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Preface

The 5th International Conference on Educational Data Mining (EDM 2012) is held in
picturesque Chania on the beautiful Crete island in Greece, under the auspices of the
International Educational Data Mining Society (IEDMS). The EDM 2012 conference
is a leading international forum for high quality research that mines large data sets of
educational data to answer educational research questions. These data sets may come
from learning management systems, interactive learning environments, intelligent
tutoring systems, or any system used in a learning context.

We received a total of 50 full papers, 19 short papers and 20 posters from authors of
30 different countries and these submissions covered the full range of the conference
topics specified in the call for papers. The papers were distributed to the 56
international program committee members, who called upon additional 17 external
reviewers. All papers were reviewed by 3 reviewers and any paper submitted by
organisers was sent to anonymous reviewers unbeknownst to the involved organisers.
After receiving a total of 235 reviews, 17 full papers and 15 short papers were
accepted to be presented at the conference and included in these proceedings, giving
an acceptance rate of 34% for full papers, and 46% overall. Furthermore, 17 posters
were accepted and their summaries appear in the proceedings. We have also included
the abstracts of the 3 invited talks by (i) Professor Myra Spiliopoulou, Professor of
Business Information Systems, Computer Science, Otto-von-Guericke University
Magdeburg, Germany, (i) Professor Danielle S. McNamara, Learning Sciences
Institute Psychology Department, Arizona State University and (iii) Dr Bob Dolan,
Senior Research Scientist, Assessment and Information, Pearson.

We would like to thank our sponsors Carnegie Learning (Gold Level), Pearson (Gold
Level) and LearnLab (Silver Level) for their generous support. We would also like to
thank the program committee members, the additional reviewers, the local committee,
the web chair and the invited speakers for their invaluable help in putting this
program and conference together.

We hope that the papers contained in these proceedings will be stimulating to most of
the readers, provide thought-provoking new ideas to motivate new research, and
prove helpful towards improving the literacy in educational data mining.

Enjoy the conference.

Kalina Yacef
Osmar Zaiane
Arnon Hershkovitz
Michael Yudelson
John Stamper
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Stream Mining in Education? Dealing with Evolution

Prof. Myra Spiliopoulou, Knowledge Management and Discovery Lab KMD, Faculty
of Computer Science, Otto-von-Guericke-University Magdeburg, Germany

EDM methods that suggest materials to students are based on student models, and/or
on the behavior of other, similar students. Whenever a recommendation is formulated,
though, or the similarity between two students is assessed, each of the observed
individuals is at some, a priori unknown and typically not observable intermediate
state of the learning process. This process manifests itself as a drifting stream of
activities. Learning methods that adapt their models to the current state of this stream
allow the formulation of recommendations aligned to the current learning stage of a
student, taking into account students that evolve/learn similarly to her. The underlying
technology is that of stream mining, rather than data mining.

This talk is on the potential and challenges of conventional stream mining and
relational stream mining for educational purposes. We start with mining over a
conventional stream of activities, such as the interaction with a platform containing
learning materials. The typical learning task is predicting the next course material,
given the changes in the preferences and experience of the individuals. Then, we
move over to the learning task of discovering groups of individuals that evolve
similarly over time. Finally, we discuss the supervised task of learning a model of
performance, taking into account that the performance of each individual may change
(unexpectedly) during the observation process.

The examples of this talk do not come from the field of Educational Data Mining but

from closely related fields -- formulating recommendations for products, and model
adaptation as people's behavior change.
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From Text to Feedback: Leveraging Data Mining to Build
Educational Technologies

Danielle S. McNamara, Arizona State University

Over the past decade, our research teams have been using data mining techniques
primarily for the purpose of analyzing text and writing corpora. These analyses
emerged within three projects, Coh-Metrix, iISTART, and the Writing-Pal. Coh-
Metrix is a text analysis tool that provides hundreds of linguistic and semantic indices
on text. Within the context of the Coh-Metrix project, we have analyzed thousands of
texts with the goal of better understanding the nature of text. Ultimately, our goal has
been to provide educators with multidimensional information about the difficulty of
text. ISTART is a reading strategy tutoring system that provides students with
automated feedback on the quality of their self-explanations of text. The Writing Pal
IS a writing strategy tutoring system that provides strategy instruction to adolescent
readers as well as practice writing essays with feedback. Within the context of the
ISTART and Writing Pal projects, we have used Coh-Metrix and other text analysis
tools to analyze self-explanations and essays. Our goal has been to better understand
the linguistic features contributing to their quality as well as to develop and improve
our automated scoring and feedback systems. All of these endeavors have called upon
a variety of data mining techniques that serve to analyze the data and in turn drive the
feedback algorithms that undergird the tutoring systems. This talk will describe how
data mining supports the development of educational technologies at various levels.
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Five Aspirations for Educational Data Mining

Bob Dolan and John Behrens, Pearson

In this talk we present our disciplinary, methodological, and social aspirations for
Educational Data Mining. These aspirations are based on broad conceptualizations of
the nature of education and data analysis as social endeavors. These aspirations fall
into five categories which begin with the statement that “We hope that Educational
Data Mining will...” 1) Consider the broad range of the social and organizational
aspects of education and its administration, including informal and ubiquitous
learning; 2) Consider the broad range of inputs of digital artifacts that feed into the
design of learning systems (not just the outcomes of system interactions); 3) Consider
data mining as a human endeavor which is itself a proper topic of psychological,
sociological and other academic disciplines; 4) Remember the fundamentals of
quality data analysis regardless of computational techniques (with special fondness
for John Tukey’s insights); 5) Provide information that celebrates the diversity of
effective pedagogies and supports learning by the outliers, hidden clusters, and
otherwise missed special groups of people that are lost in the averages or other
insensitive aggregations. We have high expectations for the field of Educational Data
Mining to evolve broadly and contribute broadly to education and society.
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Assisting Instructional Assessment of Undergraduate

Collaborative Wiki and SVN Activities
Jihie Kim, Erin Shaw, Hao Xu, Adarsh G V

Information Sciences Institute / University of Southern California
4676 Admiralty Way, Marina del Rey CA 90292

{jihie, shaw, hxu, agvenkat}@isi.edu

ABSTRACT

In this paper we examine the collaborative performance of
undergraduate engineering students who used shared project
documents (Wikis, Google documents) and a software version
control system (SVN) to support project collaboration. We present
an initial implementation of TeamAnalytics, an instructional tool
that facilitates the analyses of the student collaboration process by
creating dynamic summaries of team member contributions over
time in. Document content is processed using machine learning
techniques. We validated the summary’s effectiveness using a
questionnaire given to instructors and team managers. Team
managers indicated that summaries of student contribution to
coding activities influenced their evaluation and coordination of
team projects.

Keywords

Collaborative teamwork, instructor tool, wiki, team projects.

1. INTRODUCTION

Engineering students participating in collaborative activities
communicate electronically through a variety of applications,
most of which are inaccessible to an instructor and thus offer little
insight into the process of collaboration. The goal of the
Pedagogical Wiki project is to assist instructors and educational
researchers in evaluating team and individual student performance
in the context of computer-supported collaborative learning
environments.

In this paper we examine the collaborative performance of
undergraduate engineering students who used a shared project
documents, including Wikis and Google documents, and a
software version control system to support project collaboration.
Wikis are editable Web sites that support the creation of linked
pages, archiving of media, revision control, access control,
searching, and a consistent look and feel. Wikis facilitate
collaborative learning by allowing groups of laypersons to
collaboratively create web content [13,1,4]. However, the research
on the effectiveness of using Wikis for student collaboration has
been mixed [14,17], and patterns of student collaborative
documenting and their effect on learning have not been fully
assessed.

In addition to Wikis, students used Google documents, a popular
team document generation and sharing environment that allows
synchronous document editing, and Subversion (SVN), a version
control system that is commonly used for software management.
Version control systems track revisions that are made to files over
time, usually by a group of authors. Wikis, Google documents and

SVN all provide revision “histories”, which can, in theory, be
used to analyze student performance. For example, Ben-Zvi [1]
notes that while logs can be used to evaluate each student’s Wiki
contribution, the number of contributions is enormous and new
techniques and tools are needed to track them efficiently. Without
proper tools, the analysis of document histories would place a
considerable burden on instructors, who rarely have the skills or
time to analyze the data for assessment purposes.

This paper presents a new instructional tool called TeamAnalytics
that summarizes collaboration via online team activities. It
dynamically processes student shared document edits and code
management actions, summarizes both the overall team and
individual contributions in each week, and presents the summary
to the team managers and the instructor. For processing Wiki
content data, we use natural language processing (NLP)
techniques and machine learning approaches to generate topic-
based summary of the documents. We report a study of
PedSummary based on team manager ratings and a small survey.
The initial results with two undergraduate courses with large team
projects indicate that individual code contribution summary is
useful for team managers and such summary can influence how
the managers coordinate the team project.

1.1 Teamwork summary categories

Table 1. Current categories of team work summaries.

Category Summary Description
. . Hierarchical view of the docs,
1 View A tree view of organized based on links and
Docs Wiki docs g -
topics
.. .| Number of docs (and number of
Wiki- Totql W.'k' words) created, frequencies of
2 contributions . .
Group by members accesses/views, and topic-based
y document distribution
Individual Number of docs, words,
3 Wiki- Wiki access/view of others’ docs and
Individual N topic-based distribution of the
contributions
docs
SVN- Total SVN Number of files
4 rou contributions | added/modified/deleted by the
group by members team, and weekly totals
SVN- Individual Number of files
5 Individual SVN added/modified/deleted by the
contribution student, and weekly totals

As engineering researchers, we (the authors) use Wikis
extensively, primarily as a knowledge repository for project
documentation and media. It is clear that, for Wikis, the benefit of
democratic use is also its downfall, with its lack of structure and
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oversight. Student Wiki sites often do not scale well, and tracking
text and asset contributions becomes frustrating. Our goal was to
provide finer-grained measurements and user-friendly interfaces
for understanding instructional shared Wiki use.

In order to alleviate the problem of viewing student documents
with existing Wiki systems, TeamAnalytics clusters documents
according to the link hierarchy within the Wiki system (Category
1 in Table 1). They are also organized based on document topics
that are automatically identified from topic models.

The primary instructor for the undergraduate course we studied
also teaches an upper level course in which the students take on
the role of team managers for the undergraduate project teams,
and the instructor delegates most of the assessment tasks for the
project teams to the team managers. A needs assessment was
performed for both the course instructor and the team managers.
Although the team managers participate in student group meetings
and help the students as needed, often times they had difficulty in
documenting who is doing what and how much. Such manager
documentation is used in reporting teamwork to the instructor and
tracking the teamwork throughout the project. In some cases, the
members in the same team receive similar grades depending on
the team performance. The instructor and the managers wanted to
see individual contributions as well as the total contributions by
all the team members (Categories 3 and 5 vs. 2 and 4 in Table 1).
Identifying patterns of student activity relative to student
performance was also discussed. In order to support an analysis
of activity patterns, we broke up the contributions into weekly
activities so that the managers can see how students work towards
the deadlines over time.

2. ANALYSIS REPORT GENERATION

This section describes how collaborative Wiki and Google
document activities are captured into a summary that is viewable
by team managers and instructors. Although we show results for
Moodle’s Wiki, Google documents and SVN, most of the data
processing steps do not depend on the course management system
or particular document tools. For example, our topic classification
functions are being used for other Wiki (e.g. Brainkeeper) content.

2.1 Participating Courses

The TeamAnalytics system was integrated into Moodle’s [10]
virtual learning environment during the Spring 2011 and Fall
2011 semesters. During each of these semesters, two
undergraduate software engineering courses were combined for a
large team-based project assignment. The study took place at the
University of Southern California.

Students in a freshman level software development course
(CSCI200) teamed up with students in a sophomore level course
(CSCI201) for a large-scale programming project. Students in
both courses learned team management, software engineering
principles, and operating system principles and used the concepts
to build “authentic” applications that solved new problems.
Because second year students had already completed the first year
course, they were able to mentor the first year students. The
project team had students from both classes. Each team had about
four freshmen and four sophomore students. The first year course
(CSCI200) emphasized user-interfaces and the second year course
focused on architecture (CSCI201). Additionally, a team manager
was assigned to each team to assesses team co-ordination and

leadership skills, and provide help throughout the project. Our
work focused on assisting the team managers and the instructors.

There were ten teams of between ten and fifteen students each
semester. The teams wused their collaborative workspaces
(Moodle) in myriad ways. Some teams used the Moodle Wiki and
some used Google documents that they then linked to the Moodle
courses. Some used a combination of both, e.g. Wikis for meeting
notes and Google for documents. The choice was theirs. The
workspace for team M2, is shown in Figure 1.

USC CSCI 200/201-M2 S -y

Home » Courses » Courses » CS200/201-M2

Topic outline

Factory Wiki

Main wiki pages

m Presentation GFS 106 Time: Wednesday, 2nd group to present
i Wik

i
Factory Sche: from Wikczynski
| i Coding Guidelines (

Gudeine

Figure 1. The collaborative workspace for a combined USC
freshman/sophomore engineering team M2

2.2 Data processing

The TeamAnalytics architecture is shown in Figure 2. All team
activity data is stored in the Student Group Activity database. The
system fetches SVN activity data from the SVN server used by
the courses. Students’ actions including addition, modification
and deletion of files are retrieved every 24 hours.

The system also dynamically accesses the student Wiki history
including addition, deletion and modification information from
the course management system. Each team provided -edit
permissions to allow us to access to the content and edit history of
the shared Google documents through a Google API. After re-
formatting the data, the Wiki data processing functions were used.

Figure 2. Generating teamwork summary using data from SVN
and Wikis and Google documents.
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For topic modeling, whenever a new page or a revised page is
saved, a backend program is invoked to parse the content of the
page and generate topic distributions using the automatic topic
classifier, which is described in detail in subsequent sections.

The dynamically generated summaries were sent to the team
managers and instructors by weekly email. The summaries were
also viewable from within the team’s Moodle course environment.
The team manager of M2 could access the summary by clicking
the ‘USC CSCI1200/201-M2 Wiki Summary’ link (Figure 1). The
instructor and the team managers could view all the teams’
activities as shown in Figure 3. The content of the summaries is
described in Section 3.

Group All Wiki Summary for USC CSCI 200/201 All Fall_20113

Home P Courses P USC Courses P 20113 >
Group Summary

We have 10 groups In this courses. And please use the links below to access the summary pages for each group.

Figure 3 Summaries of all the participating teams available for
the instructors and team managers.

2.3 Automatic topic classification
The Wiki pages and Google docs are classified based on the page
title and the content using Labeled LDA.

2.3.1 Background on Labeled LDA

Because we wanted to develop a topic modeling approach that
could be easily applied to different courses, supervised
approaches requiring a large amount of labeled data were not
appropriate. And because discussion datasets are noisy, we needed
a model that could capture semantic meanings behind the words
rather than words themselves. LDA (Latent Dirichlet allocation)
32] is very powerful in analyzing latent topics of documents, but it
has all the disadvantages inherent to any unsupervised model. The
topic distribution of LDA depends on the word distribution in the
documents and cannot be controlled even if we have a prior
knowledge to guide topic generation. Thus many topics are just a
cluster of words that co-occur in many documents and do not have
a semantic meaning in real data. Ramage et al [13] introduced a
semi-supervised algorithm, called Labeled LDA, a novel model
that uses multi-labeled corpora to address the credit assignment
problem. Unlike traditional LDA, Labeled LDA constrains topics
of documents to a given label set. We have V number of unique
vocabularies and D number of documents, and K number of
topics. For each document d, which consists of a list of word
(wy(d),...,wn(d)), we have k dimensional binary topic indicators.
Unlike using symmetric Dirichlet distribution with a single hyper
parameter o as a Dirichlet prior on the topic distribution 6(d),
Labeled LDA restricts 6(d) to only over the topics that correspond
to observed labels. The key task was to select a label set that could
generate meaningful topic results.

2.3.2 Wiki Topic Modeling with Labeled LDA

The topic categories for the software engineering team wiki
documents are shown in Table 2. This was generated after manual
analyses of the course curriculum and the content of the wiki
documents across all the project groups in the class. The topic
categories represent the major types of the documents generated
by the students over the course. The two main topic classes are
team management categories (Team Organization and Progress
Summary). The rest of them represent software engineering
principles documents that show Initial Planning, Design, Coding,
Testing and System Analysis.

Table 2. Topic categories for team work document.

Topics Description Kappa
Team Team contact information, availability for
meetings, allocation of project modules to 0.83

Organization members, milestones and their target dates.

Initial research and Q&A discussions on the
project. Some use external links and 0.82
reference materials.

Initial
Planning

Design documents describing frontend,
Design backend, Interfaces. Also includes 0.73
interactive diagrams.

Implementatio Describes implementation method, using

0.91

n and Coding pseudo code or java code.
. Describe code testing including unit test 0.73
Testing -
cases, bugs or Junit.
SySte”? Analysis of implemented system; system

Analysis . o . 0.74
issues, setbacks and fixes in system design.
Document discussions, meetings, email and

Progress : .
phone conversations on the status of project 0.81

Summary

modules.

A Kappa measure [5] was used to verify agreement. Table 2
shows the Kappa values between two annotators for 263
documents sampled. Kappa values take into account agreement
that can occur by chance.

Observed agreement - Chance agreement

Kappa =
Total observed - Chance agreement

Table 3. Sample label set and LLDA classification results.

Topics Sample Labels % Prceetzlllre
Team |rxgui,rxnub,part,kit,on,panel,gantri,rxnub_rxnub,r 148 0.4
Org xfunction,object,return,user,factori,move,can " 1/0.29
Plannin rxquestionmark,custom,=,{,},messag,if,rxfunctio 35 0.0
g n,order,state, list,check,action,customer,timer ) /0.0
Desian kit,part,public,rxnub,rxfunction,int,void,on,stand, 8.3 0.43
Y rxquestionmark,type,public_void,call,=,at "~ 1/0.35
. rxfunction,=,part,{,rxnub,},if,void,int,public kit,s 0.69
Coding et,bin,rxgui,feeder 190 /0.82
. }.{,part,= kit,rxfunction,if,nest,int,return,rxquesti 0.0
Testing onmark,lane,void,true, list 94 /0.0
. Irxgui,you,panel,rxnub,food,cook,on,ar,when,anim 0.54
Analysis should.do, if,all,your 63 1 10
rxnub,rxnub_rxnub,i,test,meet,task,rxday,my,inte 0.65
Progress : . 16.7
gr,code,on,rxgui,done,design,panel /1.0

Sample label sets used for LLDA are show in Table 3. We
evaluated the model distributions using the manual annotations as
the gold standard. Since documents can contain multiple topics,
we evaluated them by selecting and comparing the top 2 topics
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from the manual annotations and model results. Precision is
defined as the ratio of the number of correct topic annotations
generated by the model to the total number of topic annotations
generated by the model. Recall is defined as the ratio of the
number of correct topic annotations generated by the model to the
total number of correct annotations specified by the gold standard.
The table also shows the % of the topics within 314 annotated
documents. The current model provides limited accuracies for
some topic categories due to limited examples. We are currently
improving the LLDA model by adding more dataset.

3. ANALYSIS REPORT PRESENTATION

This section describes how document-based and code-based
activity summaries were presented to team managers and
instructors. As described above, the dynamically updated
summaries and statistics were viewable from within Moodle. We
also generated and sent team summary reports to each team
manager by email.

3.1 Document Summary
This section describes the content of the document summaries.

3.1.1 Tree view of document with topic labels

A tree view of the documents created or modified by students on
team W3 is shown in Figure 4. Each team generated more than
hundred documents and uploaded many additional files such as
design diagrams. Wiki pages, plan text pages, and upload
documents of any type were stored within the virtual learning
environment. Wiki pages were related using hyperlinks. Google
documents were also used and linked within Moodle. In order to
help students and team managers navigate through various
documents, TeamAnalytics compiled document links and
generated a hierarchical view of the team documents. A general
API (application programming interface) was developed so that
other types of links could be captured within the structure.

The tree view also shows who created the document, how many
students edited the document, how many edits were made, how
long the document was edited, how many words were included,
and how many links were present in the document. We also
organized the documents based on the content topics, using the
above-mentioned LLDA models. Without reading the individual
document details, team managers could evaluate who was
contributing on what topic and how often.

B USC CSCI 200/201-W3 Wik Summary USC CSC1 200/201-W3 Wiki Sum... X -' ' m

Wiki totals for team W3

Tree view of wiki document

Create Time Creator Last Modified Owners Version Days Words Links Top Topics

TaskCard, Test

Figure 4.Tree view of documents based on document links

3.1.2 Topic based document distribution

- Topic Based Document Analysis

Topic Distributions

32165

22637
20 769

12044
7.097

Percentage

Topics

(a) Topic distribution of all the team documents.

Number of Documents belong to this Topic

Name/Week 1 2 3 4 5 6 7 8 9
TESTING 1 1 1 1 7
PROGRESS 4 12 ot 1 3 2 5
DESIGN 1 1 13 1 19
ANALYSIS 15 10 3 1 16 2 ) 17
TEAM_ORG 6 2 3 1 2
CODING 16 10 21 4 3
PLANNING 11 6 1 4 5 2 & p

‘ 0 0-10 10-20 20-30 30-40 _

(b) Weekly document topic distribution of documents.
Figure 5.Topic distribution of team documents.

Document topics were summarized into a bar graph like the one
shown in Figure 5-(a). The accumulated number of documents per
each topic, based on the LLDA topic distribution, is shown.
Using this view, the team managers could estimate the distribution
of topics in the team documents. We also highlighted increments
within a given week so the viewer could evaluate the topics of
focus during that week. A weekly distribution of the document
topics is shown in the heat map in Figure 5-(b). The headings 1-9
depict the nine weeks that the project runs. The cells with high
frequency values are highlighted with darker colors.

3.1.3 Participation frequency per student

Wiki contributions by individual students are shown in Figure 6.
For each student the left (blue) bars show number of documents
viewed and the right (green) bars show the number of documents
edited by the student. The portions contributed during the current
week are highlighted with lighter colors, and the counts at the tops
of the bars show the current week’s numbers of edits and views.
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Weekly and Total Wiki Edits and Views

Number of Documents
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Figure 6. Individual student contributions to Wiki

3.2 SVN Summary

Add

Name / Week 1 2 3 4 5 6 7 8 9
17 1 9 1"
13 2 % - -
4 5 " 7 10 3 1
52
_ 55 19 1 1 3 2 3
4 4 H 57 5 1 1
6 27 9 3 6 3
4 2
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10 3 15 5
4 7 42 1 3 8 5 3 2
7 2% 4 1 21
Total 53
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(b) Number of files modified by each student weekly.
Figure 7. Weekly student contributions to SVN

Students used the Subversion (SVN) version control system to
manage changes to their team’s programming files. SVN allowed

team members to add new program files, or modify or delete
existing ones. Figure 7 shows individual student contributions to
SVN for adding and modifying files. The weekly total numbers
of file additions and modifications by all the team members are
shown at the bottom of the table. The team managers were able to
track the degree of SVN activity using this summary.

4. USER STUDY

TeamAnalytics was integrated into Moodle’s virtual learning
environment during the 2011 Spring and Fall semesters. A total of
278 students participated in the projects (42 freshmen and 67
sophomores in the Spring implementation, and 90 freshmen and
57 sophomores in the Fall implementation). There were ten teams
each semester, and a manager was assigned for each team. The
system was introduced to the classes and team managers before
the project started. The dynamic summary was available to team
managers on Moodle, and also sent weekly by email.

Table 3. Team manager ratings of the TeamAnalytics

components.

. Spr 2011 Fall 2011
Team Manager Rating (average) (N=7) (N=7)
Viewing: 1=never, 2=occasionally, 3=often
Document activity viewed 2.0 1.71
Topic activity viewed - 1.57
SVN activity viewed 2.7 2.29
Helpfulness: 1=minimal, 2=moderate, 3=very
Document activity helpful/
- 1.9 2
influence manager
Topic activity helpful/ influence _ 16
manager '
SVN activity helpful/ influence 24 28
manager

Survey responses for the team managers are shown in Table 4.
Survey participation was voluntary and the response rate for both
semesters was seven out of ten. Team managers were asked to rate
the document (Wiki and Google Docs) activity views, topic-based
document summaries and SVN activity summaries separately.
The topic-based document summary was developed later and
introduced to the Fall 2011 classes only.

The team managers viewed the SVN activity summaries more
often than the document and topic summaries, and found the SVN
summaries between moderately and very helpful. The documents
summaries were rated moderately helpful and the topic summary
was rated between minimal and moderate. It is evident that the
team managers were most interested in student coding activities.

Team manager responses to other survey questions are shown in
Table 5. The managers liked how they could keep track of coding
work progress using TeamAnalytics. Several managers raised
issues about the user interface (UI) especially comparing the old
and new Moodle Uls. Recent upgrades and our own improvement
of the interface design reduced some of the concerns. Individual
managers show different preferences for how the information
should be presented. We are investigating alternative approaches
for showing the results. The managers also wanted to see more
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details on student coding activities such as the numbers of lines
added or deleted by individual students. We plan include such
coding activity information and provide a drill-down view where
end users can choose to see such details

Table 5. Team manager answers for survey questions.

Question Responses
How did s | showed me the progress of the team
the p | Itdid influence the way | saw the member
summary and the team as | knew who was putting in
influence more effort. This is definitely better than the
your work? views and edits
I will review and evaluate team members'
performances for their projects.
Frequency of SVN commits does not map to
work done on the project, but low commits
CAN be a reason for concern
Allowed for me to monitor which members
were contributing to code.
Can you s | Perhaps the time of the last edit or view
think of Member wiki contribution statistics
additional | like it how it is
activity f | If it's possible, analysis showing number of
information lines of code affected, number of files
that you touched, whether the commit is a merge.
want to Any of those would be helpful for analysis
see? I collected activity data by being at the
meetings, so no.
Meeting set up and attendance checking.
Individual doc revision statistics for each
document
The question of are we behind, maybe by
comparing with SVN commits of previous
semesters?
Whether someones work has actually been
productive
Do you s | The current way is good enough as it serves
have any the purpose, The Ul should be improved
:g?gestlons In graph instead of tables. Better interface
improving moodle's Ul sucks
the you guys were great with feedback this
summary, semester and the moodle was FAR more
including useful than it was in the fall of 2010. I like it
how the how it is.
information In a dashboard format where priority is given
1S to certain issues. Bug tracking.
displayed? Information would be more easily shared if it
was in more of a forum type setup.

f | Allow more detail in the SVN log, like
separate it by day or hour (on a graph)
instead of week. Also stronger analysis like
graph of SVN activities for each person.

Less colored charts, more bar graphs

5. RELATED WORK

Our work is situated in the research domain of context modeling
and activity awareness to support group performance on complex
tasks (e.g., [3,18]). Of particular relevance is Upton and Kays’
Narcissus system [16], which graphically models user and group
behavior to support team collaboration. Also related is Suthers,
Dwyer and Medina’s [15] Uptake Analysis Framework for
conceptualizing and representing distributed interaction, in which
contingency graphs are used to transcribe activity in the temporal
space, distributed across multiple documents, to enable
researchers to (possibly) identify the influence of prior activity on
ongoing activity. Our work extends existing research by
automatically generating summaries of group work in
collaborative knowledge building and team programming
environments, and by combining NLP techniques to support
topic-based analysis of contribution content.

Our work builds on Activity Theory [6,9], which we used
previously as a framework for analyzing wiki activity [7]. The
presented work significantly extends the scope of activity analyses
and presents an evaluation with team managers. Glassman and
Kang [8] propose that learning via Wikis and Web browsing is
best explained as an abductive logic process, consisting of
discovery and hypothesis generation, which would call for a
model that reasons about prior activity to explain ongoing activity.
The TeamAnalytics effort facilitates analysis of student online
work contributions and how they progress over time by instructors
and team managers.

TeamAnalytics also extends our prior work on workflow-based
analysis of student online discussions [11,12]. We plan to make
use of the computational workflow framework to support more
efficient and robust approaches for assessing student online
activities.

6. SUMMARY AND FUTURE WORK

This paper presents our initial implementation of TeamAnalytics
that provides a summary of member contributions over time in
Wiki space and SVN. Our initial study with team managers
indicates that a summary of how individual students contribute to
coding can influence how the managers evaluate and coordinate
the team project. We plan to trace how the managers use the
information in team coordination and assisting students. We will
also explore opportunities to assist grading student teamwork with
the TeamAnalytics report.

Based on the team manager comments collected so far, we plan to
add more details on student coding activities including whose files
were modified by whom. We are also investigating additional
topic categories that can help instructors and managers track
student activities. In order to receive more feedback while the
team managers view the summaries, we plan to add feedback
fields in the summary page so that we can capture team manager
input regularly. Although the instructors do not directly manage
teamwork, they can also provide input on how to make the
summary more useful using such function.

Regarding the presentation of the summary results, we will follow
suggestions from the instructors as well as the team managers in
developing effective ways to show the summary information.
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ABSTRACT

Student modeling plays a critical role in developing and
improving instruction and instructional technologies. We present a
technique for automated improvement of student models that
leverages the DataShop repository, crowd sourcing, and a version
of the Learning Factors Analysis algorithm. We demonstrate this
method on eleven educational technology data sets from
intelligent tutors to games in a variety of domains from math to
second language learning. In at least ten of the eleven cases, the
method discovers improved models based on better test-set
prediction in cross validation. The improvements isolate flaws in
the original student models, and we show how focused
investigation of flawed parts of models leads to new insights into
the student learning process and suggests specific improvements
for tutor design. We also discuss the great potential for future
work that substitutes alternative statistical models of learning
from the EDM literature or alternative model search algorithms.

Keywords

Student modeling, model discovery, model comparison.

1. INTRODUCTION

Student models drive the great many instructional decisions that
automated tutors currently make, whether it is how to organize
instructional messages, sequence topics and problems in a
curriculum, adapt pacing to student needs, or select appropriate
materials and tasks. Student models also appear critical to
accurate assessment of self-regulated learning skills or
motivational states. A better student model vyields better
instruction, which leads to improved learning. More accurate skill
diagnosis leads to better prediction of what a student knows which
provides better assessment. Better assessment leads to more
efficient learning overall.

Cognitive Task Analysis (CTA) has been shown to lead to better
instruction [2], and CTA is currently the best strategy for creating
cognitive models. Unfortunately, CTA is an expensive and time
intensive process that is fundamentally driven by human experts.
The main goal of this research is to accelerate the process of
improving student models. Educational data mining and machine
learning techniques can be used to improve these models in an
automated fashion. In this research, we combine an automated
search algorithm with existing proposed student models in the
DataShop repository in a crowd sourcing fashion. Using this
process, we have been able to make improvements in the models
that lead to important focused insights into ways to improve the
instruction of the tutoring systems that use these models.

1.1 Background and Related Work

A number of studies have demonstrated how detailed CTA can
result in dramatically better instruction [2; 7; 9]. Cognitive Task
Analysis clearly works in creating cognitive models but as it
currently exists, CTA has several limitations. First, CTA is more
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of an art than a science involving many subjective decisions.
Second, the most successful CTA approaches are heavy in human
effort. Approaches like structured interviews, think alouds, or
developing cognitive model simulations all require high level of
psychological expertise and significant time investment.

It may be possible to achieve similar outcomes using more
automated techniques that utilize educational data mining and
machine learning on large sets of student data. These techniques
can reap many of the benefits of CTA, but with less effort and
expertise than currently required. CTA typically produces a
symbolic representation of a student model, for instance, a rule-
based production system of the skills in a domain. An alternative
is to use data and statistical inference to create a student model
involving continuous parameters over latent variables with links
to observed student performance variables.

In domains where cognitive models have been created, the
learning curves derived from these models are a source for data-
driven model revision. Others have applied learning curve
analysis in the improvement of tutors. In one study of a constraint-
based tutor for teaching database programming [10], learning
curve analysis was used to analyze log data and make student
model improvements. Creating models of student performance is
useful both for student assessment and for better student
instruction. With respect to assessment, use of such models in on-
line systems might in fact be just as good at the job that
standardized tests are intended to perform [5]. With respect to
better instruction, such models are the basis for the kind of
student-customized adaptive instruction that intelligent tutoring
systems can provide [6]. Cognitive Tutors for mathematics are
now in use in more than 2600 schools across the US for some
600,000 students per year. While these systems have been quite
successful, there is room for improvement in the student models
that drive their behavior.

The DataShop repository at the Pittsburgh Science of Learning
Center (http://learnlab.org/datashop) provides a resource for
educators and researchers to create, modify, and evaluate student
models [8]. DataShop is an open data repository for educational
data with associated visualization and analysis tools. DataShop
has data from thousands of students derived from interactions
with on-line course materials and intelligent tutoring systems. The
data is fine-grained, with student actions recorded roughly every
20 seconds, and it is longitudinal, spanning semester or yearlong
courses. As of December 2011, over 300 datasets are stored
including over 70 million student actions, which equates to over
190,000 student hours of data. Most student actions are “coded”
meaning they are not only graded as correct or incorrect, but are
categorized in terms of the hypothesized competencies or
“Knowledge Components” needed to perform that action.

In DataShop terminology, Knowledge Components (KCs) are
used to represent pieces of knowledge, concepts or skills that
students need to solve problems. When a specific set of KCs are
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mapped to a set of instructional tasks (usually steps in problems)
they form a KC Model. A KC model is a specific kind of student
model. DataShop provides an easy interface for exporting,
modifying, and importing KC models, allowing researchers to
evaluate and compare alternative KC models.

1.2 Student Model Improvement

A number of automated and hand search methods of exploring the
cognitive model space have been proposed [1; 4; 10; 11; 13; 14].
These approaches create alternative models that are scored against
existing models using one of several metrics for model prediction
of student performance and how it changes over time. These
include Akaike information criterion (AlIC), Bayesian information
criterion (BIC), and cross validation [12]. A statistical model is
needed to make predictions about changes in student performance
and DataShop uses an extension of item response theory that
incorporates a growth or learning term [cf., 3; 14]. We refer to this
model as the “Additive Factors Model” (AFM) [1; 13] and it is
shown in Figure 1. In this statistical model, the discrete portion of
the student model is represented by g the so-called “Q matrix”
[16], which maps hypothesized difficulty or learning factors (the
knowledge components or skills) to steps in problems. These
factors are hypothesized causes for difficulty (By) or for learning
improvement as students practice (yx). AFM gives a probability
that a student i will get a problem step j correct based on the
student’s baseline proficiency (6;), the baseline difficulty (Bx) of
the required KCs (gj«), and the improvement (y,) in those KCs as
the student gets practice opportunities (Ti)-

, K K
Pij
ln(l_—]“) = 0; +Z Qi B ‘*‘Z Qi VieT i
\ Pij, k=1 k=1

Figure 1. In the Additive Factors Model (AFM), the probability
student i gets step j correct (p;) is proportional to the overall
proficiency of student i (6;) plus for each factor or knowledge
component k present for this step j (indicated by g, add the base
difficulty of that factor (Bx) and the product of the number of
practice opportunities this student (i) has had to learn this factor
(Ti) and the amount gained for each opportunity (y).

Previous efforts to evaluate cognitive models have used BIC as
the evaluation criteria [1]. BIC reduces the chances of over-fitting
the data by penalizing for increasing the number of parameters in
the model. It is much faster to compute than cross validation and
reasonably predicts the results of cross validation. When time is
not an issue, cross validation is preferred. There is currently no
consensus on how to perform the folding process in cross
validation for student model comparison and we discuss three
alternatives below (which are in use in DataShop).

2. THE CREATION AND EVALUATION
OF STUDENT MODELS IN DATASHOP

Before discussing automated generation of student models, we
first describe how DataShop supports researchers in creating and
evaluating alternative knowledge component-based student
models (represented as Q matrices). The log data collected in
DataShop is composed of student attempts on problem steps in a
given set of instruction. Each of these problem steps can be tied to
one or more skills or knowledge components. This linking of
problem steps to knowledge components is called a KC model in
DataShop and represents a student model for that set of
instruction. Researchers can export KC models from DataShop,

modify them using Excel or another editor, and then import a new
model into DataShop for comparison.

KC models in DataShop are fit to data using the AFM equation in
Figure 1, and metrics for AIC, BIC, and three versions of cross
validation are provided to evaluate and compare different models.

We illustrate the modification of a KC model to produce an
improved model with implications for tutor redesign. The
example data comes from a data set called Geometry9697 and can
be found in the DataShop repository under Public Datasets. Figure
2 shows a screen shot of (a more recent version of) the tutor used
in generating the data.

In this example, the best hand-generated model divides the
ALT:COMPOSE-BY-ADDITION KC of the original in-use
model into three KCs: Subtract, compose-by-addition, and
decompose. The original ALT:COMPOSE-BY-ADDITION KC
labels steps where the student must find the area of an irregular
shape that may be the sum or difference of two regular shapes
(e.g., what’s left when a circle is cut from a square). This KC was
targeted for improvement because, as shown in the top of Figure
3, it was found to have a non-smooth learning curve (a large
difference between actual and predicted values) and although it is
relatively difficult (26% error rate), the learning curve does not
indicate any learning (the error rate does not go down with
opportunities) and, correspondingly, the AFM slope estimate (yj)
is zero. As described in [15], these features of a learning curve
(not smooth, not low, and not declining) are indicators of a poorly
defined KC. A KC may be improved by investigating the problem
steps it labels, usually focusing on those where the error rate is
much higher (or lower) than normal as in opportunities 12, 15-18,
etc., shown in the curve at the top of Figure 3. The analyst seeks a
feature of these problem steps that may change the difficulty of
performing or learning that step (i.e., a difficulty or learning
factor) that is not shared by the other problem steps. In this case,
almost all of the hardest problem steps required students to
identify the two regular shapes that make up a target irregular
shape (i.e., to visually “decompose” and set subgoals to find the
area of these regular shapes first). These problem steps were
relabeled with a KC called decompose. In other problems, the
ALT:COMPOSE-BY-ADDITION steps came after an explicit
scaffold given to students to find the area of the regular shapes
(e.g., a prompt to find the square and circle areas before finding
the leftover). These remaining problem steps were relabeled
compose-by-addition. We say that ALT:COMPOSE-BY-
ADDITION was “split” by the decompose factor to produce a
new “decompose” KC and a modified “compose-by-addition” KC
with fewer steps associated with it.

By inspecting a subset of particularly easy problem steps, another
factor was identified (repeated steps in the same problem) and
these steps were labeled Subtract. That is, ALT:COMPOSE-BY-
ADDITION was further split into a third set of steps. In sum, the
new KC model splits the ALT:COMPOSE-BY-ADDITION KC
in the Original model (which labels 20 steps) into three different
KCs: compose-by-addition (6 steps), decompose (8 steps), and
Subtract (6 steps).

The bottom of Figure 3 shows, for all three new KCs, the resulting
learning curves and the parameter estimates for the difficulty
intercepts (in both logit terms, By, and converted to a probability)
and for the KC learning slopes (yy). Inspecting the empirical
learning curves (red lines), all three look smoother than the
original ALT:COMPOSE-BY-ADDITION, thus meeting the
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13 - Circumference and Area of Circles
1 - Finding Circumference and Area of Circles
Table of Contents) Lesson )(F'robrerns

Instructor Preview y
CIRCLE-N-ABC-p68 2 4
2} solver (Z) Glossary Example Hint Done skills

Scenario

for ot.

circle?

and for m.

<< Previous Hint

Point B is the center of circle B. Point A and point C lie on circle B.

Answer each question using the given information. Use 3.14

1. The area of the circle is 7234.56 square millimeters. What are the
radius and diameter of the circle? What is the circumference of the

2. The circumference of the circle is 295.16 millimeters. What are the
radius and diameter of the circle? What is the area of the circle? B

The farmula for the area of a circle is A=nr2 , where A4
is the area and r is the radius. Enter this equation in
the Solver, substituting the values you know for area

Next Hint >>

x|

Worksheet

Radius of Circle B

Diameter of Circle B

Circumference of

Area of Circle B

Circle B
Unit| millimeter millimeter millimeter square millimeters
Diagram Label AB AC
Question 1 7234.56
Question 2

Figure 2. A screen shot of the problem Circle N present in the area unit of the Geometry Cognitive Tutor. In Question 1, students are
given the area of the circle and must find the radius, diameter, and circumference. In Question 2, students are given the circumference
and must find the radius, diameter, and area. The Hint message is in response to a student hint request for the highlighted cell.

“smoothness” criteria. The decompose KC learning curve appears
to be declining in error rate and, correspondingly, the slope
parameter is greater than zero indicating an improvement in the
model. The Subtract KC curve is not declining but it is already at
a low error rate from the start, so this also indicates an
improvement in the model. Such a pattern indicates the KC is
already known and mastered, therefore, little to no learning is
expected. The story for the new compose-by-addition KC is mixed
— while smoother, it is not declining and not already low. It might
be possible to make further improvements in this KC.

The decompose KC results are quite different from the other two
newly labeled KCs and the original KC (ALT:COMPOSE-BY-
ADDITION) with a much higher initial error rate (57%) and a
declining curve (intercept = .36, slope = .15). Given these results
and the lack of mastery on the decompose KC after six
opportunities, we recommend a higher concentration of
decomposition problems with additional instructional aids such as
worked examples, specific hints, and problems that isolate
practice on this skill [15]. These results also indicate less practice
is needed on the Subtract KC and corresponding problem steps
could be reduced or even eliminated from the curriculum.

The statistical fit (shown in the blue lines in Figure 3) is based on
the Additive Factors Model described above. Models are
evaluated using AIC, BIC, and 10-fold cross validation. We report
the root mean-square error (RMSE) averaged over the ten test sets
in the cross validation.

For this dataset, the best models according to BIC and cross
validation are ones that incorporate the distinction between
unscaffolded (decompose) and scaffolded problem steps. More
complexity, (e.g., models with 12 and 13 KCs) pays off relative to
a simpler model with 10 KCs. But more complexity is not always

better. The Original production rule model in the tutor had 15
skills, yet according to BIC and cross validation measures the
simpler models with 12 and 13 skills are better predictors.

ALT:COMPOSE-EY-ADDITION
100 ¢

9 +——
0 S 10 15 20

KC Values For Original Model

KC Name Intercept (logit) Intercept (probability) Slope
ALT:COMPOSE- 1.04 0.74 0
BY-ADDITION
KC Values For DecompArithDiam Model
Subtract compose-by-addition decompose
100 4 100 100 ¢
50 50 50 SETRPE N
| T ———— |
| coooowT=N |
= 0+ 0+
0 2 4 3 8 10 01 2 3 4 5 6 01 2 3 4 5 6
KC Name Intercept (logit) Intercept (probability) Slope
Subtract 205 0.89 0
compose-by-addition 0.84 07 0
decompose -0.56 0.36 0.148

Figure 3. A knowledge component (KC) with a non-smooth
learning curve (see top half of the figure) is replaced in an
improved student model with three new KCs with smoother
curves (see bottom half of the figure).

There are a couple instructional consequences of the fact that the
decompose skill was confounded with performing scaffolded
decomposition and, even, with simple subtraction. First, students
were able to give the appearance of mastery because they were
essentially given credit for this more complex skill when they
successfully performed the two simpler skills. It is possible for
students to graduate on the merged skill by only getting scaffolded
decomposition and subtraction steps correct and never or rarely
getting an unscaffolded decompose step correct (the tutor’s
knowledge tracing algorithm allows for an occasional slip).
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Second, because there was no differentiation of these skills, there
was no way to provide any isolated or extra practice on the tough
unscaffolded decompose skill. Thus, for both of these reasons,
there was not enough practice of decompose.

We have illustrated how new KC models can be produced and
evaluated within DataShop. This process has produced many
different models across a variety of datasets. For instance, the
Geometry9697 dataset had at least 10 KC models associated with
it. These models range in number of KCs from 1 to 15 with a
median of 12 KCs. The KC models vary on factors including the
shape of a figure, the formula involved, whether a formula is
applied forward or backward, whether or not this step repeats an
analogous one in the same problem, etc.

We next present the use of the LFA algorithm to perform an
automated search for better models. A key trick is to use, in a
crowd-sourcing fashion, existing models entered by DataShop
users as the basis for input to this search algorithm

3. APPLYING LEARNING FACTORS
ANALYSIS (LFA) ACROSS DOMAINS

3.1 Adapting LFA for use in DataShop

Learning Factors Analysis (LFA) [1] is an algorithm that
automatically finds better student models by searching through a
space of KC models, represented as Q matrices, to find the one
that best predicts student-learning data. The input to LFA includes
a dataset of records that indicate a student, a step identifier (i.e.,
part of a problem or activity for which there is an observed and
gradable student action), the order in which each student
experiences each step, and whether the student was successful or
not on the step (usually whether the students first action on a step
is correct, that is, neither a hint request nor an incorrect action).
The LFA input also includes a matrix, in the same form as the Q
matrix described above, that indicates for each unique step (the
rows) what candidate features or factors may affect student
performance and learning on that step (the columns). This so-
called P matrix is used, along with a set of operators, to determine
the space of possible Q matrices that LFA searches over.

The output of LFA is a list of Q matrices (KC models) rank
ordered (using either AIC or BIC) by how well they predict the
student data. In the search process, new Q matrices are created
from the current Q matrix by applying operators (split, merge, or
add in the complete LFA) using a factor in the P matrix to modify
some aspect of the current Q matrix.

Figure 4 provides a simple example of the search process
beginning with the mapping of problem steps to Q and P matrices.
In this example, a Q matrix with factors for multiplication (Mult)
and subtraction (Sub) is modified by applying a split operator to a
column in the Q matrix (Sub) using a column in the P matrix
(Neg-result). The outcome is a new Q matrix (called Q’ in Figure
4) that has the steps of Sub partitioned into two subsets (Sub-Pos
and Sub-Neg) according to the values of Neg-result.

An important challenge in a broad application of LFA is
determining how the P matrix gets created. In early applications
of LFA, a human user (a single domain expert) created the P
matrix. In the spirit of crowd sourcing, we have used the multiple
hand-created KC models in DataShop as an alternative way to
create the P matrix. The P matrix is automatically derived by
combining all of the hypothesized KCs in the pre-existing KC
models for that dataset. More specifically, the P matrix maintains
the same rows (one for every step in every problem), but the

columns (the hypothesized factors or KCs) are the union of all the
columns in the pre-existing KC models (such that the number of
columns is the sum of the number of columns across the existing
models minus any duplicate columns).

Q P Q' split [QNeg Result]
Neg Order Sub- Sub-
Problem Step Mult Sub | result of Op | Mult Pos Neg
2*%8-30=>16-30 1 0 0 0 1 0 0
16 -30=>-14 0 1 1 0 0 0 1
30-2*%8=>20-16 1 0 0 1 1 0 0
20-16 =>4 0 1 0 0 0 1 0

Figure 4. Example of a Q matrix and P matrix mapped to problem
steps and the resulting Q’ matrix when Sub in the Q matrix is
“split” by Neg-result from the P matrix.

