzing how much
time and e↵ort a particular activity takes [4], and student
dropout prediction [3], we work on providing support to an-
swering more elaborate questions. E.g. finding most com-
mon types of behavior and clustering them; finding emerging

patterns that capture significant di↵erences in the behavior
of students who graduated vs. those students who did not or
significant changes in behavior of students from one gener-
ation and the other; finding frequent patterns that describe
a bottleneck in the curriculum, i.e. patterns explaining for
which students it is the bottleneck and why. E.g. it is pos-
sible to observe that students who take Database modeling
theory before passing Logic and set theory or passing it with
the minimal grade have to do many more re-examinations
for several related courses. We expect that projecting such
information to the students will alter their studying behav-
ior, motivating them more strongly to focus on the critical
knowledge and skills at the right periods of their studying
paths.
It is not uncommon for the curriculum to evolve over time
and go through major changes from time to time. Therefore
our further work will also include mining and taking into
account changes in the study curriculum. This is related to
the recently introduced problem of concept drift in process
mining [2].
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ABSTRACT 

An Intelligent Tutoring System (ITS) is a computer system that 
provides a direct customized instruction or feedback to students 
while performing a task in a tutoring system without the 
intervention of a human.  One of the modules of an ITS system is 
student module which helps to understand the student’s learning 
abilities. Several data mining techniques like association rule 
mining, clustering and mining using Bayesian networks have been 
proposed to design effective student models in ITS systems. This 
paper provides a comparative study of the various data mining 
techniques and tools that are used in student modeling. We also 
propose an example-driven approach that can integrate mined 
concept examples at different difficulty levels with the Bayesian 
networks in order to influence student learning.  
 

1. INTRODUCTION  
An ITS system has four main components: interface which 
provides the means for the students to interact with the ITS 
through a GUI, expert model which describes the knowledge that 
represents expertise in the subject matter domain the ITS is 
teaching, a tutor model that takes or suggests corrective action 
when necessary and a student model that describes student 
behavior or knowledge, including his/her misconceptions. Though 
a lot of work has been done on student model data that describes 
their cognitive skills like knowledge on a particular concept [2], 
not too much attention has been paid to outside factors like 
examples that can be provided as help to students while they use 
the tutoring system and how they can improve student 
engagement and their skill level. WebEx [1] is a web-based tool 
for exploring programming examples that enable teachers to use 
example-based approach in order to maximize learning 
opportunity for every student, weak or strong by allowing them to 
explore program examples in his or her own pace and order. We 
propose to differ from this approach by rating the examples. 

2. DATA MINING TECHNIQUES AND 
TOOLS IN STUDENT MODELING  
A correlation between objectives of creating a student model and 
the mining methods used for the respective objectives is shown in 
Table 1. If the student model design is directed towards teaching 
strategies / course planning, where the stakeholder is an educator, 
the most effective mining methods are clustering and association 
rule mining, whereas if the student model design is directed 
towards student learning and improving, then the mining method 
most effective is classification and prediction. With student as a 
stakeholder, the most commonly used classification algorithms 
used are decision tree algorithms like C4.5 and J48 and Bayesian 
classifiers such as Bayesian networks. To experiment on the 
comparative analysis of these mining methods, we used two data 
mining tools: WEKA (http://www.cs.waikato.ac.nz/ml/weka/) and 
Bayes Server (http://www.bayesserver.com). 

 

 
 

Table 1: mining methods used in student model 

2.1 Overview of Bayesian Networks 
A Bayesian Network is a directed acyclic graph (DAG) of random 
variables (such as concepts, e.g., Add2Fracs) that uses Bayes 
theorem to depict probabilistic relationships between these 
variables. BNs used in student models typically have their DAGs 
designed by experts and the probabilistic relationships between 
variables are estimated by using some training data such as that in 
Table 2. Here, it is assumed that Add2Fracs is probabilistically 
dependent on Find_LCM and Attempt_made, hence Add2Fracs 
has these two as its parents.  

 
Table 2: An Example BN Training Dataset 

For a given sample X=(Find_LCM=False, Attempts_made=2),  
we have to compute P(X|Ci) for each value of class attribute Ci  
(In table 2, C is Add2Fracs that can have 2 values Pass and Fail) 
and find the maximum of them. Since Ci has 2 values and X has 2 
attributes, the number of such posterior probabilities is 4, as given 
in the Table 3. Using these probability values, we can compute 
P(X|Add2Fracs = Pass) = 1/6* 4/6=0.11 and P(X|Add2Fracs=Fail) 
= 2/4*2/4 = 0.75. This indicates that the probability of failing 
Add2Fracs is higher for the given sample X. A variable in BN is 
conditionally independent of all its nondescendants given its 
parents. The joint probability of the network computed by 
multiplying the conditional probabilities of each variable given its 
parents is P(X1  ... XN) = πi  P(Xi | Pa(Xi)) where Pa stands for 
parents of, i.e., P(Xi ) = P(Xi | Pa(Xi)). 
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Table 3: Posterior probabilities for Sample X 

When building a student model for the domain of adding 
fractions, each variable (concepts, tests and other student 
attributes) is assigned a conditional probability (CPT). Root(s) of 
the BN will store only prior probabilities in their CPTs. All other 
variables that are child nodes store conditional probabilities in 
their respective CPTs. This is shown in Figures 1, 2 and 3. 

3. PROPOSED ALGORITHM  
We are currently working on algorithms to study the effect of 
relevant examples on student performance. A relational table of 
examples stores the domain and topic to which they belong, input 
fraction numbers, detailed solution of the example, its difficulty 
level and rating. Table 4 shows a sample table.  

 
Table 4: Sample example table (CD = Common denominator, 

DD= Different Denominator) 
When a student uses the ITS for the first time, a new student 
model is created. This model stores the attributes describing the 
student and the initial Bayesian network with the respective 
probabilities for each node. A table of examples is also given as 
input to the student model. A student is recommended to use 
examples before attempting a certain activity or task. A 
comparison of the scores he/she achieves is then made. Thereby, 
if the student’s skill level has increased, the rating of the example 
is increased. A student is then presented with examples of higher 
difficulty depending on the skill level he/she has achieved. This 
method has a two-fold advantage. Examples help students learn a 
skill better and faster. Secondly, from the logged table of 
examples, we mine the most useful example (measured by the 
rating) using an association rule (e.g., Apriori-like or FP-growth 
like) or sequential pattern algorithm. This information can then be 
accessed by other student models to help them pick more useful 
examples. As future work, we propose to use K-means algorithm 
to cluster examples into different groups so that examples that 
come before constructing the BN for the student model will 
ascertain the relationships between variables. Sequential pattern 
mining can also be applied to the examples to ascertain an 
effective order in which they are recommended to students. An 
algorithm is shown below.  
 Initial BN   Example DB 

 

 
 
 
 
 
 

4. EXAMPLE STUDENT MODELING  
We used WEKA and Bayes Server to describe student attributes 
and their probabilities. The training dataset D consisted of 100 
rows or instances and 10 attributes in a domain of adding 
fractions.  WEKA classified 76% of our instances. There are two 
steps in creating a Bayesian network: creating DAG and assigning 
prior and conditional probabilities to each node. These steps can 
be either done manually by an expert or can be learnt 
automatically. We preferred to create the DAG manually and 
input it as an xml file to WEKA but use WEKA to compute the 
initial probabilities for each node using an input csv file with our 
dataset D. We used Bayes Server for creating and studying 
Bayesian networks. Bayes Server does not learn the structure of 
DAG automatically, but like WEKA, it computes the probabilities 
from a training data set given as an excel file. Figure 1 shows the 
DAG generated by Bayes Server for the training set given in table 
2. Figure 2 shows the detailed CPT for node Add2Fracs where 
State1 = False and State2 = True. 

   
Figure 1: BN for table 2             Figure2: CPT for 
              Add2Fracs  
As evidence is introduced, the CPTs of each node get updated. 
Figure 3 shows the updated BN when evidence Age = False. 

 
Figure 3: Updated BN ( indicates an evidence) 

5. CONCLUSION 
ITS Systems have progressed greatly in terms of adjusting 
instruction, using individualized strategies that are effective for 
students. However, there is little work done on how aids like 
examples help students improve their learning skills. This paper 
attempts to analyze the tools and techniques used in ITS’s student 
models. Future work proposed is to mine up the most important 
example from several and present it to the student to enhance 
learning and understanding. 
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1. Student chooses a module (for example Add fractions with Common 
denominator (eg. current_module=ADD_CD)) 
2. If student wishes to see examples before attempting a task: 
    Until task is achieved or number of example exceeds 3, do 
               - show next example E from current_module 
               - student attempts task  from current_module 
               - if task is done successfully, 
    rating of example E  is incremented by 1 
3. If number of example exceeds 3 and the task is still not achieved, then the 
tutor module is informed (and the student is asked to repeat the module).  
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ABSTRACT
This paper outlines the feedback creation and assignment
techniques used in a mammography focused Intelligent Tu-
toring System (ITS) Shufti. Shufti’s aim is to provide med-
ical students with an improved learning environment, ex-
posing them to a broad range of examples supported by
customized feedback and hints driven by an adaptive Rein-
forcement Learning system and Clustering techniques.

1. INTRODUCTION
Shufti is an Intelligent Tutoring System (ITS) which has
been designed to help medical students learn the skills they
need to master the complexities of producing a medical diag-
nosis based on relatively poorly defined, low contrast images.
ITS’s are tutoring systems which approximate human one-
on-one tutoring experiences. Shufti takes the form of a web-
based computer game in which learners compete with one
another to correctly diagnose images. They are presented
with mammograms overlaid with grids and are required to
identify Regions Of Interest (ROI) by selecting cells in these
grids. As students complete each exercise, they are given a
score derived from their accuracy in identifying lesions less
points for any hints they may have requested.

Effective human tutors play an active role in the learning
experience, providing hints and positive and negative feed-
back in a strategic fashion. Furthermore, they adapt their
feedback to suit the learning styles of their students.

For an ITS to produce similar results it must provide com-
parable forms of interaction, which is non-trivial for an ITS
in the field of mammography as it is an ill-defined domain by
the definition of Viger et al [1]. Mammography lacks clear
domain models, formal theorems, and cognitive models nec-
essary to automatically teach mammogram diagnosis using
conventional ITS construction methods[1]. Consequently,
Shufti utilizes a variety of means to effectively simulate at-
tributes of a human tutor.

2. APPROACHES TO FEEDBACK
Exercises in Shufti are categorized by difficulty level. Stu-
dents move from one level to the next after accumulating
sufficient points on a certain number of mammograms.

For each exercise Shufti, records the task state transitions
which comprise of the exercise state and learner’s actions
during the exercise. Included in this are current and past

states representing their current solution, the last action
taken, Shufti’s feedback, and the reaction to the feedback
by the learner. The state is the number of grid cells se-
lected which differ from the exercise solution (i.e. hamming
distance). Actions are operations such as toggling square
selections, certain mouse movements, hint requests, and the
submission of an exercise for evaluation. Reaction to feed-
back is whether or not the learner explicitly found the pre-
vious feedback helpful.

The polarity of feedback is based on whether it is a positive,
encouraging message or a negative, corrective message. The
polarity is selected based upon whether the state of the ex-
ercise improved or degraded. Degradation or improvement
is determined through comparison of current and past ham-
ming distances from the correct state.

Feedback is a critically important part of the effectiveness
of a human tutor. To this end, Shufti contains methods
for determining the content, polarity and timing of feed-
back. Shufti employs two feedback control approaches: a
clustering-based method and a technique based on Rein-
forcement Learning.

2.1 Clustering-based method
Shufti clusters learners based on their level, points accumu-
lated, the number of requested hints, and the number of
exercises they have attempted.

The timing of feedback is governed by a number of differ-
ent models. Random feedback, as its name suggests, occurs
randomly. Timed feedback is delivered after timed intervals.
After Action feedback is issued in response to the learner un-
dertaking any action. Timed After Action feedback is similar
to After Action except it is delayed by a specified time. Ran-
dom After Action feedback is similar to After Action except
it is randomly delivered (it may or may not be issued)

For a given learner, when Shufti has to decide on feedback
based on one of the timing models, the potential apprecia-
tion of the feedback is assessed based on the task state tran-
sitions of similar learners (i.e. learners in the same cluster
as the current learner).

If a learner is likely to appreciate a feedback, it is issued.
This prediction is based on the likelihood of the reaction
to feedback being positive for all available similar records
in the task state transition file of all students in the clus-
ter. In the case of a cold start, a random feedback will be
issused. This is also performed at random times so as to
explore and discover new situations in which feedback may
be appropriate.

Clustering allows Shufti to adapt to fit individual learners
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or problems. Shufti uses all available data to learn which
feedbacks are effective.

2.2 RL-based method
Adapting to individual students, though time consuming,
is one of the ways in which human tutors offer a superior
learning experience. Reinforcement Learning (RL) offers an
automated method for an ITS to tune its feedback delivery
to individual learners thus approximating a human tutor.

RL is a class of machine learning techniques which resolve
problems of mapping situations to actions in order to max-
imize or minimize a metric[2]. RL allows Shufti to adapt
to individual students, learning the most effective times to
issue feedback, thus avoiding preset timing models.

An RL system can be thought of as two components; an
agent and an environment within which it acts. The envi-
ronment provides state data and a reward signal to the agent
which in turn attempts to maximize the total reward over
time. The agent makes use of methods such as Temporal-
Difference Learning[2], or Monte Carlo Methods[2] to deter-
mine the most long term rewarding action to take in any
given state.

Shufti’s environment offers task state transitions as state
information to the agent. The reward signal is determined
by the following formula with the agent seeking to minimize
it. It should be noted that when we refer to penalties in the
coming paragraph we refer to penalties applied to the agent
not to the learner.

P = σ ∗ count(τ) + ω ∗ count(f) − α ∗ score

Where P is the total penalty assessed to the agent, σ is the
penalty assigned over time, count(τ) is the total time passed,
ω is the feedback penalty, count(f) is the total number of
feedbacks given by the agent, α is the reward per score point
earned by the user, and score is the total score that the user
is assigned for the the exercise. Time taken is penalized to
encourage the agent to give feedback as a means to hasten
the answering of the question. Penalties are also given to the
agent each time it gives out a feedback in order to produce
strategic feedback selection and timing. In other words, this
allows the agent to strike a balance between helping the
learner and allowing self driven action. The rate of feedback
can be controlled by varying σ and ω with it increasing
with σ and decreasing as ω increases. Such variation of the
values can either be done automatically so as to simulate
the withdrawal of support of a human tutor, or can be done
manually by an instructor as part of a larger lesson plan.

This RL-based method not only offers Shufti the ability to
control the timing, polarity and content of feedback, but also
the ability to adapt to individual learners, thus more closely
mimicking human tutors. The downside of this method is
the need to understand an effective tutoring strategy for
each learner, unlike the previously discussed clustering method
which takes advantage of information from many learners in
order to adapt.

3. COMPETITION
One of the key limitations in traditional training of medical
students in imaging analysis is the amount of cases students
are exposed to. There are two ways in which Shufti ad-
dresses this issue: first of all, Shufti has a very extensive

selection of exercises covering a wide range of scenarios un-
likely to be seen during a student’s short rotation in a ra-
diology department and, secondly, Shufti uses competitive
techniques learned from gaming to incent students to ex-
pose themselves to as broad a range of scenarios as possible,
deepening their knowledge in the field.

Competitive practices in learning have been shown to pro-
duce significant improvements in learner performance [3].
To foster competition, Shufti adopts practices from compet-
itive sports and gaming. Learners are not assigned scores
based on any one single measure but instead on a composite
of measures designed to work with hints from Shufti.

In total, the scores are created based on problem difficulty,
answer accuracy, time spent answering the exercise, and
learner requested hints. Learners are presented with a wide
variety of means to see how they rank next to their peers.
In addition to typical public leader boards (commonly used
with popular on-line games), Shufti presents performance
distribution curves. A learner’s overall ranking in Shufti is
based on the sum of all scores they have received from all
exercises, encouraging them to attempt a large number of
exercises.

4. HINTS
Hints in Shufti are user-requested, optional pieces of infor-
mation which aid in solving exercises. They differ from feed-
back in both how they are issued to the learner and their
content. Feedback, for example, takes the form of general
statements such as, “Good job!”, whereas hints are more di-
rect such as suggesting a general area in which an ROI may
be located.

Users are presented with a set of possible hints to request,
each hint being labelled with a description of what kind of
information the user will receive, along with a specific score
penalty which will be applied should the user accept the
hint.

Hint penalties ensure the user does not try to improve their
score through excessively requesting hints - a phenomenon
known as gaming the system [4]. Hint penalties may also
have the interesting effect that learners will strategically se-
lect the minimum number of hints necessary for them to
answer an exercise correctly. Additionally, this causes stu-
dents to think strategically about which hints they might
want to accept, thus broadening their understanding of the
diagnostic process.
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ABSTRACT
In this paper, we propose a new approach to find the most
dependent test items in students’ response data by adopt-
ing the concept of entropy from information theory. We
define a distance metric to measures the amount of mutual
independency between two items, and it is used to quan-
tify how independent two items are in a test. Based on the
proposed measurement, we present a simple yet efficient al-
gorithm to find the best dependency tree from the students’
response data, which shows the hierarchical relationship be-
tween test items. The extensive experimental study has been
performed on synthetic datasets, and results show that the
proposed algorithm for finding the best dependency tree is
fast and scalable, and the comparison with item correlations
has been made to confirm the effectiveness of the approach.
Finally, we discuss the possible extension of the method to
find dependent item sets and to determine dimensions and
sub-dimensions from the data.

1. INTRODUCTION
Data mining is the analysis step of the knowledge discov-
ery in databases process, and it is the process of discovering
novel and potentially useful information and patterns from
large data sets. There are different data mining technolo-
gies lying at the intersection of artificial intelligence, ma-
chine learning, statistics and database systems. The goal
of data mining is to extract useful and previously unknown
information out of large complex data collections. Data min-
ing techniques have been applied to many other fields. In
the context of educational research, educational data min-
ing refers to developing methods for exploring the unique
types of data that come from educational settings, and using
existing data mining or developing new methods to better
diagnose students’ performance and design tests that better
suits students.

Students’ response data contain the responses of students
to a set of test questions. It can be used to determine the
knowledge of a student has learned, and it can also be used
to discover the relationship between the test items latent or
underlying attributes. Such relationship may take the form
of attempting to find out which variables are most strongly
associated with a single variable of particular interest, or
may take the form of attempting to discover which relation-
ships between any two variables are strongest. Students’ re-
sponse data are beneficial to both test developers and course

instructors. Students’ response data contains valuable infor-
mation that can be used to improve the effectiveness of test
items, and for course instructors, students’ performance on
the test is importance to instructors for the guidance and
improvement of teaching.

2. INFORMATION THEORY BASED METHOD
In the information theory, the main concept is entropy. It is
defined to measure the expected uncertainty or the amount
of information provided by a certain event. We feel more
surprised when an unlikely event happens than a likely one
occurs. One useful measure of the extent of surprise of an
event is to use the logistic function. Suppose the probability
of an event happening is p, then the extent of surprise of such
event can be defined as −logkp, in which k refers to the base
of the logistic function. From this definition, it can be seen
that the less the probability is, the higher the amount of
information the event would provide. Given the example
of students’ response data, items that have been answered
correctly by a small portion of students contains much more
useful information for course instructors than the items that
have been answered fully correct.

We adopt the conditional entropy to measure the mutual
information, which is a distance metric.

Definition 1 (Mutual Information Measure). The mu-
tual information measure with regard to two random vari-
ables A and B is defined as:

MI(A,B) = H(A|B) +H(B|A) (1)

Mutual information measure is a measure of how indepen-
dent are the two random variables when the value of each
random variable is known. Two events A and B are in-
dependent if and only if their mutual information measure
achieves the maximum H(A) + H(B). Therefore, the less
the value of the mutual information measure is, the more
dependent the two random variables are. According to this
measure, A is said to be more dependent on B than C, if
MI(A,B) ≤ MI(A,C).

2.1 Finding the Best Dependency Tree
Dependency tree was introduced by Chow and Liu [1] and
it has been used in finding dependency structure in the fea-
tures which improve the classification accuracy of the Bayes
network classifiers [3]. [2] used the dependency tree to rep-
resent a set of frequent patterns, which can be used to sum-
marize patterns into few profiles. [4] presented a large node
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Figure 1: Comparisons between mutual independency measure and the correlations

dependency tree, in which the nodes are subsets of variables
of dataset. The large node dependency tree is applied to
density estimation and classification.

2.2 Extensions
The method described in the paper can be easily extended to
be capable of handling two item sets, each of which consists
of different items. This extension is useful in the sense that
it could provide the dependency relationship in a higher level
and the extended method is able to generate the dependency
between different sub-strands, which makes entropy-based
dependency method superior to the traditional correlation
method. The generated best dependency tree could be used
to determine dimensions and sub-dimensions of the data.
This can be done by summarizing patterns from the best
dependency tree.

3. SIMULATION RESULTS
In this study, we compare the strength of the correlation
against the mutual information measure between two vari-
ables. In general, the more independent two variables are,
the more related two variables should be. In this sets of
experiments, we graph the relationship between mutual in-
dependency measure and the correlation of two test items.

Figure 1 shows the relationship between the mutual indepen-
dency measure and the correlations. Figure 1(a) plots the
relationship among items in a short test, Figure 1(b) plots
the relationship among items in a medium test, and Figure
1(c) plots the relationship among items in a long test. From
Figure 1(a), since 5 items are included in the simulated data,
the number of 2-item combinations are C2

5 = 5x4
2

= 10, for

Figure 1(b), 20 items will produce C2
20 = 20x19

2
= 190 differ-

ent combinations of 2-item sets, and for Figure 1(c), there
are C2

50 = 50x49
2

= 1225 combinations for 50 items. From all
figures, it can be seen that the slopes of the regression line
are negative, which confirms the fact that the more the mu-
tual independency between two variables, the less correlated
they are. The R2 of the regression line is the indication of
how strong the linear relationship is. In all cases, the values
of R2 are greater than 0.65, and in Figure 1(a), the R2 in-
dicates a strong linear relationship, while that relationship
is stronger in Figure 1(b) and Figure 1(c).