LFA implements a best-first search. In each iteration of the
search, the best Q matrix so far (as measured by AIC or BIC) is
chosen for expansion. The LFA search process begins with the
simplest possible Q-matrix where all steps involve one and only
one KC. New candidate Q matrices (KC models) are generated by
applying operators to the columns in the P matrix and the selected
Q matrix. In the version used here, we only used the split
operator: LFA creates new candidate Q matrices by splitting KCs
in the current Q matrix using relevant factors in the P matrix. The
search stops either after a pre-set number of iterations or when
model improvements diminish (see below).

The search process results in the creation of machine-generated
KC models that are usually more predictive (as measured by cross
validation) than any of the starting models. Because the current
implementation is only using LFA’s split operator, which only
generates single KC codes for each problem step, it is possible a
starting model that includes multiple KCs per step could be better
than any LFA model generated. Although cross validation is
arguably the best way to test the predictive efficacy of a model, it
is too computationally expensive to run inside the LFA search.
Instead we have used BIC and, more recently, AIC as the heuristic
to guide the search. After the search is complete, we test the best
models using cross validation.

3.2 Method: Apply LFA across 11 datasets

In order to examine the LFA search process across a variety of
datasets, we used eleven datasets representing five domains
(geometry, algebra, fractions, English articles, and statistics) from
the DataShop repository. Each dataset had from 1-16 KC models
previously created by content specialists or researchers and most
(65%) of these models coded a single KC per step. The number of
knowledge components within models ranged from 1-48 and the
number of student users ranged from 41-318. In addition to a
variety of dataset characteristics, we have a wide group of
researchers/authors represented: Lovett (statistics), Wiley (English
articles), Booth (equation solving), Lomas (fractions), Koedinger
(symbolization), Stamper, Ritter and Koedinger (geometry area).

To each dataset, we applied a version of LFA that: 1) used only
the split operator, 2) started with a Q matrix with a single KC
labeling all problem steps, and 3) started with a P matrix made up
of the union of all existing KC models. We ran the search process
twice on each dataset, once using BIC as the search heuristic and
once using AIC. The search continues until a streak of 5 iterations
does not produce a model with an improved heuristic value. We
compared the two best models from each of the AIC and BIC runs
(4 models total) with all the existing models using root mean
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square error (RMSE) as determined by 10-fold cross validation.
Three different cross validations were run: 1) student stratified
(SSCV), 2) item stratified (ISCV), and 3) no stratification
(NSCV). For student stratified and item stratified cross validation,
students or items (i.e., problem steps), respectively, were
randomly chosen for the folds. No stratification cross validation
selects the 10 folds randomly from the dataset as a whole,
irrespective of student or item. We chose item stratified cross
validation as the primary metric (the one used in Tables), because
we are concerned with improving tutors and item stratified cross
validation corresponds most closely with a key tutor decision of
what next problem to select.

3.3 Results: Better Models Found

Table 1 summarizes the results. Analysis of the datasets using
RMSE from a 10-fold item stratified cross validation (ISCV)
shows a machine-generated model is the best predictor of student
performance across all eleven datasets and all four domains. This
can be seen in Table 1 by noting that the RMSE values in the
Best-LFA column (representing the results of machine-generated
models) are all lower than those in the columns for the best model
found by hand (Best-hand) and for the original model in use by
the tutoring system or game (Orig-in-use).

The results from both SSCV and NSCV were mostly similar in
that in 10 of 11 datasets, an LFA model was best. For the DFA-
318 dataset, the Best-hand model was better on SSCV and NSCV
(but not on ISCV). That model involved some steps being coded
by more than one KC — such multi-KC coding is not a model that
the LFA version we used (which only incorporates the split
operator) can produce, however, a version with LFA's add
operator could, in principle, produce such a model.

Besides reducing prediction error, the LFA-discovered models
tend to better capture student learning in that the typical slopes on
learning curves are steeper. The last columns in Table 1 show a

comparison of the median learning slope (yx) for the Best-hand
and Best-LFA models. In all but a couple of cases, the median
learning slope is larger for the Best-LFA model than it is for the
Best-hand model (e.g., 0.11 vs. 0.07 for Geometry9697).

4. INTERPRETING STUDENT MODEL
IMPROVEMENTS

We have shown how an automated process, such as an LFA
search, discovers new and improved student models. But, are
these improvements substantial and interpretable? Can they be
used to propose plausible improvements in a tutoring system?

One method to evaluate newly discovered machine models is to
investigate when and how much each KC in the original model is
changed in the transformations that produced the best-hand and
best-machine models. By isolating improvement in knowledge
components, areas of student difficulty can be uncovered and
automated systems can be redesigned to more efficiently address
student learning by focusing better instruction and more practice
on more difficult skills and less practice on easier skills.

We use the Geometry9697 dataset as an example of a proposed
strategy for interpreting LFA results toward model and tutor
improvement. That strategy starts with inspecting the impact of
model improvements on specific aspects of the original model. A
key observation is that while the overall prediction error (RMSE)
reductions in Table 1 may seem small, LFA is likely to make
significant changes in the KC model only in a few isolated places,
that is, only for some of the original KCs. Although those changes
may be practically significant, they are obscured in the overall
RMSE change given much of the model remains the same.

Thus, we suggest trying to identify which of the KCs in a base
model are most substantially changed in the creation of a new
model. One way to do so is to compute the reduction in RMSE
between models for each of the KCs in the base model.

Table 1. The root mean square error (RMSE) for the best KC models as determined by item stratified cross validation.

e

Dataset Content area Orig Best- Best- Best- Best-
in-use hand LFA hand LFA

Geometry9697 Geometry area 0.4129 0.4033 0.4011 0.07 0.11
Hampton 0506 Geometry area NA 0.4022 0.4012 0.03 0.04
Cog Discovery Geometry area NA 0.3250 0.3244 0.16 0.16
DFA-318 Story problems 0.4461 0.4407 0.4405 0.07 0.17
DFA-318-main Story problems 0.4376 0.4287 0.4266 0.09 0.17
Digital game Fractions 0.4442 0.4396 0.4346 0.17 0.14
Self-explanation Equation solving NA 0.4014 0.3927 0.01 0.04
IWT 1 English articles 0.4262 0.4110 0.4068 0.10 0.12
IWT 2 English articles 0.3854 0.3854* 0.3806 0.12 0.16
IWT 3 English articles 0.3970 0.3965 0.3903 0.05 0.15
Statistics-Fall09 Statistics 0.3648 0.3527 0.3353 *x 0.09

NA: Original models (or statistics on them) were not available in some cases.
* |WT 2 dataset only has 1 model, therefore the original-in-use and best-hand models have the same RMSE.
**The best-hand model for Statistics-Fall09 dataset has only 1 KC.
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More specifically, for each data point labeled by a base model
KC, we find the RMSE based on the predictions of the base model
and compare it with the RMSE based on the predictions of the
new model. We compute the percent reduction in RMSE ((base -
new)/base).

Table 2 summarizes the results of this analysis on the
Geometry9697 dataset by comparing each pair of the Original,
best hand, and best LFA models in terms of the Original model
KCs. As anticipated, the last row shows that for most of the
Original KCs (12 of 15), there is little to no improvement in the
best hand and best LFA models. However, for three of the KCs,
there are large reductions in prediction error. The TRIANGE-
SIDE KC has the largest RMSE reduction from Original to LFA
model (11.1%); however, the decrease is mostly caught in the
improvements made to the best hand-model from the Original
model (10.0%). The COMPOSE-BY-ADDITION KC is also
improved (as described in section 2) just in the original to hand-
model transition. The CIRCLE-RADIUS KC, on the other hand,
realizes an almost 6% reduction of RMSE from the Original
model to the best hand-model, and then another sizeable reduction
of almost 4% from best-hand model to the best LFA model. This
discovery of LFA represents a genuine machine-based discovery
not directly anticipated by human analysts.

Table 2. Improvement in knowledge components in the
Geometry9697 dataset measured by the percent reduction of root
mean squared error (RMSE) from item-stratified cross validation.

Original model % reduction in RMSE
KCs orig->hand  hand->LFA  orig-LFA
CIRCLE-RADIUS 5.8% 4.0% 9.5%
iggﬁﬁgEBY 5.2% 0.3% 5.5%
TRIANGLE-SIDE 10.0% 1.2% 11.1%
Range of the 12
other KCs -5t034% | -3t01.0% | -2t03.1%

A closer look at the CIRCLE-RADIUS KC from the Original
shows it is coded as three separate KCs in the best hand-model:
(1) circle area, (2) circle-diam-from-given, and (3) circle-diam-
from-subgoal. In all three of these KCs, computing a radius is the
target skill but how it is computed depends on what component
measure is provided. For example, in the Circle-N problem (see
Figure 2), area is given in the first row of the table (and in the text
as Question 1) and students must compute the remaining values
including radius; this is labeled as the circle-area KC. In the
circle-diam-from-subgoal KC, circumference is given (row 2 or
Q2) and in the circle-diam-from-given KC, diameter is given. As
can be seen in Figure 5, the LFA model further changes these
same KCs by either combining (e.g., circle-diam-from-given
combines with three other KCs to form Geometry) or splitting
(e.g, circle-area splits to form a reduced version of itself and a
new KC called radius-from-area). Circle-diam-from-subgoal
remains the same from best hand to best machine. We use the
circle-area split as an illustration of how the machine-model
uncovered a useful improvement in the original model that was
not anticipated by humans generating hand models.

Original model Best hand-model Best machine-model

circle-radius (7) — radius-from-area (3)

~ circle-area (22) =

circle-area (19) — — circle-area (19)
ircle-diam-from-subgoal (5) ~_ -
> circle-diam-from-subgoal (5)
circle-diam-from-given (5) ~__
N\ _ - 2 geometry (34)
circle-circumference (9) — /(' /14

circle-diameter (8)

>

circle-circumference (7) ~

Figure 5. The splitting and combining of circle-radius and other
related hypothesized knowledge components in going from the
original-model to the best hand model to the best machine model.

In Figure 5, we see the circle-area KC in the best hand-model has
22 problem steps but after the LFA algorithm is applied this one
KC is divided into two KCs — one with 19 problem steps and the
other with 3 problem steps. What is unique about these three
problem steps that they split from the original 22 to form a “new”
KC?

A careful examination of the three problem steps in the new
radius-from-area KC reveals a backward strategy is necessary for
a correct solution (e.g., finding radius when area of circle is given)
unlike the other nineteen problem steps, which require a forward
strategy. Although using a backward strategy is hot uncommon in
the dataset (about 27% of the problem steps require it), none of
the other KCs were split between backward and forward by the
search algorithm. In fact, eight of thirteen KCs in the best hand-
model label backward steps but only circle-area benefits from
being split into forward and backward versions.

Figure 6 is analogous to Figure 3 and shows the effect of the LFA
discovery to split circle-area in the best hand-model (called
DecompArithDiam) into circle-area (labeling fewer steps) and
radius-from-area. Both resulting learning curves are smoother
than the original and they have steeper slopes (.105 and .165,
respectively, as compared to .068).

Performance on the circle-area backward problems (called radius-
from-area) is lower (54%) than performance on the circle-area
forward problems (80%), which is perhaps not a surprise.
However, in this context, it is surprising that the difference in
backward vs. forward performance on the other KCs is small and
statistically negligible. For example, pentagon area does not split
from apothem or side (backward = 66%, forward = 62%),
parallelogram area does not split from parallelogram side
(backward = 89%, forward = 91%), trapezoid area does not split
from base or height (backward = 54%, forward = 55%), and
triangle area does not split from base or height (backward = 68%,
forward = 78%).

In addition to not finding a backward split for any of the area
formulas for other shapes, there was no forward-backward split
for other circle formulas (circumference = pi*diameter and
diameter = 2*radius). A unique feature of working the circle area
formula backwards is that it requires a square root operation to
find the radius (after dividing the given area by pi). Thus, the
uncovered knowledge component appears to be about learning
when and how to employ a square root operation rather than about
a general ability to apply a backward strategy, for instance, by
using algebra (as suggested in the hint in Figure 2). Note, the need
to employ a square root is also required in backward application
of the square area formula, however, this tutor unit did not have
any such problems where only the area of a square is given and
the side must be found.
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DecompArithDiam Model LFASearchModel1-renamed Model

circle-area tircle-area

100 100 100

radius-from-area

KC Values For DecompArithDiam Model

KC Name Intercept (logit) Intercept (probability) Slope
circle-area 031 0.58 0.068

KC Values For LFASearchModel1-renamed Model
KC Name Intercept (logit) Intercept (probability) Slope
circle-area 044 0.61 0.106
radius-from-area -0.38 041 0.165

Figure 6. Learning curves and model values of circle area
knowledge component in best hand-model and after splitting to
circle area and radius-from-area KCs in best LFA model.

The consequences for tutor changes based on this automated
discovery of LFA are significant. We recommend the tutor
distinguish area-to-radius problems while merging all other
forward/backward area combinations (e.g., pentagon side and
pentagon area). The current unit in the Geometry Tutor only has
three problem steps associated with the area-to-radius KC, not
enough to lead to mastery on a difficult skill. Thus, more such
problems should be created. The skill tracking, which is done with
skill bars in the tutor, should be modified to maintain the forward-
backward distinction for the circle area formula, but merge the
forward-backward distinctions for other formulas (including the
other circle formulas for circumference-diameter and the
diameter-radius relationships). This change should substantially
reduce the time students currently take to separately (and
unnecessarily) demonstrate mastery of both the forward and
backward versions of each of the area formulas. This time could
in turn be used to make sure that students get enough practice in
cases where their prior algebra background appears insufficient
for backward application of formulas, namely in use of the square
root operation. Further, given the need for more square root
practice, square-area-to-side problems should also be added.

5. CONCLUSION AND FUTURE WORK

This paper demonstrates an automated technique for the discovery
of better student models using input from previously generated
models. LFA discovered better student models in 11 of 11 cases
as measured by item stratified cross validation and 10 of 11 cases
by student stratified and non-stratified cross validation.

Although the reduction in overall error (RMSE) appears rather
small, we demonstrated how this small error reduction is a
consequence of most of the discovered model being essentially
the same as the original. There are a few isolated changes that are
statistically large and, more importantly, practically significant for
tutor redesign.

A related, more nuanced point is that even in cases where there is
no significant improvement in prediction error, the new model
may be better in parsimony (i.e., by reducing the number of KCs).
Parsimony improvements in student models are important
scientifically because they simplify explanations and suggest
broader transfer of learning. They are also practically important in
that tutors with a more compact student model will save and focus
student time.

Student models are critical to effective adaptive instruction.
Different kinds of student model changes (e.g, original KCs

splitting or not splitting) suggest specific tutor redesigns. A
number of instructional design changes are suggested when an
original KC is split into one or more new KCs. First, the skill bars
and knowledge tracing need to be changed to include the new
KCs and to be sure that students master all of them. Second, often
a newly discovered KC will occur in too few of the existing
problems and thus new problems need to be created. Third, the
distinction discovered in the KC split (e.g., use of square root)
may be better highlighted in the various forms of instruction that
tutor may employ including worked examples, error feedback
messages, and next-step hint messages. Similarly, a different set
of instructional design changes are suggested when a number of
original KCs are merged (i.e., are not split) into a single KC. First,
the skill bars and knowledge-tracing model need to be changed to
eliminate  unnecessary  distinctions.  With  corresponding
knowledge tracing parameter changes, the number of practice
problems a student needs to master the merged KC will be
significantly reduced relative to the greater number previously
needed to master each of the separate KCs. Second, the
commonality discovered in the KC merge (e.g., the learning
obstacle for most area operations is learning to retrieve and map
the right formula, not learning how to apply it in a forward or
backward direction) can be highlighted in the various forms of
instruction that tutor employs. Doing so may better encourage the
desired generalization and greater transfer of learning.

The general LFA algorithm includes an “add” operation that can
produce multiple KC codes for a single problem step. For
efficiency reasons (for larger datasets, LFA ran for multiple days)
and to simplify interpretation of the results, we did not use the add
operator in the version of LFA employed here. However, in the
case that a new KC is added, there are instructional implications
beyond those indicated above for split operations. Namely, there
is the possibility of inventing new tasks that isolate a KC that
might only occur with other KCs in the current set of tasks. Doing
so has been demonstrated to yield significant improvements in
student learning [7]. Future work should explore the use of the
add operator in the LFA algorithm and, more generally, needed
algorithm improvements to increase efficiency.

Some other automated techniques discover models that are
difficult or impossible to understand, either toward deriving
insights into student learning or making practical improvements in
instruction. The output of LFA is more interpretable and
convertible to tutor changes than these alternative “black box”
machine learning methods that may produce Q matrices (or other
latent variable representations) without consistent application of
analyst-derived codes or without code labels at all. Even so, the
output of LFA is complex and not trivial to interpret. Thus, we
recommend a strategy (illustrated in Table 2) for isolating the
practically significant student model improvements that LFA
discovers. Such improvements in the student model have direct
implications for many aspects of tutor design including problem
development, knowledge tracing, problem selection and
sequencing, skill bar display, instructional hint and hint message
content. Using data to automatically improve student models and,
in turn, improve instructional systems is a tremendous opportunity
for educational data mining, especially as we accumulate large
datasets and relevant techniques in repositories like DataShop.

A notable innovation here is a simple form of crowd sourcing of
the work done by data analysts using DataShop. A significant
limitation of LFA recognized in prior work [1] is the need for the
P matrix input to the algorithm, that is, the human coding needed
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to produce the various difficulty and learning factors on problem
steps that are the basis for hypothesizing knowledge components.
This limitation is addressed here by taking advantage of the
DataShop facilities for creating and storing hand-built KC models
and the fact that analysts have been using those facilities to create
models.

Our simple version of combining human and machine intelligence
toward better model discovery could be applied more broadly
beyond DataShop data or student modeling. The general idea
involves a web-site with these components: 1) users can modify
an existing model (e.g., add new features based on feature
engineering) and see whether their new model yields better
predictions (e.g., DataShop’s KC model leaderboard display), 2) a
machine algorithm that collects features across all human-entered
models (e.g., a simple union of all features), and 3) a machine
algorithm that searches over the space of features to identify more
predictive models (e.g., the LFA algorithm). We leave it for future
research to test this proposed generalization of the approach
presented here.
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ABSTRACT

In this paper we address the important task of automated
discovery of speech act categories in dialogue-based, multi-party
educational games. Speech acts are important in dialogue-based
educational systems because they help infer the student speaker’s
intentions (the task of speech act classification) which in turn is
crucial to providing adequate feedback and scaffolding. A key
step in the speech act classification task is defining the speech act
categories in an underlying speech act taxonomy. Most research to
date has relied on taxonomies which are guided by experts’
intuitions, which we refer to as an extrinsic design of the speech
act taxonomies. A pure data-driven approach would discover the
natural groupings of dialogue utterances and therefore reveal the
intrinsic speech act categories. To this end, this paper presents a
fully-automated data-driven method to discover speech act
taxonomies based on utterance clustering. Experiments were
conducted on three datasets from three online educational games.
This work is a step towards building speech act taxonomies based
on both extrinsic (expert-driven) and intrinsic aspects (data-
driven) of the target domain.

Keywords

Speech act discovery, dialogue systems, educational games.

1. INTRODUCTION

An important task in dialogue-based educational systems is the
detection of students’ intentions from their natural language input,
which we refer to as utterances. Speakers’ intentions are modeled
using elements from the speech act theory (Austin, 1962; Searle,
1969). Speech act theory was developed based on the “language
as action” assumption as explained later. The automated detection
of speaker’s intentions in dialogues is known as the task of speech
act classification.

Examples of speech acts are Questions, Statements, or Greetings.
For instance, the hearer infers from the following utterance How
did you do that? that the speaker is asking a Question, which
informs the hearer to prepare an answer. Sometimes the speaker
just states something as in the Statement, The situation is getting
worse every day., or greets someone as in Hello!.

Our work is conducted in the context of multi-party epistemic
games in which chat rooms play an important role. For instance,

in an Urban Science game, players take on the role of an intern for
an Urban Planning company and are provided guidance from a
mentor on the proper steps to be taken in redesigning a city. The
players interacted with the mentor through a chat facility provided
in the game. All chat among players and mentors was logged.

If the mentor role is to be automated, in a tutoring system, we
need to automatically manage the dialogue which involves
identifying student-players’ intentions (speech act classification)
based on their utterances as well as to select the best speech acts
the auto-mentor system needs to produce (speech act prediction)
for feedback and scaffolding. The details of the games from which
we collected data are presented in the Experiments and Results
section.

The task of speech act classification has been extensively
addressed by the intelligent tutoring systems (ITS; [1,2]) and
natural language processing (NLP; [3,4,5]) communities. The
related task of speech act prediction, which is about deciding what
next speech act the automated dialogue system should generate,
has also been investigated to some extent [6,7,8].

The NLP and ITS communities have addressed mainly the task of
speech act classification and usually in simpler setups than ours:
one-to-one dialogues, e.g. between an intelligent tutor and a
student user or between a ticket-booking system and a human
traveler. In contrast, the present study addresses multi-party
dialogues in which more than two dialogue partners are involved.
This has implications on the adopted solution to classify or
discover the speech acts. Some predictive features that are easy to
extract in dialogues between two partners become more
challenging in speech act classification or discovery for multi-
party dialogues. For example, the previous speech act feature
which is useful to predict the current speech act in dialogues
between two partners, e.g. after a Question by one speaker an
Answer by the other speaker follows, becomes more challenging
in multi-party dialogues because the previous speech act is not
always directly linked to the current speech act, as in the case of a
third partner joining the discussion suddenly.

Furthermore, the solutions to the task of speech act classification
proposed by the ITS and NLP researchers are not fully automated
because the important step of specifying the speech act taxonomy
is manually handled by experts [9]. The expert-generated
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taxonomies are specified extrinsically as experts generate them in
an ad-hoc manner without an exhaustive analysis of the available
data. Indeed, Andernach, Poel, and Salomons [10] indicates that
experts define taxonomies based on their intuitions with minimum
information from actual data which makes it hard to define a set
of rules that different human annotators (or machines) could
consistently apply to data in order to derive the same speech acts
for similar utterances. In general, experts define a wishful
taxonomy and then the hope is the automated algorithms could
learn automatically the patterns to detect the speech acts in the
taxonomy. There are other lingering issues with the expert-defined
taxonomies as Traum [9] pointed out. Among these issues, Traum
mentions the “significant challenges for creating a taxonomy of
dialogue acts that can be understood and used by researchers other
than the taxonomy designers.”! We believe that a data-driven
approach to discover or at least inform the creation of speech act
taxonomies could be extremely useful. This work is a step in this
direction of creating taxonomies based on both extrinsic and
intrinsic processes.

We propose a data-driven approach that infers the intrinsic speech
act categories from the data based on the similarities of the
dialogue utterances according to some model, e.g. using lexical
and positional information from the utterances. The method is
based on clustering algorithms, both parametric (K-Means) and
non-parametric (Expectation-Maximization), to group dialogue
utterances into homogeneous groups which are then used to
define the speech act categories. An automated method to
discover the speech categories could complement and also be used
as a validation tool for expert-defined taxonomies. The natural
language community has largely ignored the task of automated
discovery of speech act taxonomies; there has been only one early
attempt nearly two decades ago [10]. To the best of our
knowledge, no previous work proposed such an automated
method for speech act discovery in the area of dialogue-based
intelligent tutoring systems and the larger ITS community.

Our effort fits within the grander goal of building data-driven
dialogue managers [11, 12]. The closest work to our own effort in
the area of educational systems is by Kristy Boyer and colleagues
([12, 13]). They automatically derived ‘dialogue modes’ from
sequences of dialogue acts (a modern definition of speech acts),
instead of asking experts to define the dialogue modes. The best
number of dialogue modes is found intrinsically by selecting
inferred sets of dialogue modes that maximize a log-likelihood fit
function. We follow a similar idea but instead of inferring sets of
dialogue modes we infer categories of speech acts and rely on
clustering algorithms instead of Hidden Markov Models as Boyer
and colleagues did. Hidden Markov Models are best suited for
inferring hidden variables from sequences of events. In our case,
we were interested in the discovery of hidden similarity patterns
among individual utterances and thus clustering was a natural
choice. We chose K-Means and Expectation Maximization (EM)
as the clustering algorithms. The former requires a priori
specification of the number of clusters expected while EM can
automatically infer the number of clusters through cross
validation. The appealing of K-Means is its simplicity and the
ease of interpretation, e.g. a centroid vector for each cluster is

1 . . . .
Dialogue acts, speech acts, communicative acts, conversational
acts, conversational moves, or dialogue moves are terms used by
different researchers to refer to the same general concept [9].

provided which can be used to interpret the cluster. In the case of
K-Means we experimented with several pre-specified numbers of
clusters. By default, the results thus obtained are compared with
the expert-defined number of clusters, i.e. the expert speech act
categories.

The rest of the paper is organized as in the followings. The next
section provides an overview of speech act theory and speech act
taxonomy work. We then provide the conceptual framework
behind our basic idea to cluster dialogue utterances. The
Experiments and Results section describes our experimental setup
and the results obtained. We conclude with Conclusions and
Future Work.

2. RELATED WORK

Speech act theory has been developed based on the language as
action assumption which states that when people say something
they do something. Speech act is a construct in linguistics and the
philosophy of language that refers to the way natural language
performs actions in human-to-human language interactions, such
as dialogues. Its contemporary use goes back to John L. Austin’s
theory of locutionary, illocutionary and perlocutionary acts [14].
According to Searle [15], there are three levels of action carried
by language in parallel. First, there is the locutionary act which
consists of the actual utterance and its exterior meaning. Second,
there is the illocutionary act, which is the real intended meaning
of the utterance, its semantic force. Third, there is the
perlocutionary act which is the practical effect of the utterance,
such as scaring, persuading, and encouraging.

It is interesting to notice that the locutionary act is a feature of any
kind of language, not only natural ones, and that it does not
depend on the existence of any actor. In contrast, an illocutionary
act needs the existence of an environment outside language and an
actor that possesses intentions, in other words an entity that uses
language for acting in the outside environment. Finally, a
perlocutionary act needs the belief of the first agent in the
existence of a second entity and the possibility of a successful
communication attempt: the effect of language on the second
entity, whether the intended one or not, is taking place in the
environment outside language, for which language exists as a
communication medium. As opposed to the locutionary act, the
illocutionary and perlocutionary acts do not exist in purely
descriptive languages (like chemical formulas), nor in languages
built mainly for functional purposes (like programming
languages). They are an indispensable feature of natural language
but they are also present in languages built for communication
purposes, like the languages of signs or the conventions of
warning signals.

In a few words, the locutionary act is the act of saying something,
the illocutionary act is an act performed in saying something, and
the perlocutionary act is an act performed by saying something.
For example, the phrase ”Don’t go into the water” might be
interpreted at the three act levels in the following way: the
locutionary level is the utterance itself, the morphologically and
syntactically correct usage of a sequence of words; the
illocutionary level is the act of warning about the possible dangers
of going into the water; finally, the perlocutionary level is the
actual persuasion, if any, performed on the hearers of the message,
to not go into the water.
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Speech Act Category Example Count
Statement I'1l be your planning consultant. 605
Request Click that and click "New Staff Page" 343
Reaction Ah, I see. 642
MetaStatement i didn't understand what maya wanted 176
Greeting Hello! 103
ExpressiveEvaluation good! !N 166
Question why am i getting notes from people not in my group? 646
Other same thing what 87

Table 1. Our flat Speech Act Taxonomy with examples for each speech act category.

The notion of speech act is closely linked to the illocutionary level
of language. The idea of an illocutionary act can be best captured
by emphasizing that ”by saying something, we do something”
[14]. Usual illocutionary acts are: greeting (“Hello, John!”),
describing (”It’s snowing.”), asking questions (”Is it snowing?”),
making requests ("Could you pass the salt?”), giving an order
(”Drop your weapon!”), making a warning (”The floor is wet!”),
or making a promise ("I’ll return it on time.”). The illocutionary
force is not always obvious and could also be composed of
different components. As an example, the phrase ”It’s cold in this
room!” might be interpreted as having the intention of simply
describing the room, or criticizing someone for not keeping the
room warm, or requesting someone to close the window, or a
combination of the above.

A speech act could be described as the sum of the illocutionary
forces carried by an utterance. It is worth mentioning that within
one utterance, speech acts can be hierarchical, hence the existence
of a division between direct and indirect speech acts, the latter
being those by which one says more than what is literally said, in
other words, the deeper level of intentional meaning. In the
phrase, “Would you mind passing me the salt?”, the direct speech
act is the request best described by “Are you willing to do that for
me?” while the indirect speech act is the request “I need you to
give me the salt.” In a similar way, in the phrase “Bill and Wendy
lost a lot of weight with a diet and daily exercise.” the direct
speech act is the actual statement of what happened “They did this
by doing that.”, while the indirect speech act could be the
encouraging “If you do the same, you could lose a lot of weight
too.”

The present study assumes there is one speech act per utterance
and the set of speech acts used are all at the same level of depth
thereby forming a flat hierarchy. These simplification assumptions
are appropriate for a first attempt at automating the speech act
discovery process.

2.1 Speech Act Taxonomies

As already mentioned, the tasks of speech act classification and
prediction requires the existence of a predefined set of speech act
categories or speech act taxonomy.

Researchers agree that defining a taxonomy in general and a
speech act taxonomy in particular implies a balancing act between
power and simplicity ([9, 16]). That is, defining a taxonomy
implies interactions between the experts’ conceptual view of the
target domain with an emphasis on power, i.e. capturing fine
distinctions that would maximize reaching the goal the taxonomy
will serve such as effective tutoring dialogue in our case, and the
need for reliable annotation and predictions, i.e. maximizing the
reliability with which human annotators can tag the speech acts in

which case a few, well-defined categories are better than many,
sophisticated categories.

Less emphasis has been paid to the relation between the taxonomy
and the actual method to automatically recognize the speech acts
in the taxonomy. In other words, taxonomies were refined by
observing how reliably human annotators can use them to
annotate data D’ Andrade and Wish [17]. The degree to which the
human annotators’ process may be replicated through an
automated method or the intrinsic similarities among dialogue
utterances within the constraints of a chosen model, e.g. leading
tokens utterances [18], has been left as an afterthought. Our work
is a step towards building taxonomies based on both expert and
data-driven approaches which we believe could lead to a needed
trade-off between power and accuracy. That is, while expert-
defined taxonomies could lead to best outcomes conceptually but
may sometimes be hard to detect, the data-driven approaches
would lead to taxonomies that are derived from patterns in the
data and would therefore result in good speech act classification
performance. A mixed approach could provide the necessary
trade-off between desirable speech act categories and
classification performance. It should be noted that experts do
consult data, in a limited way, when deriving their taxonomies
[17]. However, an automated method for grouping dialogue
utterances as proposed here would infer speech act categories
from the entire available data in a systematic way.

We analyzed the speech act taxonomies proposed by researchers
over the years. Some are flat while others are multi-layered. The
layers in the multi-layered taxonomies can be viewed as levels, in
which higher level speech acts are composed of lower level
speech acts, or ranks, in which layers represent different
phenomena [9]. We present next a summary of the most important
ones as judged from a history and relevance to our own work.

The classic categorization of Austin [14] postulates five major
speech act classes based on five categories of performative verbs:
Expositives - verbs asserting or expounding views, classifying
usages and references; Exercitives — verbs issuing a decision that
something is to be so, as distinct from a judgement that it is so;
Verdictives - verbs delivering a finding, official or unofficial,
upon evidence or reason as to value or fact; Commissives - verbs
commiting the speaker to some course of action; and Behabitives -
verbs involving the attitudinal reaction of the speaker to
someone’s conduct or fortunes [17].

The taxonomy proposed by Searle [15] consists of six major
classes: Representatives - committing the speaker to something’s
being the case; Directives - attempt by speaker to get the hearer to
do something; Commissives — committing the speaker to some
course of action; Expressives - expressing the psychological state
specified; Declarations - bringing into existence the state
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described in the proposition and Representative; and Declarations
- giving an authoritative decision about some fact.

The category scheme proposed by D’Andrade and Wish [17]
treats most utterances as conveying more than one speech act and
does not attempt to establish a hierarchical order among multiple
speech acts. The primary motivation for the speech act coding
system was a desire to investigate correspondences between
speech acts and adjectival “dimensions” descriptive of
interpersonal behavior. In order for a classifying system to be
useful for measuring interpersonal communication, the
distinctions reflected by the coding scheme should be relevant to
native speakers’ perceptions and evaluations of interaction. Their
classes are: Assertions (Expositives), Questions (Interrogatives),
Requests and Directives (Exercitives), Reactions, Expressive
Evaluations (Behabitives), Commitments (Commissives) and
Declarations (Verdictives, Operatives).

While there seems to be some consensus on the existence of some
speech acts, like greetings, questions, answers, etc., the efficiency
of a particular taxonomy for solving a particular problem
ultimately rests on the task at hand. For instance, Olney and
colleagues [19] used a taxonomy that divided questions into 16
subcategories and had only 3 classes for the rest of the utterances,
which was suitable for a particular intelligent tutoring
environment. The 16 subclasses of Questions were: Verification,
Disjunctive, Concept Completion, Feature Specification,
Quantification, Definition, Example, Comparison, Interpretation,
Causal Antecedent, Causal Consequence, Goal Orientation,
Instrumental/Procedural,  Enablement, = Expectational  and
Judgmental.

In the case of Verbmobil, a research project aiming to develop a
system that can recognize, translate and produce natural
utterances, the taxonomy used takes into consideration in which
of the five dialogue phases the actual speech acts occur. The main
classes of their taxonomy tree are: Request, Suggest, Convention,
Inform and Feedback which all yield subclasses. For instance, the
Convention class is composed of the following subclasses: Thank,
Deliberate, Introduce, Politeness Formula and Greeting [20].

In our work, we will use the set of speech act categories, shown in
Table 1. The speech act categories are based on theoretical
schemes that also can be reliably coded by trained judges [14, 15,
17, 19]. We use this reference taxonomy as a benchmark for
comparison purposes with the automatically derived set of speech
act categories.

3. THE APPROACH

Our approach to the automatic identification of speech acts classes
is achieved using clustering algorithms.

Clustering is the unsupervised classification of data points
(usually represented as vectors in a multidimensional space) into
groups (clusters) based on similarity. A cluster is therefore a
collection of objects which are similar to each other in the same
cluster and are dissimilar to objects belonging to other clusters.
The clustering problem has been addressed in many contexts and
by researchers in many disciplines. This reflects the broad appeal
of clustering and its usefulness as one of the steps in exploratory
data analysis. In our case, we use clustering to discover intrinsic
speech acts in dialogues from online educational games.

Table 2 offers examples of utterances belonging to three different
speech act categories as defined by experts. In our method, the

clustering algorithm would be fed a set of utterances of this type
(see Table 2) and produce clusters in which similar utterances, i.e.
utterances encoding the same speech act, belong to the same
cluster. A quick post-hoc analysis by a human interpreter of the
clusters thus obtained would allow the labeling of each cluster
with a speech act label. For instance, by analyzing the utterances
in the first column in Table 2, we immediately realize that they are
all greetings and therefore a good label for such a cluster would
be Greetings corresponding to the speech act category of
Greetings. In this paper, however, we use the expert-labeled
speech act categories to evaluate the obtained clusters.

An important step in clustering a set of data points, including
dialogue data, is how to represent the data. In general, clustering
algorithms require a vector representation. The dimensionality of
the vector space is a choice the experimenter makes. In our case of
clustering dialogue utterances, we rely on the hypothesis that
good speakers in collaborative (as opposed to competitive or
deceitful) dialogues make their intentions clear early on in their
utterances allowing hearers to detect the speakers’ intentions.
Intuitively, the first few words of a dialog utterance are very
informative of that utterances speech act. We could even show
that some categories follow certain patterns. For instance,
Questions usually begin with a wh- word while speech acts such
as Greetings use a relatively small bag of words and expressions,
i.e. Greetings are closed-class of utterances similar to function
words such as prepositions or determiners.

In the case of other classes, distinguishing the speech act after just
the first few words is not trivial, but possible. It should be noted
that in typed dialogue, which is a variation of spoken dialogue,
some information is lost. For instance, humans use spoken
indicators such as the intonation to identify the speech act of a
spoken utterance. We must also recognize that the indicators
allowing humans to classify speech acts also include the
expectations created by previous speech acts, which are discourse
patterns learned naturally. For instance, after a first greeting
another greeting that replies to the first one is more likely. In
multi-party dialogue the previous speech act is more complex so
consecutive utterances may or may not be directly related. We
ignored such intonation and contextual clues so far in our work in
order to explore the potential of classifying speech acts based on
words alone. We do plan to incorporate contextual clues in future
experiments.

One other argument in favor of this leading words assumption is
the evidence that hearers start responding immediately (within
milliseconds) or sometimes before speakers finish their utterances
([21] - pp.814). Further evidence of the leading words or tokens
hypothesis has been provided by Moldovan, Rus, and Graesser
[18] who showed that using “leading tokens” in an utterance leads
to impressive speech act classification performance.

Therefore, we adopted a model in which each utterance is
represented by its leading tokens (words and punctuation). This
model includes the tokens themselves as well as their positions
thus relying on lexical, punctuation, and positional information.
Punctuation is useful in chat rooms as one of its functions is to
encode intonational information which is lost in typed dialogues.
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Greetings Questions Expressive Evaluation
Bye what do i say ? nice work , Player112 .
Bye Player102 ! hahah what ?? this chat thing is sooooo cool
bye guys yep what now ? nice work everyone , check your inbox
Bye what do you like to do , etc . That 's great .
What sort of background qualifies you for this
Bye internship? Player109 great .
Bye ! what was in your notes ? thanks for your help , laura

Table 2. Example of dialogue utterances that belong to the same speech act category as identified by experts.

4. EXPERIMENTAL SETUP AND
RESULTS

We present in this section the experiments we conducted and the
results obtained by automatically clustering dialogue utterances in
order to discover the intrinsic speech act categories in the data.

The results are reported in terms of accuracy with respect to the
expert-labeled speech act categories. After clustering the
utterances, the expert-assigned label of the majority of the
instances in a cluster is assigned as the predicted label of the
cluster and thus all the instances in that cluster are given this
label. Accuracy is then computed as the percentage of correctly
predicted instances.

There are two major categories of clustering algorithms.
Hierarchical clustering algorithms produce a nested series of
partitions based on a criterion for merging or splitting clusters
based on similarity. Partition based clustering algorithms identify
the partition that optimizes (usually locally) a clustering criterion.
Example algorithms from each category are hierarchical
agglomerative (HAC) and K-means, respectively. HAC produces
a hierarchical structure of clusters while K-means leads to a flat,
direct clustering. In HAC, each data point is initially regarded as
an individual cluster and then the task is to iteratively combine
two smaller clusters into a larger one based on the distance
between their data points. In the K-means algorithm, we specify a
priori the number of clusters (K) we would like to have in the end.
The algorithm usually starts with K seed data points which are
considered as individual clusters. In subsequent iterations, the
remaining data points are added to some cluster based on the
distance to the centroid of each cluster. The centroid is an abstract
data point of an existing cluster that is found by averaging over all
the other points in the cluster. A distance metric must be defined
for clustering algorithms. In our experiments, we used Euclidian
and Manhattan distances. The reported results are with the
Euclidian distance which produced results similar to the
Manhattan distance. To perform clustering, we needed to set a
couple parameters: number of clusters, which informs the
clustering algorithm how many clusters to generate, and seed. The
seed value is used in generating a random number which is, in
turn, used for making the initial assignment of instances to
clusters. In general, K-means is quite sensitive to how clusters are
initially assigned and thus it is often necessary to try different
values and evaluate the results. We have explored seed values
betweenl0 and 100 with an increment of 10. The best obtained
results are reported, which correspond to seed values of 10 and
20. We used EM and K-means implementation from WEKA [22].

We collected dialogue utterances from three online educational
games. While in general a dialogue utterance or turn may contain
one or more sentences, in our context an utterance usually
contains one sentence, with few exceptions. Therefore, the
sentence was chosen as the unit of analysis. This choice can also
be justified by the fact that it is closer to the ideal situation in
which one and only one speech act is performed per unit of
speech, i.e. an utterance.

A first data set used for this analysis came from a study run using
an epistemic game, Urban Science. Urban Science is an
educational game in which players, using iPlan, a custom-
designed Geographic Information System, work as urban planners
to change the look and feel of Madison, Wisconsin. They listen to
people’s concerns, redesign the city, and present their findings to
family, friends, and planning experts. Urban Science explores
how innovative technology-based learning environments modeled
on the professional practices of urban planners inform students’
understanding of ecology. The main goal of the game is to help
players learn about ecology, develop self-confidence and
presentation skills, and start to see the world through the eyes of a
problem-solving urban planner.

The Urban Science chat data was collected from a November
2008 game run in Milwaukee and consists of online chat posts by
the students and mentors exchanging information about the game
rules, content, questions, advice, suggestions, according to the
game plan. The posts, collected by the game log, were further
preprocessed first by splitting them into sentences, and secondly
by manually labeling each sentence with a category of the 8-class
taxonomy (Statements, Requests, Reactions, Meta Statements,
Greetings, Expressive Evaluations, Questions and Others).

The resulting 2768 sentenced were manually classified separately
by two trained annotators. Most of the speech act categories had
high levels of reliability (kappas greater than 0.7) among the
human coders, but two of the categories (Meta Statement and
Other) had moderate kappa scores of 0.546 to .587. The overall
mean kappa score across all 8 speech act categories was 0.797.

The class distribution is shown in Table 1. If one were to
randomly assign a speech act category according to these
distributions, the likelihood of selecting the correct speech act
category by chance would be .18. The average number of tokens
per sentence is 7.57, with a Standard Deviation of 6.40.

The clustering results for the Urban Science data using the
Expectation-Maximization algorithm are shown in Table 3,
second column. The first column represents the number of leading
tokens used for a particular trial. For instance, the third row from
the top corresponds to the model in which three leading tokens
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Leading Tokens #Clusters/Urban #Clusters/Land Science  #Clusters/Nephrotex #Clusters/Combined
Science
2 Tokens 5/34.4% 4/38.7% 3/38.9% 7/34.7%
3 Tokens 6/40.3% 5/42.5% 4/38.2% 6/37.8%
4 Tokens 4/36.2% 5/34.2% 4/38.7% 6/35.4%
5 Tokens 5/39.9% 5/36.4% 5/36.4% 6/37.9%
Table 3. Results with Expectation-Maximization clustering algorithm.
N Urban Science Land Science Nephrotex Combined
6 clusters 29.6% 36.4% 28.6% 352
26.9% 31.5
7 clusters 27.2% 31.1%
8 clusters 29.1% 30.3% 26.3% 27.8
9 clusters 31.3% 28.9% 26.1% 28.0
10 clusters 27.6% 26.2% 25.7% 27.0

Table 4. Results with K-Means clustering algorithm.

were used. The results show that the three leading tokens provide
the best results and yields six discovered clusters. When evaluated
against expert-assigned labels, the accuracy was 40.3% for the
leading three tokens model. A random guess would uniformly
assign a dialogue utterance to each of the eight speech acts for an
accuracy of 12.5%. Compared to the expert-defined speech act
categories, the EM algorithm does not identify Greetings and
Other speech acts. Greetings are mostly clustered in the predicted
Reactions cluster.

Results for K-Means are shown in Table 4. The results are all for
leading three tokens which was the best model when using the
non-parametric EM algorithm. Remember that we do not have to
specify a priori how many clusters we should expect when using
the EM algorithm which is the reason we first used EM to find the
best model to use for the discovery of intrinsic speech act
categories in the data. The first column in Table 4 indicates the
number of clusters used. We tried values around the expert-
defined number of clusters, which was eight clusters.

Land Science is another computer-based educational game, in
which players become interns at the office of a fictitious urban
and regional planning firm. The players have to weigh the trade-
offs of land use decisions in ecologically-sensitive areas, interact
with virtual stakeholders, and develop land use plans for local and
national sites. It is a 10 hour game played in schools or out-of-
school enrichment programs.

The Land Science data was collected from the log of a game run
in 2010 at Massachusetts Audubon Society. The online chat posts
were split into 4131 sentences which were than manually labeled
independently by two humans. The inter-judge reliability scores
ranged from 0.501 for the category Other to 0.918 for the category
Question, with a mean of 0.755.

The class distribution is as follows: 2.3% Others, 2.3% Expressive
Evaluations, 2.7% Greetings, 7.8% Requests, 8.4% Meta
Statements, 19.0% Questions, 28.2% Statements and 28.9%
Reactions, which means that the chance of the corpus is .21. The
average number of tokens per sentence is 6.85, with a Standard
Deviation of 6.69.

The results on the Land Science data set are shown in the third
column of Tables 3 and 4. The best results are again for a model

in which the three leading words were used. However, in this case
the number of intrinsic speech act categories, i.e. clusters, is five.
MetaStatements, Greetings, and Other are not identified as
clusters by the three leading tokens model and the non-parametric
EM algorithm.

Nephrotex is an educational game in which undergraduate
engineering students role-play as professional engineers-in-
training in order to develop the skills, knowledge, identity and
values of engineers. In Nephrotex, students are welcomed as early
career hires into the fictitious company Nephrotex, whose core
technology is the ultrafiltration unit, or dialyzer, of a hemodialysis
machine. The students’ assigned task is to design a next-
generation dialyzer that incorporates carbon nanotubes and
chemical surfactants into the hollow fibers of the dialyzer unit.

Online chat posts were collected from a game run in 2011 and
subsequently split into 1000 sentences which were later manually
classified by two humans. The kappa scores for each of the eight
categories when comparing the two trained judges ranged from
.41 for class Other to .94 for class Question with an average of .68

The class distribution shows the following hierarchy: 1.1%
Others, 1.4% Greetings, 2.4% Expressive Evaluations, 4.0% Meta
Statements, 5.6% Requests, 17.3% Questions, 20.2% Reactions
and 48.0% Statements, which indicates that the corpus' chance is
.30 The average number of tokens per sentence was 9.01, with a
Standard Deviation of 6.38.

The large corpus obtained by combining the previous three
corpora, consists of a number of 7899 sentences, each labeled
with one of the eight speech act categories. The distribution is as
follows: 2.4% Others, 2.9% Greetings, 3.6% Expressive
Evaluations, 7.1% Meta Statements, 9.1% Requests, 20.3%
Questions, 25.8% Reactions and 28.5% Statements, resulting in a
chance of .20. The average number of tokens per sentence is 7.37,
with a Standard Deviation of 6.59.

For the Nephrotex corpus, the best results are obtained using the
two leading tokens. However, the results obtained with the three
leading tokens are comparable in terms of accuracy but not in the
number of clusters discovered, three versus four. Because the
three leading tokens model has been best in the other datasets, we
incline to declare it a winner in this case too.
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Finally, we also experimented with a combined dataset. Results
are presented in the last column of Tables 3 and 4.