Figure 2 displays the best dependency tree structure calcu-
lated from the simulated data1 and data2. There are two
patterns {Q1, Q3, Q4}, {Q2, Q5}) observed from Figure
2(a) and in Figure 2(b), all the questions are highly depen-
dent on Q13.

Q1

Q2

Q3Q4

Q5

(a).Best dependency tree
constructed from data1

Q13

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q14Q15Q16Q17Q18Q19
Q20

(b).Best dependency tree
constructed from data2

Figure 2: The dependency tree structures of two tests

4. CONCLUSIONS AND FUTURE WORK
In this paper, we apply the concept of entropy to propose a
distance metric to evaluate the amount of mutual informa-
tion among records in students’ response data, and propose
a method of constructing dependency tree from the data.
The experimental results confirm the effectiveness and effi-
ciency of the proposed method.

There are some potential work on the research agenda. First,
the information theory based method presented in this pa-
per finds the dependent item pairs, and it can be extended
to calculate the dependency between item sets. Second, the
simulation results conducted in this paper are on synthetic
data, and applying to real students’ response data is neces-
sary.
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ABSTRACT 
Bayesian ability estimation is a statistical inferential framework 
constructed from a measurement model and a prior knowledge 
model. It is attractive in practice because Bayesian estimation 
methods offer an elegant way to incorporate appropriate 
knowledge on target ability distribution in order to improve the 
accuracy of ability estimation, when there are uncertainties or 
errors in observable data. One hurdle for applying Bayesian-based 
methods is evaluating the validity of Bayesian ability estimates at 
individual-level. This study investigated a class of fit-to-model 
statistics for quantifying the evidence used in learning Bayesian 
estimates. The relationship between fit-to-model statistics and root 
mean square error of Bayesian ability estimation was 
demonstrated with simulation.  
Keywords 
Bayesian ability estimation, student modeling, evaluation. 

1. INTRODUCTION 
Bayesian ability estimation methods have been widely applied in 
educational testing [2]. Despite its popularity, Bayesian ability 
estimation is not the standard estimation method of individual 
ability estimation for several reasons. One criticism of the 
Bayesian approach is that one can arrive at significantly different 
answers if different prior distributions are used when analysing 
the same evidence [2]. In general, two students with the same raw 
score may get two different Bayesian score if they have different 
prior distribution. The student having a higher average prior will 
get a higher Bayesian score than the student having a lower 
average prior. This criticism invites the methodology of 
evaluating alternative prior distributions, when more than one 
prior distribution is available. Another closely related criticism is 
that Bayesian scores may be biased towards the mean of prior 
distribution [2]. Again, this points to the necessity of assessing the 
weight of prior knowledge against evidence from empirical data. 
This study investigated a class of fit-to-model statistics for 
quantifying the evidence used in learning Bayesian estimates. The 
relationship between fit-to-model statistics and root mean square 
error of Bayesian ability estimation was demonstrated with 
simulation. In this study, latent ability and evidence are assumed 
to be uni-dimensional. It means that tasks (or items) come from 
the same domain, and latent ability can be measured on the same 
scale as tasks.  

 
2. METHODOLOGY 
In the context of individual ability estimation, Bayesian ability 
estimation can be stated as following. Given a student responses 

x , , … , , and a prior ability , the posterior 
distribution of this student ability is written as,  |x x| x  x|  represents the causal relationship between latent ability 

 and response vector . An important assumption in x|  is 
that no dependence is among item responses given . This study 
uses Expected A Posteriori (EAP) proposed by Bock & Mislevy 
[1] as Bayesian estimation method. The Expected A Posteriori 
(EAP) score is the sum of all possible products of |x  and .  
 
The following section presents a class of fit-to-model statistics for 
evaluating EAP ability estimation. In this study, the methodology 
to evaluate evidence is based upon evaluating the conformality of 
empirical data to an ideal of conjoint measurement. Rasch 
measurement model is one instance of conjoint measurement. 
Measurements using this methodology are known as fit-to-model 
(or model-fit) statistics. These statistics may be based on a 
residual-based index measuring the distance between observed 
reponses and the expectation of Rasch-type measurement model. 
This class of fit-to-model statistics is based on substantial 
measurement theory. Specifically, these fit-to-model statistics 
allow one to assess the non-crossing properties of person response 
functions, which are characterised by . When person response 
functions are parrallel (or non-crossing), the invariance of person 
order is maintained. In other words, the order of individual 
abilities is the same across item difficulty scale. In Rasch-type 
measurement model, both person order and item order are 
invariant by definition. Therefore, checking the comformality to 
Rasch model is effectively assessing the quality of evidence. 
 
A simple residual statistic is the squared standardised residual. A 
mean squared standardised residual is the squared standardised 
residual divided by the degree of freedom. The mean squared 
standardised residual fit statistic (MNSQ) [3] for an individual 
with latent ability estimate  and observed responses x of the 
length L is represented as,  1 1  
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3. SIMULATION STUDY 
The accuracy of estimated Bayesian abilities was compared with 
the true abilities. The evaluation of ability estimation is done by 
using Root Mean Square Error (RMSE), i.e. ∑ , where  is the estimated 

ability at rth replication, and  is the number of replications. 
Simulation was performed with the help of ConQuest software 
[4]. The quadrature points used in marginal probability estimation 
are 15.  
 
This experiment aims to show the relationship between the 
MNSQ fit-to-model statistic and the accuracy of Bayesian ability 
estimates. For each replication, a test of 30 items was generated in 
normal distribution, 0,1 . A sample of 5,000 response data 
was generated from a norm ability distribution 0,1 , and the 
30-item test. This data set consists of 16% cheating examinees at 
low ability range (i.e.  1), and 16% careless examinees at 
high ability range 1. The cheating responses were created 
by imputing correct responses to the most difficulty items (i.e.  1), and the careless responses were created by imputing 
incorrect responses to the easiest items (i.e.  1). Another 
data set of 5,000 data was generated from the same test without 
aberrant responses, and this data set was used to set a baseline 
benchmark. The RMSE was calculated with a replication of 20.  
 

 
Figure 1a 

 

 
Figure 1b 

 
The Figure 1a shows the relationship between MNSQ fit and 
RMSE for normal responses, and Figure 1b shows the relationship 
between MNSQ fit and RMSE for a mixture of normal responses 
and aberrant responses (i.e. 32%). Both MNSQ and weighted 
MNSQ fit statistics have an expectation of 1 and variance of 2/  
[12]. Thus, MNSQ fit values are expected to be centred at 1 and in 
the range of (0.5, 1.5) for a test with 30 items.  MNSQ values less 
than 0.5 are considered as over-fit, and MNSQ values greater than 
1.5 are considered as under-fit. For the normal responses, MNSQs 
are centred on 1, and they are mostly clustered in the range of 
(0.6, 1.2), and RMSEs are mostly scattered in the range of (0.2, 
0.7). Thus, MNSQ model-fit statistics for normal responses are in 
a reasonable range. For the mixed data set, responses were 
scattered in two distinct clusters. The cluster located at the 
bottom-left has the RMSE in the range of (0.2, 0.65), which is 
similar to the RMSE in the baseline figure. The bottom-left cluster 
has the MNSQ in the range of (0.8, 1.0), which is in the range of 
reasonably good fit. The top-right cluster has the MNSQ in the 
range of (1.05, 1.4) and the RMSE greater than 0.7. It appears that 
the MNSQ fit statistic is reasonably sensitive to large RMSE, for 
at least this experiment. 
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ABSTRACT
Teachers gain significant information about their students
through close observation of classroom activities. By noting
which actions a student takes to achieve particular goals, a
teacher can often infer the knowledge possessed by the stu-
dent and diagnose misconceptions. In this work, we develop
a framework for automatically inferring a student’s under-
lying beliefs from a set of observed actions. This framework
relies on modeling how student actions follow from beliefs
about the effects of those actions. We demonstrate the prac-
ticality of this approach by modeling empirical student data
from an educational game and validate its performance via
a controlled lab experiment. In the educational game, in-
ferences were consistent with conventional assessment mea-
sures; in the lab experiment, the model’s inferences reflect
participants’ stated beliefs.

1. INTRODUCTION
By observing a student work towards a goal, a teacher can
infer what actions the student believes are necessary to achieve
the goal and how the student believes those actions affect
her progress towards the goal. Critically, a teacher might
observe a student’s actions and realize that the student has
misconceptions about the effects of the actions. This allows
for intervention and correction of those specific misconcep-
tions – something that is vital in an educational setting [5].
In this work, we formalize a student model in which the stu-
dent’s knowledge is characterized by her beliefs about how
her actions affect the state of the world and what states
are most beneficial for achieving her goals. We propose a
framework for automatically inferring these beliefs based on
observed actions, drawing on ideas from inverse reinforce-
ment learning. In order to make inferences about students’
beliefs, we use Markov decision processes to model how those
beliefs combine with their goals to determine their actions.

Previous work that has focused on understanding the ac-
tions of others has typically assumed that the person taking
the actions has full knowledge of how those actions affect
the world. For example, work in plan recognition has fo-
cused on identifying what the intended plan of action is from
some set of already observed actions (e.g., [4]), as well as on
categorizing sets of individual actions into strategies and
larger semantic parts (e.g., [1]). This work has shown plan
recognition to be useful both in human-computer interaction
and in understanding data from educational programs. Our

approach extends the idea of automated inference about a
student’s actions to a context in which there may be many
actions performed and the person may have misconceptions
about how actions affect progress toward the goal.

2. INFERRING STUDENT BELIEFS
We consider tasks in which students are trying to achieve
some known goal (e.g., win a level in a game) but may
have misconceptions about how to achieve that goal. We
model these misconceptions using Markov decision processes
(MDPs). MDPs provide a natural framework for sequen-
tial planning problems in which people must reason about
the immediate gains or costs of an action and how that ac-
tion affects the ease with which the goal can be achieved
in the future (see [7] for an overview). An MDP is a tuple
〈S,A, T,R, γ〉, where S is the set of possible states of the
world and A is the set of actions that one can take. T rep-
resents the transition model p(s′|s, a) specifying the proba-
bility of transitioning to a state s′ given that the action a
was taken in state s. R corresponds to the reward model
r(s, a, s′) that specifies the reward for taking action a in
state s and entering state s′, while γ represents the relative
value of immediate versus future rewards. From this spec-
ification, one can calculate the expected sum of discounted
rewards obtained from each state s and action a:

Q(s, a)=
X
s′∈S

p(s′|a, s)

 
r(s, a, s′)+γ

X
a′∈A

p(a′|s′)Q(s′, a′)

!
,

which is known as the Q-function and can be calculated via
a dynamic program [3]. The distribution p(a|s), known as
the policy, gives the probability an agent will choose action a
given state s. As in [2], we model people using a noisily opti-
mal policy in which p(a|s, T,R, γ) ∝ exp (βQ(s, a|T,R, γ)),
where β is a noise parameter.

We assume that students may have misunderstandings about
the effects of their actions, and thus their beliefs may not
reflect the true transition model. Our goal is to infer what
transition model the student believes is correct. Formally,
we consider a hypothesis space T of possible transition mod-
els and infer a probability distribution over this space based
on the observed student actions. Using Bayes’ rule, we can
compute the posterior distribution p(T |a, s) ∝ p(a|T, s)p(T ),
where a = (a1, . . . , an) is the series of observed actions
and s = (s1, . . . , sn) is the corresponding series of states.
This posterior distribution represents how likely it is that
the student’s beliefs correspond to a given hypothesis T by
combining the prior p(T ) and the likelihood p(a|s, T,R, γ).
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The prior can encode knowledge about which misconcep-
tions are common. The likelihood p(a|s, T,R, γ) represents
how well the data fit hypothesis T and can be computed via
the Markov property. We can use the posterior distribution
over transition models to determine how probable it is that
the student has an incorrect understanding of her actions
and to calculate what misconceptions are most likely.

3. APPLICATIONS
We used the MDP framework to infer learner beliefs in both
an educational game and in a learning task in the lab. The
first task allowed us to compare the model to traditional as-
sessment measures, while the latter provided an opportunity
to more carefully validate the predictions of the model.

3.1 Microbe Game
We first applied the MDP framework to data from a pub-
licly available educational game in which students learned
about cell biology by playing the part of a microbe navigat-
ing through increasingly challenging environments [6]. The
student’s goal on each of the ten levels is to maximize their
chances of surviving the level by purchasing appropriate
amounts of mitochondria and chloroplasts. Students may
play a level multiple times if they are initially unsuccessful.
We modeled data from Level 6 of the game, which introduces
sunlight into the environment for the first time. In applying
the MDP framework, we consider transition models defined
by the number of mitochondria and chloroplasts the student
believes are optimal for success. We then infer these beliefs
from the series of buying actions and play attempts.

Data came from a pilot study of the educational game con-
ducted in seven schools. A total of 127 students played the
game in class or at home and then participated in a post-test
to measure content understanding. Post-test scores were
analyzed using a standard Rasch Item Response Theory
model [8], which yields an ability estimate for each student.
The MDP model was used to calculate maximum a poste-
riori (MAP) estimates of students’ beliefs about the ideal
number of mitochondria and chloroplasts. An analysis of
variance on these MAP estimates shows that inferred be-
liefs were highly significant predictors for estimated ability
scores on the post test (mitochondria: F = 4.9, p < 0.001;
chloroplasts: F = 2.9, p < 0.01). The relationship between
average ability estimates of students and their MAP esti-
mates for ideal mitochondria and chloroplasts shows ability
peaks at moderate levels of both features. This tracks well
with the assumption that the game requires both mitochon-
dria and chloroplasts but excessive amounts waste resources.

3.2 Flight Planning Experiment
To validate the MDP framework, we also applied it to mod-
eling learners’ actions in a lab experiment where we could
collect explicit reports about their beliefs. In this exper-
iment, 25 participants learned to control a spaceship by
pressing different buttons. The experiment alternated be-
tween phases in which learners could choose what button to
press and observe the effect of that action, and flight plan-
ning phases in which learners were asked to enter a series
of button presses that would move the ship from its current
location to another specified location; all participants com-
pleted six flight planning phases. Each button press moved
the ship by a fixed amount, and learners were told that each

button either usually moved the ship in one particular direc-
tion or in a direction at random. They could indicate their
beliefs about how a button worked using drop-down menus
below each button.

We evaluated the model’s performance based on how well it
matched each participant’s stated beliefs in the flight plan-
ning phases. Overall, the model achieved relatively high ac-
curacy at inferring learner’s beliefs about the buttons that
they used: The MAP estimate of the model matched the
stated beliefs of the learner in 73% of flight plans. Addi-
tionally, in cases where the data were inherently ambiguous
such that a human observer would also have difficulty infer-
ring the learner’s beliefs, the model tended to place similar
posterior mass on all supported hypotheses. This feature
suggests the importance of modeling a full posterior distri-
bution rather than only considering the MAP estimate.

4. CONCLUSION
We have developed a framework using Markov decision pro-
cesses for inferring learners’ beliefs about the effects of their
actions. Such a model has the potential to provide useful
feedback to students about their misunderstandings and to
provide information to teachers about their students’ knowl-
edge. Designing the computational framework for this model
is a first step towards applying it in more complex educa-
tion settings such as virtual labs or games in which more
information about the students precise behavior is known.
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ABSTRACT
The  project  LeMo  (monitoring  of  learning  processes  on 
personalizing  and  non-personalizing  e-Learning  environments) 
aims  to  develop  a  prototype  of  a  web  based  Educational  Data 
Mining application,  which shall  provide detailed information on 
user pattern within e-Learning environments and identify needs of 
enhancement and revision of the learning offer. The poster presents 
a case study of analysis of learning paths in a non-personalizing e-
Learning  environment.  Research  data  have  been  
obtained on the base of log-files  during three arbitrarily chosen 
days. 
Keywords
Learning paths, non personalizing, e-Learning environment.

1. INTRODUCTION
The  LeMo  project  [1]  is  an  interdisciplinary research  project 
situated  in  the  field  of  learning  analytics,  information  science, 
psychology and data privacy. In order to obtain information about 
user patterns, as well as about the quality and optimization of e-
Learning offers, we integrate in our tool several methods of data 
mining:  association,  sequential  patterns,  regression  analysis  etc. 
The tool will be used by eLearning providers, lecturers that  use 
eLearning  in  different  ways,  writers  of  eLearning  content  and 
scientists  in  this  field.  The  main  goals  for  the  prototype 
development are: a data source agnostic back-end, a set of analysis 
components and a dynamic and adaptive graphical user interface 
with  strong  emphasis  on  an  intuitive  and  easy usability of  the 
application. The prototype focuses on the e-Learning provider role.

2. THE TOOL
Being  agnostic,  the  prototype  will  support  different  major  e-
Learning  environments  rather  than  a  specific  one.  e-Learning 
environments can be classical learning management systems like 
Moodle, where a login personalizing the user is required for access, 
or  online  encyclopedias  like  ChemgaPedia  [2]  that  are  non-
personalizing environments, where neither login nor registration is 
needed to access content. To the best of our knowledge, this feature 
is unique.

Connectors import user data from a specific e-Learning platform 
into a common data base used for analysis (Fig. 1). Currently two 
prototype connectors have been implemented, one for Moodle and 
another  one for  ChemgaPedia.  Connectors  for  non-personalizing 
environments  or online encyclopedias like ChemgaPedia have to 
remove fake  user  data  that  has  been generated by web robots. 
Currently we have taken a quite cautious approach that might result 
in suppressing more user data than necessary. 

Figure 1. System architecture
The methodical guideline for the analysis components and for the 
adaptive graphical user interface is a catalog of more than eighty 
questions  and research hypotheses  collected from our  university 
and business partners. These hypotheses and questions express the 
information that their authors would like to get from the users' data. 
The  questions  of  this  catalog  can  be  divided  into  six  groups 
assigned to six topics of analysis: 1. the learning environment, 2. 
usage of the learning environment, 3. user and groups of users, 4. 
learning  performance,  5.  learning  paths  through  the  learning 
environment and 6.communication tools. 

Currently we are developing analysis components for topics 2 and 
5.  In  particular  we  have  implemented  a  component  to  extract 
learning paths of learners through the resources of courses. A path 
is  a  sequence of  resources or  learning objects  ordered by acces 
time.  Each resource on the path  is  labeled by its  name, a  time 
stamp  and  a  duration.  The  duration  is  simply  the  difference 
between  the  time  stamp  of  the  present  resource  and  of  the 
following  one.  The  last  resource of  a  path  does  not  have  any 

1 This work is partially supported by IFAF and the European Regional Development Fund  for the Berlin state.
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duration. A resource might appear several times on a path if a user 
consulted it repeatedly.

3. LEARNING PATHS IN AN ONLINE 
ENCYCLOPEDIA
As a first case study using the path component we have extracted 
paths  of  learners  in  the  online  encyclopedia  ChemgaPedia. 
ChemgaPedia is a learning environment specialized in chemistry. 
The content is organized in subject; each subject is subdivided into 
branches and subareas, each subarea is divided into lessons. It is 
possible  to  obtain  a  lot  of  information  about  the  usage  of 
ChemgaPedia with GoogleAnalytics:  total  number of hits,  where 
learners are coming from, on what pages they enter ChemgaPedia, 
which pages are accessed before leaving and so on. However, due 
to the high number of pages or resources in ChemgaPedia (more 
than 18 000),  it is not possible, at  least  not for a non-computer 
science specialist, to follow paths of users within their session in 
the encyclopedia. We have extracted all user paths of three days 
usage data. An overview of the number of paths and their length 
that  have been extracted is given in Table I.  For length 10  and 
higher only samples are given, that should suffice to understand the 
trend. The second line of table I tells that 154 209 paths of length 1 
have  been  extracted  which  represents  almost  62%  of  all  the 
extracted paths.

Length of path Number of paths Share

1                  154 209 61.68

2                     16946 6.78

3                      4 066 1.63

4                       2247 0.90

5                       1404 0.57

6                         969 0.34

7                         666 0.27

8                         478 0.19

9                         351 0.14

10                         301 0.12

14                           86 0.03

17                           45 0.02

20                           19   0.008

24                           14  0.007

27                             1   0.0004

30                             1   0.0004

34                             1   0.0004

Table 1. Overview of the number of paths and their lengths

In  this  case  study,  paths  are  limited  to  a  session  within 
ChemgaPedia. For example, if a user accesses ChemgaPedia, clicks 
a few pages, follows a link outside ChemgaPedia and comes back 
to ChemgaPedia again, this will be counted as two different paths. 
The providers of the encyclopedia already knew through Google 
Analytics that many learners used the encyclopedia as a reference 
work, checking some specific information as needed, rather than 
studying full lessons. Our case study confirms this fact, giving a 
more precise overview: about 62% of the paths  are consulting a 
single page, and almost 70% of the paths have a length of 6 or less. 

Taking longer paths under the microscope leads to the discovering 
of  different  recurring  navigational  patterns:  Some  users  study 
lessons  thoroughly,  clicking  the  pages  in  the  given  order  and 
spending about 100 seconds on average on each page, which shows 
that  they study a lesson the way as  it  has been designed. Other 
users  go  back  and  forth  in  a  lesson,  spending  10  seconds  on 
average on a page, rather browsing than studying. This is another 
kind  of  information  that  the  providers  of  ChemgaPedia  cannot 
easily get with Google Analytics.

4. CONCLUSION AND FUTURE WORK
We  are  developing  a  tool  to  allow  different  actors  of  the 
educational field to explore how learners are using the e-Learning 
environment they study with. In a first case study we have extracted 
the learning paths followed by learners during a session with the 
freely accessible encyclopedia ChemgaPedia. This study confirms 
that the encyclopedia is primarily used as a reference. Examining 
longer paths shows that users are following different navigational 
patterns. This first result calls for future work in several directions. 
At first paths have to be presented graphically. Work along these 
lines is  already in progress.  Secondly it  is  not  helpful to  return 
numerous individual paths to a teacher, a summary is needed. We 
plan  to  investigate  frequent  sequences  and  clustering  for  that 
purpose. Finally it is also interesting to explore the most common 
navigational patterns to identify learning styles as proposed in [3].
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ABSTRACT 

A memory-based collaborative system for recommending Master 
programs has been recently developed for University College 
Maastricht (UCM). Given the academic profile of a Bachelor 
student, the system recommends Master programs for that student 
based on the similarity of her profile to the profiles of the alumni 
students. The system is operational since September 2011 and is 
already popular among the UCM students. 
This paper considers the question of how to improve the quality 
of Master recommendations. For that purpose we study several 
academic profile representations and similarity functions. We 
identify the best representation strategy and show how to combine 
recommender systems based on different similarity functions to 
achieve superior Master recommendations.   