4.1 Balanced Data Set

Because the three datasets collected were dominated by certain
categories, e.g. Questions, Reactions, and Statements, we
wondered about the ability of the clustering algorithms to discover
the intrinsic speech act categories when the data would be
uniformly distributed.

To achieve this goal, we ran experiments on a balanced dataset of
speech acts by extracting from the combined data set an equal
number of utterances for each speech act. In the process, we
dropped the Other category as too few utterances were available.
In the end, we obtained a balanced data set of seven speech act
categories, each category containing 230 utterances each.

N #Clusters/Accuracy
2 4/29.8%
3 6/28.3%
4 5/31.7%
5 6/31.1%

Table 5. Accuracy and number of clusters obtain with EM
algorithm on the balanced data set.

From the results in Table 5, we can see that the accuracy is quite
similar for all values of N, i.e. the number of leading words used
as predicting features in clustering. The leading three words
generate six clusters (out of seven in the gold standard).
MetaStatements were mostly labeled as Greetings, Statements,
and Expressive Evaluations. For instance, the MetaStatement,
“Yay!” expressing an emotion is similar to a Greeting because of
its short length and exclamation mark. For short utterances which
are shorter than the number of tokens used in a given model we
introduce dummy values for missing tokens, e.g. NONE. So,
“Yay!” and “Hi!” have similar representations except for the first
tokens which explains why they are clustered. Given that ideally
we would like to have a trade-off between the complexity of the
model used, in our case defined by how many tokens are
employed (the more tokens the more complex the model),
discrimination power (number of distinguishable clusters), and
performance, we conclude from the results in Table 5 that using
the three leading words is best.

5. CONCLUSIONS AND FUTURE WORK

We proposed in this paper a fully automated method to speech act
discovery. As we already mentioned, this work is a step towards a
process of defining the speech act taxonomy using both extrinsic
and intrinsic aspects of the target domain. The extrinsic aspects
comprise of the goals of the system that needs the speech act
taxonomy and the experts’ knowledge and biases. The intrinsic
aspects relate to the actual similarities of the actual data. A trade-
off between the extrinsic and intrinsic forces could lead to a
robust speech act taxonomy that is both informed by experts’
views and by the actual data.

We presented results on the original dataset as well as on balanced
datasets in which the gold standard (i.e., the speech act categories
are validated by experts) had same numbers of utterances for each
speech act. The balanced datasets offer a more fair comparison of
the clustering method of the utterances in our epistemic games.

However, sometimes domains such as educational systems may be
biased towards particular speech acts in which case the original
datasets offers us a view at the “real” world and how the proposed
methods work in real settings.

A drawback of the proposed model for representing dialogue
utterances, i.e. the N leading tokens, is that the distance between
two dialogue utterances is based on string operations rather than
lexico-semantic distances which would be more meaningful for
natural language dialogues. That is, two utterances that contain
the words ‘hi’ and ‘hi’ would be close in a string-based
representation while ‘hi’ and ‘hello’ or ‘hi’ and ‘bye’ would not.
While for the former example of ‘hi’ and ‘bye’ one could argue
for the creation of a different cluster, or speech act category, for
the former they should definitely be in the same cluster. One
solution is to modify the clustering library in WEKA [22] to
include a lexico-semantic distance based on word-to-word
similarity measures, e.g. using the WordNet similarity library
[23]. We do plan to explore this line of research in the future.

As one last conclusion, our work showed that there is close
relationship between the model used, e.g. the number of leading
tokens, and the number of intrinsic clusters found in the data. This
result should inform the developers of speech act classifier who
used a particular model about the power of that model to discover
the intrinsic, extrinsic, or intrinsic-extrinsic speech act categories
adopted.
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ABSTRACT

Learning a more distributed representation of the input fea-
ture space is a powerful method to boost the performance
of a given predictor. Often this is accomplished by parti-
tioning the data into homogeneous groups by clustering so
that separate models could be trained on each cluster. In-
tuitively each such predictor is a better representative of
the members of the given cluster than a predictor trained
on the entire data-set. Previous work has used this basic
premise to construct a simple yet strong bagging strategy.
However, such models have one significant drawback: In-
stances (such as students) are clustered while features (tu-
tor usage features/items) are left alone. One-way cluster-
ing by using some objective function measures the degree
of homogeneity between data instances. Often it is noticed
that features also influence final prediction in homogeneous
groups. This indicates a duality in the relationship between
clusters of instances and clusters of features. Co-Clustering
simultaneously measures the degree of homogeneity in both
data instances and features, thus also achieving clustering
and dimensionality reduction simultaneously. Students and
features could be modelled as a bipartite graph and a si-
multaneous clustering could be posed as a bipartite graph
partitioning problem. In this paper we integrate an effective
bagging strategy with Co-Clustering and present results for
prediction of out-of-tutor performance of students. We re-
port that such a strategy is very useful and intuitive, even
improving upon performance achieved by previous work.

Keywords

Out-of-Tutor Prediction, Dynamic Assessment, Spectral Co-
clustering, Ensemble Learning, Bootstrap-Aggregation

1. INTRODUCTION

A significantly large student population would usually have
a wide variation in learning rates and knowledge levels. While
there are numerous reasons for this diversity, three major
reasons are related to: the type of instruction or help they

respond best to, the way they are oriented towards learning
and their levels of intellectual development [1],[2]. Need-
less to say, such differences would be reflected in the way
students interact with educational software, making educa-
tional data quite difficult to mine well. Specifically there
are many educational data mining problems where the end
goal is to predict the performance of a student on a given
in-tutor or out-of-tutor task. In-tutor tasks include pre-
dicting the probability that a student will answer an item
correctly after attempting a sequence of similar questions
whereas out-of-tutor tasks include being to predict student
performance in post-tests based on the data from their tutor
usage.

The idea that students are quite different makes it appar-
ent that perhaps it is not such a good idea to fit a global
prediction model over the entire dataset for making predic-
tions. In spite of the differences between students, educators
commonly observe that students actually lie in very rough
groups and have similar pedagogical needs. Taking a cue
from this intuition, the task of prediction can be improved
by clustering students into somewhat homogeneous groups
and then training a separate predictor for each group. Such
a predictor would obviously be a much better representative
of students in that cluster as compared to a predictor which
is fit on the entire dataset. For example, it makes sense
to have a different model for students roughly classified as
fast learners and a different model for slow learners than the
same for both. This rather simple strategy of grouping stu-
dents together and then modeling them separately can lead
to improved performance in prediction and perhaps even
better interpret-ability.

While the above approach is compelling, there are two ma-
jor issues with it. Firstly, while it is useful to model students
as belonging to different groups, it is also known that such
groupings are quite fuzzy and approximate. Students might
actually possess different characteristics in varying degrees
and what really sets them apart are certain dominant char-
acteristics. For example students classified as fast learn-
ers might actually be slow learners in certain skills. A fast
learner might also belong to the group of students that are
good at recalling information etc. Thus, such complex char-
acteristics can not be possibly modelled by simply clustering
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students to a certain limit and then training models for each
cluster. This “spread” of features in a student across groups
also needs to be captured to make a distributed predictive
model such as the above more meaningful. Such an issue
can be resolved by varying the granularity of the clustering
and training separate models each time so that such features
can be accounted for. A simple yet quite effective strategy
to do so was proposed by the authors and was seen to work
quite well both in educational contexts (in-tutor predictions
[3], out-of-tutor predictions [4],[5]) and more generally [6].
The second problem with the above approach is that cluster-
ing is implicitly suggested to be one-way i.e only clustering
students. But this need not necessarily be the case and only
clustering students would consider only half of the story. As
an example, consider a matrix in which the rows represent
students and the columns represent their responses to cer-
tain items. Clearly, clustering students would depend upon
their item distributions, implicitly suggesting that for cer-
tain students certain items are more important than others.
Similarly if items were to be clustered, they would depend
on which groups of students get them correct (or incorrect)
most frequently. This indicates a duality between these two
clusterings, which on simultaneous co-clustering could be
very useful in answering many research questions. Co clus-
tering of such a student versus item matrix would pair clus-
ters of student proficiency to clusters of item performance
which could be seen as a sort of a subject treatment interac-
tion. This idea could be extended to the more general case
of students and features rather than just items. In this work
we use this idea of co-clustering students and their tutor in-
teraction features and interleave it with the bagging strategy
which was used with clustering [3],[4],[5],[6]. This combined
approach is then used to predict the post-test scores of stu-
dents.

This paper is organized as follows: In Section 2] we discuss
the idea of co clustering in more detail and that co cluster-
ing could be posed as a bipartite graph partitioning problem.
In Section [3| we describe a general framework in which we
interleave co clustering with the idea of generating an en-
semble. In Section 4] we describe the experimental results
which demonstrate the validity of this approach. In Section
we discuss the results and also describe some avenues for
further work.

2. CO-CLUSTERING

Clustering is a fundamental tool from unsupervised learn-
ing for data analysis that groups together relatively homo-
geneous objects. The central idea for clustering is that every
object could be specified by a feature vector (or a point in
the feature space) and then the degree of homogeneity be-
tween them could be measured by some objective function
that uses these feature vectors. For example in k-means
clustering: the points are grouped so as to minimize a dis-
tortion function, which is basically the sum of distances of
all points from their assigned cluster centroids [7].

Clustering algorithms are one-way, i.e. one dimension of the
data (say the rows of the data matrix) is clustered based
on the similarities measured on the second dimension (say
the columns). As pointed out in the previous section it
might be desirable, quite frequently, to cluster along both
the dimensions simultaneously, exploiting the apparent du-
ality between them. Such simultaneous clustering can of-

ten offer interesting insights about the nature of interaction
between the clusters at both the dimensions [8]. This util-
ity is fast making co-clustering a fundamental tool for data
analysis as is indicated by its widespread use in text and
document mining [9], [10]; bioinformatics and gene expres-
sion analysis [11], [12]; collaborative filtering |13] and many
others practical applications.

While there are now a number of approaches to co-clustering
such as based on spectral graph theory [10] and informa-
tion theory [14], [15], each with its advantages, we consider
the approach proposed by Dhillon [10] which formulates the
problem of co-clustering as a bipartite graph partitioning
problem. We now briefly describe this approach starting
with the relevant notation and definitions.

2.1 Notation and Definitions

A graph is represented as G = (V, E) where V represents the
set of vertices and F represents the set of all edge weights
E;;, where E;; is the edge weight between vertices {1, j}.

Definition 1. The n x n Weighted Adjacency Matrix
of an undirected graph is defined as the matrix (m;;)s,j=1,....n-
If m;; = 0 it implies that vertices v; and v; are not connected
by an edge. If m; ; # 0 it implies that the vertices {i,;} are
connected and m; ; is the corresponding edge weight. Since
the graph is undirected, m;; = m;; necessarily.

Definition 2. Given the weighted adjacency matrix of a
graph and a partition of the vertex set V into two disjoint
subsets V; and Vo, the cut between these two subsets is
defined as:

cut(V1,V2) = Z Mij

1€V1,jEV

An undirected bipartite graph is a triple represented by
G = (S8, F, E) where S and F are two sets of vertices and E
is the set of edges. Since it is a bipartite graph one end of the
edges in set E have an endpoint in & and another in F. In
our case the set S is the set of students while the set F is the
set of features. The set of features could readily be seen as
a set of item-responses as well. If F is the set of items, then
an edge between s; and f; exists if that item was answered
correctly by a student and not otherwise. More generally,
if F is just a set of features, then the edge {s;, fi} simply
represents the value of that feature scaled between 0 and 1
for that student. Given this definition of a Bipartite Graph,
now we define the adjacency matrix of the same.
Consider a m x n dimensional data matrix with students on
the rows and the items or features on the columns. Let’s
suppose this matrix is given by A. Clearly, the adjacency of
the bipartite graph is given as:
0 A

=l o)
The zeroes on the top-left and the bottom-right sub-matrices
signify the absence of connections amongst the elements of
S and F respectively (since connections in a bipartite graph
can only run between & and F). The matrix M is repre-
sented such that taking A at the top right corner and AT at
the bottom left implies that the first m rows of M represent
the set of students and the next n rows represent the set of
features or items.
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Suppose the Bipartite Graphs (whose adjacency matrix is
defined above) is partitioned into k clusters Vi, ..., V. Given
this partitioning, a corresponding set of student clusters
Si ... Sk and corresponding feature clusters Fi ... Fr would
also be obtained. It could be intuitively seen that the best
possible such set of clustering for all such pairs would be
when the sum of all edges which cross between clusters is
the minimum possible. As defined by [10] this corresponds
to:

cut(S1 U F, ..

Where Vi, ..., Vi represents a k-partitioning of the graph.
The above definition leads us to the Bipartite Graph Parti-
tioning problem:

Sk UFk) = miny,,... v, cut(Vi, ..., Vi)

Definition 3. The bipartite graph partitioning prob-
lem: Given a graph as defined earlier and subsets of V which
are almost of equal size, say Vi and V5. The required par-
tition is

cut(VY, V3) = miny, v, cut(Vi, Va)

The bipartite graph partitioning problem as defined above is
NP-Complete. However, a good relaxation to this problem
is given by spectral graph bi-partitioning. This relaxation
is achieved via the graph Laplacian. The laplacian L of a
graph is a symmetric positive semi-definite matrix such that
its un-normalized form is given by L = D — M where D is
the degree matrix and M is the adjacency matrix as defined
earlier. Note that D is only a diagonal matrix while M is
a symmetric matrix with all zeros in the diagonal. Thus,
the Laplacian encodes both D and M in it and has many
useful properties such as being positive semi-definite, which
make it very useful for tasks such as clustering [24]. One
property of the Graph Laplacian that make it particularly
suitable for clustering are related to the properties of its
spectrum. The spectra of the Graph Laplacian unfolds the
data manifold to give an lower dimensional embedding which
can give “better” clustering results.

Returning to the Bipartite Graph Partitioning Problem, as
demonstrated by Dhillon [10] and Mohar [24], the second
eigenvector of the generalized eigenvalue problem Lz = ADz
gives a real relaxation to the problem of finding the mini-
mum normalized cut Q(V1,V2). The normalized cut is ba-
sically a cut that favours finding balanced partitions i.e. if
the cut of two different partitions is the same, then the nor-
malized cut is smaller for that partition which is more bal-
anced. Thus it favours partitions that are balanced and have
a small cut value. Clearly, the normalized cut is more suit-
able for tasks such as clustering [16]. Note that this relates
to the ideas above relating to the optimal bi-partitionings
in the following way: We want balanced clusterings with
minimum cut for solving the bipartite graph partitioning
problem, which would also be the optimal clustering for us.
Thus looking at the Laplacian of the bipartite graph might
provide such a clustering.

2.2 Spectral Co-Clustering

Given the definitions and notions in the previous section,
in this section we state an algorithm [10] for finding the
optimal co-clusters {S1 U F1},...,{Sk U Fi} as mentioned
above. For that we define the graph laplacian of a bipartite

graph as such an optimal clustering can be found using a
laplacian. Using the definition of L = D — M as defined
above and also the definitions of D and M. The laplacian
may be written as:

v= G 5l

—AT Dy

and
D1 0
-3 o)

where D7 and Ds correspond to the degree matrices of A
and AT respectively.

If the generalized eigenvalue problem Lz = ADz is written
for the above laplacian for a bipartite graph and then re-
arranged, it has been demonstrated [10] that the resulting
equations define the equations for a singular value decom-
position of the normalized matrix

A, = D;1/2AD;1/2

Thus instead of finding the second smallest eigenvector cor-
responding to the second eigenvalue, one could find the left
and the right singular values in its place. Finding the right
singular value gives a bi-partitioning of students while the
left singular value gives a bi-partitioning of the features.
These can then be used to find the optimal bi-partition as
defined above.

Algorithm 1.

1. Given the co-occurrence or data matriz scaled to be-
tween 0 and 1 A, form the normalized matriz.

A, = D;1/2AD2—1/2

2. Compute the second left and right singular vectors for
A,,, concatenate them together to form a vector z.

8. Run k-means on this vector to obtain a simultaneous
clustering of both the students and the features.

This algorithm can be extended to a multipartition case if
instead of finding the second singular values, the first log2 (k)
singular vectors are found. The rest of the process remains
the same.

Note that this algorithm gives a simultaneous clustering of
the rows and the columns and is restricted in the sense that
the number of row and columns clusters have to be the same.
We modify this by running k-means two times. If the num-
ber of row clusters is k and then the number of column
vectors is [, then we run k-means on the vector z twice,
once to find k clusters and then to find [ clusters. The first
m elements of the length m + n cluster assignment vector
run will then correspond to the row clusters and the last n
elements of the cluster assignment vector in the second run
will correspond to the column cluster indices.

3. BAGGING STRATEGY

The statement of the supervised learning problem in ma-
chine learning could be roughly stated as follows: Given a
training set consisting of ordered pairs of feature vectors and
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their associated labels (which might be discrete or contin-
uous), the task of a learning algorithm is to learn a func-
tional map from the feature space to label space. A learn-
ing algorithm is said to be more powerful if it is able to
learn mappings such that it can generalize well and make
correct predictions on test data-points on which it was not
trained. Since the functional map under consideration might
be highly non-linear, learning algorithms that output only
a single mapping (frequently referred to as the hypothesis)
might suffer from statistical, computational and representa-
tion issues that restrict them from learning good mappings.
One way of solving this problem is to transform the fea-
ture space into a more suitable and “richer” representation
such that learning using this new representation gives much
better functional maps as compared to the original represen-
tation. This is the motivation behind deep learning methods
which have caused a new wave of excitement in the machine
community since 2006 |17]. Another way of solving this
problem atleast partly, is by using ensemble learning meth-
ods [18],[19],[20]. The basic idea behind ensemble methods is
that they involve running a “base learning algorithm” multi-
ple times, each time with some change in the representation
of the input (e.g. only considering a subset of features in
each run) so that a number of diverse predictions (or maps)
could be obtained. This diversity in prediction is then ex-
ploited to get better predictions. Thus ensemble methods
approach the said problem by both trying to learn multi-
ple functional maps and also by learning a more distributed
and hence “richer” representation of the input space at the
same time. In the next section we describe a method to use
clustering for bootstrapping.

3.1 Clustering for Bootstrapping

In earlier work we introduced the idea of using clustering
for bootstrapping (3], [4], [5], [6]. This idea was quite un-
like other bagging methods which use a random subset to
bootstrap. Thus, it had the potential advantage that the
subsets used to bootstrap could be more interpretable. Be-
fore we generalize this methodology using co-clustering we
first briefly describe the methodology using clustering.

The training set was first clustered into k disjoint clusters.
A linear regression model was trained on each of the clusters
only based on the training points assigned to that cluster.
Since each such linear regression was a representative of only
one cluster, we called it a cluster model. Thus, for a given k,
there would be k cluster models. But since all the clusters
are mutually exclusive, the training set is represented by all
the cluster models taken together. This is called a prediction
model (PMj). For an incoming test point on which a pre-
diction is to be made, we first identify the cluster that point
belongs to. After the cluster has been identified, the appro-
priate cluster model could be used to make a prediction for
that point. Now note that we don’t specify the number of
clusters in the above. Hence, we can change the granular-
ity of the clustering from 1 to some high value, say K. In
each instance we would get a different prediction model (a
special case would be PM;, which would basically be when
one linear regression model is trained on the entire dataset).
Thus, we would obtain a set of K prediction models each
of which would make a separate prediction on the test set.
Since we vary the granularity of the clustering, each of these
predictions are different, this diversity in prediction could be

Train
Data

[ Co-Clustering of students and features ]

Row Clusts.=k

Col Clusts. =1

b

Co- Co-
Cluster Cluster
Model Model

[ Prediction Model PM

Figure 1: Finding a Prediction Model, PMy; with k row
clusters and [ column clusters

used by averaging all the (or half) the predictions obtained
to get a single much stronger prediction.

3.2 Co-Clustering for Bootstrapping

Note that the clustering is only one-way. That is, bootstrap-
ping is done by only changing the data instances available
for each cluster model (by changing the number of cluster
models itself) but the number of features used in each case is
the same. A cluster basically is a bunch of rows in the data
matrix with all columns. A co-cluster on the other hand
would be a “block” in the data matrix with a sub-set of
rows and a sub-set of columns assigned to each “co-cluster”.
Thus a co-clustering could be thought of as a simultaneous
clustering and dimensionality reduction of the data. Note
that a clustering is only a special case of co-clustering when
the columns are not clustered at all (or have only one column
cluster).

Clearly, the above bagging methodology can be suitably
modified using co-clustering. For a given number of row
clusters k and column clusters | we could have k co-clusters
where-in each cluster has only some features assigned to it
(note that the definition is symmetric i.e we could think of
this as [ co-clusters). For each co-cluster we train a sepa-
rate linear regression model only using the data instances
and features assigned to it. We thus obtain k Co-Cluster
Models. Like in the above case for clustering, the combina-
tion of the k co-cluster models would be considered to be
a Prediction Model which makes a single prediction on the
test set. We can then vary k from 1 to some value K and [
from 1 to some value L. By doing so, we would get a total
of K x L prediction models. We then average a subset of the
predictions made by these models to obtain a much stronger
prediction.

There are some interesting aspects to such a methodology
using co-clustering. For k£ = 4 and [ = 4, the grid in Figure
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Figure 2: Ordering the Co-Cluster Prediction Models, P My,

illustrates all the Prediction Models (PMj;) that could be
obainted by co-clustering. The Prediction Model PM; ; rep-
resented by (1,1) is simply the case when there is one data
cluster and only one feature cluster i.e the original data ma-
trix itself. The prediction model for this case would simply
be training a linear regression on the entire dataset, consid-
ering all the features. The first column of this grid repre-
sents the case when the number of feature clusters is just
one, while the number of row clusters are changed. Note
that this is simply the methodology described above in Sec-
tion |3.1) using clustering. The first row of this grid is also
equally interesting. In this case the number of row clusters
is always one i.e the entire dataset is considered in all co-
clusters, while the column clusters are successively changed.
It should be noted that this is a sort of a step-wise regression,
where a linear regression is trained on the entire dataset but
the number of features that are used to train it are changed
(usually reduced as [ increases). All the other cases are a
cross between these two extreme cases. We see that it seems
plausible that a bagging strategy using co-clustering if av-
eraged properly could definitely have more predictive power
as it generates diversity by considering a different subset
of data instances and features each time, consequently also
generating a much larger set of predictions.

3.3 Blending Predictions

As mentioned before, the method for combining the predic-
tions returned by the various prediction models is a naive
averaging strategy. When the prediction models were gener-
ated by clustering (PMy), we either averaged the first K /2
predictions (where K was the maximum number of clusters)
[6] or we learned the best number of prediction models that
could be averaged by an internal cross-validation [6]. The
averaging idea is not immediately straightforward when co-
clustering is used to generate the prediction models. This
is because the prediction models are obtained by changing
two parameters. It is also observed that prediction models
with a high k or [ return poor accuracies, thus it wouldn’t be
useful to average predictions from all the PM}; models first
and then PMj2 models and so on (i.e. traversing the grid
row-wise or column-wise). Since high values of k and [ are
counter-productive, we take the order of the prediction mod-
els such that the sizes of k and ! increase uniformly. This
ordering is illustrated by the curve in Figure The first
half of this reordered set of predictions are then averaged.

4. EXPERIMENTAL VALIDATION

In this section we report experimental results for using co-
clustering for bagging and compare results with the bench-

mark (PMi1) and clustering alone.

4.1 Dataset Description and Context

We primarily experiment with two datasets in this study.
This data was collected to study if dynamic assessment,
which has long been advocated as an effective method for
assessment, was actually better than the traditional static
assessment [21], [22]. Dynamic assessment is an interactive
approach to student assessment which is primarily based on
how much help a student requires during a practice test.
Traditional static testing only takes into account the per-
centage of questions that the student gets correct. Feng et
al. 23| showed that features that only recorded how much
assistance a student got while interacting with a tutor alone
were better predictors of student performance in post-tests
held later in the year as compared to how many questions
students got correct. This was confirmed in subsequent
studies [4], [5]. Thus if Co-Clustering is able to improve
predictions, then this study could further lend weight to the
idea that dynamic testing is indeed better than static test-
ing and that we could further improve upon PMi;. It must
be noted that PM;i; would correspond to results reported
in [23] which were better than static assessment. PMi1 ba-
sically corresponds to the condition when all the dynamic
features are considered and all of the training set is used to
train a predictor.

The datasets come from the 2004-05 and 2005-06 school
years, the first two full years when ASSISTments.org was
used in schools in Massachusetts. ASSISTments is an e-
learning tutoring system developed at Worcester Polytech-
nic Institute which assesses students as it assists. These
datasets contain features that measure the interaction of
students with the tutor and their actual final grades, which
they obtained at the end of the year in the Massachusetts
state test (MCAS). There a total number of six features in
these datasets 1) DA Original Count is the number of
questions that the students answered with assistance in the
dynamic condition. 2) DA Original Percent Correct is
the percent of questions of feature 1 that students get cor-
rect . 3) DA Scaffold Percent Correct is the percentage
on tutorial help questions that students get correct. 4) DA
Average Time is the average time that a student spends
on a question 5) DA Average Attempt is the average
number of attempts students made per question. 6) DA
Average Hints is the average number of hints that stu-
dents used. The task is to use these interaction features to
predict the MCAS scores that students might get at the end
of the school year. The static condition feature is percentage
of questions answered correct in static testing. This feature
is never used for making predictions for the dynamic condi-
tion. The data in the 2004-05 set (ASSISTments 2004-05)
is for 628 students, while the 2005-06 data (ASSISTments
2005-06) is for 761 students.

For experimentation we do a five fold cross-validation on the
dataset and report results for the base condition (PMi1) and
the various blended results which were obtained by averag-
ing as discussed in Section [3:3] For the sake of comparison
we also include results with k-means clustering too. In both
cases we consider the ensembled results, with the top K pre-
dictions averaged as described in [4], |5] and also in Section
Following results in [4] and [5] we report results in terms
of the mean absolute difference (MAD).

Finally, for pre-processing: As mentioned in Section [2} to
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Figure 3: Performance on the 2004-05 Set

obtain a bipartite partitioning A must contain values that
are either binary or scaled between 0 and 1. Thus, in each
fold each feature column is scaled to between 0 and 1 so that
A,, could be considered a co-occurrence matrix. This marks
a slight difference from earlier papers in which the feature
scaling was done so as to map all the data-points to between
—1 and 1 by using the mapminmax command of MATLAB.
This slight difference might result in a small variation in the
results.

4.2 Experimental Results

We first report results on the ASSISTments 2004-05 dataset.
The five fold cross-validated results using co-clustering are
reported in Figure [3] The number of row clusters (k) and
the number of column clusters (I) were restricted to 4 each.
This resulted in 16 prediction models. The x-axis in the
graph represents the first eight prediction models on doing
co-clustering, while the y-axis simply gives the mean abso-
lute error. We observe that the accuracy of co-clustering
alone is quite bad (as seen by the blue line) as compared to
the baseline (P Mj;, which is basically the result for x = 1 in
this graph. Note that the baseline is the dynamic condition
of Feng |23|). These predictions are those given by the first
elements of the ordered set of co-cluster prediction models
as defined in Section However, averaging these predic-
tion models successively gives better and better predictions
(as can be seen by the red line).

Similar results were reported in the ASSISTments 2005-06
dataset as shown in Figure 4l In this dataset the prediction
models are far worse than the ensembled results as com-
pared to the previous dataset. Again, we obtain 16 predic-
tion models after co-clustering and successively average the
first eight (the first with second, the first with second and
third and so on) after they have been arranged in the way
suggested in Section Again the ensembled results do
much better over the baseline (we report exact figures and
significance in Tables 1 and 2).

In Table [1| we compare the mean absolute errors when pre-
dictions of the first five prediction models are bagged. We
report results when the Prediction Models are obtained both
by using co-clustering and using k-means clustering on the
ASSISTments 2004-05 dataset. The figures in bold indi-
cate statistical significance over the baseline prediction on

AZSISTments 2005-06
Ensembled
L Prediction Models

82r
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G4

78r

Mean Absolute Error
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72 ! L L L ! L
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Figure 4: Performance on the 2005-06 Set

Table 1: Comparison of predictions based on k-means and
Co-Clustering for the ASSISTments 2004-05 Dataset. Fig-
ures in bold indicate significance over the baseline on paired
t-test. Numbers are Mean Absolute Errors. Also note that
Pred. Model 1 corresponds to the baseline

Pred. Models | Co-Clust | k-means
1 8.7741 8.7741
2 8.7379 8.7518
3 8.7087 8.6725
4 8.6879 8.7153
5 8.6574 8.7100

a paired t-test. Results in Table [2| compare the predictions
obtained by using co-clustering and k-means for bagging on
the ASSISTments 2005-06 dataset.

The results are significantly better over the baseline and
also indicate that the dynamic assessment condition returns
a much better prediction of student test scores as compared
to the static condition. It has already been noted that the
static test condition results are significantly worse as com-
pared to even the baseline by [23] and [4], and thus we don’t
report results for the static condition.

5. DISCUSSION AND FUTURE WORK

The datasets that were used for the validation of this bag-
ging technique, which is based on co-clustering were not very
large and did not have a large number of columns. Thus,

Table 2: Comparison of predictions based on k-means and
Co-Clustering for the ASSISTments 2005-06 Dataset. Fig-
ures in bold indicate significance over the baseline on paired
t-test. Numbers are Mean Absolute Errors. Also note that
Pred. Model 1 corresponds to the baseline

Pred. Models | Co-Clust | k-means
1 7.9822 7.9822
2 7.7716 7.8185
3 7.5990 7.8034
4 7.4680 7.7815
5 7.5503 7.6487
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these results were initially surprising. One would imagine
that in a dataset which has a small number of features, per-
haps a feature selection might not be too helpful. However,
our experiments show us otherwise. The results that we ob-
tain, while modest improvements show that this technique
though simple can give access to a novel source of variance
in the data. It can potentially also have some nice prop-
erties in terms of returning simpler and more interpretable
groups. For example, it was earlier pointed out that one
row of the prediction models were actually nearly like a lin-
ear regression model in which the features are successively
eliminated. At the same time it was observed that one col-
umn of the prediction models were actually just the various
prediction models that we obtained on clustering alone as
reported in some previous work. It would be interesting to
see how the Co-Clusters (which are basically blocks in the
data matrix) on a student-item dataset would pair clusters
of student proficiency to clusters of item performance which
could be seen as a sort of a subject treatment interaction.
In the literature, it has been said that the real strength of co-
clustering is with binary valued data, co-occurrence tables
and basically in scenarios which involve collaborative filter-
ing. Hence, datasets which are basically a student by item
matrix would be an ideal candidate for trying out this tech-
nique. In the KDD Cup 2010 Téscher and Jahrer modelled
student response data as a collaborative filtering task and
used matrix factorization techniques for the same. Given
the connections of co-clustering with matrix factorization,
it is worth investigating how useful it could be in such a
setting.

In [3], the authors clustered students based on tutor interac-
tion features and then trained separate Knowledge Tracing
models for students based on the cluster they were in. This
was done so because it was not possible to cluster the item
sequences directly and an indirect approach had to be taken.
This co-clustering technique seems to give an alternative by
which such matrices might be clustered more readily with-
out the need to cluster the tutor interaction features.

In summary, in this paper we propose a bagging technique
that uses co-clustering and demonstrate that it’s perfor-
mance is better than that obtained by bagging using clus-
tering. We also suggest that it is most suitable for datasets
which are like co-occurrence tables and believe that it would
be a good direction for future work since such student-item
datasets are usually of this form.
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ABSTRACT

A long-standing challenge for knowledge tracing is how to update
estimates of multiple subskills that underlie a single observable
step. We characterize approaches to this problem by how they
model knowledge tracing, fit its parameters, predict performance,
and update subskill estimates. Previous methods allocated blame
or credit among subskills in various ways based on strong
assumptions about their relation to observed performance. LR-
DBN relaxes these assumptions by using logistic regression in a
Dynamic Bayes Net. LR-DBN significantly outperforms previous
methods on data sets from reading and algebra tutors in terms of
predictive accuracy on unseen data, cutting the error rate by half.
An ablation experiment shows that using logistic regression to
predict performance helps, but that using it to jointly estimate
subskills explains most of this dramatic improvement. An
implementation of LR-DBN is now publicly available in the
BNT-SM student modeling toolKkit.

Keywords
Conjunctive knowledge tracing, Dynamic Bayes Nets, logistic
regression

1. INTRODUCTION

Knowledge tracing (KT) [1] is widely used to update an
intelligent tutor’s estimate of the probability that a student has a
given skill, based on the student’s observable performance on
steps that use the skill. KT does not in itself address the issue of
how to update multiple subskills used in the same step. This
paper compares various approaches to this “multiple subskills
problem.” Section 2 frames the space of prior (and new) methods.
Section 3 describes a recent method named LR-DBN [2]. Section
4 compares LR-DBN against previous methods on two data sets.
Section 5 concludes.

2. COMPARATIVE FRAMEWORK

As a framework to compare previous and proposed methods for
tracing multiple subskills, we use four aspects to characterize
them: how they represent the KT model, how they fit the model
parameters to observations of multi-subskill steps, how they use
the model to predict performance on such steps, and how they
update estimates of the subskills based on observed performance.

2.1 Represent model

Previous solutions represent the student’s knowledge at step n as a
hidden state K™ in a Hidden Markov Model (HMM), shown in
Figure 1. It has knowledge parameters already know for the
probability that the student knew the skill to start with, learn for
the probability of the transition from not knowing the skill to
knowing it, and forget (usually assumed to be 0) for the
probability of the transition from knowing the skill to not knowing

Jack Mostow
Carnegie Mellon University
RI-NSH 4103
5000 Forbes Ave, Pittsburgh, PA 15213

mostow@cs.cmu.edu

it. It also has performance parameters guess for the probability
P(C(") | not K (")) of performing the step correctly despite lacking
the skill, and slip for the probability P(notc™ |k™) of
performing the step incorrectly despite knowing the skill.

Figure 1: Single-skill knowledge tracing architecture

2.2 Fit parameters

One previous solution [3] tries to sidestep the problem by
modeling each set of subskills as a distinct individual skill, e.g.,
computing the area of a circle embedded in a figure vs. by itself.
However, modeling different sets of subskills as independent
skills ignores transfer of learning between them.

Other previous solutions [4-6] simply treat each subskill used
in a step as if it were entirely responsible for that step. They train
a separate KT model for each subskill on observations of all the
steps that use it. Thus the same observed step appears in the
training data for every subskill that it uses. They simply estimate
the model parameters for each subskill using the same training
procedure as for conventional KT.

2.3 Predict performance
In standard “single-skill” KT, predicting performance ™ at step
n involving skill j is simple:

P(c™)=P(K™)x (1 - slip)) + (1 -P (K].("))> X guess;
Equation 1: Standard KT prediction

Previous solutions to the multiple-subskills problem predict
performance on a step by combining in different ways the
probabilities of correctly performing all the skills it requires. One
way, based on an assumption that they are probabilistically
independent, multiplies them [4, 6]:

Proceedings of the 5th International Conference on Educational Data Mining 41



™Y _ () ; (n)

P(c™) —HP(K]. )x(l—sllpj)+<1—P(Kj ))
J
X guess;
Equation 2: Independent subskills performance prediction
The weakest-subskill alternative [5] takes their minimum:

™Y = i ) : ()

P(c™) = Min; P (K )X(l—sllp]-)+(1—P(Kj ))

X guess;
Equation 3: Weakest-subskill performance prediction

2.4 Update estimate

To update its estimate of a skill j based on the observed success of
a step n that uses it, standard KT applies Bayes’ rule:

Pposterior (Kj(n)) =P (Kj(n)| C(n))
B P (k™) x (1 - slip))
- P (Kj(n)) X (1 —slip;) + (1 —-P (Kj(n))) X guess;

Equation 4: Standard KT skill update for successful step

Conversely, the standard update rule if the step fails is:
Pposterior (Kj(n)) =P (Kj(n)| not C(n))
P (Kj(”)) X slip;

P (Kj(n)) x slip; + (1 - P (K}.(n))) X (1 — guess;)

Equation 5: Standard KT skill update for failed step

Either way, it estimates the probability of knowing the skill at the
next step as either knowing without forgetting, or learning:

P (Kj(n+1)) = FIposterior (Kj(n)) X (1 - forgetj)
+ (1 — Pposterior (Kj(n))) X learn;
Equation 6: Standard KT next-step update

When a step involves multiple subskills, previous methods use
different ways to allocate responsibility among them for the
observed success or failure of the step. The “full responsibility”
approach applies these equations to all the subskills. The “update
weakest subskill” approach simply applies the standard update
equations above to whichever subskill in a step has the lowest
probability, and leaves the others unchanged. Its “blame weakest,
credit rest” variant credits the other subskills as correct even if the
step failed.

Conjunctive knowledge tracing (CKT) [6] also predicts the
probability of a step succeeding as a product of its subskill
probabilities using Equation 2, and gives all of them full credit for
success using Equation 4. However, rather than place full blame
on each subskill for failure, CKT apportions blame among them
differently. Instead of using Equation 5 to update each subskill
based just on its own guess and slip probabilities, CKT takes into
account those of the other subskills as well, as follows.

Bayes’ rule says how to update a skill based on performance:

P(not c™ | K]-(n)) X P(K]-(n))

P(not C™)
Equation 7: Bayes' rule for skill update

Pposterior (Kj(n) | not C(n)) =

Conditioning on having skill j at step n reduces P(K ]-(n)) to 1,
simplifying the numerator of Equation 9 to:

P(not c™ | Kj(n)) = slip; + (1 — slip)
X 1_[ [P(Kl.(n)) x (1 —slip;) + (1 - P(Ki(n))) X guess;]

i#j

Equation 8: CKT subskills update for failed step

CKT computes the denominator by assuming independence:

P(not C™) = 1 p(C™) =

1- H [P(K;n)) x (1= slip;) + (1 - P(Kj(n))) X guess;]

J

Equation 9: CKT prediction based on multiple subskills

Next, we introduce a different strategy of using logistic regression
in KT to trace multiple subskills.

3. USING LOGISTIC REGRESSION TO
TRACE MULTIPLE SUBSKILLS

We now describe two newer methods that trace multiple subskills
using logistic regression.  Previous KT methods fit their
parameters independently using the same algorithm as for single-
skill KT, thereby implicitly assigning full and equal responsibility
to all the subskills in an observed step, and predict performance
based on the weakest subskill or by multipying subskill estimates.
Section 3.1 describes LR-DBN, which changes both these aspects
by using Expectation Maximization (EM) [7] to fit parameters for
multiple subskills simultaneously, and by using logistic regression
to predict performance. As an ablation experiment to shed light
on the relative impact of these two innovations, Section 3.2
introduces LR-DBN Minus, a hybrid method that fits the standard
KT model just as previous methods do, but uses logistic
regression to do prediction.

3.1 LR-DBN

LR-DBN is a recent but published method [2, 8] to trace multiple
subskills, so we summarize it here only briefly in terms of the four
aspects discussed in Section 2.

Kn

guess (slip

Figure 2: Knowledge tracing with logistic regression

Represent model: Like standard KT, LR-DBN represents the

knowledge for step n as a hidden knowledge state K ™ in a
dynamic Bayes net. However, as Figure 2 illustrates, LR-DBN
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adds a layer of observable states S].(n) as indicator variables to
represent whether step » involves subskill j: 1 if so, 0 if not.

LR-DBN uses logistic regression to model the initial hidden
knowledge state at step 0 and the transition probabilities from step
n-1to n as follows:

exp (= X141 B 57
1+ exp (=27, B75)
exp (— Iy B; S™)
1+exp (3, 8 5™)
exp (— ¥, 5

(m
T+exp (=227, 5)
Equation 10: Logistic regression to combine subskills

P(not K©) =

P(not K™ | not K™=y =

P(not KW | K(n-1) =

These three conditional probabilities for each subskill replace
the KT knowledge parameters already know, learn, and forget,
but LR-DBN retains KT’s guess and slip parameters at each step.

Fit parameters: LR-DBN uses Expectation Maximization (EM)
[7] to fit parameters for all subskills together.

Predict performance: LR-DBN uses logistic regression in a
Dynamic Bayes Net to combine multiple subskills more flexibly
than using Equation 2 to multiply their probabilities or Equation 3
to take their minimum, but it uses Equation 1 to predict expected
performance based on estimated knowledge, guess, and s/ip.
Update estimates: LR-DBN uses the same Bayes rule as single-
skill KT to update its estimate of the hidden knowledge state in
Equation 4, Equation 5, and Equation 6.

3.2 LR-DBN Minus

LR-DBN Minus is a hybrid of LR-DBN and standard KT. It
combines KT’s single-skill fitting process with LR-DBN’s update
and prediction based on logistic regression. The key is to convert
the probability of knowing a subskill into a coefficient in logistic
regression. LR-DBN uses logistic regression to model the
transition probabilities between knowledge states, as well as the
relation of the knowledge state at each step to the subskills it

involves [2]. Thus, given the set of subskills {Sj(n)} used at step n,

a set of coefficients {Bj(n)} exists such that

m
P(K™) = 1 - sigmoid Z g™
=
Equation 11: Logistic regression for the knowledge state
If we assume step n requires only a single subskill 7, then Sj(n) =0
for all the j’s such that j# i, and transformations between the

probabilities P (Ki(n)) and the coefficients [)’i(n) are:
P (k™) = 1= sigmoid (™)

B = logit(1 — P (K™))

Equation 12: Transformation between probabilities and
logistic regression coefficients

To update the estimates, we need to distribute the update at
each step that is calculated either from Equation 4 or Equation 5

to the subskill coefficients. We assume that the coefficient for
each subskill changes by the same amount A when updated:

m
Pposterior (K™) = 1= sigmoid(Y (5™ + ) 5™
=1

Equation 13: Update coefficients in LR-DBN Minus

Then the update of each subskill becomes:

Poosterior (K™) = 1— sigmoid((8™ + 48) 5™)
Equation 14: Update subskills in LR-DBN Minus

Next we still use the standard KT Equation 6 to update
subskills at step n+7. Now we have successfully transformed LR-
DBN to upate on standard KT parameters. Note that we replace
the separate guess; and slip; parameters for each subskill j with
uniform guess and slip for all the steps. The reason is that LR-
DBN combines subskills to estimate the probability of the student
knowing a step and then uses guess and slip to predict
performance. In contrast, previous methods apply guess; and slip;
to each subskill j before combining them to predict performance
on the step.

4. EXPERIMENTAL EVALUATION

To compare LR-DBN and LR-DBN Minus to previous methods

for tracing multiple subskills, we fit seven models to real data,

summarized in Table 1: LR-DBN, LR-DBN Minus, CKT, and

three variants of standard KT distinguished by how they update

estimated skills: “full responsibility,” “blame weakest, credit rest,”
and “update weakest subskill,” with majority class as an

additional baseline. Sections 4.1 and 4.2 describe our data and

results.

Table 1: Summary of models compared

Models Fit Predict Update
Train subskills
together.
Logistic isti i
LR-DBN | ge . LOngtl? Update subsklllls.
regres regression  [together. Logistic
assigns on subskill |regression assigns
responsibility. |estimates. responsibility.
LR-DBN
Minus
Update subskills
. together. Bayes
CKT Multlply equations assign
subskill responsibilit
Train subskills |estimates. p Y,
Full separately. .
responsibility | Assign each Update subskills .
Blame one full separately, e?agh with
weakest, |responsibility. |Minimum of full responsibility.
credit rest subskill
Update estimates.  |Update only the
weakest weakest subskill.
subskill
Majority Identify larger [Majority No update
class class class
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4.1 Data sets

We train and test the models on real data from two tutors used at
schools. One data set is from children using Project LISTEN’s
Reading Tutor [9] at primary schools during the 2005-2006 school
year. To model their oral reading fluency, we define performance
C™ as whether the Reading Tutor scored a text word as read
fluently at step n, i.e., read without help or hesitation and
recognized by the automated speech recognizer. We assume that
whether a student read a word fluently depended on whether the
student knew the requisite subskills, namely the grapheme-to-
phoneme mappings in the word. Due to the large amount of data
(1,792,103 read words from 275 students), we randomly selected
20 children who read a total of 80,268 words (3,972 distinct word
types) with 320 unique grapheme-phoneme mappings. To
counteract the prevalence of high-frequency words like the, we
include at most the first 20 of each student’s encounters of a word
in the training data, leaving 24,145 read words. We do not limit
the test data, so it includes 40,867 words.

The other data set [10] came from 123 high school students
working on a geometry area unit of the Bridge to Algebra
Cognitive Tutor®. The model for each student includes the same
50 subskills, and predicts whether the student will perform a step
correctly. Again we include at most the first 20 of each student’s
encounters of a step in the training data, leaving 11,730 algebra
practice steps, but 22,737 steps of test data.

The data sets from both tutors are unbalanced. The Reading
Tutor scored 68.84% of the words in the training set as fluent, and
74.31% of the words in the test set. The Algebra Tutor rated
74.22% of the steps in the training data as correct, and 84.63% of
the steps in the test data.

We fit each model separately for each student, as opposed to
training a single model on the data for all the students. One
reason is computational expedience: unlike methods that fit a
separate model for each subskill, LR-DBN fits a single model for
all the subskills, which involves processing much more data at a
time. Training this model on all the students’ data at once would
be computationally unwieldy. The other reason is to compare
methods fairly. Except for LR-DBN, it is feasible to train a single
model of a subskill on the data for all the students, and in fact we
tried it, but the resulting model does not perform as well as
training a separate model for each student.

For all the methods, we fit the model for each student to the
first half of the student’s steps, and test it on the second half. We
report average per-student accuracy on the unseen test data,
weighting its mean and variance by per-student sample size to
derive 95% confidence intervals. We use paired T-tests, paired by
student, to rate LR-DBN’s accuracy against each other method.

4.2 Results

Table 2 and Table 3 list all seven methods in decreasing order of
their binary predictive accuracy on the test data. LR-DBN
dramatically outpredicts all the other methods. LR-DBN’s overall
accuracy on the Reading Tutor data is 13% higher than majority
class, vs. only 1% for the next method. For the Algebra Tutor
data, LR-DBN is the only method that beats the majority class, by
7%. That is, on both data sets, LR-DBN has only half the error
rate of the next best method.

For unbalanced data, accuracy on the minority class can be
especially important. The minority class in our tutor data
represents negative student outcomes to remediate by means of

Table 2: Mean per-student accuracy on Reading Tutor data
(95% confidence interval in parentheses) compared to LR-DBN is
significantly (p<.01) worse if underlined, or better if italicized.