Keywords 

Student Similarity, Collaborative Recommender System, Master 
Program Recommendation 

1. INTRODUCTION 
University College Maastricht (UCM) is a Bachelor program 
offering a liberal-arts and sciences education. In this study, 
students can build their own curriculum consisting of 
approximately 40 out of 157 offered educational modules: 
courses, skill trainings, and projects. Thus, the academic profiles of 
the UCM Bachelor students are diverse. To manage the diversity, 
UCM employs academic advisors, whose task is to help students 
choose courses in the light of the final goals: desired type of 
Master programs, jobs, etc.  
To facilitate the students and advisors at UCM, we have 
developed a memory-based collaborative system for recommend-
ing Master programs. Given the academic profile (list of past, 
current, and future academic modules) of a Bachelor student, the 
system suggests Master programs for that student based on the 
similarity of her profile to the academic profiles of the alumni 
students. The tool allows the Bachelor student to modify her own 
profile, and thus to explore different alternatives in her study and 
how they influence her Master program possibilities.  
This paper considers the question of how to improve the quality 
of Master recommendations. For that purpose we study two 
representations of the academic profiles of the students (binary 
and ECTS1-based) and two classes of similarity functions (cosine 
and Tversky index). We show that: (1) the best representation is 
                                                                 
1 European Credit Transfer and Accumulation System. 

ECTS-based and (2) there is no best similarity function. 
Nevertheless, we introduce an approach to combine recommender 
systems based on the similarity functions under study so that the 
resulting combination achieves superior Master recommendations.   

2. MASTER RECOMMENDATIONS 
The Master Recommendation problem is given as follows. Let S 
be the set of all the students, C be the set of all the Bachelor 
modules, and M be the set of all the Master programs. The 
academic profile of a student s∈S is a vector ps of values psc∈ps 
corresponding to modules c∈C. The values psc are binary or 
ECTS-based: if the student s followed or plans to follow module 
c, then psc equals 1 or the number of ECTS for c; otherwise, psc 
equals 0. The set of all the academic profiles ps is denoted by P. 
In the context of our formalization, the Master Recommendation 
problem is to find a subset M’⊆M of Master programs that fit  the 
academic profile ps of a student s∈S, given data D⊆PxM of 
academic profiles of alumni Bachelor students, labeled by the 
Master programs they have chosen. The problem is essentially a 
classification problem, as each alumni profile is labeled by one 
Master program, not by a set of programs or preference on them. 
In this respect, our problem differs from standard recommen-
dation problems where such sets/preferences are available [1].  
To solve this Recommendation problem we need a Recommender 
System h: P→2M. We have designed our recommender system h 
as a memory-based collaborative recommender system [1]. The 
system memory consists of the training data D⊆PxM of the 
academic profiles of UCM alumni students labeled by the Master 
programs they have chosen. The system operates in a 
collaborative way [1,2]: given the academic profile ps of a student 
s∈S, the recommender system h returns the set M’ of Master 
programs of the alumni students whose academic profiles are 
among k-closest in the training data D to the profile ps. 
To specify completely the recommender system h we need 
similarity functions over the set P of academic profiles. In this 
context we note that, for UCM, the set C of modules is much 
larger than the set of modules a student takes. This implies that 
the module variables p*c are asymmetric. Thus we need similarity 
functions for asymmetric binary variables and we choose two such 
functions: cosine similarity and Tversky index. Given two 
academic profiles ps, pa ∈P the functions are defined as follows: 
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The cosine similarity is a symmetric function for asymmetric 
variables. The Tversky index is an asymmetric function for 
asymmetric variables. If α=β=1, then it equals the Jaccard 
distance; if α>β, we have emphasis on the student to be advised; if 
α<β, we have emphasis on the alumni students.  

3. EXPERIMENTS 
We evaluated our recommender system using the leave-one-out 
method. The UCM data for the system consists of academic 
profiles of 223 alumni. The total number of Bachelor modules, 
past and present, to define the academic profiles is 329. The 
number of unique Master programs to recommend is 147. Among 
the alumni, 106 followed the same Master as at least one other 
alumnus. Thus, the academic profiles of these 106 alumni were 
used in test folds. 
Table 1 shows the accuracy of our recommender system. We note 
that a recommended set of Master programs is correct if the 
Master program of the student from the test fold is in the set. 
Since the parameter k increases the size of the recommended set, 
the accuracy grows with k. In addition we note that k is an upper 
bound on the size of the recommended set of Master programs. 
We observe that, in the case of recommendations for Master 
programs, the similarity functions perform better on average when 
applied on the ECTS representation, as opposed to the binary 
representation. Moreover, the prediction accuracy when consi-
dering a set of between 2 and 80 recommending neighbors is 
significantly better when applied on the ECTS representation. 

k cos 
 

Tversky 
(α=1, β=0) 

Tversky 
(α=1, β=1) 

Jaccard 

Tversky 
(α=0, β=1) 

binary ECTS binary ECTS binary ECTS binary ECTS 

1 13.2 12.3 13.2 12.3 14.2 10.4 4.7 4.7 
11 53.8 57.6 55.7 56.6 50.9 53.8 53.8 54.7 
21 63.2 73.6 63.2 67.9 62.3 69.8 64.2 71.7 
31 72.6 81.1 69.8 75.5 71.7 79.3 75.5 77.4 
41 80.2 87.7 78.3 81.1 78.3 84.9 83.0 82.1 
51 85.9 91.5 83.0 90.6 85.9 91.5 84.9 89.6 
61 88.7 93.4 85.9 91.5 88.7 93.4 89.6 92.5 
71 91.5 93.4 89.6 91.5 91.5 93.4 91.5 92.5 
81 92.5 93.4 90.6 92.5 92.5 94.3 92.5 94.3 
91 94.3 95.3 91.5 94.3 93.4 94.3 93.4 95.3 

101 94.3 95.3 93.4 94.3 94.3 95.3 94.3 96.2 
111 95.3 95.3 96.2 94.3 95.3 95.3 95.3 98.1 
121 96.2 95.3 97.2 94.3 96.2 95.3 96.2 98.1 
131 97.2 97.2 97.2 95.3 97.2 96.2 97.2 99.1 
141 97.2 98.1 97.2 97.2 97.2 96.2 98.1 99.1 
151 97.2 98.1 97.2 98.1 97.2 97.2 100 99.1 
161 98.1 99.1 98.1 98.1 98.1 98.1 100 99.1 
171 98.1 99.1 98.1 98.1 98.1 99.1 100 99.1 
181 98.1 99.1 98.1 98.1 98.1 100 100 99.1 
191 100 100 98.1 99.1 100 100 100 100 

Table 1. Recommender accuracy versus k, as k increases. 
 

Furthermore, we observe that the performance of the classifiers is 
relatively different in distinct ranges of the k number of neighbors. 
If we compare the three ECTS-based Tversky indexes in Table 1 
we notice that: for k between 1 and 11, Tversky with α=1 and β=0 
performs better than the other two; for k between 31 and 81 
recommendations, the Jaccard index outperforms the other 
variants; while for k from 91 to 171, Tversky with α=0 and 
β=1outperforms the other Tversky variants. We conclude 

therefore that there is no clear best function when taking a big 
range for k into consideration. 

4. COMBINED RECOMMENDING SYSTEM 
Figure 1 shows the accuracy curves of two versions V1 and V2 of 
our recommendation system built on the ECTS-based Tversky 
similarity functions with α=β=1 and α=0, β=1. The convex hull of 
these curves is a set of points that contain the curves. We can 
build a combined recommender system whose accuracy curve is 
that of the convex hull. To illustrate the idea assume we need a 
recommender system whose accuracy curve contains the line 
segment (p1, p2) in Figure 1. This means that we need a 
recommender system V3 whose accuracy for some k defines a 
point p3 on (p1, p2). We design such a system by a very simple 
approach similar to that from [3]. If we need to determine Master 
programs for the academic profile ps, we flip a loaded coin with 
heads probability equal to 1 - distance(p1, p3) / distance(p1, p2). If 
the face-up side is heads, the recommending set of V1 for point p1 
is given; otherwise, the recommending set of V2 for point p2 is 
given. In the long run, it is straightforward to prove that the 
accuracy of the recommender system V3 for the k-value of point p3 
will be equal to the accuracy of point p3. 

 
Figure 1. Accuracy Curves of the Recommender System. 

 

5. CONCLUSION AND FUTURE WORK 
This paper showed how to improve the quality of Master 
recommendations. It determined the best representation of 
academic profiles and introduced a new approach on how to 
combine recommender systems based on different similarity 
functions to achieve superior performance. Future work will focus 
on implementing and testing this approach. 
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ABSTRACT 

Teamwork has become an important part of the educational 
process, aiming for preparing students for their future 
performance, but also for making the learning process easier. 
Predicting students’ performance in advance is one of the keys to 
prevent failure, but teamwork results are difficult to estimate and 
impair the global prediction results [1]. 
Working in group is an inherent social activity, and measuring 
students’ performance in it may be enhanced if understood in that 
context. In this paper, we propose to quantify the performance of 
students in teamwork by making use of the most effective 
techniques for social networks analysis. Teamwork is then 
represented as a network, where students interact with each other, 
achieving some results (their grades). We explore a network 
architecture and provide a strategy for quantifying the global 
contribution of each student through adaptations of the PageRank 
algorithm [2].  
Keywords 

Social networks analysis, Teamwork, Failure prediction. 

1. Introduction 
The concept of Social Networks, typically seen as interactions 
between individuals, has become extremely popular in the last 
decade due to its huge application in the online domain in 
websites such as Facebook, Twitter or LinkedIn. The structure of 
Social Networks often encloses tremendous amounts of 
information in the linkage between individuals and content shared 
among them [3]. Ranking algorithms have already been applied to 
other domains [4], but seldom applied in the context of education. 

In this paper, we show that it is possible to address the thematic of 
team working in the educational context, through the use of 
ranking techniques over social networks. Our main goal is to 
show how these techniques can be applied and what are the main 
drawbacks faced on trying to measure the value of each student as 
a team member. 

2. Teamwork as a Social Network 
Teamwork can be defined as social group where students are 
involved in social interactions with each other, share interests 
resulting from the terms of classes, and have the common goal of 
completing a project or assignment where labor can ideally be 
equally divided among all participants. 

When a student agrees to participate in a social group in the 
context of some subject, three types of grades are achieved in that 
subject: the final grade, the group grade, and the individual grade. 

According to [3], a social network is defined as a network of 
interactions or relationships, where the nodes consist of actors and 

the edges consist of the relationships or interactions between these 
actors. A social network is usually represented as a graph: a pair 
G = (V, E) where V is a set of nodes and E a set of edges [5].  

Social interactions within students’ groups are mutual between all 
members, so the graph will be undirected. In terms of connections 
we chose to represent unweighted edges. Apart from the 
definition, it is possible to include a content-based component 
containing the students’ grades, as seen in Table 1. 

Table 1 – Content-based component: students’ grades 

Student Final Grade 
Avg 

Group 
Grade Avg 

Individual 
Grade Avg 

1 14 16 13 
2 15 16 15 
3 17 17 17 
4 17 18 16 
5 16 18 15 
6 14 17 12 

 

Figure 1 shows the structure of a social network composed by six 
students interacting among them. Students 1, 2 and 3 form a social 
group; students 3, 4 and 5 form a second one, and students 4, 5 
and 6 form a third social group. The edges between students 4 and 
5 should be seen as a single edge. 

 
Figure 1  – Network Structure-based component 

3. Link Analysis 
In order to evaluate our argument, we conducted some 
experiments. The data sample contains approximately 1700 
evaluations of over 550 unique students. This represents the data 
of 8 subjects during approximately 2 years combined in 17 
evaluation terms. Each student record contains individual grades, 
group grades and final grades for each enrollment at a given 
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subject. The data was then modeled following the network 
structure described above. 

The best-known algorithms for structure-based analysis fall under 
the category of ranking algorithms determining the rank of each 
node in the graph in terms of their similarity. 

The PageRank algorithm [2] is known worldwide for ranking 
web-pages in order of their importance. Given an unweighted 
graph G = (V, E) as defined above, and where N is the total 
number of nodes, if an edge exists from a node j to a node i then 
the node j is diffusing information to node i in terms of 
importance according to Expression 1: 

𝑃𝑅 𝑖 =   𝑑
𝑃𝑅 𝑗
𝐷!"#  (𝑗)

+    1 − 𝑑   𝑣
!:!→!

(𝑖) 

Expression 1 – PageRank formula 

where d is called the damping factor and can take values between 
0 and 1. Dout(j) represents the out-degree of node j. The last 
component v(i) is part of a personalization vector that can be used 
to influence the ranking of a given node to better or worse. The 
Personalized PageRank [6] adaptation is similar to PageRank, 
differing only in the calculation of v(i). The typical value for v(i) 
in the Traditional PageRank is   !

!
  but it can vary in the 

Personalized PageRank. 

In the context of this paper we do not see PageRank as a 
probabilistic distribution, but as the relative value of importance 
of each node in the graph. 

3.1 Experimental Results 
The PageRank algorithm allows a purely structural analysis based 
on the representation of a social network. The results from 
applying PageRank in the described network structure showed a 
strong proportionality with the degree of each node, and no 
relation with the group grade. 

The Personalized PageRank algorithm allows using content-based 
data in order to influence the structural analysis by using 
Personalized PageRank vectors with different content regarding 
each one of the students. We used the average group grade of each 
student, present in Table 1 as the value for the PageRank vector 
but we could have used any other attribute. 

Figure 2 (a) shows that the relationship of proportionality between 
the degree of a node is faded. We can still notice that there is a 
slight slope towards the highest-ranking values, together with a 
high dispersion rate. The Personalized PageRank and the average 

of group grades clearly show a relationship of proportionality in 
Figure 2 (b). 

4. Conclusions 
The pure structural analysis and the application of the traditional 
PageRank algorithm fall short from the desired objective of 
describing the teamwork value of each student. The fact that the 
ranking simply depends on the degree distribution of the nodes in 
the graph fails to capture the real value of each student. 

Influencing the rankings by adding content-based data through the 
use of Personalized PageRank vectors seems to have improved the 
capture of the real teamwork value of each student, but we still 
need to determine how much of an added value this analysis 
brings in comparison to simply calculating the group grade 
average for each student. 
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ABSTRACT 

The research space on educational data mining exploiting data 
captured from the collaborative learning interactions of students, 
particularly in face-to-face environments, is vast but still 
basically unexplored. Students who build a solution in a group 
have to externalise and make their understandings about the 
topic explicit to establish common ground with their peers. This 
offers an enormous opportunity to capture the digital footprints of 
the process followed by students, these can be used to uncover 
patterns linked with successful collaboration and learning skills. 
The full spectrum of emerging technologies to support classroom 
and small-group work are opening up the possibility to 
investigate aspects of collocated collaboration. These 
technologies include interactive tabletops, digital whiteboards 
and multi-display settings. We present a method to capture, 
exploit and mine the digital footprints of students working face-
to-face to build a concept map at an interactive tabletop. This 
includes a system that has a mechanism for recording the history 
of the collaborative process including the partial versions of the 
solution, applications logs, individual contributions and verbal 
participation of each student. This paper describes the learning 
environment, the system to capture a dataset and the data mining 
techniques that will be used for the study. 
Keywords 

Multi-touch tabletop, group modelling, collaborative learning, 
collocated collaboration, sequence pattern mining 

1. INTRODUCTION 
Students working in small-group activities, in order to 
collaborate effectively, ought to interact with other participants, 
who thus need to keep some degree of mutual understanding 
about the topic under discussion [2]. In collaborative work 
students have to externalise their points of view and make 
explicit statements to explain their understanding to others or to 
regulate the social dynamics. These externalisations include not 
only verbal explanations but also physical representations 
according to the tools provided.   
Emerging pervasive technologies that support classroom and 
small-group activities are opening up the possibility to provide 
novel ways to capture and analyse these externalisations in order 
to help students collaboration and teachers to orchestrate the 
classroom [6]. These technologies include shared devices for 
supporting face-to-face collaboration (interactive tabletops, 

digital whiteboards, multi-display settings); personal devices that 
can provide a private workspace and personalised content; and 
sensors that can monitor aspects of students’ participation. 
This paper presents a method to capture and exploit the digital 
footprints of students working face-to-face to build a concept 
map at an interactive tabletop drawing on research from two 
main areas: computer-supported collaborative learning and 
educational data mining. We present a system that has a 
mechanism for recording a dataset that includes the history of the 
collaborative interactions that students perform to build the 
shared solution, partial versions of their final product, 
applications logs that include the individual contributions and the 
verbal participation of each student. The data capture is 
performed in a pervasive manner; thus students can focus all 
their attention on the activity. This paper describes the learning 
environment, the apparatus to capture a dataset and the data 
mining techniques that will be used for the study.  

2. DESCRIPTION OF THE LEARNING 
ENVIRONMENT 
The system used to sense and capture the learners’ face-to-face 
interactions consists of an augmented interactive tabletop that 
permits students to discuss and work on the task of building a 
solution in the form of a concept map at a shared space [3] 
(Figure 1). The tabletop hardware can detect multiple 
simultaneous touches. To distinguish between users’ touches an 
overhead depth sensor tracks the position of each user around the 
table, so recognising which users provided an input. Each single 
touch performed on the interactive surface is paired with the 
user. Thus, the system records and logs activity, similarly to any 
e-learning application. In order to capture the verbal 
communication of group members, a microphone array that 
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Figure. 2. Method 
 

recognises when a learner is speaking is situated above or at one 
side of the tabletop.  
The learning application used to collect the dataset of group 
interactions uses the well known technique of Concept Mapping  
[7]. The tabletop application Cmate [4] permits learners to 
represent their collective understanding about a topic while they 
discuss and agree on the arrangement and content of the 
propositions of a group concept map. The learning environment 
can capture the evolution of the final solution and the individual 
contributions of each learner to the final product in both, verbal 
and physical dimensions. 

2.1 Method 
A total of 75 students enrolled mostly in engineering and science 
courses participated in the study to gather a complete dataset. An 
initial focus question was posed to the students. The goal for 
students was to learn, and create a concept map as representation 
of the Australian Dietary Guidelines 2011 form of concept maps. 
Participants were grouped in 25 triads. They were initially 
requested to read an article based on these Guidelines and draw 
a concept map individually at a personal computer. Then, each 
group of three students was asked to build a concept map 
collaboratively at the tabletop. Afterwards, they had to draw an 
individual concept map again. Pre- and post-tests were conducted 
as shown in Figure 2. All individual and group actions were 
logged and recorded from the personal computer application 
(CmapTools [7]) and the Tabletop environment (Cmate [4]). 

3. WORK IN PROGRESS 
3.1 Dataset challenges 
Two key attributes of this tabletop dataset are the sequential 
order of the actions and the authorship of each. This dataset 
poses challenges for data mining because the user actions can 
occur in parallel, be performed by multiple users in a defined  
order and students can speak while they perform physical 
actions. We took into account the nature of the data to design 
data mining objectives to extract frequent patterns of activity and 
explore which groups favour specific patterns in relation to their 
performance, nature of collaboration and process followed.  

3.2 Data mining 
One technique that has proven successful in analysing the timing 
and order of the events is the sequential pattern mining. A 
sequential pattern is a very frequent consecutive or non-
consecutive ordered sub-set of a sequence of events. The data 
mining objectives for this study are:  

Objective 1: sequence mining by group. The first approach that 
can be explored is to mine frequent sequential patterns of 
interactions and to cluster similar actions to observe whether 
certain groups favour some strategies used to draw the concept 
map. This method was introduced by Martinez et. al. [5]. 
However, that study did not use the verbal participation of 
students. The verbal actions can either be considered within the 
sequences, using a proper alphabet, or as a feature present in 
each sequence or similar sequences.  

Objective 2: sequence mining by student. This aims to discover 
the frequent sequences of interactions performed per user at the 
tabletop. Previous research in group work [1], and more 

specifically on interactive tabletops [6], found that students 
behave differently within a group. Some of them work 
independently, others dominate the activity, under-participate or, 
in the best of cases, contribute and collaborate equally.  

Objective 3: discovering the building process. The third 
objective is to discover and create a visual representation of the 
process followed by each group to build their final solution. 
Different strategies can be used to create a concept map. Some 
groups start by arranging nodes of the graph before creating 
links. Others start creating links in early stages and others apply 
a divide and conquer strategy. Different methods for modelling 
the process using Hidden Markov models or process mining 
techniques can be used to discover the building process. 

3.3 Limitations 
Current technology limitations forced us to carry out this study in 
a controlled environment, to assure the quality and consistency of 
the collected data (e.g. speaker identification and user touch 
pairing). We observed that our collaborative setting permitted 
learners to focus on the task, rather than learning particular 
interaction techniques. A parallel study using the same learning 
environment is currently being carried out in a real classroom 
scenario. The present study does not include speech recognition. 
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ABSTRACT
During the years of college and university education stu-
dents are exposed to different kinds of stress, especially dur-
ing the difficult studying periods like final exams weeks or
project deadlines. Stress on a long run is dangerous and
can contribute to illness through its physiological effects or
maladaptive health behaviors. Many students admit, or are
self-aware, that they become stressed under different circum-
stances and have some clues about their potential stressor.
Still, even for such students, the monitoring and awareness
of stress are not systematic and based on subjective data,
i.e. someone’s feelings. In our work we aim at providing
means to students to become aware of the past, current and
expected (objectively measured) stress and its correlation
with their performance, to understand their stressors, to
cope with and prevent stress - thus, to live healthier and
happier lives and better organize their studies.