Accuracy Accuracy
Within Within
Models Accuracy Positive Negative
Class Class
87.31% 91.17% 75.80%
LR-DBN (£1.90%) (#2.80%) | (£12.53%)
Update 74.53% 95.06% 15.15%
Wel?l:fii; (+4.55%) (£2.73%) (+£5.29%)
subs
Majority class 74.31% 100.00% 0.00%
LR-DBN 74.11% 90.71% 26.09%
Minus (£5.05%) (+7.89%) | (+11.61%)
Blame 73.90% 92.36% 20.52%
We;_lt‘est’t (£4.59%) (£3.86%) (£6.43%)
credit res
72.79% 89.47% 24.52%
CKT (£3.99%) (£3.52%) (£7.76%)
Full 66.20% 72.30% 48.53%
responsibility (#5.39%) | (£10.24%) | (£12.87%)

Table 3: Mean per-student accuracy on Algebra Tutor data
is significantly (p<.001) worse than LR-DBN’s where underlined;
italicized values are significantly better.

Accuracy Accuracy
Within Within
Models Accuracy Positive Negative
Class Class
91.99% 96.5% 72.3%
LR-DBN (£2.00%) (*1.30%) | (£7.80%)
Majority class 84.63% 100.00% 0.00%
84.38% 99.03% 20.44%
CKT (1.14%) (*#0.26%) | (£3.11%)
Full 84.27% 95.65% 34.55%
responsibility (£1.13%) (£0.88%) (£4.60%)
LR-DBN 83.92% 97.23% 25.80%
Minus (*1.17%) (*0.62%) | (+3.84%)
Blame 80.38% 90.70% 35.28%
We;}:estat (*1.13%) (*0.72%) | (£3.14%)
credit res
Update 79.59% 91.13% 29.20%
wel?l:ii: (*1.19%) (*0.69%) |  (£2.76%)
subs

practice and instruction. LR-DBN beats every other method on
the minority class by over 20% absolute in both data sets.

What does comparison to LR-DBN Minus reveal about the
relative contributions of the fitting and update procedures? LR-
DBN Minus uses the same fitting procedure as conventional
knowledge tracing, but uses logistic regression to update
estimates. It performs substantially worse than LR-DBN, and
comparably to the other methods. We conclude that LR-DBN’s
accuracy benefits more from its fitting procedure than from using
logistic regression to combine estimates of hidden subskills.
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Why does LR-DBN outpredict the other methods? Possible
reasons include the strong assumptions that it avoids, but which
they make implicitly by fitting and updating subskill estimates
separately, multiplying them to predict performance on a step, and
assigning each subskill full responsibility for the step’s outcome.
Inspection of Table 1 reveals that this last assumption is the only
one they all have in common, implicating it as the likeliest culprit.

Predictive accuracy is just one way to evaluate student models.
A more sensitive metric is model fit as measured by data
likelihood, penalized by model complexity. Table 4 and Table 5
list the complexity-penalized model fits of the methods on the two
data sets in increasing order, as scored by the Akaike information
criterion (AIC) [11] and Bayesian information criterion (BIC)
[12], defined respectively as:

AIC = 2k — 2In (L)
BIC = =21In(L) + k- In(n)

Thus compared to previous methods, LR-DBN has about 1 less
parameter per subskill, and LR-DBN Minus about 2 less.

What about the number # of observations? LR-DBN uses one
observation per step to fit all the subskill parameters. In contrast,
the other methods fit each subskill separately, assigning it full
responsibility for every step that uses it, as if observing it
separately for each subskill. Counting such duplicate
observations as separate, they use three times as many Reading
Tutor observations as LR-DBN, and twice as many Algebra Tutor
observations.

Table 6 and Table 7 show the average log-likelihood of steps
in the training and test data. All the methods except LR-DBN
share the same likelihood on the training data because they fit
parameters in the same way (as shown in Table 1).

Table 6: Average log-likelihood for the Reading Tutor data

Equation 15: Formulas for calculating AIC and BIC

Table 4: Complexity-adjusted Reading Tutor training data fit

Models AIC BIC k
LR-DBN 75,054.52 | 231,226.89 | 19,300
LR-DBN Minus 120,259.60 | 239,606.70 | 12,840
CKT
Full responsibility 145,779.60 | 383,730.20 | 25,600

Models On :;:ti:ing On ul&i(:n test
LR-DBN -0.7549 -0.3555
CKT -1.1330
Full responsibility -1.2230
Blame weakest, credit rest -1.9586 -1.4944
LR-DBN Minus -1.5690
Update weakest subskill -1.6665

Blame weakest, credit rest

Update weakest subskill

Table 5: Complexity-adjusted Algebra Tutor training data fit

Models AIC BIC k
LR-DBN 60,545.20 | 201,052.44 | 19,065
LR-DBN Minus 43,195.94 | 143,962.30 | 12,546
CKT
Full responsibility 67,303.94 | 264,885.00 | 24,600

Blame weakest, credit rest

Update weakest subskill

Both AIC and BIC measure model fit as log-likelihood of the
training data, /n(L), penalized by model complexity (number of
parameters, k). BIC also penalizes the number of observations, 7.
We calculate the number of parameters per student as follows:

LR-DBN fits the 3 groups of coefficients for each of the
subskills and one intercept in Equation 10, plus two shared
parameters, guess and slip. For the Reading Tutor data set, this
number totals 3 x (320 + 1) + 2 = 965, multiplied by the 20
children in the data sample. For the Algebra Tutor data set, it
totals 3 x (50 + 1) + 2 = 155, multiplied by 123 students.

LR-DBN Minus fits 2 parameters (already know and learn) per
subskill, plus 2 shared parameters (guess and slip). This number
of parameters per student totals (2 x 320) + 2 = 642 for the
Reading Tutor and (2 x 50) + 2 = 102 for the Algebra Tutor.

The other methods fit 4 parameters (already know, learn, guess
and s/ip) per subskill for each student, totaling 4 x 320 = 1280 for
the Reading Tutor, and 4 x 50 =200 for the Algebra Tutor.

Table 7: Average log-likelihood for the Algebra Tutor data

Models P | testdata
LR-DBN -0.9555 -0.1503
CKT -0.2082
Full responsibility -0.2065
Blame weakest, credit rest -0.7717 -0.2529
LR-DBN Minus -0.2364
Update weakest subskill -0.2816

Normally one might expect log-likelihood to be lower for test
data than training data, by an amount reflecting the degree of
overfitting. However, the models assign higher likelihood to
correct steps because, as Section 4.1 mentioned, they are more
common than incorrect steps in the training data, and this
difference is more pronounced in the test data. Its likelihood is
therefore higher, and hence is not a direct gauge of overfitting.

Table 6 and Table 7 reveal that LR-DBN’s log-likelihood is by
far the highest on unseen test data from both tutors, consistent
with how dramatically it outpredicts the other methods, even
though they have higher log-likelihood on the training data from
the Algebra Tutor. This reversal from training to test data
suggests that the other methods might overfit that training data.

In summary, LR-DBN has a smaller number k of parameters
than the other methods (except for LR-DBN Minus), a smaller
number n of observations (counting duplicate observations as
distinct), and higher likelihood on Reading Tutor training data,
where it achieves the lowest AIC and BIC scores. Most
important, LR-DBN far surpasses all the other methods in
accuracy and log-likelihood on unseen test data from both tutors.
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5. IMPLEMENTATION

To make LR-DBN publicly available', we added it to the Bayes
Net Toolkit for Student Modeling (BNT-SM) [13]. BNT-SM
inputs a data set and a DBN student model (not only the simple
one used in standard knowledge tracing), specified in XML. It
generates and executes BNT code to train and test the model, and
outputs Excel files containing the parameter estimates and
inference results. BNT is an open-source Matlab package2 that
supports many learning and inference algorithms for both static
and dynamic Bayes models. BNT-SM hides most of the BNT
coding details, freeing users to focus on constructing the student
models rather than on programming them.

Using BNT-SM consists of four phases [13]:

1. Specify the data source in an XML specification.
2. Specity the DBN structure in XML.

3. Specify and initialize parameters in XML.

4. Call RunBnet.m in Matlab.

To fit LR-DBN on the Reading Tutor data with 320 subskills,
we specify the structure shown in Figure 2 to BNT-SM in XML,
as shown in the APPENDIX.

6. CONCLUSIONS

This paper makes multiple contributions to knowledge tracing:

First, we present a framework to characterize previous and new
methods for tracing multiple subskills by how they (1) model
knowledge tracing, (2) fit its parameters, (3) predict performance,
and (4) update subskill estimates.

Second, we use data sets from reading and algebra tutors to
compare LR-DBN against previous methods in terms of AIC, BIC,
and predictive accuracy on unseen data, and show that LR-DBN
performs significantly better on both data sets on all three metrics,
cutting the best previous prediction error rate in half.

Third, we introduce the hybrid LR-DBN Minus method, which
fits the same standard KT model as previous methods, but uses
logistic regression to predict student performance.

Fourth, by comparing LR-DBN Minus to LR-DBN, we show
that using logistic regression to predict performance suffices to
beat previous methods, but that using logistic regression EM to
jointly estimate subskills accounts for most of LR-DBN’s superior
performance.

Finally, in order to amplify the impact of this work, we have
made LR-DBN publicly available and easy to extend to other
student modeling with dynamic Bayes nets, by incorporating it
into the latest version of the BNT-SM student modeling toolkit
[13] used in previous studies of knowledge tracing [e.g., 14].

This work has several limitations for future work to address.

First, LR-DBN has so far been applied just to simple
knowledge tracing of multiple subskills, but it can apply to any
DBN. Future work could use LR-DBN to improve other DBN
student models, for example to measure more accurately the
scaffolding and learning effects of tutor help [14].

Second, LR-DBN needs 5.5 hours on average per student to fit
and update; the other methods take less than 1 hour to fit a single
set of parameters for all the students and subskills, and 2-5

! At http://www.cs.cmu.edu/~listen/BNT-SM
2 At http://code.google.com/p/bnt

minutes to update. Future work may train LR-DBN faster or
develop other methods that are faster to train. Such work might
adapt two previous types of cognitive diagnosis models that
operate on static data and have statistical learning algorithms, both
EM and MCMC [15]. NIDA (Noisy Inputs, Deterministic “And”
gate) models [16] resemble CKT because it applies guess and slip
to individual subskills before combining them conjunctively.
DINA (Deterministic Inputs, Noisy “And” gate) models [17]
resemble LR-DBN because it combines subskills (with logistic
regression) before applying guess and slip to the resulting
knowledge state. Extending either type of model to apply to
knowledge tracing may improve LR-DBN itself.

Finally, although LR-DBN traces multiple subskills better than
previous methods, it (like them) must be told which steps use
which subskills. Future work may infer this information
automatically [18].
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APPENDIX
To use LR-DBN in BNT-SM, we first specify its data source:

<multi_subskill>yes</multi_subskill>

<input>
<evidence_train>evidence.train.xls</evidence_train>
<evidence_test>evidence.test.xIs</evidence_test>

</input>

<output>
<param_table>param_table.xIs</param_table>
<inference_result>inference_result.xls</inference result>
<inference_result_header>inference_result.xls</inference re

sult_header>
<log>log.txt</log>

</output>

To add logistic regression to standard knowledge tracing, we
represent the 320 subskills as a single multi node kc, which
transits to the latent node knowledge within a step. The hidden
state of knowledge transits both to the output fluent within the
current step and to the knowledge state at the next step:

<nodes>

<node>
<id>1</id>
<name>Kkc</name>
<type>multi</type>
<values>320</values>
<latent>no</latent>
<prefix_field>kc</prefix_field>
<within>

<transition>knowledge</transition>

</within>
<between></between>

</node>

<node>
<id>2</id>
<name>knowledge</name>
<type>discrete</type>
<values>2</values>
<latent>yes</latent>
<field> knowledge</field>
<within>
<transition>fluent</transition>
</within>
<between>
<transition>knowledge</transition>
</between>

</node>

<node>
<id>3</id>
<name>fluent</name>
<type>discrete</type>
<values>2</values>
<latent>no</latent>
<field>fluent</field>
<within></within>
<between></between>

</node>

</nodes>

Then we define and set initial values of the LR-DBN
parameters. We specify the input node kc as root to have no
parents and no parameters, the latent node knowledge as softmax

to have a multinomial logit function, and the output node fluent to
have a simple discrete conditional probability table, with random

initial parameter values in LR-DBN’s EM fitting algorithm:

<eclasses>
<eclass>
<id>1</id>
<formula>P1(kc)</formula>
<type>root</type>
</eclass>
<eclass>
<id>2</id>
<formula>P2(knowledge </formula>
<type>softmax</type>
<cpd>
<eq>P2(T)</eq>
<init>rand</init>
<param>L0</param>
<eq>P2(F)</eq>
<init>1-P1(T)</init>
<param>null</param>
</cpd>
</eclass>
<eclass>
<id>3</id>
<formula>P3(fluent| knowledge </formula>
<type>discrete</type>
<cpd>
<eq>P3(T|F</eq>
<init>rand</init>
<param>Quess</param>
<eq>P3(F|T)</eq>
<init>rand</init>
<param>slip</param>
<eq>P3(F|F)</eq>
<init>1-P3(T|F)</init>
<param>null</param>
<eq>P3(T|T)</eq>
<init>1-P3(F|T)</init>
<param>null</param>
</epd>
</eclass>
<eclass>
<id>4</id>

<formula>P4(knowledge| knowledge)</formula>

<type>softmax</type>
<cpd>
<eq>PA(T|F </eq>
<init>rand</init>
<param>learn</param>
<eq>P4(F|T)</eq>
<init>rand</init>
<param>forget</param>
<eq>P4(F|F </eq>
<init>1-PA(T|F)</init>
<param>null</param>
<eq>PA(T|T)</eq>
<init>1-P4(F|T)</init>
<param>null</param>
</cpd>
</eclass>
</eclasses>
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ABSTRACT

This work describes a unified approach to two problems pre-
viously addressed separately in Intelligent Tutoring Systems:
(i) Cognitive Modeling, which factorizes problem solving
steps into the latent set of skills required to perform them
[7]; and (ii) Student Modeling, which infers students’ learn-
ing by observing student performance [9].

The practical importance of improving understanding of
how students learn is to build better intelligent tutors [8].
The expected advantages of our integrated approach include
(i) more accurate prediction of a student’s future perfor-
mance, and (ii) clustering items into skills automatically,
without expensive manual expert knowledge annotation.

We introduce a unified model, Dynamic Cognitive Trac-
ing, to explain student learning in terms of skill mastery
over time, by learning the Cognitive Model and the Stu-
dent Model jointly. We formulate our approach as a graph-
ical model, and we validate it using sixty different synthetic
datasets. Dynamic Cognitive Tracing significantly outper-
forms single-skill Knowledge Tracing on predicting future
student performance.

1. INTRODUCTION

We propose Dynamic Cognitive Tracing as a method that
estimates from performance data:

1. A Student model. The estimate of a student’s knowl-
edge of a skill in a given time.

2. A Cognitive Model. The skills a students require
to solve a problem step.

Let’s illustrate the student modeling problem with an ex-
ample. Suppose we are interested in modeling data from a
reading tutor that listens to children read aloud. Figure 1
shows sample data in this scenario. We follow the convention
of referring to the scorable steps in an intelligent tutor task
as “items” [27]. The input variable is the item 4d;, which in
this case is the word read by a student at time step ¢. The
target variable p; is the performance of the student— in this
case whether the tutor accepted the word read. The student
reads the words “smile because it” correctly, but misreads
the word “happened”. The student modeling problem is to
predict future student performance.

Existing student modeling techniques require cognitive mod-
els, assignments of items to skills [9]. This is a very expen-

smile because it happened
AN /f!' N N /’\
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Figure 1: Reading tutor example of student modeling

sive requirement, since it often depends on expert domain
knowledge [4]. For example, in our reading tutor scenario,
it is not a trivial endeavor to cluster a dictionary of words
into the set of skills needed to read them.

Unfortunately, the success of existing methods for auto-
matic construction of cognitive models has been limited [11].
Current methods for discovering cognitive models are re-
stricted in that they cannot handle longitudinal data, or
that they are not fully automatic. For example, Princi-
pal Component Analysis, Non-Negative Matrix Factoriza-
tion [27] and the Q-Matrix Method [2] ignore the temporal
dimension of the data. On the other hand, Learning Factors
Analysis [7] is designed for temporal data, but it requires an
expert’s cognitive model. Our main contribution is a fully
automatic approach to discover a cognitive model of longitu-
dinal student data. Our goal is discovering student models,
while simultaneously clustering similar items together.

The rest of this document is organized as follows. Sec-
tion 2 reviews related prior work. Section 3 describes our
approach, Dynamic Cognitive Tracing, to jointly learn a stu-
dent model jointly with a factorization of items into skills.
Section 4 evaluates performance using synthetic data. Sec-
tion 5 provides some concluding remarks.

2. RELATION TO PRIOR WORK

In this section we study Dynamic Cognitive Tracing’s re-
lation with prior work. Section 2.1 surveys previous ap-
proaches to learn student models. Section 2.2 summarizes
automatic approaches for cognitive model discovery.
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2.1 Student Modeling

Corbett and Anderson [9]’s seminal paper introduced Knowl-

edge Tracing as a way to model students’ changing knowl-
edge during skill acquisition. It uses (a) a cognitive model
that maps a problem solving item to the skills required,
and (b) logs of students’ correct and incorrect answers as
evidence of their knowledge on a particular skill. Reye [22]
showed that there is an equivalent formulation of Knowledge
Tracing as a Bayesian Network. Knowledge Tracing has
enabled significantly faster teaching by Intelligent Tutors,
while achieving the same performance on evaluations [8].

Knowledge Tracing, as well as Dynamic Cognitive Tracing,
are non-convex problems. This means that the optimizer
that estimates the parameters of the models might get stuck
in local optima far away from the global optimum. More-
over, these formulations are also non-identifiable: There
exist potentially many student models that may explain
the data observed equally-well. In Knowledge Tracing, the
main source of non-identifiability is the trade-off between the
probability of a student’s initial knowledge, and the proba-
bility of learning the skill [5]. To mitigate non-identifiability,
recent work has proposed the use of Bayesian priors [5] or
using contextual clues to estimate whether a student has
guessed [1].

Other approaches to student modeling include Performance
Factor Analysis [19, 14], which predicts student performance
based on the item difficulty and student historical perfor-
mances. Alternatively, Learning Decomposition [6], uses
non-linear regression to determine how to weight different
types of practice opportunities relative to each other. More
recently, Tensor Factorization [25], has been used to the stu-
dent modeling problem. It use recommender system tech-
niques to learn student models. None of these techniques
aim to discover cognitive models. Thai-Nghe et al. [25] make
use of latent variables, but they argue that it is not possible
to interpret their semantics. Their formulation is tied to
specific students, and it is not clear how to generalize their
approach to unseen students in the training set, or when stu-
dents encounter only a very sparse set of items. We designed
Dynamic Cognitive Tracing aiming to discover latent factors
with the interpretation of Cognitive and Student Models.

Desmarais [11] argues that the construction of a cognitive
model from data is highly desirable, not only to avoid the
labor intensive task of specifying which skills are involved
in which task, but because a data-driven approach might
outperform human judgment. In the next subsection we
study such approaches.

2.2 Automatic Discovery of Cognitive Models

Winters et al. [27] surveyed methods for automatic con-
struction of cognitive models. Examples are matrix factor-
ization techniques, such as Principal Component Analysis
(PCA) and Non-Negative Matrix Factorization (NNMF).
The theoretical relationships between different matrix fac-
torization techniques has been studied in detail [24].

The Q-matrix algorithm [2, 3], is a hill-climbing method
that creates a cognitive model linking skills and items di-
rectly from student response data. An alternative approach,
Learning Factors Analysis 7], performs combinatorial search
to evaluate and improve on existing cognitive models.

None of the techniques reviewed in this section take into
account the temporal dimension of the data without human

intervention. To the extent of our knowledge, we are the first
ones to estimate a cognitive model completely automatically
from data collected over time.

3. DYNAMIC COGNITIVE TRACING

We now describe Dynamic Cognitive Tracing. Subsection 3.1
details our approach. Subsection 3.2 provides pointers on
the training and inference algorithms used. Subsection 3.3
shows how Dynamic Cognitive Tracing relates two common
techniques used in student modeling and in automatic gen-
eration of a cognitive model.

3.1 Model

We formulate Dynamic Cognitive Tracing as a Bayesian
Network. Bayesian Networks [20], are a popular framework
to reason using noisy information. Bayesian networks are
directed acyclic graphical models where the nodes are vari-
ables and the edges specify statistical dependencies between
variables.

Bayesian Networks are often described using plate diagram
notation to show the statistical relationship between their
random variables. The plate diagram of Dynamic Cogni-
tive Tracing is shown in Figure 2(a). Instead of drawing
a variable multiple times, we follow the convention of us-
ing a plate to group repeated variables. As an example, we
unroll Dynamic Cognitive Tracing using two skills in Fig-
ure 2(b). The description of the generative story of the vari-
ables is described in Figure 3. We follow the convention of
using dark-gray to color variables that are observable during
both training and testing. Variables visible during testing
only are colored in light gray. Latent variables, which are
never observed, are denoted in white circles. The double-
line around variables is used to indicate that their value is
calculated deterministically given its parents. The variables
in Dynamic Cognitive Tracing are:

e S is the number of skills in the model.

e Ids is the number of items that the student can prac-
tice with the tutor. For example, in the case of a read-
ing tutor, Ids is the vocabulary size. If the tutor is
creating items on the fly, Ids is the number of tem-
plates from where items are being generated.

e (Qis an Id x S matrix that maps items to skills. Each
row @Q;q is modeled as a multinomial representing the
skills required for item id. For example, if Q.q, =
[0.5,0.5,0,0], we interpret item id; to be a mixture of
skills 1 and 2. In this example id; does not require
skills 3 and 4. @ need not be hidden. If in fact @ is
known, we can clamp the parameters to their known
values.

e ¢; is the skill for item id;. For example, ¢: = 1 iff skill
1 is required for item id¢, g = 2 iff skill 2 is required,
and so on. ¢; is chosen deterministically as the row
number id; of Q.

e K indicates whether the student has the knowledge
of skill s. Notice, there is a markovian dependency
across time steps: if skill s is known at time t — 1, it is
likely to be known it at time ¢. Therefore, we also need
to know which skills were active on the previous time
step (i.e., ks,+ depends on ¢¢—1). For simplicity, in this
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(a) Plate diagram

(b) Unrolled example with two skills

Figure 2: Dynamic Cognitive Tracing as a graphical model

work we treat each K as a binary variable (whether
the skill is known or not).

e k. is a binary variable that represents if the skill is
known and required by the item ¢d;. Hence, its value is
computed deterministically by applying a dot product
to its parents: ks is true iff skill s is required (¢: = s),
and the student has learned the skill (K,; = 1).

e p, is the target variable that models performance. It
is only observed during training.

— For discrete grades (i.e., right or wrong), a Bi-
nomial distribution or logistic regression can be
used. The use of logistic regression in Bayes-
ian Networks has been studied in the context of
mixture of experts [16], and more recently for
the multiple subskill problem in student model-
ing [28]. In this paper we use the Binomial ap-
proach.

— For continuous grades, (i.e., 0 ~ 100) linear re-
gression can be used.

Our main contribution is unsupervised estimation of the
cognitive model @ from longitudinal data, while simultane-
ously estimating the student model parameters. In the next
subsection we study how to learn the parameters of Dynamic
Cognitive Tracing, as well as how to perform inference on
it.

3.2 Training and Inference

Dynamic Cognitive Tracing is formulated as a directed graph-
ical model (Bayesian Network). We leverage existing tech-
nologies to quickly implement a prototype of Dynamic Cog-
nitive Tracing. We used the Bayesian Network Toolkit [18]
(BNT) for Matlab.

As described in the previous subsection, the knowledge of
a skill is dependent of its value on the previous time step.
This kind of dependency is called a Markov Chain. There-
fore, in Dynamic Cognitive Tracing, the student knowledge

1. Draw @Q;q ~ Multinomial; Ids times
2. For each time-step t € {0...T}:

Draw id: ~ Multinomial
For each skill s € {0...S} :
Set gs,t + Qid,

Draw K, ~ Binomial

Set kst < Kq, - gs,t

pi ~ N(ki,,ka,...,ksz), for continuous p, or
for binary variables either
pe ~ logistic(ki,t, kayt, ..., kst), or p ~ Binomial

Figure 3: Generative story of Dynamic Cognitive Tracing

of S skills is modeled using S layers of Markov Chains. Un-
fortunately, this is not scalable, because exact inference on
layers of Markov Chains that produce a single output is un-
tractable: the runtime complexity grows exponentially on
the number of layers [12]. Hence, we limit our study to a
small number of skills. In future work we will implement
inference techniques that scale better, like Gibbs Sampling.
The name Bayesian Network is a misnomer, because it does
not require to use Bayesian Estimation, as in fact, we used
Maximum Likelihood Estimation to perform exact inference.
BNT implements the Junction Tree algorithm [15], an infer-
ence algorithm that generalizes the the Forward-Backward
algorithm that is used in Knowledge Tracing and Hidden
Markov Models [21]. To estimate the parameters of the
model, we use the Expectation-Maximization (E-M) algo-
rithm [10]. Like all non-convex optimizaters, E-M is not
guaranteed to find the globally optimal solution.

3.3 Unifying Perspective
We now discuss how Dynamic Cognitive Tracing generalizes
two common techniques for cognitive and student modeling.
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(a) PPCA

(b) Dynamic Cog-
nitive Tracing

Figure 4: Two-skill models with one time step

() (k)

(a) Knowledge Tracing

(b) Dynamic Cognitive
Tracing

Figure 5: Unrolled graphical model representation of one-
skill student models

Cognitive models have been built by matrix factorization
techniques [27]. Probabilistic Principal Component Analy-
sis (PPCA) [26] is an example of such matrix factorization
techniques. It is a formulation of the Principal Component
Analysis algorithm using graphical models. The main ad-
vantages of this approach over conventional PCA, is that
it can handle missing data, and it provides a probabilistic
interpretation of the underlying factors.

In Figure 4(a) we show the graphical model representa-
tion of PPCA when explicitly formulated to handle missing
data. If the variable p is continuous, it is modeled with a
Gaussian. If the variable p is discrete, it is model with a Bi-
nomial, using a logistic link function. Discrete PCA is also
known in the literature as Logistic PCA [23]. Figure 4(b)
shows the simplified Dynamic Cognitive Tracing with two
skills, when there is no temporal information available. The
structure of both graphical models is very similar: in both
cases, the performance is explained by latent variables that
represent the skills. The main difference is that Dynamic
Cognitive Tracing takes into account the knowledge of the
skill estimated from the student model: the performance is
explained by the latent knowledge of the skills. We hypoth-
esize that the advantage of our approach lies in the fact that
it is not limited to a single timestep like PPCA is. We ex-
pect that item-performance data to be very noisy, and that
the temporal information would be useful to model skill ac-
quisition.

Figure 5(a) shows the graphical model representation of

Knowlege Tracing with a single skill model, which is just
a Hidden Markov Model. Figure 5(b) shows the unrolled
single-skill Dynamic Cognitive Tracing (S = 1) counterpart.
In this case the structure of Dynamic Cognitive Tracing is
equivalent to Knowledge Tracing.

4. EMPIRICAL EVALUATION

In this section, we report results of using Dynamic Cog-
nitive Tracing to predict future student performance using
synthetically generated datasets. In the context of this pa-
per, we decouple the problem of discovering the assignments
of items to skills and the problem of discovering the num-
ber of skills. For our experiments, we assume the number of
skills is known. In a real scenario, where the number of skills
is unknown, it could be estimated by using cross-validation
using a held-out set. We report our results using Dynamic
Cognitive Tracing using the true number of skills.

Dynamic Cognitive Tracing aims to discover the skills au-
tomatically without supervision. We compare if the cogni-
tive model estimated by Dynamic Cognitive Tracing out-
performs a cognitive model that assigns all of the items to
a single skill. Therefore, as a baseline, we compare against
Knowledge Tracing using a single skill.

In all comparisons between Knowledge Tracing and Dy-
namic Cognitive Tracing, their parameters are estimated us-
ing the same training set. The testing and training sets do
not overlap students.

4.1 Experimental setup

In this section, we describe the synthetic data sets gener-
ation criteria and the evaluation metrics. To generate the
synthetic data sets, we use the generative story described
in Figure 3, having each student encounter 25 items dur-
ing training (sequence length = 25). In preliminary experi-
ments, we noticed that by the 25" time step, most synthetic
students learned. To have a more balanced test set that has
roughly the same number of correct and incorrect answers,
the sequence length of the test set is sampled randomly.

We want synthetic data to be plausible; for example, the
probability of answering an item correctly by guessing should
be lower than the probability of answering an item correctly
due to knowledge. Therefore, the synthetic datasets follow
these constraints:

e The learning probability, the probability of transition-
ing from not knowing a skill, to knowing it, lies in
[0.01...0.45].

e The guess probability, the probability of answering cor-
rectly, given that the student does not know the skill,
lies in [0.01...0.30].

e The slip probability, the probability of answering in-
correctly, given that the student knows the skill, lies
n [0.01...0.30].

Note that these constraints are only exercised for gener-
ating the data. None of our models make use of this prior
knowledge. For simplicity, in this paper we limit studying
cognitive models that have only one skill active per item, but
Dynamic Cognitive Tracing does not make use of this infor-
mation. We constrain the models to not learn the “forget
probability” (e.g., the transition probability from “knowing”
to “not knowing” is zero).

Proceedings of the 5th International Conference on Educational Data Mining 52



Knowledge Tracing can sometimes provide bad parameter
estimates. Beck and Chang [5] argued that when Knowl-
edge Tracing performs badly, it is often because of incorrect
estimation of the initial knowledge of the students (initial
probabilities). We want to make sure that our results are
better than Knowledge Tracing because of the strengths of
Dynamic Cognitive Tracing, not because Knowledge Trac-
ing got stuck in an “unlucky” local optimum. Therefore, we
constrain all of the students to not have any initial knowl-
edge in our experiments.

E-M is used to learn the parameters of the models. Knowl-
edge Tracing and Dynamic Cognitive Tracing are initialized
with random parameters, however, the emission probabil-
ities (slip and guess probabilities) of Dynamic Cognitive
Tracing are initialized using a single-skill model. We ex-
periment running E-M using five different random initial-
izations.

Unless noted otherwise, each dataset is divided in three
parts: (i) a training set with 200 students, (ii) a development
set with 50 students, used to choose the best out of five
random initializations of the E-M algorithm, and (iii) a test
set with 50 students. Students do not overlap among the
sets.

We report the performance of our models using two met-
rics:

e Average Per-item Likelihood. Likelihood is a com-
mon metric to evaluate models that find latent struc-
ture [12]. It measures how likely a model is to predict
the test set. It penalizes more heavily incorrect pre-
dictions with high-confidence. More formally, let I be
the number of students in the test set, let p; .+ be the
estimated performance of student i at time ¢, let p;  be
the real performance of the student and let T; be the
number of time steps for student ¢. Then we compute
the per-item likelihood as:

I T
ZZpr(ﬁi,z =DPi

K t -
S

Pi,t—1,idit)

e Classification Accuracy. Classification accuracy mea-

sures how often the predicted performance matches the
actual performance. Formally, let §(-) be the Indicator
function that returns 1 iff its argument is true, and 0
otherwise. We compute the accuracy as:

T
D0 6r(ie = pielpie—1,idie) > 0.5
7 t
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In the next section, we report all of the different parameter
combinations of parameters we used to experiment. We did
not perform any additional tuning besides the one reported
in the next section.

4.2 Results

We create a total of 60 random synthetic datasets using
the constraints explained in Section 4.1. All of them have

Dataset likelihood
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Figure 6: Average Likelihood of Dynamic Cognitive Tracing
and single-skill Knowledge Tracing in 60 different data sets

Table 1: Dynamic Cognitive Tracing’s worst performing
dataset (highlighted in Figure 6)

Skill 1 Skill 2
Learning probability: .35 .30
Slip probability: .09 .08
Guess probability: .02 A1

four types of items (Ids = 4). We created twenty datasets
with 2, 3 and 4 skills (S = 2,3, 4), respectively.

In Figure 6, the horizontal axis denotes the Likelihood of
single-skill Knowledge Tracing. The vertical axis is the Like-
lihood of Dynamic Cognitive Tracing. The solid line divides
the datasets in which Dynamic Cognitive Tracing performed
better than Knowledge Tracing (upper left corner) and the
ones in which it performed worse (lower right corner). The
dotted lines represent the confidence interval for the mean
of the Likelihood of Knowledge Tracing. Dynamic Cognitive
Tracing performs as well or above the baseline in a total of
52 (87%) of the datasets.

Is estimating a cognitive model with Dynamic Cognitive
Tracing better than assuming a single skill model? We com-
pare the mean Likelihood of Dynamic Cognitive Tracing
(ZpeT = 62.34, spcr = 5.13), with the mean Likelihood of
single-skill Knowledge Tracing (Zxt = 59.97, sk = 5.18).
The null hypothesis is that the mean Likelihood of both
models is the same (Ho : pper = pxr). We perform a
two-tailed t¢-test, pairing on the datasets (n=60). We reject
the null hypothesis Hy with confidence p < 0.05. We con-
clude that Dynamic Cognitive Tracing outperforms Knowl-
edge Tracing with a single skill assumption.

In Figure 6 the arrow points to the dataset that performs
the worst compared to the single-skill Knowledge Tracing
baseline. The Likelihood of the true model is 65%, of Dy-
namic Cognitive Tracing is 57%, and of single-skill Knowl-
edge Tracing is 61%. We now investigate why Knowledge
Tracing outperforms Dynamic Cognitive Tracing on this spe-
cific dataset. Table 1 shows the parameters of the student
model. We notice that both skills’ learning and slip prob-
abilities are very similar. We run the E-M algorithm using
100 different random initializations for both Dynamic Cog-
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Figure 7: Cumulative Distribution Function of the Like-
lihood over 100 restarts (using the dataset highlighted in
Figure 6)

Table 2: Model Comparison Over Number of Skills
2 skills 3 skills 4 skills

Acc. Lik. | Acc. Lik. | Acc. Lik.

True model | .75 .64 .75 .61 .76 .62

DCT 74 63 |73 62 | .73 .62
KT(1skill) | .71 .61 | .69 .59 |.70 .60
Majority | .63 - 66 - 67 -

nitive Tracing and Knowledge Tracing. We use the same
training set used for the highlighted dataset of Figure 6. To
ensure more reliable results, we use a larger test set of 200
students (instead of 50 students). Figure 7 shows the Cu-
mulative Distribution Function of the Likelihood over 100
random initializations. For a specific Likelihood £ in the
horizontal axis, the vertical axis is the percentage of initial-
izations with Likelihood found at a value less than or equal
to £. Figure 7 shows that the Likelihood of the true model
is 62.6%. The best Likelihood of Dynamic Cognitive Trac-
ing is 61.1%, and of single-skill Knowledge Tracing is 59.7%.
Knowledge Tracing gets stuck in local optima in less than
5% of the restarts. On the other hand, for this dataset,
Dynamic Cognitive Tracing gets stuck in local optima 99%
of the time. While there is a Dynamic Cognitive Tracing
solution that outperforms Knowledge Tracing, the E-M al-
gorithm found it in 4% of the initializations.

In Table 2, we aggregate the results of Figure 6. We re-
port the mean performance of the parameters that generate
the 60 synthetic data sets (True model), Dynamic Cogni-
tive Tracing, single-skilled Knowledge Tracing (KT), and
the classifier that always predicts the majority class (Major-
ity). We present the mean Classification Accuracy and the
mean Likelihood. Dynamic Cognitive Tracing has a similar
Likelihood and Classification Accuracy to the True Model
and dominates Knowledge Tracing.

Let’s study a sample cognitive model estimated using Dy-
namic Cognitive Tracing. Here Q" is the True Model’s cog-
nitive model from which the synthetic data was generated.
An estimate @), learned from data using our approach is:
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Figure 8: Time required (in mins.) to train a single restart
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Figure 9: Classification accuracy using different training set
sizes

The estimated cognitive model has some uncertainty, but
if we round Q to integer values, it matches Q*. In future
work, we are interested in using Bayesian priors to encourage
sparse entries in @) [13]. Bayesian estimation is not currently
supported by the BNT toolkit in which we implemented our
model.

In Figure 8 we show how long it took to perform a single
restart of Dynamic Cognitive Tracing and Knowledge Trac-
ing. Although Dynamic Cognitive Tracing achieves better
accuracy, its exact inference implementation does not scale
well with the number of skills.

We now try to simulate the effect of different amount of
training data. For this, we experiment with 50, 100, 200 and
400 students. We observed that in the PSLC DataShop [17],
a repository for student data sets, it is common for smaller
datasets to have data from at least 50 students. We assess
the performance of our approach using ten synthetic training
sets with different number of students. For all experiments
here, we used four different types of items (Ids = 4), and
two skills (S = 2). In Figure 9, the “True model” line rep-
resents the classification accuracy of the model using the
parameters from where the synthetic data was generated.
The Knowledge Tracing line shows the performance of this
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Table 3: Model Comparison Over Number of Items
Ids =4 Ids =8 Ids=12

Acc. Lik. | Acc. Lik. | Acc. Lik.

True model | .77 .66 | .70 .60 | .73 .61

DCT .76 .65 | .67 .58 | .66 .57
KT(1 skill) | .73 63 | .64 .56 | .66 57
Majority .66 - .59 - .58 -

approach, using a single skill. The results suggest that the
approaches compared can achieve good performance even on
a smaller datasets.

Since we are actually clustering similar items into skills,
the number of different items (Ids) may have an impact on
the performance of our approach. We create ten sets with 4,
8 and 16 item types respectively (Id = 4,8,16). All of them
have two skills (S = 2). In Table 3, we summarize the Like-
lihood and the Classification Accuracy of different models.
The true model’s parameters achieve the highest likelihood,
followed by our approach, that dominates Knowledge Trac-
ing.

S. CONCLUSION

We propose Dynamic Cognitive Tracing as a novel unified
approach to two problems previously addressed separately in
Intelligent Tutoring Systems: (i) Student Modeling, which
infers students’ learning by observing student performance
[9], and (ii) Cognitive Modeling, which factorizes problem
solving steps into the latent set of skills required to perform
them [7].

We provide empirical results using synthetic data support-
ing that our unsupervised approach is better than assuming
that all items come from the same skills. Dynamic Cognitive
Tracing significantly outperforms Knowledge Tracing using
a single skill assumption.

We used the Bayesian Networks Toolkit to quickly proto-
type our approach. However, our prototype is limited in
that (i) the inference algorithm used by the toolkit leads
to complexity exponential in the number of skills, and (ii)
the optimization algorithm gets stuck in local optima. We
recommend implementing Dynamic Cognitive Tracing using
approximate inference as future work.

For simplicity, in this paper we limited our study to syn-
thetic data of items that require a single skill. However,
our formulation is capable of discovering items that require
multiple skills. It is an empirical question that we leave
for future work to understand how well Dynamic Cognitive
Tracing performs in this context.

We are also interested in comparing Dynamic Cognitive
Tracing to other automatic methods that produce cognitive
models from data, such as matrix factorization techniques
[27]. An interesting alternative we leave unexplored is find-
ing a cognitive model by first clustering items into skills,
and then using Knowledge Tracing with the discovered cog-
nitive model. However, it is not clear how to learn the skill
clustering from data that comes at different points of time.
For example, it is not obvious how PCA could be applied to
temporal data. To our knowledge, we are the first ones to
propose a fully-unsupervised method that combines student
modeling with discovering a cognitive model.
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ABSTRACT

Our learning-by-teaching environment, Betty’s Brain, cap-
tures a wealth of data on students’ learning interactions
as they teach a virtual agent. This paper extends an ex-
ploratory data mining methodology for assessing and com-
paring students’ learning behaviors from these interaction
traces. The core algorithm employs sequence mining tech-
niques to identify differentially frequent patterns between
two predefined groups. We extend this technique by con-
textualizing the sequence mining with information on the
student’s task performance and learning activities. Specifi-
cally, we study transformation of action sequences using ac-
tion features, such as activity categorizations, relevance and
timing between actions, and repetition of analogous actions.
We employ a piecewise linear segmentation algorithm in con-
cert with the action transformation and differential sequence
mining techniques to identify and compare segments of stu-
dents’ productive and unproductive learning behaviors. We
present the results of this methodology applied to a recent
middle school class study, in which students learned about
climate change. Our primary focus in this analysis is the
effectiveness and variation in the reading behaviors of high-
versus low-performing students. These results illustrate the
potential of this iterative methodology in identifying and
interpreting learning behavior patterns at multiple levels of
detail.

1. INTRODUCTION

Cognitive scientists have established that metacognition and
self-regulation are important components for developing ef-
fective learning in the classroom and beyond [5; 18]. In
developing a computer-based learning environment (CBLE)
called Betty’s Brain, we have adopted a self-regulated learn-
ing (SRL) framework to help students develop learning strate-
gies. As they explore hypermedia resources on a science
topic, they construct a causal map to teach Betty, their vir-
tual Teachable Agent (TA) [4]. Betty only knows what she
has been taught by the student, but, once taught, she can
use this information to answer questions like “if deforesta-
tion increases, what effect does it have on polar sea ice?”

Gautam Biswas
Department of EECS and ISIS
Vanderbilt University
1025 16th Ave S, Ste 102
Nashville, TN 37212

gautam.biswas@
vanderbilt.edu

and explain her answers as a chain of causal relations [9)].
The student can also ask their TA to take quizzes, which
are a set of questions created and graded by a Mentor Agent
named Mr. Davis. The TA’s quiz performance helps the stu-
dents to assess and reflect on their TA’s, and, therefore, their
own learning performance. This assessment and subsequent
reflection can help guide them as they continue their learn-
ing and teaching tasks. Previous studies have shown that
observing Betty’s quiz performance (which is actually a re-
flection of their own understanding) motivates students to
learn more in order to help Betty improve her quiz score [4].
Overall, the combined learning and teaching task is com-
plex, open-ended, and choice-rich, so learners must employ
a number of cognitive and metacognitive skills to achieve
success. At the cognitive level, they need to identify and
understand relevant information from the resources in the
system, represent that information in the causal map format
to teach their agent, and use questions and quizzes to ex-
plore Betty’s understanding and assess her overall progress.
At the metacognitive level, they need to set goals and choose
strategies related to their knowledge construction and mon-
itoring tasks. In other words, they must decide when and
how to acquire information, build and modify the causal
map, check Betty’s progress, and reflect on their own un-
derstanding of both the science knowledge and the evolving
causal map structure. Their cognitive and metacognitive
activities are scaffolded through dialogue and feedback pro-
vided by Mr. Davis. This feedback aims to help students
progress in their learning, teaching, and monitoring tasks.

Betty’s Brain is designed to track many details of students’
learning interactions along with their teaching performance.
This wealth of data provides opportunities to assess, model,
and understand student learning behaviors and strategies
more accurately. Realizing these opportunities requires ef-
fective methods for identifying interesting learning behavior
patterns in the activity trace data. For example, sequential
pattern mining [2] can be employed to identify frequent pat-
terns in students’ activity trace data. However, this can also
result in a very large number of patterns! To overcome this

1Sequential pattern mining with activity traces of 16 8*"-
grade students working in Betty’s Brain identified over 1,000
patterns that occurred in at least 80% of the traces, when
allowing gaps of one action to account for noise introduced
by random or inconsequential actions.
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problem, we have developed an algorithm that employs a
novel combination of sequence mining techniques to identify
differentially frequent patterns between groups of students
(e.g., experimental versus control conditions or high- versus
low-performers) [8]. Further, this technique can be contex-
tualized with information about the student’s performance
(e.g., productive and counter-productive phases) over the
course of their learning interactions [8].

In this paper, we extend these techniques by incorporating
them in an iterative, exploratory methodology and further
contextualizing the differential sequence mining with action
features, such as activity categorizations, relevance and tim-
ing between actions, and repetition of analogous actions. We
apply this exploratory data mining methodology to learning
trace data gathered during a recent Betty’s Brain study run
in a middle school classroom. Previous analyses have shown
that reading the resources occupies a significant portion of
the students’ learning activities. Therefore, we delve deeper
than previous analyses by exploring reading action features
(e.g., short versus long reads and first reads versus rereads
of a page) and analyze student behaviors and performance
using this more detailed characterization of reading actions.

2. RELATED WORK

In this section, we briefly review relevant past work on us-
ing sequence mining techniques to analyze students’ learning
behaviors. For example, Perera et al. [14] investigate trace
data from mirroring and feedback tools that support effec-
tive teamwork among students collaborating on software de-
velopment using an open source professional development
environment called TRAC. In their approach, they help all
groups improve their work by observing and emulating the
behaviors of the strong groups. They use k-means cluster-
ing to find groups of similar teams and similar individuals,
and then employ a modified version of the Generalized Se-
quential Pattern (GSP) mining algorithm [16] to show that
leadership and group interaction are important to success.
Martinez et al. [12] discovered frequent sequences of actions
that differentiate high-achieving groups from low-achieving
groups of learners, who collaborate around a shared table-
top to answer an open question posed as a mystery prob-
lem. They apply a clustering algorithm to group similar pat-
terns to aid in analyzing the pattern distribution across the
groups. Employing sequential pattern mining allows them to
identify differences between the higher- and lower-achieving
groups in their manner of information gathering to solve
the problem. Like Perera et al. [14] and Martinez et al. [12],
we compare sequential patterns derived from groups of stu-
dent activity sequences. However, our differential sequence
mining algorithm directly incorporates comparisons between
groups with additional metrics to identify interesting pat-
terns, rather than manually performing researcher-directed
comparisons after data mining.

Other researchers have employed sequential pattern mining
(with a single set of student activity sequences or subse-
quences) to understand student learning behaviors. For ex-
ample, Su et al. [17] propose a method for creating personal-
ized activity trees to be used in a Sharable Content Object
Reference Model (SCORM) e-learning system. They use
sequential pattern mining to extract frequent learning pat-
terns as part of a larger process that creates a decision tree
to predict the group/category for a new student. Nesbit et

al. [13] employ sequential pattern mining to investigate self-
regulation in gStudy, which is a software application with
similarities to Betty’s Brain. In this system, students learn
from multimedia documents and organize their knowledge
with notes, concept maps, and other objects. Using sequen-
tial pattern mining, the authors hope to step beyond the
question of whether a tool helps learners construct knowl-
edge and instead investigate when and how learners use the
tool as they self-regulate their knowledge construction ac-
tivities. Similarly, our work investigates learning behav-
iors and self-regulation by identifying sequential patterns
of student activity. However, unlike all of the preceding
applications of sequential pattern mining, our methodology
also analyzes students’ evolving performance to identify, and
group, action subsequences corresponding to productive and
counter-productive phases. Further, our methodology itera-
tively employs action abstraction/transformation using fea-
tures, such as activity categorizations, relevance and timing
between actions, and repetition of analogous actions.

3. DIFFERENTIAL SEQUENCE MINING
METHODOLOGY

To effectively perform sequential data mining on learning in-
teraction traces, raw logs must first be transformed into an
appropriate sequence of actions. Since these logs can con-
tain a significant quantity of information about each student
interaction with the system, as well as other system book-
keeping information, raising the level of abstraction from
raw log events to a canonical set of distinct actions is a vital
first step in effective analysis. Our methodology incorpo-
rates iterative refinement of this action abstraction step to
focus the analysis on various learning activities and actions.

3.1 Action Abstraction with Context Summa-
rization
Action abstraction is the first step of our data mining method-
ology, in which researcher-identified categories of actions de-
fine an initial alphabet (set of action symbols) for the se-
quences. This step filters out irrelevant information (e.g.,
cursor position) and combines qualitatively similar actions
(e.g., querying an agent through different interfaces or about
different concepts in a given topic).
To apply the abstraction process, log events captured by the
CBLE are mapped to a sequence of canonical actions taken
by each student. As in previous work, we abstract student
activities in five primary categories [8]:

e READ: students access a page in the resources;

e LINK or CONCept Edit: students edit the causal map,
with actions further divided by: (i) whether they op-
erate on a causal link (“LINK”) or concept (“CONC”)
and whether the action was an addition (“ADD”),
removal (“REM”), or modification (“CHG”), e.g.,
LINKREM or CONCADD,;

e QUER: students use a template to ask Betty a ques-
tion, and she uses a causal reasoning method to answer
the question [9];

e EXPL: students probe Betty’s reasoning by asking her
to explain her answer to a question, and she uses dia-
logue and animation on the causal map to demonstrate
her use of causal reasoning to answer the question;
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e QUIZ: students assess how well they have taught Betty
by having her take a quiz, which is a set of questions
chosen and graded by the Mentor agent.

However, abstracting the raw log traces through action cat-
egorization, also strips potentially important context asso-
ciated with the actions in the traces. For example, with
the LINK-ADD action, the particular link added can pro-
vide important context information, such as whether this
link relates to resource material the student read in a pre-
vious action. However, if the details of the exact link added
are used to differentiate each edit action, we would end up
with an unwieldy number of distinct actions, making it hard
to discover and interpret behavior pattern sequences. To
maintain a balance between the number of distinct actions
and retaining relevant context information, we employ met-
rics that summarize context in order to distinguish actions.
For example, we employ a relevance summarization metric,
which establishes whether the content/object of an action is
related to a small number of recent activities, where recent
is defined by a configurable window of previous actions [3].
This relevance metric splits each categorized action into two
distinct actions: (1) relevant to at least one of the recent
actions (with the “-REL” suffix) and (2) irrelevant to any
of the recent actions (with the “-IRR” suffix).

In this methodology, the choice of specific context-summary
metrics and their application to different categories of action
is iteratively refined over repeated analyses of the interac-
tion traces. This allows the researcher to focus the analysis,
providing more detail and context associated with specific
learning activities or strategies. In previous work, we pre-
sented an initial analysis of student action sequences apply-
ing only the relevance metric, which illustrated some inter-
esting map editing and monitoring behaviors distinguishing
high-performing and low-performing students [8]. However,
that analysis did not differentiate between reading actions
(e.g., long versus short, or reading pages in sequence ver-
sus using keyword search), which are frequent and vital to
student learning in Betty’s Brain [8; 15].

In this paper, we present the results of a subsequent itera-
tion in this extended methodology, in which we apply ad-
ditional metrics to distinguish different types of READ ac-
tions. As a continuation of the exploratory methodology,
a future iteration might instead focus on actions related to
editing the causal map by applying additional editing met-
rics (e.g., whether the edit increased or decreased the corre-
spondence between the student’s map and the expert map,
or whether the edit introduced a cycle, continued a chain of
causal relationships, or added a branch to a chain of causal
relationships). However, to maintain a reasonable number
of distinct actions in that hypothetical iteration (such that
sufficiently frequent patterns could still be identified), the
number of reading-related metrics would be correspondingly
reduced.

In the analysis and iteration of the methodology presented
in this paper, we apply three reading-related metrics to the
student action sequences:

e Source (TOC/HLNK/HIST): how the student reached
the page he/she is reading - by selecting a page in
the table of contents (TOC) always displayed on the
left of the resources, from a hyperlink (HLNK) on an-
other page, or using the backward or forward button
to move through their history of pages (HIST) like a

web browser;

e Time (SHRT/FULL): a determination of whether the
student spent enough time on the page to have read
a significant amount of the material®> (FULL) or only
spent a brief period of time on the page (SHRT), pos-
sibly skimming the material or checking whether the
page was one for which they were searching;

e Repetition (FRST/REPT): a determination of whether
the student had never done a FULL read of the page
(FRST) or this was a reread of the page (REPT) be-
cause the student had previously done a FULL read;

In addition to metrics related to individual actions, we also
apply another, general transformation to the action sequence.
In an environment like Betty’s Brain, there are cases in
which students often perform a particular type of action
(e.g., adding concepts) repeatedly in sequence, which can
result in a variety of frequent patterns that differ only by
the number of repetitions of that action. To improve this ex-
ploratory analysis, our action abstraction step distinguishes
a single action from repeated actions, which are condensed
to a single action with the “-MULT” suffix. Using the
re-transformed sequences, our differential sequence mining
technique can more efficiently identify trends that could oth-
erwise be hidden by the multitude of frequent patterns dif-
fering only in the length of a repeated action sequence [8].

3.2 Differential Sequence Mining

To identify important activity patterns in a comparison be-
tween two sets of action sequences, our methodology em-
ploys a novel combination of sequence mining techniques.
Sequential pattern mining [2] methods find the most fre-
quent action patterns across a set of action sequences, while
episode mining [11] discovers the most frequently used ac-
tion patterns within a given sequence. However, finding the
patterns most important for interpreting learning behaviors
or differentiating between groups of students is challenging,
because of the need to limit the large set of frequent patterns
to ones that are interesting and important (4.e., our focus is
on the effectiveness of mining techniques in identifying these
important patterns, rather than the efficiency, or speed, in
calculating the frequent patterns [1]).

In comparing across groups of action sequences, such as
high- versus low-performing students, the differences be-
tween the groups provide a natural criterion for identifying
important patterns that may elucidate differences in learn-
ing behavior. To use this criterion for mining important
frequent patterns, we define two measures of frequency and
the corresponding differences calculated across the groups.
The sequential pattern mining frequency measure (i.e., the
number of sequences in which the pattern occurs, regardless
of how many times) is important for identifying patterns
common to a group of action sequences. We refer to this as
the “sequence support” (s-support) of the pattern, following
the convention of [10], and we call patterns meeting a given
s-support threshold s-frequent. The second metric is the

2Based on the length of typical resource pages and the read-
ing abilities of the students in the study, we set the threshold
between short and full reads to be 30 seconds. Further, the
large majority of reads in the short category were actually
under 5 seconds and most of the reads in the full category
were over a minute.
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1: Example student performance evolution with identified phases

episode frequency, defined as the number of times the pat-
tern is repeated within an action sequence. We refer to this
frequency measure as the “instance support” (i-support), fol-
lowing [10]. To calculate the i-support of a pattern in a group
of traces, we use the mean of the pattern’s i-support values
across all sequences in the group.

The details of our differential sequence mining algorithm
are presented in [8], but we briefly outline the main steps of
the algorithm. First, a sequential pattern mining algorithm
(SPAMc [6]) identifies the patterns that meet a minimum
s-support constraint within each group, employing a max-
imum gap constraint to account for noise, which is inter-
preted as a small number of irrelevant actions that may be
interspersed in a pattern. In this paper, we employ a gap
constraint of 1, i.e., we allow at most one irrelevant action
between each consecutive action in a pattern. To compare
the identified s-frequent patterns across groups, we calculate
the mean i-support of every pattern for each group. In order
to identify patterns whose usage more clearly differ between
the two groups, we also filter the patterns based on the p
value of a t-test comparing pattern i-support between the
groups.

This comparison produces four distinct categories of fre-
quent patterns: two categories where the patterns are s-
frequent in only one group, illustrating patterns primarily
employed by that group, and two categories where the pat-
terns are common to both groups but used more often in
one group than the other. The patterns in each of these
qualitatively distinct categories are (separately) sorted by
the difference in mean group i-support to focus the analysis
on the most differentially frequent patterns.

3.3 Performance Evolution Phases

In the Betty’s Brain environment, a student’s work can
be assessed in terms of their performance on the learning
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task, which we define as the student’s current map score®.

By tracking the evolution of students’ map scores, we can
quantify how their learning and map-building performance
develop as they work on the system. To more effectively
identify and contextualize learning behavior patterns, we
consider phases of productive (increasing map score) and
counter-productive (decreasing map score) activity over the
course of learning by tracking their map scores, as illustrated
in Figure 1.

These phases are identified by generating a piecewise, lin-
ear representation (PLR) for a sequence of two-dimensional
points. In this representation, the x-value is a cumulative
measure of student editing activity (i.e., the number of edit
actions the student has performed thus far) and the y-value
is the student’s total map score after the corresponding edit
action [8]. Figures 1(a) and 1(b) illustrate these perfor-
mance phases with plots of map score versus number of
edits for a high-performing and a low-performing student,
respectively. To generate this representation, we employ a
standard bottom-up, time-series linear segmentation algo-
rithm [7] with the sum-squared-error (SSE) of the segments
as the criterion metric [8].

3.4 Summary of Methodology

Our iterative methodology consists of four major steps to
identify learning behaviors contextualized by performance
evolution between groups of students:

1. Action abstraction: Logfiles are processed to produce
a sequence of actions for each student by mapping
sets of interaction events to canonical actions. Each
canonical action is contextualized and split into dis-
tinct actions by applying metrics, such as the relevance

3The map score is defined as the number of correct links
(based on the expert map) in the student’s map minus the
number of incorrect links.
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metric and the reading metrics. At each iteration ad-
ditional metrics can be applied, as well as previous
metrics removed, based on the results of previous iter-
ations. Finally, any subsequences of a repeated action
are condensed into a single “action” identified with the
“-MULT” suffix.

2. Performance phase identification: Student action se-
quences are split into subsequences using the time-
series segmentation algorithm. These subsequences are
filtered to produce two sequential datasets: a) produc-
tive action sequences corresponding to segments with
a positive progress slope above a given cutoff, and b)
counter-productive action sequences corresponding to
segments with a negative progress slope below a given
(negative) cutoft.

3. Differential sequence mining: The student groups, as
well as productive and counter-productive action sub-
sequences within those groups, are compared to iden-
tify differentially frequent patterns of action.

4. Interpretation: The differentially frequent sequential
patterns of action are interpreted in terms of effec-
tive and ineffective learning behaviors exhibited by
students during the learning task. Investigation of
pattern details (i.e., raw event details for instances of
these patterns) may yield further insights into student
cognition and metacognition, as well as potential flags
and triggers for adaptive feedback/scaffolding in the
system.

4. RESULTS

We illustrate our methodology using interaction trace data
from a recent study with 40 8*"-grade students taught by the
same teacher in a middle Tennessee school. At the beginning
of the study, students were introduced to the science topic
(global climate change) during regular classroom instruc-
tion, provided an overview of causal relations and concept
maps, and given hands-on training with the system. For
the next five days, students taught their agent about cli-
mate change and received feedback on metacognitive strate-
gies from the Mentor agent. In this version of the system,
the majority of the metacognitive feedback was related to
knowledge construction strategies [15]. However, the Men-
tor agent also provided advice on monitoring strategies to
help students recognize and correct errors in their casual
maps.

The results of this study presented an interesting dichotomy
in student performance at constructing their causal concept
maps. 16 of the students taught their agent a correct, com-
plete map or one very close to it (these students achieved
map scores between 11 and 15, inclusive, where 15 was the
maximum possible score). Another 18 students taught their
agents relatively poor maps with a map score of 5 or below.
Only 6 students had a map score in between these groups
(i.e., a map score of 6 to 10, inclusive). Therefore, we fo-
cus on an analysis and comparison of the learning activities
of the high-performing (“Hi”) student group and the low-
performing (“Lo”) student group. An initial analysis of the
activity traces from this study was presented in [8]. Here we
focus on the effectiveness and variation in students’ read-
ing behaviors by refining the action abstraction step in our
exploratory methodology with additional (reading-related)

metrics, discussed in Section 3.1. We should note that stu-
dents in the “Hi” group had higher pre-test scores in all of
the categories as compared to the “Lo” group. However, a
detailed analysis shows that 40% of the links added by the
“Hi” group were initially incorrect (this number was 58%
for the “Lo” group). This shows that the “Hi” group had
to put in significant effort into discovering errors in their
maps and correcting them, and the final results show that
they were quite successful in their monitoring and correction
tasks. This was not the case for the “Lo” group. Therefore,
a comparison of the learning behaviors of the two group
should demonstrate an important dichotomy in the strate-
gies employed by the two groups that mirrors the dichotomy
in their performance. To further differentiate behaviors as-
sociated with high and low performance, we compared pro-
ductive and counter-productive phases of student activities.
We discuss the results of our analyses in greater detail below.
To assess students’ overall learning gains, calculated as nor-
malized gains® in pre- to post-test scores, we categorize the
pre- and post-test questions into three groups: (i) defini-
tion questions about the science topic in multiple choice
(MC) format, (ii) questions requiring reasoning about the
science topic that students had to answer by writing sen-
tences (“short answer”), and (iii) questions about causal
reasoning using a causal map that was not related to the
science topic. Table 1 presents the students average scores
(and standard deviations). The results of an ANOVA com-
paring the Hi and Lo student groups on each of the pre-post
gains show significant differences between the Hi and Lo
groups only for the definitional MC questions. Table 1 also
presents ANOVA analyses of the difference in performance
for the map-building metrics: (i) link accuracy - the per-
centage of links added to the map that were correct; (ii)
link creation effort - the total number of student actions
divided by the number of correct link edits, a measure of
the effort by the student in order to produce a correct link
edit; and (iii) action relevance - the percentage of student
actions that were relevant (as described in Section 3.1) to
at least one of the three previous actions show significant
differences in favor of the Hi group with moderate effect
sizes. These results indicate that students in the Hi group
were more accurate in their map edits and generally more
efficient in their learning and teaching activities. Further,
they tended to employ a more systematic approach to the
task, as indicated by their higher action relevance score.
Overall, students who achieved success in teaching Betty
accurate causal maps also learned significantly more factual
information, but their gains in causal reasoning and short
answer questions were not significantly different from the
low-performing group [8; 15].

As a first analysis to elucidate broad differences in reading
behavior between the Hi and Lo groups, Table 2 presents
the relative proportion of reading activities categorized by
each metric presented in Section 3.1. Both groups performed
roughly equal numbers of read actions on pages they had
previously read in-depth (“Repeat” (REPT)) compared to
ones they had not read in-depth (“First” (FRST)). The Lo
group relied slightly more on short (SHRT) reads (74%)
than the Hi group (69%), and the ratio of short to full page
(FULL) reads was approximately 3:1 for the Lo group and
2:1 for the Hi group. Similarly, the Lo group’s read actions

(post—pre)

4The normalized learning gain was calculated as: (maz—pre)
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1: High vs. Low Performers - Learning Gain and Map Score

Metric Hi Group Lo Group F Sig. | Effect Size (Cohen’s f)
Definition MC Norm. Gain 0.535 (0.344) -0.202 (0.769) 12.448 | 0.001 0.624
Causal Reasoning Norm. Gain | 0.130 (0.614) -0.029 (0.414) 0.799 0.378 0.157
Short Answer Norm. Gain 0.027 (0.241) | -0.028 (0.134) 0.700 | 0.409 0.146
Map Score 14.500 (1.155) 2.780 (1.592) 590.171 | 0.001 4.314
Link Accuracy (LA) 60.3% (7.1%) | 42.8% (10.6%) | 31.528 | 0.001 0.992
Link Creation Effort (LCE) | 11.630 (8.196) | 20.665 (5.042) | 12.745 | 0.001 0.652
Action Relevance 53.3% (8.4%) | 40.6% (12.2%) | 12.401 | 0.001 0.622

were deemed more irrelevant (IRR) to recent actions (again
the ratio of IRR to REL (relevant) reads was 3:1). The same

ratio for the Hi group was 2:1.

2: Relative Proportion of Actions by Reading Metrics

Group | First : Repeat Short : Full Irrel. : Rel.
(FRST : REPT) | (SHRT : FULL) | (IRR : REL )
Hi 51% : 49% 69% : 31% 67% : 33%
(SD 12%) (SD 15%) (SD 9%)
Lo 55% : 45% 74% : 26% 4% : 26%
(SD 14%) (SD 12%) (SD 7%)

To analyze specific reading behaviors illustrated by these
students’ interaction traces, we applied the differential se-
quence mining technique described in Section 3.2. This
allowed us to identify a variety of interesting learning be-
haviors related to reading that were not apparent from the
higher level analyses of behavior patterns we had conducted
in the past [8; 15]. Table 3 presents the top five patterns in
each of the differential categories detailed in Section 3.2. For
the analysis, we employed an s-support threshold of 50% to
analyze patterns that were evident in the majority of either
group of students and employed a standard statistical signif-
icance cutoff of p < 0.05. In all of the differential sequence
mining results presented here, we employed a maximum gap
threshold of 1, to allow for “noise” from irrelevant or in-
terchangeable actions in the learning activity sequences, as
described in Section 3.2.

All reads in the differentially frequent patterns distinguish-
ing reading behaviors between high and low students were
pages selected from the table of contents (TOC) rather than
from hyperlinks within pages or the (backward /forward) his-
tory mechanism. This is unsurprising since raw frequencies
of these different types of reading activities indicated that
in both the high and low group, the large majority of read-
ing activities involved selecting pages from the table of con-
tents. Table 3 shows that the high group was much more
likely to add a link (both relevant (REL) or irrelevant (IRR)
links with respect to recent actions) following a full-length
(FULL) re-read (REPT) of a page that was relevant (REL)
to recent actions. This greater reliance on extended re-reads
before adding links suggests the high group employed a more
careful approach to identifying causal links in the resources,
which may have helped increase their accuracy in teach-
ing correct links, and also their ability to correct previously
taught incorrect links.

Further, the high group more frequently employed reading
activities in a monitoring context (i.e., in conjunction with
quiz actions). Besides following extended re-reads by adding
links, the high group was also more likely to follow them with

quizzes, possibly in an attempt to connect what they were
reading with their TA’s right and wrong answers based on
the current map. Following quizzes, they were more likely
to do a quick re-read of a relevant page, which suggests an-
other monitoring strategy, such as confirming links used by
the TA in quiz answers. The differentially frequent patterns
employed more by the low group were various combinations
of reading, especially short reads and ones not relevant to
recent actions. This may be indicative of a less consistent
approach to reading and of strategies that do not system-
atically combine reading with other knowledge construction
and monitoring activities.

To further investigate which reading behaviors may have
contributed to the high performers’ success, we identified
differentially frequent patterns when students were produc-
tive as opposed to being counter-productive during their
map building activities. The method for extracting the
productive versus counter-productive phases was described
in Section 3.3, and we included all segments with a slope
greater than or equal to 0.4 in the productive set and all seg-
ments with a slope less than or equal to -0.4 in the counter-
productive set® [8]. For the differential sequence mining with
performance evolution subsequences analysis, we employed a
lower s-support threshold because the sequences were signifi-
cantly shorter than the complete student activity sequences.
Specifically, we employed an s-support threshold of 20% to
analyze patterns that occurred with some regularity (i.e., in
at least one out of every five subsequences). Similarly, given
the limited length and number of sequences, we employed a
relaxed cutoff on the t-test comparison of p < 0.10.

In comparing the Hi group’s productive to counter-productive
periods, the only differentially frequent pattern observed was
that extended, relevant rereads (READ-TOC-REPT-FULL-
REL) occurred approximately twice as frequently (p = 0.034)
in productive segments (i — support = 0.65) than counter-
productive segments (¢ — support = 0.38). This reliance on
extended, relevant re-reads, especially during productive pe-
riods, provides further evidence that a more careful, system-
atic approach to reading may have been particularly benefi-
cial for the high-performing students. In comparing the Lo
group’s productive to counterproductive periods, the only
differentially frequent pattern observed was that extended,
relevant reading of a page for the first time occurred approx-
imately five times as frequently (p = 0.039) in productive
segments (i — support = 0.28) than counter-productive seg-
ments (:—support = 0.06). This suggests that when the low-
performing students read a page in-depth for the first time

The slope cutoff of 0.4/-0.4 was determined by qualitative
analysis of a sample of student map score plots to distinguish
generally productive/counter-productive segments (8]
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3: High vs. Low Performers - Differentially Frequent Patterns

[-Support | I-Support | t-test S-Freq

Pattern (1) (Lo) (p value) | Group
READ-TOC-REPT-FULL-REL — LINKADD-REL 2.19 0.61 0.005 Hi
READ-TOC-REPT-FULL-REL — QUIZ 1.50 0.39 0.010 Hi
QUIZ — READ-TOC-REPT-SHRT-REL 1.44 0.33 0.018 Hi
READ-TOC-REPT-SHRT-REL — LINKADD-IRR 1.13 0.17 0.008 Hi
READ-TOC-REPT-FULL-IRR — LINKREM-IRR 1.13 0.28 0.016 Hi

READ-TOC-REPT-FULL-REL — LINKADD-IRR 2.00 0.94 0.022 BOTH
READ-TOC-FRST-SHRT-IRR — READ-TOC-REPT-SHRT-IRR-MULT 0.31 0.89 0.043 Lo
READ-TOC-REPT-SHRT-IRR — READ-TOC-REPT-SHRT-IRR-MULT 0.31 1.00 0.040 Lo
READ-TOC-REPT-FULL-IRR — READ-TOC-FRST-SHRT-IRR 0.44 1.17 0.033 Lo
READ-TOC-REPT-FULL-IRR — READ-TOC-REPT-SHRT-IRR 0.63 1.67 0.013 Lo
READ-TOC-REPT-SHRT-REL — READ-TOC-FRST-SHRT-REL 0.50 1.78 0.047 Lo

they tended to extract useful information, especially if the
page was relevant to their recent activities. However, they
did not seem to be as effective as the high-performing stu-
dents in extracting additional information when re-reading
pages.

To gain further insight into differences in productive read-
ing behaviors exhibited by students in Betty’s Brain, we ap-
plied the differential sequence mining technique to compare
the productive subsequences between the Hi and Lo groups.
This analysis, presented in Table 4, illustrates four reading
activities more frequently employed by the low-performing
students during their productive activity periods. The greater
frequency of irrelevant, extended rereads (both from the ta-
ble of contents and from hyperlinks) in the Lo group, sug-
gests that although they tended to be less systematic in their
approach, they were still able to gain some useful informa-
tion from rereading the resources. However, their greater re-
liance on initial, in-depth reads (READ-TOC-FRST-FULL-
REL) in productive periods suggests they may have had a
harder time identifying the less obvious causal relations of-
ten found after multiple reads. Finally, the repeated use of
short, irrelevant reads during productive periods by the Lo
group may indicate an inefficient, but ultimately effective,
searching behavior.

5.  CONCLUSIONS

In this paper, we extended an exploratory data mining method-

ology for identifying important learning behaviors with an
iterative approach to action abstraction using a variety of
action features and presented results analyzing reading be-
haviors of students in a learning-by-teaching environment.
The exploratory methodology combines iterative action ab-
straction, a sequence mining technique to identify differen-
tially frequent activity patterns, and piecewise linear seg-
mentation of activity phases with respect to the evolution
of a performance or progress measure. Results from a recent
classroom study with Betty’s Brain illustrate the effective-
ness of this methodology and iterative action abstraction
for identification of important learning behaviors at multiple
levels of analysis, including behaviors distinguished by their
relationship to productive or counter-productive phases of
activity.

Although the majority of frequent action patterns that could
be identified in these interaction traces are common to both
high-performing students and low-performing students (and
occur throughout the course of students’ interaction with

the system), the analysis employing our differential sequence
mining methodology elucidated some important learning be-
haviors. In this paper, we extended previous results with
a focus on reading behaviors related to successful perfor-
mance in the learning environment and differentiating them
from ones employed by less successful students. Overall,
high-performing students differentially employed reading be-
haviors that indicated a more careful and systematic strat-
egy of reading. Their activity patterns more frequently
involved re-reading pages from the resources, such as em-
ploying full-length re-reads of the resources before adding a
link. Further, the reading activity patterns distinguishing
high-performers from low-performers usually involved read-
ing pages that were relevant to recent actions, suggesting a
more systematic reading behavior overall. Productive peri-
ods were particularly distinguished in high performers by a
larger number of full-length, relevant re-read actions.
Performance was also linked to monitoring behaviors that
incorporated re-reading of the resource material. In par-
ticular, high-performers were more likely to employ various
types of reading actions both before and after assessments of
progress/correctness using the quiz. Low performers, on the
other hand, had a differential tendency to use irrelevant, ex-
tended re-reads of pages in the resources during productive
periods. They may have also had more difficulties identify-
ing the less obvious causal relations, as suggested by their
greater reliance on initial reads of a resource page during
productive periods.

In future work, we also intend to expand upon the presented
data mining techniques through a variety of enhancements
and additional applications. We will enhance the existing
summarization of action-relevance to include determination
of the relationship between the specific actions in all sub-
sequences matching the identified patterns. For example,
this enhanced action-relevance summarization will allow us
to determine how frequently a pattern like READ-TOC-
REPT-FULL-REL — LINKADD-REL involves adding a cor-
rect link and whether the specific link added was discussed
in the resource page from the reading action. Relating iden-
tified patterns of action back to specific details and context
in the interaction traces could provide significant benefits
for more efficient and effective interpretation of learning be-
haviors. Based on this analysis, we will expand and revise
the feedback triggering conditions and student modeling to
improve learning behavior feedback from the Betty’s Brain
agents.
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4: High vs. Low Performers (Productive Segments) - Differentially Frequent Patterns

I-Support | I-Support | t-test S-Frequent
Pattern (Hi) (Lo) (p value) | Group
READ-TOC-REPT-FULL-IRR 0.51 1.00 0.070 BOTH
READ-TOC-FRST-FULL-REL 0.10 0.28 0.091 Lo
READ-HLNK-REPT-FULL-IRR 0.08 0.28 0.057 Lo
READ-TOC-REPT-SHRT-IRR-MULT 0.15 0.39 0.079 Lo
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ABSTRACT

Identification of student learning behaviors, especially those
that characterize or distinguish students, can yield impor-
tant insights for the design of adaptation and feedback mech-
anisms in Intelligent Tutoring Systems (ITS). In this paper,
we analyze trace data to identify distinguishing patterns of
behavior in a study of 51 college students learning about a
complex science topic with an agent-based ITS that fosters
self-regulated learning (SRL). Preliminary analysis with an
Expectation-Maximization clustering algorithm revealed the
existence of three distinct groups of students, distinguished
by their test and quiz scores (low for the first group, medium
for the second group, and high for the third group), their
learning gains (low, medium, high), the frequency of their
note-taking (rare, frequent, rare) and note-checking (rare,
rare, frequent), the proportion of sub-goals attempted (low,
low, high), and the time spent reading (high, high, low). In
this paper, we extend this analysis to identify characteris-
tic learning behaviors and strategies that distinguish these
three groups of students. We employ a differential sequence
mining technique to identify differentially frequent activity
patterns between the student groups and interpret these pat-
terns in terms of relevant learning behaviors. The results of
this analysis reveal that high-performing students tend to be
better at quickly identifying the relevance of a page to their
subgoal, are more methodical in their exploration of the ped-
agogical content, rely on system prompts to take notes and
summarize, and are more strategic in their preparation for
the post-test (e.g., using the end of their session to briefly
review pages). These results provide a first step in identify-
ing the group to which a student belongs during the learning
session, thus making possible a real-time adaptation of the
system.

1. INTRODUCTION

Use of metacognition and self-regulated processes has been
identified as a key element for successful learning in gen-
eral [?; ?; 7; ?]. In the particular context of an intelligent
tutoring system (ITS), it means it is crucial to ensure that
students are actively using key self-regulated learning (SRL)
processes, which can be achieved through prompts, scaffold-
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ing, and feedback. A major challenge is to make the ITS
more adaptive to individual learning characteristics, such as
browsing behavior and initiative in performing appropriate
SRL processes.

Using MetaTutor, an agent-based ITS that fosters the use
of SRL processes, we have collected a large amount of data
from students interacting with the system while they were
learning about the human circulatory system. In this paper,
our goal is to answer two questions: (1) how can students
be grouped according to their performance and their type of
interaction with the system? and (2) how do specific learn-
ing behaviors of high- and low-performing students differ, in
particular regarding their use of SRL processes in MetaTu-
tor?

In this paper, we propose to answer the first question us-
ing a clustering approach that groups students with similar
performance and scores on other system interaction metrics.
For the second question, we analyze members of the three
clusters (especially comparing high- and low-performing stu-
dents) with a differential sequence mining method [?], which
identifies statistically significant differences in frequent be-
haviors between clusters.

This paper is organized as follows. In section 2, we start by
discussing related work that combines clustering and pat-
tern mining techniques for analysis of data from computer-
based learning environments. In section 3, we introduce the
ITS used for data collection, MetaTutor, as well as theoret-
ical grounding of its key features, which encourage learners
to perform self-regulation monitoring and strategy as they
learn with the system. Section 4 describes the data col-
lected and the relevant events encoded as actions, as well
as the clustering performed to distinguish different types of
students. Section 5 presents the principles of the method
of differential sequence mining, its application to the data,
and the results obtained in terms of patterns of actions that
distinguish students from different clusters. Section 6 then
discusses the practical implications of those findings in terms
of potential modifications to the ITS, before concluding in
section 7.

2. RELATED WORK

Analysis of trace log data from users’ interactions to better
understand their learning process and distinguish groups of
learners (e.g., efficient versus inefficient ones) has been an
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important area of research in educational data mining. For
example, Perera et al. [?] follow a 2-step methodology like
ours, as they start by using a clustering algorithm (k-means)
to identify strong groups of students collaborating in a soft-
ware development task using an open environment (TRAC).
The students are first clustered according to a set of at-
tributes extracted a posteriori, and then they use a mod-
ified version of the Generalized Sequential Pattern mining
algorithm [?] to identify frequent sequences of actions that
characterize the most successful groups. In [?], Romero et al.
also use a combination of clustering and sequential pattern
mining to identify different kinds of browsing behavior that
students exhibit in their learning environment, “AHA!”, in
order to provide them links to the most appropriate pages.
With gStudy, Nesbit et al. [?] are interested in the use of
self-regulation by students learning from multimedia docu-
ments. They apply sequential pattern mining to find com-
mon subsequences between groups of students, although they
do not perform any clustering beforehand. Martinez et al. [?]
pursue a similar approach and objective, as they aim to
discover frequent sequences of actions that distinguish a
group of students with high achievements from one with
low achievements. They use a combination of pattern min-
ing and clustering techniques to identify the most successful
strategies in the context of a collaborative learning tool on
a tabletop device. However, they first extract frequent pat-
terns of actions and then cluster them in order to examine
clusters of patterns associated with each group. Tang and
McCalla [?] also use sequence mining and then clustering
in their web learning environment, to facilitate instructional
planning and diagnose students behaviors.

3. METATUTOR ENVIRONMENT

3.1 General overview

MetaTutor is a multi-agent, adaptive hypermedia learning
environment, which presents challenging human biology sci-
ence content. The primary goal underlying this environment
is to investigate how multi-agent system can adaptively scaf-
fold SRL and metacognition within the context of learning
about complex biological content. MetaTutor is grounded
in a theory of SRL that views learning as an active, con-
structive process whereby learners set goals for their learn-
ing and then attempt to monitor, regulate, and control their
cognitive and metacognitive processes in the service of those
goals [?7; 7; ?]. More specifically, MetaTutor is based on sev-
eral theoretical assumptions of SRL that emphasize the role
of cognitive, metacognitive (where metacognition is concep-
tualized as being subsumed under SRL), motivational, and
affective processes [?; ?]. Moreover, learners must regulate
their cognitive and metacognitive processes in order to inte-
grate multiple informational representations available from
the system. While all students have the potential to regu-
late, few students do so effectively, possibly due to inefficient
or a lack of cognitive or metacognitive strategies, knowledge,
or control.

As a learning tool, MetaTutor has a multitude of features
that embody and foster self-regulated learning (cf. Fig-
ure ?7). These include four pedagogical agents which guide
students through the learning session and prompt students
to engage in planning, monitoring, and strategic learning
behaviors. In addition, the agents can provide feedback
and engage in a tutorial dialogue in an attempt to scaf-

fold students’ selection of appropriate sub-goals, accuracy
of metacognitive judgments, and use of particular learning
strategies. The system also uses natural language processing
to allow learners to express metacognitive monitoring and
control processes. For example, learners can type that they
do not understand a paragraph and can also use the inter-
face to summarize a static illustration related to the circula-
tory system. Additionally, MetaTutor collects information
from user interactions with it to provide adaptive feedback
on the deployment of students’ SRL behaviors. For exam-
ple, students can be prompted to self-assess their under-
standing (i.e., system-initiated judgment of learning [JOL])
and are then administered a brief quiz. Results from the
self-assessment and quiz allow pedagogical agents to pro-
vide adaptive feedback according to the calibration between
students’ confidence of comprehension and their actual quiz
performance.

During learning, MetaTutor is capable of measuring the de-
ployment of self-regulatory processes by allowing us to col-
lect rich, multi-stream data, including: self-report measures
of SRL, on-line measures of cognitive and metacognitive pro-
cesses (e.g., concurrent think-alouds), dialogue moves re-
garding agent-student interactions, natural language pro-
cessing of help-seeking behavior, physiological measures of
motivation and emotions, emerging patterns of effective prob-
lem solving behaviors and strategies, facial data on both ba-
sic (e.g., anger) and learning-centered emotions (e.g., bore-
dom), and eye-tracking data regarding the selection, organi-
zation, and integration of multiple representations of infor-
mation (e.g., text, diagrams). The collection of these vari-
ous data streams is critical to enhancing our understanding
of when, how, and why students regulate or do not reg-
ulate their learning and adapt their regulatory behaviors.
These data are then used to develop computational models
designed to detect, track, model, and foster students’ SRL
processes during learning.

3.2 Self-Regulated Learning with MetaTutor

This paper is theoretically-guided by contemporary models
of SRL that emphasize the temporal deployment of these
processes during learning [?]. As such, the goal is to use
multiple measures to detect, track, and model learners’ use
of cognitive, affective, and metacognitive (CAM) processes
during learning. As such, we use Winne and Hadwin’s model
[?; ?] because it proposes that learning occurs in four ba-
sic phases: (1) task definition, (2) goal-setting and plan-
ning, (3) studying tactics, and (4) adaptations to metacog-
nition. Their model emphasizes the role of metacognitive
monitoring and control as the central aspects of learners’
ability to learn complex material across different instruc-
tional contexts (e.g., using a multi-agent system to track
and foster SRL) in that information is processed and ana-
lyzed within each phase of the model. Recently, Azevedo
and colleagues [?; 7; 7; 7; 7] extended this model and pro-
vided extensive evidence regarding the role and function of
several dozen CAM processes during learning with student-
centered learning environments (e.g., multimedia, hyperme-
dia, simulations, intelligent tutoring systems).

In brief, our model makes the following assumptions: (1)
successful learning involves having learners monitor and con-
trol (regulate) key CAM processes during learning; (2) SRL
is context-specific and therefore successful learning may re-
quire a learner to increase/decrease the use of certain key
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Figure 1: Annotated screenshot of MetaTutor (A: time remaining in the session, B: table of contents, C: current subgoals and
progression, D: embodied pedagogical agent, E: palette of monitoring and strategy actions)

SRL processes at different points in time during learning;

(3) a learner’s ability to monitor and control both inter-
nal (e.g., prior knowledge) and external factors (e.g., chang-
ing dynamics of the learning environment; relative utility of
an agent’s prompt) are crucial in successful learning; (4) a
learner’s ability to make adaptive, real-time adjustments to
internal and external conditions, based on accurate judg-
ments of their use of CAM processes, is fundamental to
successful learning; and; (5) certain CAM processes (e.qg.,

interest, self-efficacy, task value) are necessary to motivate
a learner to engage and deploy appropriate CAM processes
during learning and problem solving. This model is best
suited for this project since it deals specifically with the
person-in-context perspective and postulates that CAM pro-
cesses occur during learning with a multi-agent system, which
will be useful in examining when and how learners will reg-
ulate their learning about the human circulatory system.
As such, the macro-level processes used in this paper are
reading, metacognitive monitoring, and learning strategies.

Reading behavior is critical since it is the most important
activity related to acquiring, comprehending, and using con-
tent knowledge related to the science topic. During reading,
learners need to monitor and regulate several key processes
such as: (1) selecting relevant content (i.e., text and dia-
grams) based on their current sub-goal; (2) spending appro-
priate amounts of time on each page, depending on their rel-
evance regarding their current sub-goal; (3) deciding when
to switch or create a new sub-goal; (4) making accurate
assessments of their emerging understanding; (5) conceptu-
ally connecting content with prior knowledge; (6) adaptively
selecting, using, and assessing the effective use of several
learning strategies including re-reading, coordinating infor-
mational sources, summarizing, making inferences, in order
to comprehend the material at various levels (i.e., declara-
tive, procedural, and conceptual knowledge); and, (7) mak-

ing adaptive changes to behavior based on a variety of exter-
nal (e.g., quiz scores, quality and timing of agents’ prompts
and feedback) and internal sources (e.g., affective experi-
ences including both positive and negative affective states,
perception of task difficulty). In sum, SRL involves the con-
tinuous monitoring and regulation of CAM processes during
learning with MetaTutor.

3.3 Participants and data collection

While data has been collected over a sample of 148 un-
dergraduate students from two large public universities in
North America, we consider for this study only a sub-sample
of 51 participants from the experimental condition that in-
cluded the most prompts from the pedagogical agents to
perform SRL actions and in which students were given some
adaptive feedback after having performed those actions. Par-
ticipants from other conditions did not receive a similar ex-
perience with the system, and therefore the values of the
variables considered (cf. section ??) were completely differ-
ent for them (e.g. they took less quizzes as they were not
prompted to self-regulate their learning). Considered logs
contained an average of 1072 events per session (o = 255).

4. PRELIMINARY STEPS

4.1 Data preparation, coding and extraction
For the analysis performed here, as justified in section 77, we
abstracted the set of collected interactions into three broad
categories: reading, monitoring, and strategy (cf. Table 7?7
for The detailed list of actions extracted from the data).

4.1.1 Reading

A reading action (Read) is coded each time the student clicks
to display a new page of content to read. They can be split
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according to two combinatorial criteria, r and ¢, written as
Read}, where:

e 7 stands for the relevance of the page with regard to
the student’s current subgoal (+ for a relevant page,
— for an irrelevant page, @ if no subgoal is currently
set and relevance can’t be determined);

e ¢ stands for the time the student spent reading the page
(s if they remain less than 15 seconds, threshold under
which no SRL prompt can be triggered, | otherwise).

4.1.2 Monitoring

A monitoring action (Mon) is coded when the student per-
forms, or is prompted to perform, a monitoring action with
respect to their learning. This monitoring action could be
a judgment of learning (JOL) about what they have just
read, a feeling of knowing (FOK) regarding the content of
the page, an evaluation of the content (CE) relevance with
respect to their current subgoal, or an assessment of their
progress towards their current subgoal (MPTG). They can
also be split according to two combinatorial criteria, e and
i, written as Mon§, where:

e ¢ € {+,—,a} stands for the correctness of the moni-
toring evaluation performed by the student (+ if the
evaluation is right, — if it is wrong, @ if no direct eval-
uation is possible for the monitoring process);

e i € {u,a} stands for the initiator of the action (u for
the user, a for the agent).

Following FOKs and JOLs, as well as when the student
claims to have finished a subgoal, students are asked to an-
swer a short quiz (of 3 to 10 questions). Those actions,
coded as Quiz, can be split along one dimension and are
then written Quiz®, where s € {4, —} stands for the success
or failure to pass the test (+ if the student obtained more
than 66% of correct answers, — otherwise).

4.1.3  Strategy

A strategy action (Str) is coded when the student uses a
strategy to self-regulate their learning, including when the
strategy is prompted by the agent, as well as when the user
independently decides to perform the action. Strategy ac-
tions include a summarization (SUMM) of the page, a coor-
dination of information sources (COIS) by viewing a related
image, an inference (INF) regarding the reading material,
a re-reading (RR) of a paragraph that was not well under-
stood, or notes taken about the reading material. This ac-
tion can also be split depending on the initiator of the action,
and is then written Str,, where ¢ € {u, a} as defined in 4.1.2.
Moreover, we distinguish a particular strategy consisting of
taking or checking notes in the embedded note interface or
using the electronic paper-based notepad provided next to
the workstation. These note actions are coded as Notes.

4.2 User clustering

4.2.1 Methodology

In a previous study [?], we ran a cluster analysis over a
subset of 13 variables extracted from the interaction log af-
ter the end of the student’s learning session: pretest and
posttest score, number of subgoal and page quizzes, mean

Table 2: Synthesis of clusters differences (italic means clus-
ters weren’t significantly different from one another accord-
ing to that variable when using an ANOVA with p < 0.05)

. Score for each cluster
Variables 0

Pretest score

Posttest score

Session duration
Reading duration
Proportion of subgoals
attempted

Number of subgoals
changes

Number of subgoals
quizzes

Mean first score in
subgoal quizzes
Number of page quizzes
Mean first score in page
quizzes

Number of note taking
Number of note
checking

Time spent taking notes
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first score in subgoal and page quizzes, proportion of sub-
goals attempted among the 7 possible, number of subgoals
changes, total session duration, time spent reading content,
number of times the student took notes and checked notes,
and the duration of the note-taking episodes. This analy-
sis empoyed the Expectation-Maximization (EM) algorithm
as implemented in the Weka data mining package [?]. The
number of categories to find being undetermined a priori,
we used a 10-fold cross-validation, during which we incre-
mented the number of clusters (starting with 1) as long as
the loglikelihood averaged over the 10 folds was increasing
(i.e. we stopped as soon as the loglikelihood with N+1 clus-
ters was lower than with N clusters). We used 1000 different
initialization seeds for the EM algorithm, in order to com-
pensate for its tendency to get stuck into local optima, and
selected, among the 1000 partitions of students generated,
the most frequent one among the most frequently obtained
number of clusters (3).

4.2.2 Results

Three clusters were obtained, which characteristics are sum-
marized in Table ??, where clusters 0, 1 and 2 are made of
21, 14 and 16 students, respectively. Generally, students
from cluster 2 scored high on pretest, posttest and inter-
mediary quizzes, spent less time than others reading while
attempting more subgoals, and took less notes and less time
taking them. In contrast, students from cluster 1 scored low
on pretest, posttest and intermediary quizzes, attempted
less subgoals and took few notes and less time to take them.
Students from cluster 0 occupied generally a intermediate
position in terms of performance and subgoal uses, but took
overall more notes and more time to take them. When using
a formula derived from [?] to evaluate learning gains (cf. [?]
for more details), we also found that students from cluster 2
had the most significant knowledge acquisition, as opposed
to those in cluster 1. For all those reasons, cluster 1 will
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Table 1: List of actions extracted from MetaTutor interaction logs

Action .
Category name Description
Read? | Student skims through a page relevant for their current subgoal for less than 15s
Reads | Student skims through a page irrelevant for their current subgoal for less than 15s
R Read? | Student skims through a page without having a subgoal set for less than 15s
ead < .
Read, Student reads a page relevant for their current subgoal for more than 15s
Read;” | Student reads a page irrelevant for their current subgoal for more than 15s
Read; | Student reads a page without having a subgoal set for more than 15s
Mong | Student is prompted to evaluate their knowledge, learning or the relevance of the content they
are reading, and evaluates correctly
Mong | Student is prompted to evaluate their knowledge, learning or the relevance of the content they
Monitori are reading, and is wrong in their evaluation
omitoring | /2 | Student i ted to perf itoring action that doesn’t requi luati
onf udent is prompted to perform a monitoring action that doesn’t require an evaluation
Mon{ | Student takes the initiative of evaluating their knowledge, learning or the relevance of the content
they are reading, and evaluates correctly
Mon, | Student takes the initiative of evaluating their knowledge, learning or the relevance of the content
they are reading, and is wrong in their evaluation
Mon?2 | Student takes the initiative of performing a monitoring action that doesn’t require an evaluation
Quizt | Student passes a page or subgoal quiz (more than 66% of correct answers)
Quiz~ | Student fails a page or subgoal quiz (less than 66% of correct answers)
Str, Student is prompted to deploy a strategy to self-regulate
Strategy Str,, Student takes the initiative of using a strategy to self-regulate
Notes | Student takes or checks notes using the embedded interface or a paper-based electronic notepad

be referred to as cluster L (for low), cluster 2 as cluster H
(for high) and cluster 0 as cluster M (for medium). The fact
that exactly three (as opposed to any other number) clus-
ters were extracted might sound unsurprising, but comes
from the fact that it was the best partition of the subjects
in the 13-dimension space considered.

5. DIFFERENTIAL SEQUENCE MINING
5.1 Method principles

To identify important activity patterns in a comparison be-
tween student clusters, we employ a differential sequence
mining technique [?]. This technique uses sequence mining
and two different measures of pattern frequency to identify
differentially frequent patterns between two sets of action
sequences. Differential sequence mining combines frequency
measures and techniques from sequential pattern mining [?],
which determines the most frequent action patterns across
a set of action sequences, and episode mining [?], which de-
termines the most frequently used action patterns within a
given sequence.

The sequential pattern mining frequency measure (i.e., how
many sequences/students exhibit the given pattern) is used
to identify patterns common to a group of students. We refer
to this as the “sequence support” (s-support) of the pattern,
and we call patterns meeting a given s-support threshold
s-frequent. In this analysis, we employ an s-support thresh-
old of 0.5 to focus on patterns exhibited by at least half
of a given group of students. The episode mining frequency
(i.e., the frequency with which the pattern is repeated within
an action sequence) is important for assessing the extent to
which a student relies on a particular pattern of activities.
For a given student, we refer to this as the “instance sup-
port” (i-support), and we call patterns meeting a given i-
support threshold i-frequent. To calculate the i-support of
a pattern for a group of students, we use the mean of the

pattern’s i-support values across all traces in the group.
The differential sequence mining technique first uses a se-
quential pattern mining algorithm to identify the patterns
that meet a minimum s-support constraint within each group
[?]. To compare the identified frequent patterns across groups,
we calculate the i-support of each pattern for each student
(in each group). Using a t-test, we filter the s-frequent pat-
terns to identify those for which there is a statistically signif-
icant difference in i-support values between groups. Com-
paring the mean i-support value for each pattern between
groups then allows us to focus the comparison on patterns
that are employed significantly more often by one group than
the other.

This comparison produces four distinct categories of fre-
quent patterns: two categories where the patterns are s-
frequent in only one group, illustrating patterns primarily
employed by the respective groups, and two categories where
the patterns are common to both groups but used signifi-
cantly more often in one group than the other. The patterns
in each of these qualitatively distinct categories are (sepa-
rately) sorted by the difference in mean group i-support’ to
focus the analysis on the most differentially frequent pat-
terns [?].