1. INTRODUCTION
Stress has become a serious problem affecting many peo-
ple of different professions, life situations, and age groups.
The workplace has changed dramatically due to globaliza-
tion of the economy, use of new information and communi-
cations technologies, growing diversity in the workplace, and
increased mental workload. In the 2000 European Working
Conditions Survey (EWCS)1, work-related stress was found
to be the second most common work-related health problem
across the EU. Similar emphasize can be observed from the
surveys in US. Although not studied thoroughly (yet), sim-
ilar threats has been observed in education. According to
a survey by fifteen university and college newspapers in the
Netherlands2 many students themselves confirm that they
encounter serious stress in related to their studies. E.g. in
Delft University of Technology, more than 450 students filled
out the questionnaire and 52.9% of them said ’yes’ to the
question: “Have you ever experienced huge stress on your
studies?”. Moreover, stress might not even be observed as
problematic by the persons themselves; high levels of stress
are often perceived by people as a norm, a signal that they
do their best to achieve their goals.

1http://www.eurofound.europa.eu/pubdocs/2001/21/
en/1/ef0121en.pdf
2http://web.tue.nl/cursor/internet/jaargang54/
cursor12/nieuws/index.php?page=x37

Stress can contribute to illness directly, through its physio-
logical effects, or indirectly, through maladaptive health be-
haviors (smoking, poor eating habits, lack of sleep, etc.) [4].
It is important to motivate people to adjust their life style
or start using appropriate stress coping strategies.

Being enrolled in a study program at a college or univer-
sity students may encounter a number of challenges3. There
is a continuous pressure (whether coming from parents, in-
creasing competition on a job market, society in general,
or other students) to perform well. Students regularly en-
counter difficult studying periods like final exams weeks or
(group) project deadlines. Many students may experience
financial insecurity, problems with communicating to other
students, loneliness. Becoming independent, many students
develop bad habits like smoking, drinking, taking drugs, In-
ternet addiction, and gambling.

In general, there are a number of factors that are likely
to cause stress for students including but not limited to
long study hours, work overload, time pressure, difficult,
demanding or complex tasks, high responsibility, lack of
breaks, conflicts, lack of training, income insecurity, poor
physical work conditions (limited space, inconvenient tem-
perature, limited or inappropriate lighting conditions) as
many of such factors have been found to be important in
the analysis of stress at work [5].

The complete avoidance of stress in education is impossi-
ble. Still, if people are informed of their stress levels, they
become empowered for taking some preemptive actions in
order to alleviate stress.When educational organizations be-
come aware of stress-related problems they figure out differ-
ent ways to help students. It is becoming a more popular
practice to promote healthier lifestyle to students, give ad-
vices regarding safety and security, eating well, anger man-
agement, dealing with emotional abuse or a culture shock,
overcoming loneliness, and alike. However, still not that
much is done to systematically monitor the levels of stress
that students experience. In the current practice students
often get help only when the problem becomes severe and
may require psychological or medical help.

Appearance of modern sensor technologies does allow mea-
sure stress level based on objective physiological signals in
non-lab settings, i.e. in a daily life. Our goal is to provide a
stress analytics solution that would help students to mon-
itor, understand and manage their stress thus preventing
severe stress-related problems.

3http://www.onlineeducation.net/resources/
stress-facing-students
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2. APPROACH – STRESS ANALYTICS
In [1] we proposed the conceptual framework for managing
stress at work. One very important step in the process of
stress management is making the person aware of the past,
current and expected stress. We automate the identifica-
tion of the stress from sensor data and the common stressors
from the other data sources and meta-data that a student
is willing to provide to the system, including e.g. the sched-
ule, calendar events and daily routing of the student, and
personal correspondence in e-mail and social media.

Figure 1 illustrates the main objective of the stress analytics
- to provide an overview of the stressors, allow to explore
them interactively with OLAP style operations on the data
cube and to enable access to the evidence, i.e. (annotated)
physiological signals (Figure 2, top).

Stress@Work desktop
An application coupled with measurement device and scheduler to increase 
awareness and provide stress‐relief advices.

Figure 1: Interactive overview of stressors

To achieve this we measure stress-related physiological signs
from the sensor data. Galvanic skin response (GSR) re-
flecting sweating is known to be highly correlated with the
level of stress a person experiences [3]. In [2] we proposed
an automated approach for the acute stress detection from
GSR signal. We make stress and stressors visible by keep-
ing track of the calendar events and daily routine of the
worker (Figure 2, bottom), and relating these events with
detected stress from the sensor data. We also enable au-
tomated analysis of additional information sources, such as
sentiment classification of the incoming and outgoing e-mails
or social media messages4 and explicit user feedback. Be-
sides being an awareness tool, stress analytics supports data
mining on the already aligned data. By discovering rela-
tionships between event data and stress occurrences we can
further help a student to focus on the most important pat-
terns observed in the past and cast predictions regarding the
foreseeing stressful events in her agenda.

4www.win.tue.nl/~mpechen/projects/senticorr/

Stress@Work desktop
An application coupled with measurement device and scheduler to increase 
awareness and provide stress‐relief advices.

Figure 2: Stress levels: Monday (top) and the week (bottom)

3. ONGOING WORK
Our current efforts are focused on two kinds of tasks. From
the technology perspective we develop the infrastructure for
stress-related data management and processing. This in-
clude raw and preprocessed multi-modal data storage and
indexing, data schema for efficient data cube operations,
data mining techniques supporting feature extraction, stress
detection, pattern mining, classification and prediction, and
visual interactive data exploration. From the domain per-
spective we perform different case studies, collecting subjec-
tive and measuring objective stress before, during and after
the group project presentations, partial exams as online mul-
tiple choice tests and regular written and oral examinations.
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ABSTRACT 
We present a method to simultaneously search for student-level 
variables constructed from Cognitive Tutor log data and graphical 
causal models. We seek causal explanations of behavior in 
Cognitive Tutors, including “gaming the system” and off-task 
behavior, selecting variables by their contribution to causal 
structure and strength learning.  

Keywords 
causality, intelligent tutors, discovery with models 
1. INTRODUCTION1 
Researchers constructing student-level statistical and causal 
models from “raw” log data of courseware must construct 
variables to represent student-level, aggregate features of interest.  
We propose search for constructed variables, with a focus on 
“gaming the system” and off-task behavior in Cognitive Tutors. 
Variables are assessed by their support of inferences about 
causation and causal strength in graphical causal models [12].   

“Feature engineering” has been explored for predictive models of 
educational data (e.g., [1], [4]).  Usually targets (not always, cf. 
[6]) have been fine-grained outcomes (e.g., success at next tutor 
interaction) and not student-level outcomes (e.g., exam scores).   

Graphical causal models have also been used on educational data 
([10], [11], etc.) with student-level features.  This work develops 
an approach [9] that combines data-driven variable construction 
and algorithmic causal discovery to model student behavior. 

2. DATA + MOTIVATION 
Data are from interactions of 102 non-traditional, adult learners 
with the Carnegie Learning Algebra Cognitive Tutor in an (online 
or on-campus) algebra course at the University of Phoenix, 
specifically data from the last module of the course.  Target 
learning outcomes are students’ course final exam scores. 
Learners “game the system” by taking advantage of intelligent 
tutor properties to get through course material without genuinely 
learning [2]. Off-task learners disengage from the tutor and 
behave in ways unrelated to learning tasks [7].  Both types of 
behavior have been associated with decreased learning [3].  

Research on gaming describes it as “harmful” in a non-causal 
way, denoting mere association with negative outcomes. Methods 
for inferring causal relationships from observational data may 

                                                                    
1 The author gratefully acknowledges the Apollo Group, Inc., for 
funding as well as Ryan Baker, David Danks, Sujith Gowda, 
Tristan Nixon, Joseph Ramsey, Steve Ritter, Partha Saha, and 
Richard Scheines for assistance and advice. 
 

help provide evidence for (or against) a causal relationship 
between gaming behavior and learning.  
We deploy software “detectors” of gaming [5] and off-task 
behavior [7] that use a variety of “engineered”/“distilled” features 
[4] to determine whether a transaction corresponds to gaming or 
off-task behavior.  We treat their output as “fine-grained” 
observations of behavior and seek variables to represent aggregate 
behavior over “fine-grained” observations. 

Recent work [8] considers whether influences of gaming the 
system and off-task behavior on learning are immediate, 
aggregate or both.  They construct variables over lessons/units of 
interest and report that gaming is weakly associated with 
aggregate poorer learning and that off-task behavior is strongly 
associated with aggregate poorer learning.   

3. METHOD + RESULTS 
Our data range over several units (with corresponding sections) of 
algebra material and 32 skills. Student behavior in particular units, 
sections, or skills is possibly more important for learning than 
behavior over the entire module.  We search over variables 
constructed at these levels of aggregation. Models in [8] consider 
variables as counts of gamed/off-task steps.  As they suggest, 
other functions might manifest important behaviors.  Our strategy 
is to search over constructed variables to find those that support 
causal inferences using algorithmic search for causal models.   

Graphical causal models are frequently directed acyclic graphs 
(DAGs) with associated probability distributions (Bayesian 
networks).  DAG nodes represent variables; edges represent 
causal relationships. Two assumptions2 link causal structure 
represented by a DAG to independencies entailed by a DAG: the 
Causal Markov Condition and Causal Faithfulness Condition [12].  

Algorithms like FCI3 [12] learn the equivalence class of graphs 
compatible with conditional independence relations among 
measured variables, assuming there may be unmeasured common 
causes of measured variables. FCI returns a partial ancestral graph 
(PAG), representing the set of causal graphs compatible with 
conditional independence relations among measured variables. 
Edge interpretations in a PAG are X oà Y: Either X causes Y, or X 
and Y share a latent common cause (or both); X o—o Y: (1) X 
causes Y, (2) Y causes X, (3) X and Y share a latent common cause, 
or (4) either (1) & (3) or (2) & (3); X ↔ Y: There is a latent 
common cause of X and Y; X à Y: X causes Y. 

To judge which variables support causal inferences with uncertain 
causal structure, we iterate4 over DAGs consistent with a PAG 
                                                                    
2 We omit illustrations of the framework and assumptions.  
3 The Tetrad Project <http://www.phil.cmu.edu/projects/tetrad/> 
4 Our heuristic is not ideal; a better method is work in progress. 
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over sets of constructed variables and calculate “average causal 
predictability” achieved.  For each compatible DAG, we specify a 
linear regression model for final_exam score with its direct causes 
as predictors.  If each DAG is equi-probable, we maximize 
average R2 value over these models. 

Fig. 1 is a baseline causal model (PAG) for variables from  [8]. 
The negative association of number_steps_gamed and final_exam 
is likely induced by a causal relationship.  Average causal R2 
(“causal predictability”) for this PAG is .5028. 

 
Fig. 1. Baseline PAG; +/- indicate association 

We search over aggregate variables constructed from 
characteristics tracked by Cognitive Tutors or calculated by 
“detectors” – counts (and when relevant, proportions) of 
transactions: overall, correct, wrong, help/hint request, “known 
bugs” (misconceptions), gamed, off-task; transaction time taken; 
average gaming & off-task (numerical) estimate; counts (and 
relevant proportions) of: steps, gamed steps, and off-task steps. 
We consider aggregating over the entire module and sections, 
units, and skills within the module.  For each level, we consider 
functions of step-level characteristics (and their natural 
logarithm) to determine constructed variables: sum, average, 
variance, max, and min. The schema for constructed variable 
names is: LEVEL_level-name_function(characteristic). 
Applying functions at different aggregation levels, we “explode” a 
set of a few hundred variables and “prune” by removing 
uninformative and redundant variables; for highly correlated pairs, 
we remove the variable with lower target correlation. From 20 
variables with highest correlation to the target, we randomly select 
sets of (9) variables, apply FCI, and seek the set that maximizes 
average causal R2 afforded by the PAG.  More work is required to 
determine the best sizes for these variable sets. 