5.2 Application to the data

In order to identify patterns more closely related to changes
in students’ knowledge and understanding, we decided to fo-
cus mainly on clusters H and L, as defined in section 4.2.2.
Moreover, to further identify the patterns most character-
istic of students in cluster H (resp. L) we identified dif-
ferentially frequent patterns with respect to the other two

'Even though a pattern may not be s-frequent in a group
of action sequences, it can still occur in some sequences in
the group, so an i-support value can be calculated (or the
i-support is 0 if the pattern does not occur in any trace in
the group).

Proceedings of the 5th International Conference on Educational Data Mining 69



clusters M and L (resp. M and H) in a secondary analysis.
We employed an s-support threshold of 50% in this analy-
sis, to consider all the patterns that were exhibited by at
least half of the students in a given cluster, and a standard
value of 0.05 for the t-test cutoff p value. We tried to pre-
liminarily group sequences of identical actions together, but
the results obtained were not very different from the ones
without grouping, as the data extracted do not display long
sequences of similar actions — therefore, those results are
not reported here. Similarly, although we also considered
the possibility of using gaps of one or more actions when
identifying patterns, we discarded this analysis because the
frequency of events collected in the log is low, which means
that even a gap of only one action could mean that two ac-
tions of a pattern are actually separated by a rather long
period of inactivity.

5.3 Results

The Table ?? displays the patterns with the highest differ-
ence of S-support between clusters H and L (positive value
in column 3) as well as between clusters L and H (negative
value in column 3), provided that difference is statistically
significant (i.e. a t-test p value below 0.05 in column 4).
It also displays a selection of interesting patterns, which
differed in a statistically significant way between the two
clusters. Columns 6 to 11 provide the results obtained for
that selection of patterns using two different samples of stu-
dents: first (columns 6 to 8), cluster H alone and a merge
of clusters L and M, and then (columns 9 to 11), cluster L
alone and a merge of cluster H and M. Columns 5, 8 and
11 show, for the two considered samples, if only one or both
of them were having a s-support above 50% for the consid-
ered pattern. Values N/A are used when the pattern is non
statistically significant for the two considered samples.

The following observations can be made:

— According to pattern 1, when prompted to use a strategy
(regardless of the one suggested by the agent), students in
cluster H reacted by taking notes more often than students
in cluster L. We already knew that students in cluster H had
received significantly more prompts from the system, and
taken less notes overall than those in cluster L (but checked
them more often). This pattern seems to suggest that the
reason might be that the notes they were taking mainly came
from prompts from the agents. Moreover, since when they
type a summary, students are offered the possibility to add
it to their notes, it appears that students from cluster H
must have preferred that strategy, which also would explain
why they spent less time with the note-taking interface open
(since the summary is typed in a different text box, and the
note-taking interface is opened only to add the already typed
text). Finally, the fact that the difference for this pattern is
significant for cluster H vs. L, H vs. M&L and H&M vs. L
indicate that the degree to which one relies on the prompt
for notes or summaries to take notes is directly correlated to
the belonging to one of the three clusters (i.e. this behavior
is observed more in cluster H than in M, and more in M
than in L).

Similarly, pattern 8 indicates that after a note-taking event,
students from cluster H often moved on to another relevant
page, which they read for an extended period. Pattern 5,
which is a combination of patterns 1 and 3, confirm the idea
that students from cluster H had a very methodical approach
to navigating through the content: they selected a relevant

page, read it until being prompted by the agent to take notes
or summarize it, performed that action, and then moved on
to a new relevant page. Incidentally, it also indicates their
effectiveness in identifying a page relevant to their current
subgoal simply from its title (since that is all they can see
before opening it). This latter hypothesis is itself reinforced
by the observation that patterns 10 and 11, relative to a
brief visit on an irrelevant page or to a succession of brief
visits to irrelevant pages, is characteristic of students from
clusters M and L, as opposed to students from cluster H who
seem to not even need to open the pages to figure out they
are irrelevant to their current subgoal.

— Pattern 2 simply confirms what we already knew about the
tendency of student in cluster H to have answered correctly
more often to intermediate quizzes (for a page or a subgoal).
It also significantly distinguish members of cluster H from
those in cluster M&L considered together.

— Patterns 4 € 7 are relative to pages viewed when the
students did not have any active subgoal set. Pattern 4
indicates that students in the cluster H have visited more
pages for a long time without having a subgoal set, which
is confirmed by pattern 7 which also indicate an alternation
between short and long reads when no subgoals were set. As
we also know that students from cluster H attempted more
subgoals overall than students in the cluster L, it cannot
mean that they have simply refused to set additional sub-
goals once they had finished their original ones (e.g., in an
attempt to get rid from the system prompts and feedback),
but rather that: a) they might have spent some time review-
ing pages already read before taking the posttest, and/or b)
instead of setting a final subgoal when they did not have
much time left, they took some time to review the pages
they had not yet explored.

This hypothesis can be confirmed by looking at the tempo-
ral distribution of those two patterns: for students in cluster
H, the median time is of 108 and 112 minutes (for an overall
session of approximately 120 minutes), which means that
it’s during the last 15 minutes of their learning session that
students were displaying that kind of browsing behavior,
clearly distinct from the ones they had displayed earlier in
the session.

— Pattern 6 indicates that students in cluster H seemed to
more often estimate properly their level of understanding of
the content or the relevance of the page they were visiting
when it was relevant for their current subgoal. While this
pattern is only marginally significant when comparing clus-
ters H and L, it is statistically significant when comparing H
to M&L, confirming that it is specific of students in cluster
H. It tends to show that not only other students had diffi-
culties to identify the relevance of a page from its title, but
that even once they had been able to spend some time read-
ing its content, they were less prone to correctly evaluate its
relevance or their understanding of it.

This hypothesis seems to be confirmed by the complemen-
tary pattern 8, which indicates that students from cluster L,
when they were on a page irrelevant for their subgoal for a
long time and got prompted to evaluate its relevance (the
only prompt they can get on a non-relevant page), tended
to be wrong in their evaluation.

If we consider again the temporal distribution of those two
patterns, we can notice that the median time, for students in
cluster L, is of 50 and 45 minutes, i.e. less than the median
time of the session (60 minutes). We can therefore assume
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Table 3: Significant and most frequent patterns differentiating clusters

% | Pattern Cluster H vs. L Cluster H vs. M&L Cluster H&M vs. L
I-Supp.| t-test | S-Freq. [I-Supp.| t-test | S-Freq. |[I-Supp.| t-test | S-Freq.
Diff |(p value)| Cluster | Diff |(p value)| Cluster | Diff |(p value)| Cluster
1 Str,< Notes 3.93 | 0.002 | Both 3.28 0.005 | Both 2.30 | 0.007 | Both
2 Quiz™ 3.10 0.036 | Both 2.09 0.046 | Both 2.30 0.086 Both
3 Notes~< Readl1L 2.86 | 0.004 | Both 2.35 0.012 | Both 1.71 0.012 | Both
4 Read? 2.63 | 0.039 H 2.27 | 0.050 H 1.48 0.107 H&M
5 | Str,< Notes< Read] 2.38 | 0.001 | Both | N/A N/A N/A 1.27 | 0.017 | Both
6 Read;“—< MonF 1.96 0.065 Both 1.96 0.048 | Both 0.85 0.304 Both
7 | Read?< Read? 1.33 | 0.050 | H 123 | 0061 | H | N/A | N/A | N/A
8 | Read, < Mon, 0540039 | L | N/A | N/A | N/A | -0.25 | 0.360 L
9 | Read! < Read, 0650012 L | N/A | N/A | N/A [-053 | 0.038 | L
10 | Read < Reads N/A | N/A | N/A | -1.77 | 0.030 | M&L | N/A | N/A | N/A
11 | Reads -3.49 0.149 Both | -2.56 | 0.036 | Both | -2.39 0.321 Both

that, at least, students from cluster L have been slightly
improving their capacity to evaluate their learning and the
relevance of a page over time.

— Pattern 9 confirms the previous observation that students
in cluster L really had issues to see the relevance of a page
with regard to their subgoal: they did not simply end up
going to random pages that were irrelevant to their subgoal,
or ignored the subgoal they had set, but instead, they ap-
peared to sometimes skim through a relevant page, miss its
relevance, and end up instead spending a long time on a
page that wasn’t irrelevant to their subgoal. This tendency
is shared, to some extent, with students from cluster M,
as the results of clusters H vs. M&L are also statistically
significant.

— A final observation can be made regarding the tendency
of a student to obey system prompts: if we run the same
analysis without distinguishing the correctness of the eval-
uation of students monitoring (i.e. by considering actions
Mon, = Mon} U Mon, and Mon, = Mon} U Mony ), we
observe that the pattern Mon,~< Mon,is significantly more
frequent for students in cluster H, which tends to indicate
that when prompted to perform an optional monitoring ac-
tion (most likely, a MPTG, since otherwise there should be
a Quiz action following the Mon,), they are more prone to
accomplish the suggested action.

6. DISCUSSION

To summarize the results obtained in the previous section,
we can conclude that students from cluster H are more in-
clined to follow the system prompts and to follow the sug-
gestions to take notes or summarize what they have just
learned. Further, they are more prone to keep applying the
same method for each page they read, are better at iden-
tifying a page relevant to their subgoal from its title, and
are more strategic in their preparation for the posttest (e.g.,
they usually use their last 10 to 15 minutes to briefly review
various pages). From an ITS design point of view, the fact
that these students used system prompts to effectively reg-
ulate their learning tends to indicate that the frequency of
Strategy prompts should probably not be reduced. However,
as they seem good at distinguishing relevant pages from ir-
relevant ones, they might need less scaffolding regarding the
Monitoring processes. On the other hand, students from
cluster L appear particularly unable to identify pages rele-

vant to their subgoal, which is probably linked to their lower
prior knowledge. For them, it seems that additional scaffold-
ing from the system would certainly be beneficial. However,
even when prompted to monitor their learning, they tend to
be mistaken in their evaluation. Therefore, it could be nec-
essary to go further than the methods currently employed to
suggest ways in which they can better evaluate the relevance
of a page.

7. CONCLUSION, FUTURE DIRECTIONS

In this paper, we have presented a two-step analysis of data
collected with an I'TS designed to foster self-regulated learn-
ing. First, the clustering of students using Expectation Max-
imization has allowed us to distinguish three clusters of stu-
dents with different prior knowledge on the topic, learning
performance, and strategies. We then described a set of ac-
tions extracted from the system interaction trace log and
employed a sequence mining technique to identify differen-
tially frequent activity patterns. We used the identified pat-
terns to characterize students from different clusters with
particular emphasis on those that had the highest and the
lowest learning gains. We have been able to identify patterns
of actions that suggest students with high prior knowledge
and high learning gains tended to be more compliant with
system prompts, using them to validate their progression.
Further, these students were better at identifying pages rel-
evant to their subgoals from the page title and tended to
have a phase at the end of the session during which they
reviewed the content in preparation for the posttest.

The analysis performed here will allow us to more accu-
rately identify the group to which a student belongs during
their use of MetaTutor and dynamically adapt the scaffold-
ing and feedback mechanisms accordingly. Another future
research direction will involve the use of other channels of
data collected while students use MetaTutor (eye-tracking
information, affective data extracted from video captures,
and think-aloud data) in order to enhance our identification
and understanding of phases when low-performing students
are unable to properly monitor their learning.
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ABSTRACT

Although ITSs are supposed to adapt to differences among
learners, so far, little attention has been paid to how they might
adapt to differences in how students learn from help. When
students study with an Intelligent Tutoring System, they may
receive multiple types of help, but may not comprehend and make
use of this help in the same way. To measure the extent of such
individual differences, we propose two new logistic regression
models, ProfHelp and ProfHelp-ID. Both models extend the
Performance Factors Analysis model (Pavlik, Cen & Koedinger,
2009) with parameters that represent the effect of hints on
performance on the same step on which the help was given. Both
models adjust for general student proficiency, prior practice on
knowledge components, and knowledge component difficulty.
Multilevel Bayesian implementations of these models were fit to
data on student interactions with a geometry ITS, where students
received on-demand problem-relevant help ranging from first-
level hints that facilitate application of principles to specific and
immediately actionable bottom-out hints. The model comparison
showed that in this dataset students differ in their individual hint-
processing proficiency and these differences depend on hint
levels. These results suggest that we can assess specific learning
skills, e.g., making sense of instructional text, and in future work
we may be able to remediate and improve such skills.

Keywords

Effect of help on performance, individual differences, learning
skills, multilevel Bayesian models, Item Response Theory

1. INTRODUCTION

In virtually all imaginable learning settings, when students work
through problems, they may seek help. But are all students able to
benefit from help equally, and are there meaningful differences
across types of help?"

Our long-term goal is to answer this and other questions related to
the nature of the learning skills that students bring to bear when
working with educational technologies, as well as whether or not
there are significant individual differences in these learning skills.
Seeking help and learning from help [1, 19] may be one set of
such learning skills, which can include both the metacognitive
monitoring needed to determine when soliciting help benefits
learning, as well as making sense of instructional text in the
context of problem solving. If individual differences in learning
skills exist, and if they can be assessed, an Intelligent Tutoring
System may be able to adapt to these differences, to provide
students with appropriate metacognitive support, and perhaps
even to improve learning skills.
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In this project, we aim to determine whether or not there are
significant variations in students’ abilities to make use of help. As
a first step, we examine how well students can use help to solve
the task at hand (i.e., the problem step they are working on).
While the effect of help on learning, rather than performance, is of
primary long-term interest, if a student cannot make good use of
help “locally” (on the current step), it is unlikely such help will
enhance learning (i.e., enhance performance on a future related
task). [11] In other words, studying the “local” effect of help on
performance is useful, because any beneficial effect of help on
performance may be a harbinger of longer-term effect on learning.

Specifically, our research questions are: How well do students
perform after receiving hints, and does performance after hints
differ across hint levels? Are there individual differences in how
effective hints are among students, and if so, are the individual
differences consistent within each student across hint levels? Are
the individual differences, if any, related to general student
proficiency in solving problems?

We analyze data generated in the course of another study, and use
statistical methods to account for potentially confounding
variables, including general student proficiency, prior practice on
knowledge components, and knowledge component difficulty.

One prior effort to evaluate the effect of hints on same-item
performance is by the developers of the Mastering physics ITS. In
[12], a 2PL Item Response Theory model was fit to performance
on first attempts, after which separate models were fit to each of
several paths through the ITS. Unlike that effort, our work
examines individual differences with various types of help, and
addresses potential confounds due to variability in prior practice
and due to difficulty of knowledge components (rather than just
unique problem items). We also analyze a larger dataset, and fit
parameters relating to various types of help simultaneously in a
Bayesian Markov Chain Monte Carlo (MCMC) framework to
account for uncertainty during estimation.

Mining data from the Geometry Cognitive Tutor (an earlier
version of the tutor whose data is analyzed in the current study),
we showed that asking for help is beneficial for local
performance. [1] Specifically, asking for help after one or two
errors on a step was compared to attempting to solve the step
again. Asking for help, compared to continued trying, was
associated with fewer subsequent errors on the given step and a
reduction in the time needed to complete the step. However, [1]
did not look into individual differences in students’ ability to take
advantage of help to improve performance on problem steps, and
did not investigate differences between hint levels.

Another related study [7] presents two models, a learning
decomposition and an extension to Bayesian Knowledge Tracing.
The latter is particularly interesting in that it aims to distinguish
the effect of help as a performance scaffold from its effect on
learning. However, neither model addresses multiple hint levels or
individual differences in hint-processing proficiency.
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Table 1: Examples of hint messages

Knowledge
Component

First Hint

Second Hint Third Hint

Triangle-Sum-
Answer

Triangle-Sum-
Reason

Separate-
Complementary-
Angles-Answer
Angle-Addition-
Answer

In this problem, you have triangle SOL. You
know the measure of two of the angles in this
triangle, namely, angles DSO and OLD.

In this problem, you have Triangle WAR. You
know the measure of two of the angles in this
triangle, namely, angles ARO and OWA.

The problem statement says that angles 2XSD
and £JNT are complementary angles.

Angles DGF and MGD are adjacent angles.
This means that they share a side (namely,
GD) but do not overlap. Together they form
£MGF.

m£SOL = 180 - mz«DSO -
m«£OLD.

The sum of the measures of the interior
angles of a triangle is 180 degrees.

You can find the measure of
Angle WAR by applying the
“Triangle Sum” theorem.

msXSD =90 - mzJNT.

The sum of the measures of the interior
angles of a triangle is 180 degrees.

Complementary angles are angles whose
measures add up 90 degrees.

When an angle is formed by two or more  [No third level hint.]
adjacent angles, the measure of that angle

is equal to the sum of the adjacent angles.

Therefore, m£ZMGF = m£DGF +

m£MGD.

An exploratory analysis of our dataset (Section 2) shows that
selection effects confound a naive approach that merely tallies
successful and unsuccessful performance with and without hints.
Section 3 proposes two logistic regression models that take these
confounds into account. Section 4 describes the results of fitting
multilevel Bayesian implementations of these models to our data.
The final sections discuss the results, limitations, contributions of
this research, and future directions.

2. EXPLORATORY DATA ANALYSIS

The study that produced the dataset analyzed here took place at a
vocational school [17]. Three 9™ grade classes of 51 participating
students, led by the same teacher, used Geometry Cognitive Tutor
as part of regular instruction about twice a week for five weeks.
Students worked through problems, most of which contained
multiple steps. There were 170 distinct problems, consisting of
1666 problem steps. Problems were assigned to students
according to a mastery criterion based on the Knowledge Tracing
[8] algorithm in the Cognitive Tutor software, i.e., each student
only saw a subset of the 170 problems.

Using this software, a student may make multiple attempts to
complete a problem step. Completing a step requires a correct
response; giving a correct response on the first attempt means that
this student will never see a hint. On each attempt, a student may
supply a correct answer, an incorrect answer, or may ask for a
hint. The first hint that the student sees is called “help level 17, the
second is “help level 27, and so on to the final (“bottom-out™)
hint, which in our dataset is help level 3 or 4. (Table 1) For
students who do not know how to respond, the bottom-out hint
often states exactly what the response must be.

In general, a first hint points out relevant problem features, and it
defines key terms, e.g., “vertical angles.” Second hints state the
problem-solving principle that is applicable given the features
pointed out in the first hint, in terminology consistent with the
first hint. Third hints derive an expression for the sought angle
measure (in terms of known angle measures). Using this
expression, the angle measure can be found in a straightforward
manner, by first substituting in the values for the angle measures
referenced in the expression, and then evaluating the resulting
arithmetic expression. The rationale for sequencing hint levels
from less specific to more specific was to try to give the student as

much opportunity as possible to “generate” the step, which may
include retrieving a relevant problem-solving principle, as
discussed in [4] and [3].

Interaction with such hint sequences may lead some students (e.g.,
those who are relatively less proficient) to request hints more
often than others. Similarly, some problem steps (e.g., those that
are challenging) may lead to hint requests relatively more often.

As a measure of student proficiency, we consider how often a
student responds correctly to a problem step on the first attempt.
Specifically, a crude measure of proficiency is the success rate on
first attempts, i.e., the proportion of all problem steps that the
student answered correctly on first attempt out of all those first
attempts where a student gave a correct or an incorrect response
(omitting first attempts where the student requested a hint).

Given this measure, is proficiency related to use of hints? For
each student, the hint use rate is the proportion of problem steps
on which this student requested one or more hints out of all
attempted problem steps. The correlation of student proficiency
and hint use rate is 7=-0.84, i.e., hints are more likely to be
requested by less proficient students.

Similarly, as a measure of problem step difficulty, we take the
proportion of first attempts on the step to which a student gives a
correct response out of correct and incorrect first attempts (again,
omitting first attempts that are hint requests). Is step difficulty
related to use of hints? The rate of hint use on a problem step is
the proportion of students who request any hints on the step out of
all students who attempt the step. The correlation of step easiness
(1 - step difficulty) and rate of hint use is 7=-0.68, i.e., hints are
more likely to be requested on steps that are harder.

Do hints of different levels differ in their effect on performance?
If requesting a hint counts as unsuccessful performance (Table 2,
top row), the success rate drops from first attempts (78%) to
attempts after first and second hints (21% and 37%). However,
when students request a first hint, the next action that they are
most likely to perform in the tutor is to ask for a second hint (87%
of the time). Students ask for a third hint as the likely next action
after the second (88% of the time). Not counting hint requests
(Table 2, bottom row), performance after the first hint (68%) is
lower than after the second and third hints (83% and 88%).
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Table 2: Success rates after hints, counting Correct, Incorrect,
and Hint outcomes

Success Rate On First After After After
Formula Attempt 1* Hint 2" Hint 3" Hint

C/(C+I+H) 8% 21% 37% 82%

c/(C+D) 83% 68% 83% 88%

To sum up this exploratory analysis, we find that hints are more
likely to be requested by less proficient students; hints are more
likely to be requested on steps that are difficult; and success after
first hints is less likely than after second and third hints.

The exploratory analysis is appealing, but possibly misleading.
First, what is “student proficiency”? A student who is proficient
may simply have had more opportunities to practice the relevant
skills, which would cause a selection effect for this analysis, or
there may be additional differences in student ability that cannot
be observed directly. Second, while an ITS may tutor all students
on the same skills, it may assign students different problems. If so,
skills rather than problem steps would be the right grain size for
analysis. Third, since students see different problems, and
problems involve different hints, there could be selection effects
in terms of how we measure performance after hints for different
students. Thus, it would be desirable to control for proficiency,
prior practice, selection effects related to problem difficulty, and
to take into account a model of skills in the domain. As described
in the following section, we can use a logistic regression to take
these elements into account.

3. METHODS

We fit two models to these data, both extending the Performance
Factors Analysis (PFA) model. [14] PFA is a logistic regression
that is fit to correct and incorrect student responses.

logit(Pr(Y = 1)) = Z Bj +vjsi; +pifij)

jEKC

Equation 1: Performance Factors Analysis (PFA) model

Under PFA, the probability of a correct response by a pupil on a
problem step, i.e., of Y = 1, is determined by a linear combination
of parameters related to the knowledge components (KCs) that are
thought to be relevant to that step. Parameter f; denotes the
easiness of KC;. Parameters y; and p; are weights on the observed
frequency of successful (s; ;) and unsuccessful (f; ;) prior practice
by the same learner i on the same KC j. The innovation in PFA
was to separate y; and p;, the effects of successful and
unsuccessful prior practice, rather than collapsing these effects as
one parameter.

Table 3: Example of instances in our dataset

Pupil Item Attempt  Prior Practice Outcome
5 Prob1.St3 1 Ss50=3; F5so=1 First hint
5 Probl.St3 2 S50=3; F5so=1 Incorrect
5 Probl.St3 3 S50=3; F5so=1 Correct

Our interest is in learner performance in the presence of help on
attempts after the first. The original use of PFA was to model
unassisted performance; in PFA, the outcome variable Y and the
prior practice counts s; ; and f; ; only represent first attempts on a
problem step, not subsequent attempts. By contrast, we fit our

models to outcomes both at first attempts and at each attempt that
was the next action after a hint (but the prior practice counts still
represent only first attempts).

Consider the example in Table 3, where a student (pupil 5) makes
three attempts on the same item (problem 1, step 3). When the ITS
initially presents the student with this step in the course of solving
the problem, the student requests a hint. This hint is at the first of
several levels of help (usually 3 or 4) that the ITS may offer on a
problem step. According to the knowledge component model for
the problems in this dataset, this step has a single relevant KC
with KC id=9. This student has had prior practice opportunities
with this KC: three were successful, and one was not. Counts of
prior practice are based on first-attempts only; thus, when this
student practices this KC on a future item, prior practice counts
will be S5=3; Fs¢=2, because the outcome of the first attempt in
this example was unsuccessful. This example yields two instances
to be input to the logistic regression, corresponding to the first 2
attempts. Both attempts are coded as having the outcome 0 (only
correct outcomes are coded as 1). For the purpose of estimating
the help-level parameters in our model, the first-attempt instance
is coded as not following a help message, and the second-attempt
instance is coded as following a hint at help level 1. We assume
that the effect of a hint should be observable in the next attempt
on the same step. Because attempt 3 follows an input rather than a
hint display, its outcome is not directly attributable to a hint, and
this attempt does not yield an instance. Of the 28777 transactions
in this dataset, 17515 were first attempts, 4466 attempts were the
next action after some kind of a hint, and the rest were not entered
as instances because they were not next actions following a hint.

The first model, ProfHelp, examines how help levels differ in
their effect on performance, but does not consider individual
differences in hint processing among students.

loglt(Pr(Y = 1)) = gp + ﬂ.}z + Z (,3] + y]'Si']' +p]fl,])
JEKC

Equation 2: Proficiency and Help (ProfHelp) model

The innovation in this model is the A, parameter. One A, is fit for
every attempt after a hint. (Because help may be requested as a
first attempt, but never prior to a first attempt, Ay = 0.) One of
A1, .., A4, respectively, represents the contribution of having just
seen a first, second, third or fourth hint to the probability of
successful performance on this subsequent attempt. Another view
of A, is that it represents average proficiency in processing level-
hints. Parameters other than A; control for student proficiency,
problem step difficulty via a decomposition on knowledge
components, and prior practice on knowledge components. In
other words, the effect of having just seen a hint is not
confounded by the findings that hints are more likely to be
requested by less proficient students and on more difficult items
(Section 2), nor by the intuition that a lack of prior practice can
lead to more frequent hint requests. Finally, one 6,, parameter, as
in Item Response Theory (IRT) models, is fit for every student p,
representing the baseline proficiency of that student.

loglt(Pr(Y = 1)) = gp + Ap,fz + Z (,B] + ]/jsi,j + pjfl'])
jeKC
Equation 3: ProfHelp-ID (Individual Differences) model

The second model, ProfHelp-ID, considers that the same help
level may have different effects on different students. The
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difference from the ProfHelp model is in the A,), parameter,
where the subscripts p, h indicate that a separate parameter is fit
for each pupil in each help level. This represents the pupil’s
individual hint-processing proficiency. These parameter estimates
are pooled across pupils within a single help level via a multilevel
model (bold typeface denotes hyperparameters):

Apn~N(Ay, 07)

For instance, the ProfHelp-ID model stipulates that 4, ,, i.e., each
per-pupil estimate of the effect of responding after a second hint
(h=2) is drawn from a distribution with mean 4, and variance o3
that is shared across pupils. In this way, information on each pupil
helps determine a baseline effect of seeing a second hint, and the
baseline effect helps constrain the estimate of the per-pupil
individual differences.

Partial pooling is appropriate for this problem not only for
statistical parsimony, but also because it lets us be conservative in
making a claim about the presence of individual differences.
(Partial pooling is similar to the idea of a random effect, where
values are assumed to come from a broader sample of interest,
rather than a fixed effect, where all values of interest are
represented.) The alternative, a no-pooling model, would treat
pupils as independent of one another. This means that first, the
no-pooling model could detect individual differences even when
the differences are small (i.e., not meaningful), and second,
unpooled individual differences would be hard to quantify
because there may be very few observations for any particular
pupil at a given help level. The partial pooling pulls all individual
difference estimates towards the mean, reducing the effect of
small differences, and it helps compensate for data sparsity by
using the hyperparameter estimates as prior information for the
parameters. (Note that model ProfHelp is the complete-pooling
version of ProfHelp-ID, in that ProfHelp does not allow for
individual differences in hint processing.)

The models were fit using the JAGS software for Bayesian
modeling [15], which is an effective platform for fitting Item
Response Theory and similar models (e.g., [9]). For each model,
we ran 4 sampling chains, with 400 adaptation iterations
(discarded). Inferences below are based on every 10" draw
(thinning) of 1000 iterations. Model convergence and mixing
across chains were verified by visual examination of
autocorrelation, trace and density plots.

4. RESULTS

As multilevel Bayesian models, ProfHelp and ProfHelp-ID may
be compared in terms of Deviance Information Criterion (DIC).
DIC is similar to AIC in that it rewards models that fit the data
well but penalizes an increase in the number of parameters in the
model. [16] DIC takes into account that in Bayesian models with
pooling, the effective number of parameters is itself estimated as a
posterior distribution of a random variable.

Table 4: Model-fitting results

Model Deviance Effective DIC
Parameters

ProfHelp 22013 135 22149

ProfHelp-1D 21741 220 21962

As Table 4 shows, the ProfHelp-ID model is preferable to the
ProfHelp model on this dataset in that the improvement in
prediction accuracy outweighs the increase in the number of

Student, by ascending 6,

Figure 1: Medians and 95% CI for 8,, under ProfHelp-ID

parameters. Relative to the ProfHelp approach of fitting a single
parameter across all students within a help level (complete
pooling), the partial-pooling approach of ProfHelp-ID finds that
there are individual differences in student performance after a hint
at each help level. This finding is despite the fact that ProfHelp-ID
is nonetheless more conservative than a no-pooling model.

The 6, proficiency parameter (Figure 1) is positive for most of the
students, reflecting the prevalence of successful first attempts in
this dataset (the model predicts that a student for whom 6, = 0
will answer correctly on 50% of first attempts, given that the other
terms are zero). The 6, parameter is entered into the model for
both first attempts and later attempts, and both could affect its
estimate. However, first attempts are much more frequent than
later ones, and 4, ; provides an intercept for each pupil on the
later attempts. This effectively makes 6, a constant baseline for
Ap,n that is unaffected by the later attempts.

ProfHelp-ID measures the effect of having seen a hint on the
immediately preceding attempt as a baseline across all students
(the A, hyperparameter), and as a deviation from this baseline for
every pupil, 4, . The improved fit of ProfHelp-ID over ProfHelp
implies that the mean effects A, are correct only on average, not
for all students. As Figure 2 shows, the mean effect, in logit units,
of having just seen a hint (solid black vertical line in each of the
three frames) are approximately -2.4, -1.7 and 0.5 for first, second
and third help levels, respectively.® These differences are
significant, as indicated by the non-overlapping 95% credible
intervals (grey vertical lines on the left and right of each black
line). The mean effects of first and second hints are negative,
which implies that, on average, the performance of all students,
proficient or not, and on all problem steps, easy or difficult, is
lower after these hints than would be predicted based only on
overall proficiency 6,. The effect of third hints is only somewhat

% A parameter in a logistic regression adds to the model’s estimate
of success on a given instance. To interpret a coefficient, a rule
of thumb is to divide by 4. For example, if 8; = 2, that adds 0.5
to the probability that model will predict success on every
attempt by pupil 1.

As a check on the model fitting, the estimates of 4, from
ProfHelp were similar, -2.3, -1.5, and 0.5. There were few
observations for performance after a fourth hints, so we omit
discussion of 4, 4 and 4.
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positive. Converted to probabilities, effects of first and second
hints at -2.4 and -1.7 logit units, respectively, implies that a
student with median proficiency on this dataset (6, = 1.4), on a
problem step of average difficulty (¥ jexc B = 0), and with no
prior practice on relevant KCs, is predicted to respond correctly
27% of the time after first hints and 42% of the time after second
hints. These predicted correctness rates are higher than those of
the “naive” analysis (21% and 37%, Table 2) that does not take
into account proficiency and other confounds. While these rates
are low, they are nonetheless an improvement over the students’
failures to answer correctly on the first attempt.

An unexpected finding is that general proficiency 8, is negatively
correlated with hint-processing proficiency 4, : for first, second,
and third hints, r=-0.48, r=-0.54, and r=-0.41, p < 0.01 for all. The
more proficient the student, the less likely it is that the student
benefits from a hint. This relationship is also visible in Figure 2,
where each frame is ordered by ascending 6,. Hint-processing
proficiency of first hints 4,; is also correlated with hint-
processing proficiency of second hints A, ,, 7=0.34, p<0.05; other
hint-processing proficiencies are uncorrelated with each other.

5. DISCUSSION

We aimed to understand the nature of learning skills such that we
can support learning more effectively. We found that hints levels
differed in their effect on performance, and only level-1 and level-
2 hint-processing proficiencies correlated with each other.
Further, there were individual differences in hint-processing
proficiency, and general proficiency was negatively correlated
with hint-processing proficiency.

Given how hint levels are implemented (Table 1), it is not
surprising to see better performance on the next attempt after the
bottom-out hint level, compared to the next attempt after other
hint levels. As mentioned, all that correct performance following a
bottom-out hint requires is algebraic substitution and arithmetic,
which are likely to be mastered skills for our student population.
By contrast, correct performance after first and second hint levels
requires interpretation of mathematical text that refers to
potentially unmastered geometry concepts and principles. To
solve problems in the geometry unit in this dataset, one needs to
retrieve a general geometry principle, to apply the principle to the
problem by mapping it to specific problem features, and to
perform algebra and arithmetic according to the principle. Before
the principle can be retrieved, salient problem features need to be
identified. Level-1 hints tend to point out the salient problem
features and define key terms. Level-2 hints state what principle is
applicable given the salient features pointed.

The negative effects of level-1 and level-2 hints are consistent
with prior work on hint effectiveness. [1] As pointed out in [7],
“students request help on [items] on which they have low
knowledge. The help thus acts as evidence of a lack of knowledge,
rather than a direct cause of that lack of knowledge.” Further,
neither short nor long hint reading times are positively associated
with learning. [18] Another explanation for the negative
coefficients for our dataset in particular is that the logistic
regression is effectively forced to estimate these very negative
effects given the prevalence of positive 8, values (which are in
turn due to the prevalence of successful first attempts).

Prior work suggests that it can be fruitful to consider how tutor

behavior may differentially affect students across varying levels
of KC mastery. [2] The ProfHelp models are based on the

After First Hint

After Third Hint
=1 £

Student, ordered by ascending proficiency 6,

-4 -3 -2 -1 0 1 2

Figure 2: Medians and 95% CI for 4, under ProfHelp-ID;
median of A (black vertical) and 95% CI (grey vertical)

psychometric concept of latent traits that is inherent to Item
Response Theory. IRT models are said to be unidimensional if
they represent proficiency with one parameter 6, per student.
ProfHelp-ID relaxes this unidimensionality assumption via
parameters A, per student for attempts after hints, but retains it
within each type of attempt (first attempt and after each hint
level). Thus, the dimensions of proficiency in ProfHelp-ID (first
attempts and help levels) may not represent proficiency ideally.
The ProfHelp-ID estimate of the probability of success will be in
error when performance within this type of attempt is
multidimensional, e.g., if an otherwise easy KC unexpectedly
challenges a proficient student (or, vice versa, if a student with
low proficiency succeeds quickly on a generally difficult KC).
Having found individual differences within different attempt
types, we speculate as to the nature of the learning skills that may
be involved in interpreting hints and using them to support correct
performance. This analysis will inform future model refinements.

Success after level-1 hint with good knowledge of relevant KC.
A student who is close to KC mastery did not succeed on the first
attempt on a step, but did on the next action after a level-1 hint.
The failure on the first attempt may have been an “identification
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slip”, i.e., a slip in identifying the relevant problem features that
was due to random circumstance rather than lack of knowledge, or
to high cognitive load such as could be expected in a dataset of
quite complex geometry problems that involve multiple steps and
multiple problem-solving principles. Level-1 hints point out
problem features that are relevant to the application of a principle,
but not what principle to use, or how. Because the student
succeeded after the level-1 hint, the student was apparently able to
retrieve and apply the principle (i.e., did not need further hints)
once given the salient features, but required assistance to identify
the salient features. When hints are used to fix “identification
slips,” no hint interpretation skills are needed; the hint serves as
reminder of something the student already knows but failed to
retrieve. The student still applied “principle application skills” to
the extent that the knowledge of how to apply this principle had
not yet been proceduralized or automated.

Success after level-1 hint with little knowledge of relevant KC.
By contrast, an identification slip is not possible for a student with
little knowledge of the relevant KC. Given that level-1 hints state
problem features relevant to the application of a principle, success
after a level-1 hint suggests that this hypothetical student was able
to infer a correct answer from a set of problem features, even
without knowing the rule that connects the features to the answer.
Perhaps Assuming this was not a guess, the student induced a
valid principle from the given example, and then used principle
application skills mentioned above, though a less generous
interpretation would suggest that the student learned shallowly.
Quite an impressive feat of unsupervised inductive learning, with
less than a single example to work with and no outcome given!
How could this be possible? Perhaps this student drew on
additional information sources, e.g., student peers or the textbook.
Perhaps the diagram helps; e.g., once one sees a visual
representation of adjacent angles, the notion that the measure of
an angle made up of adjacent angles is the sum of the two
measures of the adjacent angles seems quite intuitive. Other
geometry knowledge may help as well. For instance, smart
students may be able to infer the vertical angles theorem from the
linear pair postulate.

Success after level-2 hint with good knowledge of relevant KC.
Failure after a level-1 hint followed by success after a level-2 hint
suggests that the student needed to be reminded of the relevant
domain principle. This student should have been able to retrieve
the relevant domain principle from memory given the prior
practice of the KC. What could cause failure to retrieve a
principle? Similar to failure on a first attempt, one cause may be a
mere “applicability slip” in mapping problem features to a known
principle, e.g., due to random occurrence or to overwhelming
cognitive load. Another cause may be that there is a phase in the
normal skill acquisition process in which students have more
trouble recognizing the applicability of rules than in applying
them once cued to critical problem features. In other words, while
in this phase, students need to be reminded of a principle, but can
apply it, especially when also given some key information (as in
the level-1 hint) on how to instantiate the principle. This
hypothesized phase also explains failure after the level-1 hint.

The modest but statistically significant correlation of 4, ; and 4,
suggests that the two hint levels may be linked in how they affect
students, but that there are also some differences. One explanation
for the correlation is that level-1 and level-2 hints would both be
skipped by a student engaged in “help abuse” [19], causing both
level-1 and level-2 hints to be associated a 0 (unsuccessful)

logistic regression outcome. By contrast, bottom-out hints cannot
be skipped, so unsuccessful outcomes after bottom-out hints
would not be confounded with help abuse. Another cause for the
correlation may well the requirement, shared across the level-1
and level-2 hints, to apply a principle, while the requirements of
bottom-out hints, likely mastered by all students, would not
induce a correlation. Finally, the two hint levels may share the
hypothesized phase affecting students with good KC knowledge.

One difference between level-1 and level-2 is that answering
correctly after (only) a level-1 hint requires more domain-specific
knowledge than answering correctly after a level-2 hint. One way
to answer correctly after a level-1 hint is to retrieve the relevant
problem-solving principle from memory, possibly cued by the
problem features pointed out in the hint, and to apply the rule
successfully, helped perhaps by the information provided in the
hint. By contrast, to answer correctly after a level-2 hint, it is not
necessary to retrieve the principle from memory, since the level-2
hint provides a statement of the principle. The student must still
do some work to figure out how the rule applies.

An instance of poor retrieval may be symptomatic of a broader
retrieval deficiency on the part of the student, which would
constitute a learning skill deficiency. Success after first hints
occurred frequently enough (predicted 27% correctness rate for a
student with median general proficiency) that it may be worth
investigating whether such a deficiency could be detected, or even
addressed. Ideally, learners could be supported in overcoming
such a cognitive shortcoming on their own. Students need to apply
general principles to specific problems in many domains (e.g.,
[10]), and it would be interesting to see if such a skill could
transfer.

Success after level-2 hint with little knowledge of relevant KC.
Poor retrieval cannot explain success after a level-2 hint when a
student has had little prior practice on the relevant KC, i.e., when
there is no expectation for retrieval. A level-2 hint states the rule
that applies, but not how it applies. Thus, such successful
performance may indicate that the student is skilled at applying a
somewhat unfamiliar problem-solving principle, when given a
statement of that principle (level-2 hint) and key problem features
that instantiate the principle's applicability conditions (level-1
hint). What remains for the student to do is still rather involved:
apart from understanding the principle, the principle has to be
mapped onto the problem, a process that (facilitated by the level-1
hint) requires dealing with difficult terminology in relating the
general terms in which the rule is stated to the specific problem.

Success after level-3 hint. With respect to the level-3 hints, it
seems unlikely that correct performance after a bottom-out hint
involves important learning skills, aside from possibly a general
tendency to carefully follow very specific instructions.

In sum, this analysis contemplates several hypothesized
metacognitive skills. Success after level-1 and level-2 hints for a
student with high KC knowledge may indicate deficiencies in
identifying salient problem features, mapping a principle to salient
features, and retrieving a principle. Success after level-2 hints for
a student with little KC knowledge may indicate skill in applying
unknown principles (i.e., parsing and mapping—with some
help—of an unfamiliar principle). Our results could be viewed as
implying that different students possess these different learning
skills to different degrees. This interpretation addresses both
possible causes of differences between hint levels and possible
causes of learners’ differences in hint processing. For instance, if
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we could find a way to help students learn to recognize when a
geometry principle applies, this should both improve the
effectiveness of first hints, and reduce unexplained variability
among students in terms of their hint-processing proficiency.
Perhaps if students were given instruction to look for diagram
features that can cue a principle, then on a first hint like “The
problem statement says that angles 2XSD and £JNT are
complementary angles”, they might be better able to interpret the
notion of complementary angles by paying attention to that part of
the diagram. The analysis considered the major findings that hint
levels differ in their effect on performance, that student
proficiencies with level-1 and level-2 hints are modestly
correlated, and that there are individual differences in hint-
processing proficiency.

Finally, we address the finding that general proficiency is
negatively correlated with hint-processing proficiency. One
explanation is that this finding is merely an artifact induced by the
statistical model. In designing the ProfHelp-ID model, we
reasoned that to ascribe an effect to some proficiency with hints
we had to partial out the effect of general proficiency. In fact,
making 6,, a baseline for A, , may overcorrect for any relationship
between general proficiency and hint proficiency. The linear
combination of the two parameters effectively subtracts 6, from
Ap,n» Which means that 4, , contains information on 6,, and that
can induce the negative correlation.* While such a correlation
complicates interpretation of parameter estimates, it would not
invalidate the model fit. A second explanation is that individuals
with a higher proficiency may be less proficient with hints
because they have less practice using them.

One contribution of the ProfHelp models is that they control for
selection effects due to general student proficiency, prior practice
on knowledge components, and knowledge component difficulty.
The models here do not account for other selection effects, which
we intend to address in future work. First, ProfHelp treats all hint
messages at a given level as equally effective, while messages
associated with different KCs may in fact have differential effects
on student performance. (Such an analysis would be the "KC
differences" analogue of the individual differences analysis
presented here.) In this way, we might be able to identify specific
hint messages that are significantly more or less effective than
other messages to inform ITS design. Second, in future work we
intend to relax the unidimensional IRT assumption, i.e., to handle
the case that a KC that the model estimates to be easy may
challenge a student that the model estimates to be proficient.
Third, the ProfHelp models do not account for patterns of use that
students may follow. For instance, in discussing the effect of
level-1 and level-2 hints it would be desirable to account for the
effects of help abuse, e.g., a student clicking through the hints
without reading them. [2, 6] The ProfHelp models do not
distinguish such behavior from spending a long time on each hint,
which may indicate deliberative reflection.

The need for future research is highlighted by the ProfHelp-ID
estimates of effectiveness of hints: 27% and 42% accuracy after
level-1 and level-2 hints, respectively, for a student with median
general proficiency. While even these relatively low levels of
effectiveness improve, by definition, over the students’ failure to

4 To see how this would work, let X and Y be two independent
random normal variables. Let X' <Y —X. By definition,
cor(X,Y) = 0,butcor(X’,Y)~0.71.

answer correctly on the first attempt, there is clearly room to make
hints more effective, and hence a need for research on hints types
and hint processing. The ProfHelp-ID model may serve as a tool
for such research. Given that this model can fit transaction data
from an ITS, one can expect to apply it again in the future to
evaluate alternative hinting strategies.

6. CONCLUSIONS

The results presented here may be said to pose more questions
than they answer, which is appropriate for an early project in a
relatively unexplored area. Significantly, the results show that
hints levels differ in their effect on performance, and that there are
individual differences in hint-processing proficiency. These
findings account for general student proficiency, prior practice on
knowledge components, and knowledge component difficulty via
the ProfHelp and ProfHelp-ID models. The next steps are to
understand the causes of the individual differences, and to try to
detect them automatically.

An additional contribution of this research is the new Bayesian
implementation of the new ProfHelp and ProfHelp-ID models
(and by extension, the PFA model).’ The flexibility of the JAGS
modeling tool is well-suited to logistic regressions such as these
and to the need for rapid prototyping of model variations. The
time saved in development easily outweighs potentially slow
MCMC sampling. Moreover, the model-fitting process can easily
be parallelized for separate MCMC chains.

This research has wide impact. The data analyzed here come from
a system in the Cognitive Tutor family, in use by over 600,000
students. [5] The same methods would apply to any software that
uses either progressive hint sequences or multiple independent
types of help. For instance, in SQL Tutor, “an error flag message
informs the student about the clause in which the error occurred.
A hint-type message gives more information about the cause of
error. Partial solution feedback displays the correct content of the
clause in question, while the complete solution simply displays
the correct solution of the current problem.” [13] The
Masteringphysics ITS includes three types of hints (“a list of
steps, declarative statements, and procedural subtasks”) and other
types of help. [12]

Among the limitations of this research, the first is that it considers
the effect of hints on performance, not learning. As [7] points out,
in theory, a hint may both scaffold performance on the current
step and it may teach the student in preparation for a subsequent
problem. However, as evidenced by the analysis in Section 5,
while the effects on learning are important, the effects on
performance are not yet well understood.

Other limitations are due to the assumptions embedded in the PFA
model and the ProfHelp models. These include that knowledge
components are independent and linearly additive; that the effects
of the problem step are fully represented by the relevant
knowledge components and prior practice on these KCs; and that
there are no problem effects, e.g., steps within the same problem
are treated as independent of one another. The ProfHelp models
are limited in that they only consider the effect of help from the
immediately preceding attempt, while there could be effects that
carry over from earlier attempts. In the dataset examined here,
hint levels were always presented in the same order, and the
differential effects of hint types could not be teased apart using

> Please contact the corresponding author for the JAGS code.
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ProfHelp. However, this is a limitation of the dataset rather than
ProfHelp itself.

In future work, we plan to extend the ProfHelp models. We may
incorporate students’ hint-level preferences, such as to take into
account the tendency of some students to click through to the
bottom-out hint without making attempts after first and second
hints. We may also incorporate the number of prior hint episodes
on practice opportunities of various KCs to distinguish the effect
of prior hints from the effect of incorrect prior performance.

At the same time, regression techniques cannot eliminate all
selection effects. Future work should include controlled
experiments that compare different hint types, and an evaluation
of their effects on learning and on reduction of unexplained
variance in hint processing among students.
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ABSTRACT

Identifying the skills that determine the success or failure
to exercises and question items is a difficult task. Multiple
skills may be involved at various degree of importance, and
skills may overlap and correlate. In an effort towards the
goal of finding the skills behind a set of items, we investi-
gate two techniques to determine the number of dominant
latent skills. The Singular Value Decomposition (SVD) is a
known technique to find latent factors. The singular values
represent direct evidence of the strength of latent factors.
Application of SVD to finding the number of latent skills is
explored. We introduce a second technique based on a wrap-
per approach. Linear models with different number of skills
are built, and the one that yields the best prediction accu-
racy through cross validation is considered the most appro-
priate. The results show that both techniques are effective
in identifying the latent factors over synthetic data. An in-
vestigation with real data from the fraction algebra domain
is also reported. Both the SVD and wrapper methods yield
results that have no simple interpretation.

1. INTRODUCTION

A critical component of student models is the skills mastery
profile. Personalization of the learning content relies heavily
on this component in many, if not most intelligent tutoring
systems. The more precise the skills mastery profile is, the
more appropriate this personalization process will be.
However, finding the latent skills underlying exercises or
questions items is non-trivial because of a number of rea-
sons.

One reason is that multiple skills may be involved at various
degree of importance with regards to a single item. This is
in fact typical of most items. For example solving a simple
fraction algebra problem may require knowledge of a few
algebra rules, each rule representing a specific skill. More
general skills such as vocabulary and grammar rules may be
involved in language related task, etc.

Another difficulty is that skills may overlap and they will
therefore correlate. Highly correlated skills result in similar
response patterns to a set of items.

Finally, the nature of the items and the difficulty of mas-
tering some skills will result in slip and guesses. Those will
be reflected as noise that will make the identification of the
latent skills more difficult.
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Most of the time, the latent skills underlying question items
are defined by experts. Models such as Knowledge Tracing
[2], Constraint-based Modeling [7], or Performance Factor
Analysis [8], are well known examples that require expert
defined mapping of skills to latent factors. Some studies
have looked at means to help this process.

Suraweera et al. have used an ontology-based approach to
facilitate the item to skill mapping and the more general
task of building the domain model [9].

Others have studied the mapping of items to skills with data
driven algorithms with some success [1; 3; 11]. Their results
show that mappings can be successfully derived in certain
conditions of low noise (slip and guess) relative to the latent
factors. However, these studies assume that the number of
skills are known in advance, which is rarely the case. Al-
though some of the the latent skills may be relatively obvi-
ous, the obvious skills only set a minimum number. That
minimum does not preclude that other skills may come into
play and have a strong effect also.

Of course, we do not need to identify all the skills behind
an item in order to use the item outcome for assessment
purpose. As long as we can establish a minimally strong tie
from an item to a skill, this is a sufficient condition to use
the item in the assessment of that skill. But knowledge that
there is a fixed number of determinant factors to predict
item outcome is a useful information. For example, if a
few number of skills, say 6, are meant to be assessed by a
set of 20 questions items, and we find that the underlying
number of determinant latent factors behind these items is
very different than 6, then it gives us a hint that our 6-skills
model may not be congruent with the assessment result.
This study aims at identifying this number. It aims at find-
ing means to estimate how many latent factors are influ-
encial enough to determine the item success. We explore
two techniques towards this end: Singular Value Decompo-
sition (SVD) and a wrapper selection feature based on Non-
negative Matrix Factorization (NMF). We describe these
techniques in more details and report the results of our ex-
periments to validate their effectiveness for estimating the
number of latent skills®.

The reader interested in more details is referred
to the code that was used in this study: http:
//www.professeurs.polymtl.ca/michel.desmarais/
Papers/EDM2012/scripts.html

Proceedings of the 5th International Conference on Educational Data Mining 81



2. SVD-BASED METHOD

Singular Value Decomposition (SVD) is a well known matrix
factorization technique that decomposes any matrix, A, into
three sub-matrices:

A =UDV” (1)

where U and V are orthonormal matrices and their column
vectors respectively represent the eigenvectors of AAT and
ATA. D is a diagonal matrix that contains the singular
values. They are the square root of the eigenvalues of the
eigenvectors and are sorted in a descending order.

Because the singular values represent scaling factors of the
unit eigenvectors in equation (1), they are particularly use-
ful in finding latent factors that are dominant in the data.
This is demonstrated with simulated data below. First we
describe the simulated data and the results of applying SVD
on the students item outcome results matrix R.

2.1 Simulated data

The synthetic data is generated by defining a Q-matrix of
21 items that combine 6 skills. The 21 items are represented
as columns in figure 1. They span the space of all pairwise
combinations of skills (first 15 columns) plus 6 single skill
items (last 6 columns).

Items

111110000000000100000
100001111000000010000
010001000111000001000
001000100100110000100
000100010010101000010
000010001001011000001

Skills
O U W D =

Figure 1: Conjunctive Q-matrix composed of 21 items that
span all combinations of 6 skills for pairs of skills and single
skills

Figure 1’s Q-matrix is used to generate simulated data and
we assume a conjunctive model (all skills are necessary to an-
swer the item correctly). The data contains the 21 question
items and 200 simulated student responses over these items.
The six skills are assigned an increasing degree of difficulty
from 0.17 to 0.83 on a standard normal (Gaussian) scale,
and each student is assigned a skill vector based on a {0,1}
sampling with a probability corresponding to this difficulty
(or easiness in fact, since higher values bring greater chances
of skill mastery). The choice of these difficulty values stems
from the need to have a mean student success score around
50%—-60%: because 15 of the 21 items require the conjunc-
tion of two skills, mean skill mastery must be substantially
higher than 50% to obtain average results around 50%—-60%.
Once a skills mastery profile is assigned to students, repre-
sented by a matrix S, an ideal response matriz is generated
according to the product -R = Q-S, where Q is a con-
Junctive Q-matrix (more details about this model are given
later, see equation (3) below). Then, slip and guess factors
are used to generate noise in the ideal response pattern by
randomly changing a proportion of the item success and fail-
ures outcomes according respectively to slip and guess val-
ues. The slip and guess values of respectively 0.1 and 0.2 will
result in approximately 15% of the item outcomes being in-

- '
\ —— random
! --A-- guess=0,slip=0
: + guess=0.2,slip=0.1
|
S '
o =
g
S I
[}
0 - 1
[}
[}
[}
[}
[}
[}
o - [}
1

Singular value

Figure 2: Singular values of simulated data for a 21 items
test. Unit standard error bars for a 10-fold simulations is
drawn for each line. A vertical dashed line at singular value 6
corresponds to the number of underlying latent skill factors.

consistent with the ideal response matrix (15% corresponds
to a weighted average of 0.1 and 0.2).

2.2 Results

The results of the SVD method are shown in figure 2. The z
is the index of the singular value, and the y axis is its actual
value. Recall that the singular values of SVD indicate the
strength of latent factors.

Three conditions are reported in figure 2. The y values at 1
on the z scale are truncated on the graph to allow a better
view of the interesting region of the graph, but the highest
value is from the [guess=0, slip=0] condition and the lowest
is for the random condition. The random curve condition
can be obtained by simulating random {0, 1} values and en-
suring that the overall average score of the results matrix
reflects the original’s data average. In this random condi-
tion, the slope from singular value 2 to 21 remains relatively
constant, suggesting no specific number of skills. In condi-
tion [guess=0, slip=0], a sharp drop occurs between singular
values of 6 and 7. Then the slope remains relatively constant
from values 8 to 21. The largest drop is clearly at value 6
which corresponds to the underlying number of skills. In the
third condition [guess=0.2, slip=0.1], the largest drop still
remains visible between 6 and 7, but not as sharp as for the
noiseless condition, as expected.

In other experiments with various number of skills, not re-
ported here due to space constraints, we observed similar
patterns. Another observation is that the random curve in-
tersects with the other two after the number of underlying
latent skills (after 6 in figure 2’s experiment).

Therefore, the SVD method does allow for the identification
of the number of skills with synthetic data, at least up to
the [guess=0.2, slip=0.1] level.
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3. WRAPPER-BASED METHOD

We introduce a second method to determine the number of
dominant skills behind items based on a wrapper approach.
In statistical learning, the wrapper approach refers to a gen-
eral method for selecting the most effective set of variables
by measuring the predictive performance of a model with
each variables set (see [6]). In our context, we assess the
predictive performance of linear models embedding different
number of latent skills. The model that yields the best pre-
dictive performance is deemed to reflect the optimal number
of skills.

3.1 A Linear Model of SKkills Assessment

The wrapper method requires a model that will predict item
outcome. A linear model of skills is defined for that purpose
on the basis of the following product of matrices:

R=QS (2)

where the R matrix contains observable student results with
item rows and student columns, and the S matrix is the
skills (rows) per students (columns) mastery profile (see for
e.g., [3]). Matrix Q is the Q-matrix that maps items (rows)
to skills (columns). Normalizing row sums of Q to 1 would
yield values of 1 in the results matrix, R, if all skills nec-
essary to succeed an item is mastered by the corresponding
individual. Equation (2) represents a compensatory inter-
pretation of skills modeling, where each skill contributes ad-
ditively to the success of an item.

A conjunctive model can be defined according to the follow-
ing equation [1; 4] :

-R=Q-S (3)

where the operator — is the Boolean negation, which is de-
fined as a function that maps a value of 0 to 1 and any other
value to 0. This equation will yield values of 0 in R when-
ever an examinee is missing one or more skills for a given
item, and yield 1 whenever all necessary skills are mastered
by an examinee.

3.2 Overview of the method

To estimate the optimal number of skills, the wrapper model
can either correspond to equation (2) or (3). We will focus
our explanations around equation (2), but they obviously
apply to (3) if R and S are negated.

This model states that, given estimates of Q and S, we can
predict R. We refer to these estimates as Q and S, and to
the predictions as R= QS The goal is therefore to derive
estimates of Q and S with different number of skills and
measure the residual difference between R and R.

First, Q is learned from an independent set of training data.
Then, S is learned from the test data, and the residuals are
computed?.

2Note that computing S from the test data raises the is-
sue of over-fitting, which would keep the accuracy growing
with the number of skills regardless of the “real” number of
skills. However, this issue is mitigated by using independent

learning data for Q, without which, we empirically observed,
the results would deceive us: in our experiments using both

S and Q from NMF while increasing the rank of the fac-
torization (number of skills), ends up increasing prediction
accuracy even after we reach beyond the “real” number of
skills. This can reasonably be attributed to over-fitting.

An estimate of Q is obtained through Non-negative Matrix
Factorization (NMF). Details on applying this technique to
the problem of deriving a Q-matrix from data is found in
[3] and we limit our description to the basic principles and
issues here.

NMF decomposes a matrix into two matrices composed solely
of non-negative values. Its structure is equivalent to equa-
tion (2). The technique requires to choose a rank for the
decomposition, which corresponds in our situation to the
number of skills (i.e. number of columns of Q and num-
ber of rows of S). Because NMF constrains Q and S to
non-negative values, their respective interpretation as a Q-
matrix and a as student skills assessments is much more
natural than other matrix factorization techniques such as
Principal Component Analysis, for example. However, mul-
tiple solutions exists to this factorization and there are many
algorithms that can further constrain solutions, namely to
force sparse matrices. Our experiment relies on the R pack-
age named NMF and the Brunet algorithm [5].

Once Q is obtained, then the values of S can be computed
through linear regression. Starting with the overdetermined
system of linear equations:

R = QS (4)

which has the same form as the more familiar y = X (ex-
cept that y and (3 are generally vectors instead of matrices),
it follows that the linear least squares estimate is given by:

§ = QQA'R (5)
Equation (5) represents a linear regression solution which
minimizes the residual errors (||R — QS]|).

3.3 Prediction Accuracy and the Number of
Skills

We would expect the model with the correct number of skills
to perform the best, and models with fewer skills to under-
perform because they lack the correct number of latent skills
to reflect the response patterns. Models with greater num-
ber of skills than required should match the performance of
the correct number model, since they have more represen-
tative power than needed, but they run higher risk of over-
fitting the data and could therefore potentially show lower
accuracy in a cross-validation. However, the skills matrix S
obtained through equation (5) on the test data could also
result in over-fitting that will increase accuracy this time.
We return to this issue in the discussion.

We use the same simulated data as described for the SVD
method in section 2.1, where six skills are used to gener-
ate data according to the Q-matrix of figure 1. For this
experiment, we only report the condition of guess=0.2 and
slip=0.1.

Figure 3 shows the percentage of correct predictions of the
models as a function of the number of skills. Given that
predictions are {0,1}, the percentage can be computed as
IR — QS||/mn, where m and n are the number of rows and
columns of R.

The results confirm the conjectures above: the predictive
accuracy increases until the underlying number of skills is
reached, and it almost stabilizes thereafter. Over-fitting of
S with the test data is apparently not substantial.

It is interesting to note that the accuracy increments of fig-
ure 3 are relatively constant between each skill up to 6. This
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Figure 3: Precision of student results predictions from esti-
mated skill matrix (equation (5)). Error bars are the stan-
dard error of the accuracy curves. Experiment is done with
simulated data with 6 skills and slip and guess values of 0.1
and 0.2 respectively.

is also what we would expect since every skill in the under-
lying Q-matrix has an equivalent weight to all others. We
expect that differences in increments indicate differences in
the weights of the skills. This could either stem from the
structure of the Q-matrix (for e.g., more items can depend
on one skill than on another), or on the criticality of the
skill over its item outcome.

4. APPLICATION OF THE METHODS ON
REAL DATA FROM FRACTION ALGE-
BRA

Simulated data reveals that both the SVD and wrapper
methods provide effective means to identify the number of
latent skills. Are these means as effective in identifying skills
with real data? This can depend on a number of factors.
One factor is the degree to which a skill is determinant to
the success of an item. General high level skills can only
add to the chances of success, they are not decisive. More
specific skills can be decisive, but there may be alternative
skills that also account for an item success (e.g. a differ-
ent method of solving a problem). Finally, noise from slips
and guesses will undermine the ability of any method that
attempts to identify the number of latent skills.

Therefore, an answer to the above question, i.e. whether we
can identify the number of latent skills, is only valid within
a given context, where the factors mentioned above take on
a particular combination. So any conclusion will have to
take into account this limitation in its generalization.

We investigate the question with data from Vomlel [10] on
fraction algebra problems. This data set is composed of
20 question items and answers from 148 students. A Bayesian

Items

fNm Y~ oD IRIREE2R
1CL [1]1 1
2 CMI 11
3 CIM 11
4 CD 1/1]1 1
5MT 1/1]1
6 AD 1(1)1
7 SB 1]1

[y
[y
[

[y

Skills

Figure 4: Conjunctive Q-matrix of Fraction Algebra data
composed of 7 skills and 17 items. Item numbers refer to
the original data items.

Network linking items to skills was defined by experts for the
20 items. It can readily be transformed into the Q-matrix
shown in figure 4.

This Q-matrix is a subset of the whole Q-matrix from the
Bayesian Network in Vomlel’s study. It was chosen based
on four fundamental skills of fraction algebra :

1 CL: cancelling out

2 CIM: conversion to mixed numbers

3 CMI: conversion to proper fractions

4 CD: finding common denominator

A total of 15 items are involved those skills. Because some
items involved other skills, 3 more skills are added through
conjunction, for a total of 7 skills:

5 AD: addition

6 SB: subtraction

7 MT: multiplication

And 2 more items involving these added skills are also added,
for a total of 17 items. Six out of the 17 items involve a
conjunction of 2 skills, whereas all other items are single
skill.

Note that contrary to the synthetic data, skills are not ex-
pected to have equal weight in the prediction results, as some
are only involved in two items, whereas others are involved
in five items.

The SVD and wrapper methods are applied to the data in
an attempt to derive the number of underlying skills. For
the SVD method, the factorization is conducted on the full
data set since this method does not rely on a cross validation
process. For the wrapper method, the data is split in half
for training, half for testing. Both approaches follow the
methodology described in sections 2 and 3.

4.1 SVD method

Results of applying the SVD method to the fraction algebra
data is reported in figure 5. Apart from the usual steep slope
from singular value 1 to 2, there is no clear indication of the
number of skills in this figure when we look at a change of
slope as we had with the simulated data experiment. How-
ever, the random and real curves meet at singular value 2,
which, according to the results from simulated data, would
suggest that the number of latent skills is 2. However, this
not consistent with the expert Q-matrix. It is also counter-
intuitive since we would expect that more than two skills in
fraction algebra problems would cover the skills described
above.

We could also conclude that there is a continuum of skills,
and/or that the data is too noisy to show any effect of skills.
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Figure 5: SVD results over fraction algebra data. The ran-
dom and real curve at skill 1 are not shown but they are
respectively 30 and 35.

Let us turn to the wrapper method before speculating any
further on these unexpected results.

4.2 Wrapper method

For the wrapper method, the data set is divided into two
random samples of half the size of the original 148 students.
One half is used for deriving the Q-matrix and the other in
deriving the skills matrix, S, and measuring the accuracy of
the predictions. This procedure is the same as the one used
for the simulated data. As we explain below, a large number
of folds (50) have to be run in order to obtain stable results.
Figure 6 reports the results of the wrapper method. We
observe a sharp drop after skill 2, which suggests that a peak
was reached at that point®. In that respect, it confirms the
2-skill findings of the SVD method.

However, we also observe a steady increase of accuracy start-
ing from 3 skills, up to 8 skills, and a gradual decrease of
skill contribution to performance starting from 4 skills. Ex-
cept for the unexpected drop after 2 skills, this finding is
close to the 7 skills defined by experts. And the fact that
some skills have a greater weight on the performance is also
consistent with the gradual decrease of contribution up to
8 skills.

Concerning the decrease after 9 skills, this can be explained
by over-fittins in the NMF Q-matrix induction (Q) with
the training data. In simulated data, the sample size was
apparently large enough to shield the results from the over-
fitting issue, but the smaller sample size of the real data
may raise this issue here. Moreover, as the number of latent
factors approaches the number of items in the data (17), the

3The implementation of the method does not allow a com-
putation of the accuracy for a single skill, but we can reason-
ably assume that a single skill model would perform worst
than a 2-skills model.
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Figure 6: Wrapper method applied to the fraction algebra
data set. The error bars represent the standard error of
50 folds results.

over-fitting issue becomes even more significant.

Drawing conclusions from this experiment with real data is
obviously hard. Both the SVD and the wrapper methods
seem to suggest that 2 skills would are plausible, but the
wrapper method also points to an 8 skills set that is more
consistent with the expert Q-matrix.

S. DISCUSSION

Both the SVD and the wrapper methods provide strong cues
of the number of underlying skills with simulated student
test data. However, for the Vomlel data set, both methods
yield results that are much more ambiguous. Instead of the
7 skills that were identified by experts over the 17 items set,
the SVD method suggests only 2 skills if we rely on the in-
tersection with the random data curve, and no clear number
if we look for a change of slope after skill 2. The wrapper
method shows data that is also consistent with 2 skills to
the extent that a drop of accuracy is observed at 3 skills,
but a rise of accuracy up to 8 skill draws an interpretation
closer to the experts’ 7 skills set.

An important difference between the SVD and the wrap-
per methods has to do with the independence of skills. For
SVD, orthogonality of the singular matrices U and V in
equation (1) forces latent factors to be independent. NMF
does not require latent factors to be independent. The or-
thogonality constraint of may limit the application of the
SVD method with respect to real skills and might explain
some of the difference between the two methods. The skills
from the synthetic data of the first experiment were inde-
pendent and the Q-matrix had an homogeneous pattern for
each skill, and therefore the effect of dependence between
skills could not come into play.

Obviously, the study calls for more investigations. The
findings from one set of data from the real world may be
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highly different from another set. More studies should be
conducted to assess the generality of the findings. Other
investigations are called for to find ways to improve these
methods and to better understand their limits when faced
with real data. In particular, we need to know at which level
of noise from guess and slip factors do the methods break
down, and what is the ratio of latent skills to data set size
that is critical to avoid over-fitting of the wrapper method.
One improvement that can be brought to the wrapper method
is to use a cross validation to derive the skills matrix. This
would require the use of two sets of items, one for testing
and one for assessing the student’s skills. This comes at the
cost of a greater number of items, but it avoids the problem
of over-fitting that leads to accuracy increases.
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ABSTRACT

Reading comprehension is critical in life-long learning as well as
in the workplace. In this paper, we describe how multidimensional
k-means clustering combined with Bloom’s Taxonomy can be
used to determine positive and negative cognitive skill sets with
respect to reading comprehension tasks. This information could
be used to inform environments that support students improving
their meta-cognitive skills.
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1. INTRODUCTION

Anderson and Pearson [4] in their seminal work on reading
comprehension describe three different cases where reading
comprehension is a problem. First, a person having difficulty
reading is likely to have gaps in knowledge. Prior knowledge is
necessary in the determination of what he/she can currently
comprehend.  Second, the reader can have an incomplete
understanding of the relationships that exist among facts on a
certain topic. Since the current knowledge base is used to create
all of the relationships on a topic, new arbitrary information can
be a source of confusion, slow learning and slow processing,
which leads to unsatisfactory reasoning. Third, readers are
unlikely to be able to make correct inferences about the material
in order to arrive at a coherent overall representation of the topic.
The creation of a coherent representation for a topic requires the
drawing of precise, integrated inferences. Often poor readers do
not perform these tasks either routinely or spontaneously [8]. Any
reading comprehension tools or models need to be able to address
these problems with deep comprehension.

The reading strategy instruction method is one of the most often
suggested methods for enhancing reading ability [18, 20]. This
particular method deals with problems on the vocabulary and
sentence levels [2], and on higher level issues such as text
comprehension [2,14]. Other recommended approaches include
determining the main message of the content (e.g.
summarization), the use of textual enhancements (e.g.
illustrations, mental images), question and answer drills (e.g. self-
questioning) and practicing meta-cognition (e.g. through
comprehension monitoring) [9]. However, the most successful
reading strategies combine methods rather than one single
technique [14].
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There are several barriers to the adoption of multiple strategies
within the classroom setting [14]. First, there is a large amount of
training that is required for the teachers to become familiar with
the strategies in order to employ them within the classroom
setting. Second, there is a considerable time requirement for
teachers to prepare the course materials. Third, getting the
students to apply the strategies in daily life can be extremely
complex. Therefore, the creation of environments that help
relieve the teacher of some of these complexities would be of
great benefit.

There are several learning environments that aid students with
their reading comprehension. Some of the more prominent are
Project Listen, iSTART, Point&Query, and AutoTutor. Project
Listen [13] creates an environment where children and ESL
(English as a second language) students can read text out loud
with the aim to improve this skill. The software listens to the
reader and makes suggestions on how to improve their reading
skills. One of the ways that the software increases reading
comprehension is by asking the students questions about the text
that they just read [6]. Presumably, the increase in reading
comprehension and word comprehension do not translate into
helping the students enhance the deeper comprehension skills
discussed by Anderson and Pearson [4] since this is not the aim of
this particular software. The remaining environments, however,
do take aim at creating deeper understanding within the reading
comprehension field. Point&Query augments current learning
environments, such as hypertext and hypermedia, by providing
learner controlled question and answer sessions that expose
readers to deep causal questions [10]. Both AutoTutor and
iSTART make use of animated agents and natural language
dialogue to scaffold inquiry strategies, metacognition, and
explanation construction [10]. AutoTutor generates why, what-if,
and how style questions and then enters into a dialogue with the
student to expose the deeper constructs of the topic. iSTART
takes a coaching approach to teach the students how to construct
and improve self-explanations combined with other
metacomprehension strategies.  Although these systems have
demonstrated student learning gains and improvement in learning
strategies, more can still be done.

Many of the aforementioned tools, created to aid in reading
comprehension, are more closed-ended systems that require a
significant amount of time and energy to develop course content
[15]. These closed-ended systems often make use of help
requests to aid them in determining when a student is having a
reading comprehension problem [6,10,13]. However, the vast
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majority of environments such as WebCT/Blackboard, Moodle,
etc., that are adopted by schools and post-secondary institutions
are more open-ended in nature. These systems provide much
more flexibility in terms of content development and improved
ease in making changes to the content compared to what can be
provided with closed ended systems. The problem with the open-
ended systems is that they provide no real support for student
learning other than providing the content for the students.
However, open-ended systems do have good tracking facilities in
place to capture student interaction with the system. By making
use of current data mining techniques and pedagogy aimed at
improving student learning, it is possible to capture students’
cognitive behavior from these open environments.

Trace methodologies, such as capturing keystroke data, events,
eye tracking data, etc., have demonstrated that data generated
from a student’s interaction with an environment can provide the
necessary information to make cognitive and metacognitive
interpretations [5]. This makes sense since how a student
consumes content will have a direct effect on their comprehension
of that content. If we know the following: what task the student is
currently working on, the difficulty of the task, and the current
behavior of the student as they work on the task, we can make
cognitive interpretations [5,13,17,21]. Bloom’s Taxonomy [3] of
the Cognitive Domain, provides a pedagogical framework for
determining how cognitively difficult a question/task is. Using
this framework we can determine if the student’s current cognitive
skills are appropriate for the task that they are currently working
on.

Bloom’s Taxonomy [7] and its subsequent revision [3] are
comprised of three overlapping domains: cognitive, affective and
psychomotor. The affective domain is comprised of emotions,
attitudes and values. The psychomotor domain is comprised of
physical skill mastery, coordination, etc. The cognitive domain
provides a method to classify educational objectives that relate to
knowledge [21]. Within the cognitive domain are six hierarchical
levels in order of increasing complexity. They are: knowledge,
comprehension, application, analysis, synthesis and evaluation (as
revised by Anderson et. al.[3]). The first three levels are
considered to be foundational learning and are based upon the
ability to know and apply factual knowledge [21]. The last three
levels are considered higher level learning that is more abstract in
nature [20]. Bloom had originally assumed that you could not
achieve the higher levels without first mastering the lower levels
of the hierarchy [7]. However, it appears that it is possible to
work at the higher levels on some topics without first mastering
the lower levels [3].

Wankat and Oreovicz [19] provide some examples of how to
apply Bloom’s taxonomy to an engineering domain. Knowledge
or recall involves the descriptions, definitions, generalizations and
other routine information about a topic. Comprehension involves
understanding the technical representations of a topic including
the translation, interpretation and extrapolation of that topic.
Application involves the use of topical abstractions in explicit
situations such as the use of rules, procedures and theories to
perform some computation.  Analysis involves breaking a
problem into its principal parts in order to highlight any content
hierarchy, properties. Furthermore, connections and structure
found within the content are defined and clarified. Synthesis
involves putting together all the constituent parts of a problem
into a coherent system or solution. This can be very difficult
since the process is open-ended and there may be many possible

solutions to the problem. Lastly, evaluation can involve making
conclusions about the value of materials used in a project or the
methods used in that project. There is a need to satisfy specific
criteria or use some standard of appraisal.

Through the use of the different levels of Bloom’s Taxonomy and
questions that are appropriately couched within the framework, it
is possible to help learners to overcome the various problems
originally posed by Anderson and Pearson [4].

2. METHODOLOGY

An experiment was designed to look for patterns of student
behavior in a reading comprehension task. Students interacted
with a learning environment designed to emulate hypermedia
courses offered in post-secondary institutions where written
content is presented along with questions about that content. The
students could view the content and/or questions in any order or
manner they chose with no constraints applied to their interaction
with the system. In keeping with trace methodology approaches,
all of the interactions/events with the content and questions were
recorded and time-stamped. These would include events such as
mouse click, mouse wheel, which item was clicked or selected
and so on.

To aid in determining what part of the document was currently
being read, a small scrollable text box that allowed 7 lines of text
to be displayed as displayed in Figure 1. The size of the text box
performed a couple of tasks. First, it does not take more than one
minute to read the approximately 77 words contained within the
text box. Although not directly used in the analysis, this could be
used to determine if the individual was distracted from the task at
hand. Second, it provided a means to determine how much time
and how quickly the student read over the portions of the
document that contained the answers to the various questions.
The questions could be selected in any order and any text the
students had entered into the answer text box was saved and
displayed when the corresponding question was selected. None of
the participants was observed, nor reported, as having any
difficulty with operating the interface.

EAP Multiple Document Study

Articles to Read
Canadian

Facebook

Privacy Palicy Question Menu

Question 1
Canadian Allegations Question 2

10 Privacy
Settings

1. That Facebook was unnecessarily requiring users

to provide their dates of birth as a condition of

registration, in contravention of Principle 4.3.3. Question 4
2. That Facebook was not adequately explaining to Question 5

users why they had to provide their dates of birth and

how these would be used, in contravention of Principle  ©

4.3.2. Question 7

Question 3

Question 6

Question &
Q2) Identify the two main findings with Facebook allowing third-party
applications to access private data?

Experiment Completed

Figure 1 Screen Capture of Interface

The questions were developed using Bloom’s Taxonomy Action
Verbs [3,7]. Bloom and Anderson created a list of verbs that
direct the way that a question should be answered. These verbs
correspond to a level within Bloom’s taxonomy. When you place
the action verb at the beginning of the question, it frames the way
that the question should be answered [7]. For example, Bloom’s
lowest level, knowledge, contains the action verb ‘list’. Since the
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task of the knowledge level is to remember previously learned
information, successfully listing something that the student has
previously read would demonstrate that the student has mastered
that level of cognitive difficulty for that content. Questions at
various Bloom levels were presented to the participants in a
randomized order. All of the questions were present on the screen
at all times and could be selected in any order by the student.

Questions were scored in order to provide a metric for how well
the students were comprehending the content. In order to deal
with the subjective nature of scoring question answers, a rubric
was created according to the principles laid out in [16] for each of
the questions. The rubric was revised a couple of times to take
into account the various types of answers that were submitted
during the testing phase of the development. For the lower Bloom
levels, the answers generally came from one direct location within
a document and so the scoring was fairly simple. For the higher
level Bloom questions, information from multiple sources was
expected. It was also expected that the students would bring their
own prior knowledge to bear on the answer. It was here that
revisions were required as the beta testing group interpreted the
questions in unforeseen ways. The experiment was broken into
two components. The first component provided the students with
a single document to read and questions about that content were
based upon the lower levels of Bloom’s Taxonomy. All of the
answers to the questions could be found within the document.
The document that was chosen was a fairly technical document
based upon Canadian privacy law as it applies to Facebook so that
the participants would not have much prior knowledge of the
specific subject matter. The participants were given 30 minutes to
finish reading the document and answering four questions.

The second condition provided the students with two more
documents in addition to the first document. The purpose of this
condition was to better test the higher levels of Bloom’s
Taxonomy. The higher levels of Bloom’s Taxonomy require
synthesis and evaluation and so more information and documents
were needed to allow for these requirements. The second
document was instruction on how to implement advanced privacy
features not commonly used within Facebook and the third
document was a high level overview of the privacy settings used
within Facebook. Again the answers to the high level questions
could be found within the documents provided. However, in
order to fully answer the higher level questions, information from
more than one document was required. For this second condition,
90 minutes were allotted as the questions were more difficult and
there were two new documents that needed to be read to generate
complete answers. Two questions were aimed at the prior reading
done in the first condition. One was a repeated question from the
first condition and a second question was new but based solely on
the information found in that first document. The remaining six
questions were new and tested various levels of Bloom’s
Taxonomy. It was possible that the students could answer the
questions in an increasing level of difficulty; however, they would
have to purposefully select that order since the order in which
they were presented was random.

Since the amount of time required to participate in both conditions
might be a factor in participant involvement, both conditions were
designed so that they could be run separately and using different
participants depending on the participants’ wishes. In the actual
running of the experiment, the majority of the participants moved
from the first condition right into the second condition with no
delay. The participants were adult students enrolled in a grade 12

Saskatchewan Institute of Applied Science and Technology
(SIAST) Adult Education English course. There were 17
participants for the first condition and 11 for the second condition
with an average age of 26.

3. RESULTS

The 28 participants generated over 8500 events in total from both
conditions. Events such as the mouse clicking on a specific
button or object and mouse wheel scrolling were captured. Each
event was time-stamped with the user-id, event-id, current
question-id, current document-id, and position within the current
document. This gave us what task/question the student was
currently working on, which document they were working on,
where in the document they were, and what event they were
using. For example, if the student moved the scroll wheel of the
mouse to move down in the document we could then determine
from the time-stamp data and the position data, how quickly and
what material they were reading. With this information we can
begin to deduce student behavior as they work at completing the
various questions.

In order to determine how much reading the students were doing,
the timestamp data was processed so that reading, scanning and
scrolling navigation times could be calculated for each
interaction/event. The time cutoffs used to distinguish reading
from scanning from scrolling fit with other document navigation
research [1]. Any time between events greater than five seconds
was classified as reading. Any time greater than two seconds but
less than five seconds was classified as scanning and any time less
than two seconds was classified as scrolling. The reading time
also encompassed time that the participant spent thinking about
the answer. In the 8500 events captured across the 28
participants, only 13 events had a time greater than two minutes
and only 33 events had a time greater than one minute before
another event was performed. Given the time it takes to read the
content in the textbox, the total time between events including the
reading and thinking times, was not a large enough percentage of
the data to warrant separate classification.

The total amount of time that a student spent in the experiment
was calculated and used to create a ratio of time spent by the
student reading, scanning and scrolling. This ratio was then
broken down into the reading, scanning and scrolling ratios for
each individual question. When combined with the level of
difficulty for each question, as determined by Bloom’s taxonomy,
it was possible to tie student reading behavior to the difficulty of
the task.

In order to see if there were students who behaved similarly for
different levels of difficulty, we implemented the Forgy method
for k-means clustering for d=3 dimensions and k=4 [11].
Hammerly et al. [11] demonstrated that the Forgy method for
initialization was the preferred method for initializing the standard
k-means, also known as Llyod’s, algorithm [12]. The dimensions
that we chose were the reading, scanning, and scrolling axes. K =
4 was chosen since our sample size was small. More than 4
clusters produced some clusters where there were too few to be
statistically analyzed. Since the algorithm randomly chooses its
centroid points, there is no researcher bias entering into the initial
sets of clusters that were created. In order to find as many
interesting clusters as we could, the Forgy k-means algorithm was
iterated multiple times. We defined interesting clusters as those
clusters that elicited either positive or negative reading, scanning
or scrolling behaviors. A positive behavior is defined as a
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behavior that results in a good grade. A negative behavior is
defined as a behavior that results in a poor grade. Those clusters
that presented with both positive and negative behaviors were
deemed less interesting. Each time an interesting cluster was
found, the centroid was recorded. Once multiple interesting
centroids were found, the most interesting centroid found was
hard coded as a starting centroid. The hard coding of the
algorithm removes one of the random initializations from the
Forgy initialization and inserts the most interesting centroid in its
stead. For example, the experiment used k = 4 random clusters in
the initialization. With the hard coded cluster added, k = 3
random and k = 1 hard coded are what the algorithm would
initialize with. The algorithm was run again with one hard coded
centroid and three randomly chosen centroids to see how the other
random clusters interacted since how the cluster is initialized is
known to have an effect on how the other clusters form [11]. Ifa
new interesting cluster was discovered that was more predictive of
students’ behavior than a previous closely related centroid, the old
centroid was removed in favor of the new centroid. If no more
centroids were discovered that were more interesting than the hard
coded centroid, then the second most interesting centroid was hard
coded and the remaining two centroids were left random and the
above process was duplicated with two hard coded centroids. A
third hard coded cluster was added in accordance with the above
procedure and the process was performed again until all four of
the initializations centroids were hard coded.

Over multiple iterations six interesting clusters were discovered
with two of these clusters containing too few data points to be
included in any statistical analysis that was performed. The
following clusters proved to be statistically interesting with
respect to the Bloom level:

e Light Reading Cluster: 50% reading: 30% scanning: 20%
scrolling (50:30:20)

e  Light Medium Reading Cluster: (60:30:10)

e  Heavy Medium Reading Cluster: (70:20:10)

e  Heavy Reading Cluster: (80:10:10)

The two clusters, Medium Scrolling (10:10:60) and Medium
Scanning (10:60:10), were clusters that we expect to play a more
important role in future experiments. However, due to our sample
size, they could not be used in our statistical analysis.

An ANOVA was performed on each of the clusters to see if a
statistically significant relationship could be found between the
different reading behaviors as clustered by k-means and the
Bloom levels of the questions within the experiment. The tests
were performed at the o = 0.05 level. Questions at Bloom levels
1,2,3,5, and 6 were provided in this experiment. There were no
Bloom level 4 questions, to give learners time to answer more
questions at level 5 and 6 within the overall time constraints.

Table 1 shows that, with the exception of level 5, all of the Bloom
levels were statistically significant. The null hypothesis used for
these tests are that the means for each of the clusters does not vary
according to the Bloom level that is being tested. In other words,
the reading, scanning and scrolling means should be the same for
all of the clusters found by k-means. Table 1 shows that the
differences found between the clusters for each of the Bloom
levels were not due to random chance. The p-values indicate that,
in all but two cases, there is a really small chance of getting these
results if no real difference between the groups exists. This
indicates that the students’ reading, scanning and scrolling
behaviors captured by the system and then clustered are

significantly different from one another as it relates to the level of
Bloom’s taxonomy. For example, those students who were
classified as Light Readers based on the reading, scanning and
scrolling ratios for Bloom level 1 were significantly different from
those who were classified as Light Medium Readers for the same
Bloom level. However, the ANOVA itself cannot make this exact
determination of which cluster is significantly different from
another cluster; it can only tell us that there is a significant
difference between some of the groups in the analysis. Further
analysis, discussed later on, is needed in order to see which of the
clusters are significantly different from each other.

Although inclusion in a cluster does not completely predict scores,
it is indicative of overall performance. For example, take question
2 in the first condition (low level Bloom with a single document)
that was designed to force the students to scan through the
document as they needed to count the number of instances that a
certain event, such as a successful appeal on a complaint about
Facebook to the Canadian Privacy Commission, occurred in the
document. This type of problem is often present in many forms in
academia and the work place where it is necessary to arrive at a
solution within the time constraints. 100% of the students in the
Light Reading (50:30:20) cluster, which was higher in scanning
and scrolling times, achieved full marks or close to full marks.
Correspondingly, those students in the Heavy Reading (80:10:10)
cluster scored no better than 50% with over 'z of the students in
the cluster scoring 0%. Since the source materials were present
for the duration of the experiment and there were time constraints,
the Heavy Reading strategy is not the best strategy to be used in
this situation. This result is somewhat surprising since it is
generally accepted that Heavy Reading is considered a good
cognitive strategy in a reading comprehension task. In this case,
the cognitive load required to be able to answer this type of
question, the time limitations of the experiment and the fact that
the source materials were available, make the adoption of the
Light Reading strategy a better choice. The reduction in the
cognitive load by choosing to perform more scanning and
scrolling through the document rather than committing the
information to memory when performing Heavy Reading allows
the participants to perform better on this type of task. It should be
noted that for other tasks, a Heavy Reading strategy is the best
choice. Furthermore, in situations where the source materials are
not available during the task, the Heavy Reading strategy is most
likely the best choice regardless of the task given.

The Heavy Reading strategy proved to be the most successful
strategy as the level of difficulty for the questions increased as
measured by Bloom’s Taxonomy. The participants were able to
achieve better marks compared to those that chose a Light
Medium Reading strategy. For example, question six of the
second condition required the participants to put together various
thoughts and ideas about FaceBook privacy policy from multiple
documents into a complete whole thought that did not exist in any
of documents (Bloom level 6). For this problem the students fell
into multiple clusters. Each document had its own set of events
that tied the reading, scanning and scrolling ratios to that
document. This provides a mapping of how each student used
each document to answer a particular question. In order for the
students to get a good grade they needed to fall into the Heavy
Reading category on all the documents that were required to fully
answer the question. Those students that performed Heavy
Reading on all the necessary documents scored well. The
students that performed Heavy Reading on only one of documents
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they were required to read did not score above 30%. Those
students that performed Heavy Reading on two of the required
documents scored no higher than 83% and those that performed
Heavy Reading on all of the documents scored no lower than 83%
and up to 100%. Those students that used the Light Medium
Reading strategy scored 0%. There was one student who scored
30% that used the Light Medium Reading strategy but their
answer contained no content from any of the documents, rather
they used extraneous information from their previous experience.

The use of the Light Reading strategy did not appear above
Bloom level three and the Light Medium Reading strategy
appeared throughout the Bloom levels. At Bloom level’s five and
six, those participants that chose to use the Light Medium
Reading strategy did not receive good grades. The availability of
the source documents to the participants did not aid them in
answering more challenging questions. The participants needed
to be able to recall information from a variety of sources in order
to be able to fully answer the questions. Instead of using source
material, probably because they could not recall where it was or if
it was present, they used incorrect information from some other
source outside of the experiment. It should be noted that they did
not access supplementary material from either books or the
Internet during this experiment.

These aforementioned patterns of behavioral clustering being
predictive of marks do not hold in all cases. For example, the
Light Reading (50:30:20) cluster for question 3 in the second
condition (higher level Bloom with multiple documents) had 50%
of the students achieve 100% while the other 50% received 0%.
Since we captured the current reading position within the
document with each event, we can determine the amount of time
spent reading, scanning and scrolling over the portions of the
document that contain the answer. = When analyzed, this
information is able to fully account for the differences in scores
found within the cluster of the above example. For example,
those students who received 0% spent the majority of their time
scrolling and scanning compared to those who received full
scores, who spent much more time reading over the portion of the
document that contained the answer.

The Low Level and High Level analysis from Table 1 shows that
when Bloom is broken down into two categories, low level (levels
1, 2, and 3) and high level (levels 5 and 6) there are significant
differences for both the high and low levels between the clusters.
When we perform the Tukey-Kramer test later on (Table 5), it will
show that all of the clusters are significantly different from one
another as well. Interestingly, when we combine all the levels
together to see if the clusters by themselves are statistically
different, we get no significant results. In other words, higher
level and lower level meta-cognitive reading strategies seem to
elicit different behavior on the part of learners.

In order to find out which clusters were significant from each
other, a Tukey-Kramer analysis is required. A Tukey-Kramer
analysis allows a pairwise comparison of each of the clusters and
allows a comparison of groups that do not have the same number
of students. The minimum significant difference value was used
to calculate if the pairwise comparison was significant and correct
for the multiple comparisons. The numbers in the top right hand
portion of the Tables 2 through 5 show the Tukey-Kramer
minimum significant differences (MSD). The numbers in the
lower left corner of Tables 2 through 5 show the observed
absolute value of the difference in means between each pair of
groups. Those numbers in the lower left of the tables marked with

an asterisk are deemed significant if they are larger than their
corresponding MSD located in the top right of the table. Table 2
shows that all of the clusters were significantly different from
each other. This was found for all of the other Bloom levels
except for Bloom level 2 and 5. Table 3 shows that there are
significant differences between most of the groups except for the
Medium Heavy Reading cluster and the Heavy Reading cluster
for Bloom level 2. Although the k-means algorithm clustered
these reading, scrolling and scanning ratios into two different
clusters, the actual differences between the ratios was close. So
the grades tended to be higher in the Medium Heavy Reading and
at the same time lower in the Heavy Reading cluster. It was
situations like this one where the ratios were close together that
made us wonder if a breakdown of individual Bloom levels was
the best predictor or if the levels should be more coarse-grained
and moved into a high level Bloom category and a low level
Bloom category rather than individual Bloom levels.

One of the major problems with this experiment was that we did
not have a large enough sample size for the higher levels of
Bloom as tested in the second condition. Table 4 shows that there
were no significant differences found between any of the clusters
at Bloom level 5. A more in-depth analysis showed that most of
the students chose a similar strategy to answer those questions and

Bloom Level F P F-Critical

1 79.94 3.14E-16 2.86

2 39.31 3.74E-11 2.88

3 147.93 4.80E-11 3.63

5 0.60 0.63 3.59

6 50.77 0.000385 5.99
Low Level 209.48 1.83E-43 2.48
High Level 95.95 1.64E-17 2.86
All Levels 1.40 0.25 2.68
Combined

Table 1 One way ANOVA for Bloom Level

50,3020 | 60,30,10 | 70,20,10 | 80,10,10
50,30,20 | - 0.08311 | 0.07745 | 0.08089
60,30,10 | 0.16204* | - 0.07976 | 0.08311
70,20,10 | 0.2963* 0.13426* | - 0.07745
80,10,10 | 0.4447* 0.28268* | 0.14842* | -

Table 2 Tukey-Kramer Analysis Bloom Level 1 (* denotes
significant differences)

50,3020 | 60,30,10 | 70,20,10 | 80,10,10
50,30,20 | - 021238 | 0.19337 | 0.17629
60,30,10 | 0.21341* | - 0.2324 | 0.21839
70,20,10 | 0.4906* 0.2772* | - 0.19995
80,10,10 | 0.6724* 0.459* | 0.18183 | -

Table 3 Tukey-Kramer Analysis Bloom Level 2
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60,30,10
60,30,10 | -
70,20,10 | 12.182 -

80,10,10 | 11.666 0.5159 -
Table 4 Tukey-Kramer Analysis Bloom Level 5

70,20,10
40.5993

80,10,10
28.4136
38.9069

50,30,20 | 60,30,10 70,20,10 | 80,10,10

50,30,20 | - 0.09225 | 0.07145 0.0668

60,30,10 | 0.15755* | - 0.09473 0.09127

70,20,10 | 0.27206* | 0.11451* - 0.07019

80,10,10 | 0.4222* | 0.26463* 0.15012* | -

Table 5 Tukey-Kramer Analysis Low Level Bloom

therefore no significant differences were found between the
clusters. With a larger sample size we believe that even this
would become statistically significant. The fact that a significant
difference was found in Bloom level 6 may just be due to an
artifact in the data; however, the significant differences found in
the lower Bloom levels 1 through 3, given the slightly larger N,
seems to imply that with a larger N we will see those same
differences in the higher Bloom levels.

For the low level and high level Bloom groupings, significant
differences were found between all of the clusters. Table 5 shows
the significant differences found for the low level Bloom

grouping.
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Figure 2 Graph of Reading Ratio vs Bloom Level

Next we analyzed how the clusters were related to the Bloom
levels. Figure 2 shows that the Light Reading behavior was not
found in any questions above Bloom level 3. This seems to
indicate that Light Reading behavior is not conducive to the more
cognitively difficult tasks. The Heavy Medium Reading cluster
had only 2 instances in questions above Bloom level 3. The
decreasing use of Heavy Medium Reading as the Bloom level of
difficulty increases shows that some of the students’ adapted a
heavier reading behavior compared to the Light Reading behavior
at the lower Bloom levels. They gave up the Heavy Medium
Reading strategy for the Heavy Reading strategy used more in the
higher Bloom levels. The Heavy Reading cluster was found at
each of the Bloom levels. As the Bloom levels increase in
difficulty, the amount of Heavy Reading increases until all but
one student are Heavy reading at Bloom level 6.
Correspondingly, the Light Reading cluster that contains more
scrolling and scanning decreased as the Bloom level increased.
This seems to suggest that different strategies are appropriate for
different Bloom levels. There were several students that used the
same cognitive strategy throughout the experiment despite the
difficulty of the tasks changing. For example, some of the
students chose a Heavy Reading strategy for the entire
experiment. As a result they did not complete the experiment
with respect to answering all of the questions as they spent too
much time reading and not enough time answering the questions.
Furthermore, students who chose a Heavy Reading strategy for
the lower level Bloom questions did not always score very well
even though the questions were cognitively simpler. The question
2 example from the first condition cited earlier in the paper is a
good example. Other students chose different strategies for
different levels of difficulty. For example, they would choose a
strategy that was higher in scanning for the lower levels of Bloom
and switch to a Heavy Reading strategy at the higher levels of
Bloom. These students were able to complete the experiment and
answer all of the questions within the time allotted.