 
Fig. 2. Augmented baseline PAG; avg. causal R2 = .5816 

Full search shows the importance of the count of misconceptions 
in the module: MODULE_sum(count_known_bugs).  Augmenting 
our baseline variables with this, we apply FCI (PAG, Fig. 2). Our 
baseline model suggests the o—o edge between 
number_steps_gamed and “misconceptions” can be oriented as 
à; the latter is a more proximate cause of learning. 

For our full search, our training set consists of variables computed 
over 80% of steps randomly sampled over all students.  Test set 
variables are computed over the remaining steps. The PAG (Fig. 
3) that maximizes causal predictability for the training set has 
average causal R2 = .614 (test set avg. causal R2 = .5137). 
We establish that at least one variable mediates a (likely) causal 
link between “gaming” and learning. Future work will extend and 
generalize this approach and refine the search space. 

 
Fig. 3. PAG for full variable search 

4. REFERENCES 
[1] Arnold, A., Beck, J., Scheines, R. Feature Discovery in the 

Context of Educational Data Mining: An Inductive 
Approach. Proceedings of the AAAI 2006 Workshop on 
Educational Data Mining, (2006), 7-13. 

[2] Baker, R.S.J.d., Corbett, A.T., Koedinger, K.R., Evenson, E., 
Roll, I., Wagner, A.Z., Naim, M., Raspat, J., Baker, D.J., 
Beck, J. Adapting to When Students Game an Intelligent 
Tutoring System. Proceedings of the 8th International 
Conference on Intelligent Tutoring Systems, (2006), 392-
401. 

[3] Baker, R.S., Corbett, A.T., Koedinger, K.R., Wagner, A.Z. 
Off-Task Behavior in the Cognitive Tutor Classroom: When 
Students "Game The System." Proceedings of ACM CHI 
2004, 383-390. 

[4] Baker, R.S.J.d., Corbett, A.T., Roll, I., Koedinger, K.R. 
Developing a Generalizable Detector of When Students 
Game the System. User Modeling and User-Adapted 
Interaction, 18 (2008), 287-314. 

[5] Baker, R.S.J.d., de Carvalho, A. M. J. A. Labeling Student 
Behavior Faster and More Precisely with Text Replays. 
Proceedings of the 1st International Conference on 
Educational Data Mining. (2008), 38-47. 

[6] Baker, R.S.J.d., Gowda, S.M., Corbett, A.T. Automatically 
Detecting a Student’s Preparation for Future Learning: Help 
Use is Key. Proceedings of the 4th International Conference 
on Educational Data Mining, (2011), 179-188. 

[7] Baker, R.S.J.d. Modeling and Understanding Students' Off-
Task Behavior in Intelligent Tutoring Systems. Proceedings 
of the 2007 Conference on Human Factors in Computing 
Systems, (2007), 1059-1068. 

[8] Cocea, M., Hershkovitz, A., Baker, R.S.J.d. The Impact of 
Off-Task and Gaming Behavior on Learning: Immediate or 
Aggregate? Proceedings of the 14th International Conference 
on Artificial Intelligence in Education, (2009), 507-514. 

[9] Fancsali, S.E. Variable Construction and Causal Modeling of 
Online Education Messaging Data: Initial Results. 
Proceedings of the 4th International Conference on 
Educational Data Mining, (2011), 331-332. 

[10] Rai, D., Beck, J.E. Exploring User Data from a Game-Like 
Math Tutor: A Case Study in Causal Modeling. Proceedings 
of the 4th International Conference on Educational Data 
Mining, (2011), 307-311. 

[11] Scheines, R., Leinhardt G., Smith, J., Cho, K. Replacing 
Lecture with Web-Based Course Materials. Journal of 
Educational Computing Research, 32 (2005), 1-26. 

[12] Spirtes, P., Glymour C., Scheines, R. Causation, Prediction, 
and Search. 2nd Edition. MIT, Cambridge MA, 2000.

Proceedings of the 5th International Conference on Educational Data Mining 239



	  

Proceedings of the 5th International Conference on Educational Data Mining 240



List of authors 
 

A   Fortenbacher, Albrecht 228 
Adarsh, G V 10    
Aleven, Vincent 73, 126  G  
Antunes, Claudia 232  Galen, William 214 
Aros, Carolina 210  García-Saiz, Diego 206 
Azevedo, Roger 65  Germany, Mae-Lynn 172 
   Geryk, Jan 103 
B   Goldin, Ilya 73 
Baker, Ryan S.J.D. 126, 152  González-Brenes, José 49 
Baldwin, Julia 160  Gowda, Sujith 126 
Barker-Plummer, Dave 134  Graesser, Arthur 25, 172, 212 
Barnes, Tiffany 164  Griffiths, Thomas 226 
Bayer, Jaroslav 103  Guerra, Daniel 210 
Beck, Joseph 200    
Beheshti, Behzad 81  H  
Bergner, Yoav 95  Halpern, Diane 172 
Beuster, Liane 228  Harris, Thomas K. 144 
Biswas, Gautam 57, 65  Heffernan, Neil 33, 176 
Bouchet, François 65    
Brunskill, Emma 118, 188  J  
Butler, Heather 172  Jayme, Alejandra 152 
Bydzovska, Hana 103  Johnson, Matthew 164 
   Johnson, Stuart 220 
C     
Cai, Zhiqiang 172  K  
Campagni, Renza 208  Kalka, Jessica 126 
Chaturvedi, Ritu 218  Kappe, Leonard 228 
Ching, Dixie 196  Kay, Judy 234 
Cho, Moon-Heum 184  Keshtkar, Fazel 212 
Cox, Richard 134  Kim, Jihie 10 
Crespo, Pedro 232  Kinnebrew, John 57, 65 
   Kocielnik, Rafal 236 
D   Koedinger, Kenneth R. 17, 73, 196 
Dale, Robert 134  Kortemeyer, Gerd 95 
De Bra, Paul 216  Kusbit, Gail 126 
Desmarais, Michel 81    
Dolan, Robert 172  L  
Droschler, Stefan 95  Lamar, Michelle 226 
Dy, Thomas 152  Lee, Jung In 118 
   Lester, James 156 
E   Lomas, Derek 196 
Eagle, Michael 164  Lopez, Manuel Ignacio 148 
Elkina, Margarita 228  Luna, J.M. 148, 180 
Ezeife, Christie 218    
   M  
F   Maldonado, Roberto Martinez 234 
Fancsali, Stephen 238  Manie, Nicolai 230 
Forsyth, Carol 172  McCalla, Gordon 87 
McLaren, Bruce 152  Shaw, Erin 10 
McLaughlin, Elizabeth A. 17  Sidorova, Natalia 236 

Proceedings of the 5th International Conference on Educational Data Mining 241



	  

Mccuaig, Judi 160  Smirnov, Evgueni 230 
Merceron, Agathe 228  Sprugnoli, Renzo 208 
Merlini, Donatella 208  Stamper, John 17, 196 
Millis, Keith 172  Steinhart, Jonathan 196 
Moldovan, Cristian 25  Sudol, Leigh Ann 144 
Molina, María De Mar 180  Sun, Xiaoxun 222 
Morgan, Brent 212  Surpatean, Alexandru 230 
Mostow, Jack 41, 49    
Mott, Bradford 156  T  
   Tan, Ling 224 
N   Toledo, Pedro 216 
Naceur, Rhouma 81  Trcka, Nikola 216 
Niraula, Nobal 25  Trivedi, Shubhendu 33, 192 
     
O   V  
Obsivac, Tomas 103  Ventura, Cristobal   
Ocumpaugh, Jaclyn 126  Ventura, Sebastián 148, 180 
     
P   W  
Pardos, Zachary 33, 169, 192  Wagner, Angela 126 
Pavlik Jr, Philip 172  Wang, Qing Yang 192 
Pechenizkiy, Mykola 216, 236  Wang, Yutao 176, 200 
Peckham, Terry 87  Warnakulasooriya, Rasil 214 
Popelinsky, Lubos 103  Wenzlaff, Boris 228 
Pritchard, David 95  Wixon, Michael 126 
Pursian, Andreas 228    
   X  
R   Xu, Hao 10 
Rafferty, Anna 226  Xu, Yanbo 41 
Rau, Martina 110, 168    
Rayyan, Saif 95  Y  
Ritter, Steven 196  Yacef, Kalina 234 
Rivers, Kelly 144  Yoo, Jin Soung 184 
Rodrigo, Ma. Mercedes 152  Yudelson, Michael 188 
Romanczuk, Alex 134    
Romero, Cristobal 148, 180  Z  
Rossi, Lisa 126  Zaiane, Osmar 220 
Rus, Vasile 25  Zorrilla, Marta 206 
     
S     
Sabourin, Jennifer 156    
Salvi, Aatish 126    
Sarkozy, Gabor 33    
Scheihing, Eliana 210    
Scheines, Richard 110    
Schwarzrock, Sebastian 228    
Seaton, Daniel 95    

Proceedings of the 5th International Conference on Educational Data Mining 242



	  

Proceedings of the 5th International Conference on Educational Data Mining 243


	02 INVITED TALKS
	03 Long papers merged
	01
	02
	03
	04
	Introduction
	Co-Clustering
	Notation and Definitions
	Spectral Co-Clustering

	Bagging Strategy
	Clustering for Bootstrapping
	Co-Clustering for Bootstrapping
	Blending Predictions

	Experimental Validation
	Dataset Description and Context
	Experimental Results

	Discussion and Future Work
	REFERENCES 

	05
	06
	07
	08
	09
	1. INTRODUCTION
	2. EXPLORATORY DATA ANALYSIS
	3. METHODS
	4. RESULTS
	5. DISCUSSION
	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

	10
	11
	12
	13
	14
	1. INTRODUCTION
	2. DATA SETS
	3. DEFINING VARIABLES WITH WHICH TO INVESTIGATE MEDIATORS 
	4. HYPOTHESES AND PATH ANALYSIS MODELING
	4.1 Modeling Our Hypotheses
	Using normal theory maximum likelihood to estimate the parameters of these models, we find that in each case the deviation between the estimated and the observed covariance matrix is too large to be explained by chance (for the model for experiment 1 in Fig. 1: χ² = 53.8, df = 16, p < .0001, and for the model for experiment in Fig. 2: χ² = 59.41, df = 6, p < .0001), thus the models do not fit the data and the parameter estimates cannot be trusted. 
	4.2 Model Search

	5. DISCUSSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

	15
	16
	17

	04 Short papers merged
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15

	05 Posters Merged.pdf
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	1. INTRODUCTION
	2. THE TOOL
	3. LEARNING PATHS IN AN ONLINE ENCYCLOPEDIA
	4. CONCLUSION AND FUTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	13
	14
	15
	16
	17