At Bloom level 6 only two strategies are used: the (60:30:10)
Light Medium Reading and the (80:10:10) Heavy Reading
strategies. Although the students’ inclusion in the Heavy Reading
cluster was a good indicator of higher scores, there was still a lot
of variance in the grades found within the Heavy Reading cluster
for Bloom level 6. The best predictor of scores within the cluster
was the ratio of reading time spent over the position in the various
documents that contained the material necessary for the answers.
This helped to identify those students that merely used their own
unsupported opinions to answer questions versus those students
that used information from the articles to support their answer.

4. CONCLUSIONS

This experiment demonstrates that the various cognitive strategies
used by students to solve tasks of varying degrees of difficulty can
be recognized automatically by an ITS. The use of Bloom’s
Taxonomy for categorizing the difficulty of the task and k-means
clustering on the reading-scanning-scrolling strategies allowed for
the detection of these cognitive strategies. These clusters can
easily be turned into metrics that can be used by a system to
discover the strategies the students are using and provide the
necessary metacognitive suggestions to improve the student’s
cognitive skill set. Furthermore, the experiment shows that
students may not always select the best strategy to use. This
approach is not refined enough to predict an actual score on a
question. However, it does provide a method of determining the
reading strategy being used and predicting if the cognitive
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strategy that is being employed is one that is positive or negative
given the difficulty level (in terms of Bloom) of the question.
Furthermore, since we are able to detect these inconsistencies in
the use of cognitive strategies automatically we have the potential
to automatically update a student model, and thereby inform the
student about the metacognitive strategies they are employing
and/or suggest appropriate pedagogical tasks that could be useful
for a student attempting to improve weak metacognitive skills in
the reading comprehension domain at least.

It is possible that the course grained detection of cognitive
strategies will provide direction for systems where the application
of more fine grained searches and algorithms might be able to
predict the grade or allow for some specific pedagogical
interventions. For example, do the students perform some course
grained strategy in their initial search through a document and
then use that information to refine their strategy for one that is
more optimal for the solving some particular task?

K-means clustering comes with its benefits and drawbacks. The
benefit of this algorithm is that it arrived at four interesting
centroids that are hard-coded and that can be used in a real-time
algorithm for the detection of significant reading strategies. There
are other clustering methods, such as EM clustering, that may
work better at determining new cluster centroids or are better at
including the students in the correct cluster. This will be a subject
of further research.

Future experiments also need to be performed to increase the
sample size of the experiment, especially in terms of the higher
Bloom levels. The increased sample size should allow us to see
statistically significant cognitive skill differentiation at the higher
Bloom levels but should also help to validate the reading-
scanning-scrolling clusters that were not statistically viable with
the current sample size. These experiments should further help
solidify the use of Bloom’s Taxonomy as a tool in detecting
cognitive  strategies for reading comprehension tasks.
Furthermore, the interplay between reading comprehension and
document selection may provide some interesting insights at the
higher levels of Bloom’s Taxonomy.
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ABSTRACT

We apply collaborative filtering (CF) to dichotomously scored
student response data (right, wrong, or no interaction), find-
ing optimal parameters for each student and item based on
cross-validated prediction accuracy. The approach is natu-
rally suited to comparing different models, both unidimen-
sional and multidimensional in ability, including a widely
used subset of Item Response Theory (IRT) models which
obtain as specific instances of the CF: the one-parameter lo-
gistic (Rasch) model, Birnbaum’s 2PL model, and Reckase’s
multidimensional generalization M2PL. We find that IRT
models perform well relative to generalized alternatives, and
thus this method offers a fast and stable alternate approach
to IRT parameter estimation. Using both real and simu-
lated data we examine cases where one- or two-dimensional
IRT models prevail and are not improved by increasing the
number of features. Model selection is based on prediction
accuracy of the CF, though it is shown to be consistent with
factor analysis. In multidimensional cases the item parame-
terizations can be used in conjunction with cluster analysis
to identify groups of items which measure different ability
dimensions.

1. INTRODUCTION

Online courses offer the prospect of large data sets of stu-
dent responses to assessment activities that occur over time
and under varying conditions (e.g. training, practice, graded
homework, and tests). These present a more complex anal-
ysis task than test data recorded under constrained circum-
stances, but they offer the opportunity to learn about learn-
ing (e.g. over a semester, or from a specific intervening in-
structional activity) in the spirit of evidence-centered design
[1]. Analyzing such data will require extensions of standard
assessment methods such as Item Response Theory (IRT),
for example when multiple attempts are allowed [2].

In the context of educational measurement, item response
models have numerous advantages over classical test theory,
and their use is widespread [3]. Despite a variety of available

*bergner@mit.edu
Talso: Ostfalia University of Applied Sciences

ipermanent affiliation: Michigan State University

software packages, IRT parameter estimation is still techni-
cal and goodness-of-fit analysis continues to be a subject
of research [4; 5]. In this paper we describe an alternate
approach to IRT parameter estimation and goodness-of-fit
motivated by machine learning. Our approach springs from
an operationalist interpretation of the goals of IRT as stated
by Lord [6]: “to describe the items by item parameters and
the examinees by examinee parameters in such a way that
we can predict probabilistically the response of any exami-
nee to any item, even if similar examinees have never taken
similar items before.”

Collaborative filtering (CF) is commonly used in recom-
mender systems with the goal of recommending unfamiliar
items to a user based on ratings of those items by other
users and prior rating information by the user in question
[7]. The Netflix prize, for example, drew much attention to
the problem of movie recommendations [8]. The idea behind
any collaborative filter is that when multiple users interact
with overlapping subsets of items, information from the in-
teractions can be extracted and used to make probabilis-
tic inferences about potential future interactions. Memory-
based CFs attempt to do this by exploiting similarity be-
tween users based on a vector of their prior interactions. A
naive algorithm might predict that user J will have identi-
cal interactions to those of the most similar user K (or to
cluster of similar users). This descriptive approach does not
attempt to model, causally or otherwise, the nature of the
individual interactions. By contrast, model-based CF uses
the partial interaction information to model a set of param-
eters for the users and the items which, taken together, can
reconstruct probabilistic predictions about the missing in-
teractions. In this aspect, CF and IRT have the same end.
The structural similarity between IRT and logistic regres-
sion has been noted in [9; 10]. Beck and Woolf [11] have
applied a linear regression machine learning algorithm to an
intelligent arithmetic tutor to predict when a student would
answer a problem correctly (and in how much time). Des-
marais and Pu [12] have compared Bayesian modeling of
knowledge spaces to IRT in pursuit of examinee ability esti-
mation. Whereas Bayesian knowledge tracing requires iden-
tification of subject-specific knowledge components, multidi-
mensional IRT is a general framework for measuring ability
along multiple dimensions.

This paper explores the application of model-based collabo-
rative filtering (CF) to the analysis of student responses with
similar goals to IRT, i.e. finding parameters for students
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and items that combine to predict student performance on
an item by item basis. From machine learning, we borrow
the notion of learning the model from the data. Rather
than assign an item response model a priori, we use the
CF to train a class of log-linear models on the data and
select the one which performs the best in terms of predic-
tion accuracy. The model is selected for capturing maximal
information from a student response matrix, with no prior
knowledge about the data assumed. We show that several
standard IRT models emerge naturally as special cases.

In the remaining sections, we describe the numerical pro-
tocol for parameter estimation as well as an approach to

goodness-of-fit based on prediction accuracy and cross-validation

techniques standard in machine learning. The approach is
naturally suited to comparing different IRT models, both
unidimensional and multidimensional. We apply the CF to
two sets of student response data. Ome of the two, con-
taining roughly 120 online homework responses in a Gen-
eral Chemistry course with 2000 students, hints strongly at
two dimensions of skill and discrimination for students and
items respectively. We demonstrate that the items, thus
parametrized by the CF, cluster into the same groupings
that are suggested by principal component analysis.

2. REGULARIZED LOGISTIC REGRESSION

AS A COLLABORATIVE FILTER

2.1 Parameter Estimation

We describe the collaborative filtering approach for dichoto-
mously scored responses using regularized logistic regres-
sion. Particular IRT models obtain as a special case.

A binary classifier of individual responses is built ab initio
around a logistic function

1
= — 1
14+e % ()

which provides a mapping from the real line to the probabil-
ity interval [0,1]. We are given a response matrix Us; whose
rows represent the response vector of student s to each item
i. Each student is to be parametrized by a vector 6, and
each item by a vector Xx. The vectors are by design of com-
mensurate dimension (known as the number of features ny)
such that a scalar product can be constructed, the logit, or
inverse of the logistic function,

Z=0-X=) 06Xy (2)
k

Although student and item indices have been suppressed, Z
is a matrix product of 6 (Ns x ny) and X (ng x N; ). It
is useful to modify the description slightly to include a bias
component (fixed, equal to 1) on either the student side or
the item side, or both, by considering generalizations such

X+ = ()f) (3)

Z:9*~X*:Xo+29kxk+90 (4)
k

in which case

where we have taken the liberty of relabeling the indices for
simplicity of presentation. The bias component in a student
or item vector does not add parameter information but im-
portantly allows the logit to be a function of the difference
between student and item parameters. (Nothing is gained by
having more than one bias component since a sum of student
or item parameters defines a single alternate parameter with
the same information). The logistic function now generates
a probability (or expectation) matrix with the dimensions
Ns x N; of the response matrix Us;,

1

Psi -
1+ e Zsi

(5)
The likelihood function for the observed response matrix U
given the parameters 6 and X is given by the product

Lo, x) =[] P - Py;)(=Us) ©6)

and remains to be maximized by suitable assignment of stu-
dent and item parameters. For computational benefit, one
typically uses the logarithm of the likelihood function. If
we multiply the log likelihood by —1 (turning the maximum
into a minimum), we can relabel the result in the convention
of machine learning as the “cost function”

J(0,X)==>"> " [Usilog Psi + (1 = Us;) log(1 — Ps)]
o (7)

Numerically maximizing the likelihood function L or (equiv-
alently) minimizing the cost function J is quite fast on a
modern desktop with off-the-shelf optimization packages (in
our R implementation, we use optim with method “BFGS”).
Typically these min/max finders take as arguments one long
parameter vector (formed by unrolling the X and 6 matri-
ces) and a definition of the cost function and its gradient.
As of this writing, a response matrix of 2000 students and
50 items takes about 10 seconds to process on a 3.4 GHz
Intel i7 machine. This approach to Joint Maximum Likeli-
hood Estimation (JMLE) no longer necessitates a stepwise
update of item and student parameters as was once standard
[13; 14; 15].

As the number of model features ny is increased in any data
fitting scenario, it becomes possible to minimize the cost
function with parameters that do not generalize well to new
data, i.e. to over-fit the data. Regularization terms may
be introduced in the cost function to reduce over-fitting.
To equation 7 we add the terms (sums exclude any bias
components)

AD G+ Xi (8)
k=1 k=1

where the optimal regularization parameter A can be deter-
mined from cross-validation as discussed is section 2.3.

2.2 IRT Recovered as Special Cases of the CF

It is now possible to show explicitly how IRT models emerge
from this framework. To keep track of the absence or pres-
ence of the optional bias component, we label the dimension-
ality of the student or item vector as an ordered pair. The
first component refers to the number of information-carrying
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parameters while the second (either a zero or a one) indi-
cates whether or not a bias component is used. Thus the
Rasch model (operationally equivalent to the 1PL model)
obtains under the arrangement

dim(9) = (1,1) 6" = (16
dimg)g) :((1, i) x* :((X)l) } = ZRasch = X +0 (9)

where we have used the generalized form of the logit con-
structed in equation 4. The scalars § and X here are iden-
tified with the student ability and item easiness parameters
in the Rasch model.

The Birnbaum 2PL model, still unidimensional in skill, is
obtained as

1) 6 =(10)

dim(6) = (1,1)
=(2,0) X = (X1 Xz

dll’n(X) ) } —)ZQPL:X1+9X2
(10)
Although the slope-intercept form of the logit appears in the
literature, it is common to map X; and X3 to the discrim-
ination and difficulty parameters o and 3, where a = X3
and 8 = —X1 /X2, such that Z = a( — 3).
As a final example, Reckase and McKinley [15; 16; 17] have
defined as M2PL the multidimensional extension of the 2PL
model for m skill dimensions, which emerges here when

dim(0) = (m, 1) 0" =(101...0m)
dim(X) = (m+1,0) X = (Xo X1...Xnm) }
m (11)
— Z\voPL = Xo + Zame

=1

This is a compensatory multidimensional model to the ex-
tent that high values of one component of §# may compensate
for low values in another component. However the model is
still capable of describing items which have very low discrim-
ination along one or more skills. The X, item parameters
for m > 1 should be seen as “discrimination-like” param-
eters whereas a “difficulty-like” parameter along each axis
could be constructed by analogy with the 2PL model as the
ratio —Xo/Xm.

2.3 Evaluating the Model, or Goodness-of-Fit

The CF minimization procedure results in a set of parame-
ters for each student and item. These can be used to con-
struct item response curves (or surfaces or hyper surfaces) as
a prelude to studying model-data fit. An alternate approach
however, common to machine learning algorithms, is to se-
quester a portion of the response matrix as a test set which is
not considered during parameter estimation. Once parame-
ters are estimated using the remaining “training” data, these
same parameters are used to predict the values in the test
set (where a probability value of greater than 0.5 results in
the prediction of a correct item response). The percentage of
correctly classified elements is the accuracy score. An inter-
mediate test-set can be used for cross-validation, for example
to adjust the regularization parameter to avoid over-fitting
the training set. Moreover by subsampling multiple times
(either with disjoint partitions or random subsamples) and
averaging the accuracy score, subsampling variability can be
controlled.

In the following section, we present results of data analyzed
using this recipe, with 30% of the response matrix randomly

subsampled for use as a test set, repeating 100 times. In
section 4, we discuss interpretation of the accuracy score as
a goodness of fit statistic.

3. SAMPLE RESULTS OF CF ANALYSIS

We analyze three data sets, two real and one simulated. The
first set comes from a pre-test administration of a physics
instrument, the Mechanics Baseline Test (MBT) [18] at the
Massachusetts Institute of Technology over multiple years
from 2005-2009 (26 items and 2300 examinees). The MBT is
a standard instrument used to gauge student learning gains
on and competencies with essential concepts in introductory
physics. A superset of these data has been described and
analyzed by Cardamone et al. using (unidimensional) IRT
[19].

To test whether the collaborative filter would indeed “discover”
multidimensionality of skills in student response data, we
constructed a second data set of simulated responses to
a two-skill test, assuming correlated skill-components but
unidimensional items. In other words, 2000 skill-pairs were
sampled from a multivariate Gaussian distribution and a re-
sponse matrix for 60 items simulated based on a 2PL unidi-
mensional model. Responses to the first 30 items depended
only on the first skill component, while responses to the last
30 items depended only on the second component. The two
skills over the sampled population were correlated with a
Pearson coefficient 7 = 0.58.

The third data set comes from online homework data us-
ing LON-CAPA for a General Chemistry class at Michigan
State University (MSU). The class was selected for study
because it had a large student enrollment in a typical year
(N = 2162), and because the 120 items were repeatedly ad-
ministered over several years between 2003-2009. Although
students were allowed multiple attempts on homework prob-
lems, the responses were scored correct/incorrect on first
try for this analysis. No prescreening of the items was per-
formed, and the data analysis was completely blind to the
content of this course.

When the dichotomously scored response matrix contained
omitted responses (up to 40% in the General Chemistry
homework) the sum over matrix elements in Equation 7 and
the computation of the accuracy score both excluded omit-
ted responses.

For each data set, the model space was scanned by starting
with dim(X) = (1 0),dim(f) = (1 0) and proceeding incre-
mentally subject to the commensurability constraint (i.e. to
construct a scalar product of @ and X). In the figures below
we denote each model by combining the dimensions of § and
X into one compact string (dim(f) dim(X)), i.e. (1010). In
this notation, the model (2130) is read as containing two
skill parameters plus a bias parameter and three item pa-
rameters (no bias). The apportionment of bias parameters
means that both skill parameters multiply an item parame-
ter, but there is one item parameter that remains as a term
by itself in the logit.

Figures 1-3 display the accuracy scores of the CF models
as the dimensionality is varied. For reference, we indicate
with shaded regions the separation of the model space by
the dimensionality of student skills. We also indicate with
vertical dashed lines the CF models corresponding to par-
ticular IRT models. We observe that for the MBT data set,
accuracy increases up to the unidimensional 2PL model, but
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Figure 1: Model by model accuracy scores using the Me-
chanics Baseline Test data. Performance peaks at the 2PL
model and is not improved by additional features.
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Figure 2: Model by model accuracy scores using the simu-
lated two-skill responses. Two-dimensional models (and the
2d-2PL model in particular) perform optimally.
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Figure 3: Model by model accuracy scores using online Gen-
eral Chemistry homework. Two-dimensional models (and
the 2d-2PL model in particular) outperform unidimensional
models.

no significant gains are achieved by going to higher dimen-
sional models. In the simulated response data based on a
two-part, two-skill test, an accuracy improvement is realized
by going to two-dimensional models (and the 2D-generalized
2PL MIRT model in particular), but again this asymptotic
limit is not exceeded by higher-dimensional models. This is
not surprising given that the simulated data were devised
using two skills, but it serves as confirmation that the CF is
capable of learning this feature of the data. The substantive
result is that the General Chemistry analysis (Fig. 3) follows
the pattern of the two-dimensional simulated data and not
the unidimensional MBT data.
We note that among the four possible models representing
m skill dimensions (for m > 1) the latter two models appear
to outperform the first two (except in the case of the simu-
lated data). The better performing models are the Reckase
M2PL model (m 1 m+1 0) and a hybrid model (m 1 m 1)
which could be thought of as M2PL along all but one skill
component and 1PL for the remaining skill. Models with
higher dimensionality require larger regularization parame-
ters to avoid over-fitting. The apparent degradation of per-
formance for increasing dimensionality is most likely due to
over-fitting /sub-optimal choice of regularization parameter
(the choice was suitable for the MBT data).
To understand the structure of the simulated two-dimensional
data set and calibrate our perceptions for the General Chem-
istry data, we perform an exploratory factor analysis of the
simulated response matrix and show the scree plot in fig-
ure 4(a). We plot the projection of each item (factor loading)
onto the second principal component in figure 4(b). Whereas
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Scree plot for simulated 2-skill response data
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Figure 4: Simulated two-skill analysis: (a) scree plot and
(b) projection of items onto second principal component for
simulated data set. Color is added in (b) to identify points
in later figures.

the first principal component captures the variance in overall
score or (unidimensional) skill, the second component

will differentiate between students who may have the same
overall score but perform proportionately better or worse on
different groups of items.

The second principal component loadings in figure 4(b) clearly
distinguish two different subsets of items in the simulated
data, the first and second half of the item set by design.

In figures 5(a) and figure 5(b), we now plot the items as
points in the item parameter space generated by two CF
models: the (1120) CF model corresponding to unidimen-

Unidimensional 2PL item parameter space
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Figure 5: Simulated two-skill analysis: Item parameter
space in (a) 1d- and (b) 2d-2PL IRT. Color coding is based
on second principal component loading, and k-means cluster
analysis is superimposed using shapes in (b).

sional 2PL (the full item-parameter space is 2-dimensional,
spanned by X; and X>) and the (2130) CF model, corre-
sponding to 2d-2PL IRT. There are three item parameters
in the latter model, and we examine the reduced parame-
ter space spanned by the two discrimination-like parameters
X9 and X3. The parameters plotted here come from a single
run of the CF algorithm.

The unidimensional model blurs any distinction between the
two known groups of items, but this distinction is manifest
in the 2d-2PL model. The roughly orthogonal arms in fig-
ure 5(b) reflect the fact that in our simulated responses, each
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Scree plot for General Chemistry homework data
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Figure 6: General Chemistry homework data justifies two-
dimensional models. Scree plot (a) showing two significant
eigenvalues and (b) projection of items onto second principal
component. Color is added in (b) to identify item points in
later figures.

item was truly unidimensional in skill-dependence and thus
does not discriminate at all with respect to the complemen-
tary second skill. We superimpose the results of a k-means
(with k& = 2) clustering analysis indicated by shape on the
plotted points in figure 5(b). All the red (blue) points are
overlapped with triangles (circles), showing that the cluster-
ing algorithm finds the same two groups that were identified
by the factor loading in figure 4(b). We have verified that
this clustering is manifest in three dimensions as well using
a 3d-2PL model on simulated data.

Unidimensional 2PL item parameter space
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Figure 7: General Chemistry: (a) unidimensional 2PL item
parameter space shows little separation of colors (corre-
sponding to loading onto the second principal component).
Conversely (b) 2d-2PL IRT clearly separates color-coded
items in the space of two discrimination-like parameters;
moreover cluster analysis in this space identifies the border.

We repeat the procedure to visualize the results of the Gen-
eral Chemistry data in figures 6(a)-7(b) with similar results.
The cluster analysis in the 2d-2PL parameter space identi-
fies the same two groups as the principal component analysis
for over 90% of the items (discrepant items are those that
fall very close to the zero line in figure 6(b)).

We emphasize that the choice of model (2130) was driven by
the accuracy score of the CF algorithm. Given the model,
the two clusters of items emerge from the assignment of

Proceedings of the 5th International Conference on Educational Data Mining 100



discrimination-like item parameters which best predict the
response matrix. We have added no information about the
items nor offered any interpretation of the meaning of the
two clusters in this case, though we are working with domain
experts on identifying the significance. For the simulated
data, the two clusters emerge as expected from simulated
responses predicated on the assumption that the different
item groups test different, though correlated, abilities of the
examinees.

4. INTERPRETATION OF THE ACCURACY
SCORE STATISTIC

It may be noted that the overall accuracy scale differs in each
of the figures 1-3, that the scores sometimes seem rather
unimpressively low (= 65%), and that in some cases the
model scores for a given data set differ by only a fraction
of one percent. Since we claim that this score provides a
basis for preferring one model over another, it behooves us
to discuss the meaning of the score value itself.

Beck and Woolf also observed that in any probabilistic bi-
nary classifier, the maximum expected accuracy score de-
pends on the distribution of values in the probability (or
expectation) matrix [11]. For example, if all probabilities
(for each student-item pairing) are equal to 0.75, then all
responses would be predicted by the binary classifier to be
correct, though of course only 75% should be expected. Per-
haps less intuitive, if the values in the probability matrix are
distributed uniformly over all values in the interval [0, 1], the
expected accuracy score will also be 75%.

A workaround suggested in [11] is to bin the matrix elements
into probability bins before comparing with the observed
responses. This indeed results in a visible one-to-one cor-
respondence between expected bin-fractions and observed
bin-fractions, but bin-based statistics inevitably raise sev-
eral concerns about the binning procedure itself. Certainly
binning choice is not a characteristic of the model. Instead,
we probe the accuracy score formally as follows. If the dis-
tribution of p values in the expectation matrix is given by a
distribution function g(p), then the expected accuracy score
is given by the following “average”

5= / (1 - pa(p)dp + / e (12)

where the first term accounts for predicted-to-be-wrong and
the second term for predicted-to-be-right matrix elements.
The shape of g(p) in turn depends on the distribution of the
student and item parameters and the function that is used
to model the probability. As an explicit example, for the
Rasch or 1PL model, the probability of a correct response
when the student skill is # and the problem difficulty is 3 is
given by

. 1
1 + e—(0-8)

If student skills are distributed as go(0) and item difficulties
as gg(B), then g(p) can be shown to be the convolution

_ 1 > nlfp
o) = [ (05w ) ()

P (13)

Although the model dependence has been folded into equa-

tion 14, the dependence on the distribution of item difficul-
ties is explicit. The accuracy score thus cannot be meaning-
fully compared for two different data sets unless the exam-
inees and items are drawn from very similar distributions.
For 2PL and M2PL models, the best score will also be a
function of the distribution of item discriminations. In fact,
we have observed that after removing two MBT items with
pathological item response curves found in [19], prediction
accuracy on the remaining data increased by 2 percentage
points, while this gain was not observed when two randomly
selected problems were removed.

In view of the model dependence of equation 14, a cau-
tionary flag might be raised in using the accuracy score to
compare different models on a given data set. However since
the models are designed to predict the data, we argue that
this model-dependence is justly accounted for in using the
accuracy score as a goodness-of-fit statistic.

In practice it is much easier to calculate the expected score in
equation 12 numerically from the expectation matrix with-
out any integrals. Simply replace all probabilities less than
0.5 by one minus the probability and average over the re-
sulting matrix.

S. SUMMARY AND CONCLUSIONS

We have applied a model-based collaborative filter, i.e. a
numerical method for analyzing a dichotomous student re-
sponse matrix with the goal of predicting the observed re-
sponses. Relying on readily available optimization code, the
CF is fast, flexible and stable. We showed that CF nat-
urally parameterizes a series of models with increasing di-
mensionality and that this family contains several common
unidimensional and multidimensional IRT models.

We showed with sample data that the CF can aid in model-
selection and that the multidimensional-model capability
can result in improved prediction accuracy and easy investi-
gation of whether the data are better fit by alternate models.
Practitioners of IRT will be pleased to learn that, at least
in the cases considered here, CF was not able to improve
significantly on the quality of fit achieved using standard,
but in two cases multidimensional, IRT models. Moreover,
the dimensionality of models suggested by the CF and the
clustering of items in the ensuing parameterizations are con-
sistent with results from exploratory factor analysis.
Finally, the stability, speed, close connection with IRT, and
easy generalizability of CF recommends it very highly for
use in analyzing student response data of all sorts.
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ABSTRACT

This paper focuses on predicting drop-outs and school fail-
ures when student data has been enriched with data derived
from students social behaviour. These data describe so-
cial dependencies gathered from e-mail and discussion board
conversations, among other sources. We describe an extrac-
tion of new features from both student data and behaviour
data represented by a social graph which we construct. Then
we introduce a novel method for learning a classifier for stu-
dent failure prediction that employs cost-sensitive learning
to lower the number of incorrectly classified unsuccessful
students. We show that the use of social behaviour data
results in significant increase of the prediction accuracy.

1. INTRODUCTION

One of the current trends in higher education is the sub-
stantial increase of the first-year students and, consequently,
the volume of educational data. Thousands of students are
admitted to study at universities every year. They reach in-
terim results, pass or fail at exams, communicate with each
other during their studies and many of them fail to finish
their study successfully. University staff would like to en-
courage such students to finish their studies but it is hard
to identify them early also because of the huge number of
enrolled students. It is important to explore methods that
can extract reliable and comprehensive knowledge from the
student data that allow prediction of a drop-out with a suf-
ficiently high accuracy.

In this work we utilized student data that have been stored
in the Information System of Masaryk University (IS MU),
which stores educational data and comprises of all informa-
tion about students and their studies, about teachers and
courses, and also provides examination management tools,
excuses registration system, evaluation of on-line tests, and
various forms of communication, e.g. discussion boards.
We utilized only a subset of information stored in IS MU
that is relevant for prediction of the student success, like
capacity-to-study test scores, gained credits, average grades,
or gender. Data from IS MU are periodically imported to
data warehouse Excalibur [3] that combines three main dis-
ciplines of data processing—data management, data mining
(DM), and visual analytics.

IS MU also stores the complete history of users’ requests
to the system. Data about students’ social behaviour, such

Lubomir Popelinsky
Knowledge Discovery Group
Faculty of Informatics, Masaryk University
Brno, Czech Republic

popel@fi.muni.cz

as intensity of interpersonal communication or number of
mutually shared files, can be observed and stored either
immediately, when the particular system function is used,
or later from the complete history of users’ requests that
is present in the form of the system access log. Relations
among students (identified from their social behaviour) are
main building blocks of a latent social network. With the
help of Social Network Analysis (SNA) [4] we compute sev-
eral new features of a student from the network, for example
neighbours characteristics.

In this paper we introduce a novel method for data gener-
ation, pre-processing, and educational data mining (EDM)
[1; 14; 10] that utilize both the student records and the data
about their social behaviour. We show how to predict stu-
dent drop-out and school failure using DM [7] methods and
SNA. We use SNA for creating new study-related features
that can help conventional learning methods to increase the
accuracy of predicting student performance or detecting a
possible drop-out. We intend to build classifiers for early
detection and long term prediction of a potential drop-out.
The early detection implies a need for the history of data.
Preliminary results for this task were published in doctoral
workshop [2]. The highest measured accuracy was above
80% when only student data were employed. We enriched
the student data with the data about social behaviour and
achieved an increase of the overall accuracy of about 10%.
In both cases, the information gain based machine learning
(ML) methods generated the most successful classifiers.
Another approach to the prediction of a student study per-
formance that is based on questionnaires can be found in
[12]. In [15], a design of a web based system for solving
issues related to student performance in higher education
is proposed. It utilizes a quality function deployment in
combination with DM methods. A novel ML method pre-
dicting drop-out in distance higher education from imbal-
anced datasets is discussed in [9]. It reveals limitations of
the existing methods and proposes another approach based
on local-cost sensitive techniques. A novel approach to iden-
tify factors influencing the student success is discussed in
[11]. It focuses on factors available before the beginning of
a students degree program suggesting associative rules for
subgroup discovery to predict possible drop-outs. A signifi-
cant improvement of prediction of freshmen drop-out using
cost sensitive learning is described in [5]. The highest accu-
racy of classification was achieved using decision trees. In
comparison with our approach of utilizing social behaviour,
a combination of data mining methods with natural lan-
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guage processing, especially text mining, was employed in
[17] to increase the student retention.

In the following section, we introduce the structure of both
the student data and the social behaviour data and the nec-
essary preprocessing steps. We describe how we built the so-
cial network and applied the analytical methods in Section
2.2. Section 2.3 describes the DM method used for drop-out
prediction. In Section 3 we demonstrate the results and the
improvement of the classification by measuring the amount
of the additional data explored by SNA. Then we show that
high-accuracy classifiers can be created for every student
regardless of the actual stage of the study. Discussion of re-
sults is in Section 4. Finally, we conclude this paper with an
overview of the main results and future work in Section 5.

2. DATA AND DROP-OUT PREDICTION
2.1 Student data

Our research considers bachelor students of Applied Infor-
matics admitted to Faculty of Informatics, Masaryk Univer-
sity in years 2006, 2007, and 2008. For that period we can
obtain data that match the whole length of the standard
bachelor study, i.e. three years. The year 2006 as the lower
bound is set as the year when social behaviour data have
been started to collect. We explored only the students that
were in contact with the school community. Such students
produce social behaviour data characterizing them in the
university setting.

We selected only general attributes of studies to be able to
apply our approach to students of any faculty. To predict a
drop-out through the whole period of the study we collected
data snapshots for each term of student studies. The set
of attributes can be divided into three categories according
to the type: Student-related attributes, Semester-related at-
tributes and Attributes related to other studies.

Student-related attributes comprise of the following:

1) gender

2) year of birth

4

(1)

(2)

(3) year of admission
(4) exemption from entrance exam
(5)

5) capacity-to-study test score—a result of the entrance

examination expressed as the percentage of the score
measuring learning potential

Semester-related attributes are the following:
(6) the number of finished semesters

(7) recognized courses—the number of related courses
finished in other studies

(8) recognized credits—the number of credits gained from
recognized courses

(9) credits to gain—the number of credits to gain for en-
rolled but not yet finished courses

(10) gained credits—the number of credits gained from fin-
ished courses

(11) uncompleted courses—the number of courses a stu-
dent has failed to complete

(12) second resits done—the number of the utilized second
resits. Each student can exercise the right to the second
resit for only as many times as the standard length of
the study in years increased by one.

(13) excused days—the number of days when a student is
exused

(14) average grades—the average grade computed from all
gained grades

(15) weighted average grades—average grades weighted
by the number of credits gained for courses

(16) the ratio of the number of gained credits to the
number of credits to gain

(17) the difference of gained credits and credits to
gain

Because a student can be enrolled in more studies or also
on more faculties, we added also attributes related to other
studies of the student. This set of attributes consists of the
following:

(18) the number of parallel studies at the faculty
(19) the number of parallel studies at the university
(20) the number of all studies at the faculty

(21) the number of all studies at the university

Data that consist of values of all attributes characterizing
a study in a point of time have been extracted from Excal-
ibur. The data set contained 775 students, 837 studies and
4,373 examples in total—one example per a term, where the
number of terms for a student varied from 1 up to 8.

2.2 Social behaviour data

The aforementioned set of 775 students is the core of ego-
centered social network. We create it from the students plus
their direct schoolmates and relations among them. Rela-
tions reflects the patterns of social behaviour data. Then we
compute new student features from the network structural
characteristics and student direct neighbours attributes.
To obtain knowledge concerning a student from perspective
of his or her engagement in the school community, we con-
struct a sociogram, a diagram which maps the structure of
interpersonal relations. Such social graph allows to find new
features by link-based ranking.

There are number of interpersonal ties already evaluated to
enhance IS MU full text search. We compute them either on-
line or through system log processing and store them both in
the search engine index as a relevant document non-textual
tokens and as a part of the user model. These are then
used to better order the search results by matching docu-
ments (e.g. e-mails, files, courses) related to the respective
users [16].
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Figure 1: Network with vertices arranged by Kamada-Kawai
energy layout algorithm. Dark nodes represent students
with successfully finished studies.

Some ties are intuitive and strong facts, namely:
(a) explicitly expressed friendship

(b) mutual e-mail conversation

(¢) publication co-authoring

(d) direct comment on another person

Weaker ties are more hidden and are derived from the fol-
lowing facts:

(e) discussion forum message marked as important

(f) whole thread in discussion forum or blog marked as fa-
vourite

(g) files uploaded into someone else’s depository
(h) assessments of noticeboard’s messages
(i) wvisited personal pages

We measure the value of a tie by its importance and weight
it by the number of occurrences. For instance, a tie repre-
senting exchange of several e-mails have grater value than
a visit to somebody’s personal profile. The identification of
the best weights is a possible subject of future evaluation.
Another notable property of a relation is its direction. It in-
dicates the source and the target of an action which we count
as the relation. For example, a person who sent/received an
e-mail or who uploaded/received a file in the source/target
respectively. Some actions have no direction, e.g. marking
the same discussion thread as a favourite one.

As aresult we calculated a single number from all mentioned
ties reflecting the overall strength of a student relation to
any given schoolmate. We found 13,286 such connections
representing graph arcs (oriented lines) valued by this num-
ber.

Now, the network can be visualized for exploratory analy-
sis of its properties. For example, after applying Kamada-
Kawai energy layout algorithm [8] (Fig. 1), we can see that
the successful students (black nodes) occupy the area in the
middle of the network and are rarely seen on the periphery.
In opposite, the unsuccessful ones (white nodes) are placed
all over the graph. This, along with results presented later,
supports our assumption that higher number and stronger
ties have a positive impact on the success of the study while
absence of the ties predicts a potential to failure.

2.2.1 New feature generation

This single mode social network of students and their inter-
personal ties (i.e. homogeneous information network) allows
us to explore it not only visually but also by tools for social
network analysis, e.g. Pajek [13]. Moreover, previously un-
seen features of each student may be computed with such
tools. The following two types of features are interesting
and give us a new insight into the data.

First, features obtained from the network structure are com-
puted from basic structural characteristics, namely the ver-
tex degrees, the summary of incident line values, and the
betweenness centrality:

(22) degree—the number of lines that incident with a ver-
tex, represents how many relations the student is in-
volved in

(23) indegree (or popularity)—the number of arcs coming
to the node, it represents for how many other members
of the network the student is a subject of interest

(24) outdegree—the number of arcs with opposite direction
represents an interest initiated by the given student

(25) sum of incident line values—to measure also the
strength of the ties

(26) betweenness centrality—the number of shortest paths
from all vertices to all others that pass through given
vertex represents student’s importance (global to the
network)

Second, features obtained from the neighbourhood proper-
ties are also important to examine, and we must measure
not only the quantity of person’s ties but also their quality.
In other words, the academic performance of the surround-
ing students is important, because it would be hard to get
advantage from communication with unsuccessful students.
We selected four student features from the data set, pre-
ferred by their information gain, to calculate averages of the
neighbourhood values (ANV):

27) capacity-to-study test score ANV

29

(27)

(28) grade average ANV

(29) proportion of enrolled and fulfilled credits ANV
(

30) credits per semester ANV

2.3 Process of drop-out prediction

We aimed at developing an accurate method for drop-out
prediction that would also allow predicting the drop-out in
an early stage of the study. The method should have min-
imum of false negatives, i.e. students that have not been
recognized to be in danger of dropping-out.

When all the attributes were used the accuracy was poor.
That is why we utilized feature selection methods to reduce
the dimensionality of the student data extracted from Ex-
calibur data warehouse. We improved the pre-processing
method described in [12] by computing the average rank of
attributes while eliminating the extreme values.

'Surprisingly, when we tried to use these features with
weighting using the strength of the corresponding connec-
tion, it has not improved the performance of the classifiers.
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The goal was to preserve reliability of attributes for classifi-
cation after the reduction. Therefore we utilized a combina-
tion of feature selection/estimation algorithms based on dif-
ferent approaches. We employed three algorithms based on
entropy (InfoGainAttributeEval, GainRatioAttributeEval
and SymmetricalUncertAttributeEval), an algorithm select-
ing the minimum-error attribute for prediction (OneRAt-
tributeEval), an algorithm utilizing x2-distribution (Chi-
SquaredAttributeEval), an algorithm preferring attributes
highly correlated with the class but with low intercorrela-
tion to others (CfsSubsetEval), an algorithm looking for the
smallest subset of attributes having the consistency equal
to that of all attributes (ConsistencySubsetEval), and an
algorithm assessing attributes by finding the nearest neigh-
bours for a randomly chosen example from every class. It
compares the accumulated differences of values of the cor-
responding features (ReliefFAttributeEval), and we utilized
also two filters (Filtered AttributeEval, FilteredSubsetEval).
Then, we computed a list of attributes ordered by the av-
erage ranks gained from the ordered lists produced by the
feature selection algorithms evaluating the significance of
the attributes. For every attribute, we skipped the extreme
values—the best and the worst evaluations. We reduced the
set of attributes to the 22 most relevant and learned the
classifiers again. Except for the Naive Bayes (NB) method,
all used machine learning methods achieved a higher accu-
racy. Examples of the removed attributes are the following:
being a seminar tutor, the number of password changes, or
the number of enrolled courses.

The list of the refined set of attributes in relevance order
can be found in Table 1.

Then we computed significant structural characteristics of
the social network to gain additional attributes implying
social relations among the students.

We employed machine learning methods from Weka on the
student data and then on the data that contained also the
social behaviour data. To cover all types of machine learn-
ing algorithms, we employed J48 decision tree learner, IB1
lazy learner, PART rule learner, SMO support vector ma-
chines, and NB classifier. We also employed ensemble learn-
ing methods, namely bagging and voting. We utilized cost-
sensitive learning (CSM) and then bagging with cost matrix.
All methods have been used with default parameter settings.
Performance was measured in terms of accuracy (the num-
ber of correctly classified examples over the number of all
examples) and True Positive Rate (the number of correctly
classified examples from the class of unsuccessful students).
We used 10-fold cross-validation.

3. RESULTS

First we created a classifier using only the social behaviour
data but the accuracy did not raise above 69%, in fact, it
was lower than for learning from student data. However, if
we added the attributes that described the social behaviour
to the student data, we observed an increase of accuracy
that reached 11%. Main results can be found in Table 2. In
the first column represents the results obtained from Excal-
ibur data warehouse, followed by the results for the Excal-
ibur data enriched by the social behaviour data. The base-
line was 58.86%. The highest accuracy was obtained with
PART, 93.67%, and the True Positive (TP) rate 92.30%.
Accuracy for the data without information about student’s

social behaviour did not overcome 90% and the best result
was obtained with decision tree learner, 82.53%, and the TP
rate 78.50%.

The most significant attributes include the ratio of the num-
ber of gained credits to the number of credits to gain, and
the average of this ratio measured for neighbours weighted
by the strength of their relation in the social network. The
seven most relevant attributes are presented in Table 1.

Table 1: Seven the most relevant attributes

Order | Avg. Ord. Attribute
1 1.000 (16)
2 2.000 (14)
3 2.625 (15)
4 4.500 (5)
5 5.625 a7
6 6.000 (8)
7 7.750 (10)

Table 2: Learning from student data (Excalibur) and stu-
dent data enriched with social behaviour attributes (With
SNA) [%]

Excalibur With SNA
Method | Accur. TP | Accur. TP
ZeroR 58.86 — 58.86 -
NB 7757 735 | 7226 83.4
SMO 79.17 64.6 | 81.59 74.2
IB1 78.14 72.5 89.80 86.2

PART 82.44 73.7 | 93.67 92.3
OneR 75.89 57.9 | 88.45 838
J48 82.53 78.5 | 89.89 88.8

We consider social behaviour data to be a characteristic of
a student. Therefore, we learned classifiers only from the
social behaviour data without snapshots of student studies
data. The baseline was slightly lower than for the student
data or the enriched data. The most successful classifier was
PART with the accuracy 68.82% and the TP with the rate
70.50%. The results are in Table 3.

Table 3: Learning from social behaviour attributes only [%)]
Method | Accur. TP
ZeroR 50.18 -
NB 64.04 80.6

SMO 63.68 83.5
IB1 60.10 63.5

PART 68.82  70.5
OneR 59.50 57.3
J48 68.34 65.0

Then we analyzed how successful a prediction of a drop-out
would be for different time periods. We learned classifiers
on interim study results enriched by social behaviour data
to recognize drop-outs as soon as possible. Results in terms
of accuracy (%) are in Table 4.
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Table 4: Learning from student data enriched with social behaviour attributes per semester [%]

1 2 3 4 5 6 7+
Method | Accur. TP | Accur. TP | Accur. TP | Accur. TP | Accur. TP | Accur. TP | Accur. TP
ZeroR 50.18 - 50.25 - 53.87 - 58.56 64.02 - 72.20 - 76.77 -
NB 7145 69.1 | 78.87 758 | 78.98 80.7 | 7877 81.8| 78.66 80.2 | 77.56 76.3 | 68.60 68.0
SMO 72.40 739 | 81.33 80.2 | 81.02 77.5 | 83.22 781 | 83.74 723 | 87.56 67.5| 85.48 52.3
IB1 66.48 624 | 70.64 672 | 66.72 61.1 | 71.40 63.2| 74.59 61.0| 77.07 53.5| 90.93 758
OneR 62.84 65.7 | 77.89 773 | 79.71 744 | 83.56 744 | 8150 66.7 | 83.90 60.5 | 80.58 37.5
PART 70.13 69.5 | 74.82 743 | 76.20 728 | 76.20 73.1| 77.24 69.5| 79.51 64.0 | 91.11 83.6
J48 70.73 71.2 | 74.82 728 | 7577 725 | 7791 727 | 7764 678 | 80.00 63.2| 87.11 68.8
Subsequently, we focused on prediction of drop-outs when . .
the history of data about student studies is employed. All Table 7: Meta_da‘SSlﬁefcgﬁiuraCrlF; ICUS
dat@ snapshots were used. .Results ip terms .Of accuracy (%) Excalibur (J48) CSM 80.45 357 258
are in Fig. 2. On X axis there is a period of study in With SNA (PART) CSM 92.80 92.8 129
semesters (e.g. 3 means that only the data from the first 3 Excalib .
A . xcalibur (J48) Bagging 83.30 87.8 219
semesters have been used for building the classifier). More With SNA (PART) Bagging 96.66  96.0 55
details are in Table 5 and Table 6. . .

Figure 2: Classifications according to semesters

We can see that for all periods the classification that used
only the student data achieves lower accuracy in comparison
to the classification on the enriched data. Moreover, start-
ing with the period of the first four semesters the accuracy
of classification on the enriched data was higher than 90%.
We can conclude that four semesters is a period when our
model can predict a drop-out with high probability. We con-
sider this result to be satisfactory. The Masaryk University
evaluates the learning potential of students before they are
admitted to study.

For our task it is more serious when a student is not recog-
nized to be in danger of a drop-out than the opposite situ-
ation. To decrease the number of incorrectly classified un-
successful students, we tested cost-sensitive learning (CSM)
and also bagging, and then bagging with cost matrix, al-
ways with the most accurate learning algorithm as the base
classifier. In the case of cost-sensitive learning, we set a cost
matrix to [0, 1, 0.5, 0] so that the cost of false negative error
(i.e. of non-recognized weak students) was twice as high.
All the results are in Table 7 in the form of Accuracy (%),
TP rate (%), and Incorrectly classified unsuccessful studies
(ICUS).

4. DISCUSSION

Based on the results, we conclude that a student perfor-
mance appears to be correlated with the social habits, mainly
with the frequency of communication. It supports the hy-
pothesis that students with average results but communi-
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cating with students having good grades can successfully
graduate with a higher probability than students with simi-
lar performance but not communicating with successful stu-
dents. We identified wrongly classified instances and sup-
plemented them with additional information about specific
courses. We found that about one third of students did not
complete two particular courses (Automata and Grammars
and Specialist English). These findings could be useful in
the future work.

Classifiers based on the information gain were the most suc-
cessful ones. The NB classifier suffered from the strong in-
dependence assumption, on our data.

We also combined the two most successful classifiers—J48
and PART—and built a meta-classifier where the prediction
was computed as the average of probabilities of particular
classifiers. However, the overall accuracy was not higher
than that of the best classifier.

We investigated the influence of social behaviour data on
the accuracy of classification with respect to the gender of
students. The additional data did not increase the accuracy
at all. Any classifier did not overcome the baseline 92.11%.
In comparison to [12], we employed social network analysis.
They achieved higher accuracy but with more specific at-
tributes obtained from the data that was collected specially
for the study. These attributes can not be retrieved from
standard school information systems, e.g. smoking habits,
the parents’ level of education, or the number of siblings.
We investigated the influence of cost sensitive learning on
the accuracy of a drop-out prediction. Employing a cost-
matrix did not decreased the overall accuracy but slightly
improved the TP rate. Using bagging with a cost matrix
increased both the accuracy and the TP rate. In the case
of classification on the student data, the accuracy remained
almost unchanged, but the TP rate increased from 78.5%
to 87%. The most significant improvement was achieved in
the case of classification on the enriched data. The meta-
classifier increased the accuracy to 96.66% and the TP rate
to 96%. The number of data snapshots of incorrectly clas-
sified unsuccessful students decreased from 146 to 55 in the
case of the classification using PART. The number of all
data snapshots is 4,373.
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Table 5: Learning from student

data only according to semester [%)]

1 1-2 1-3 14 1-5 1-6 All

Method | Accur. TP | Accur. TP | Accur. TP | Accur. TP | Accur. TP | Accur. TP | Accur. TP
ZeroR 50.18 - 50.21 - 51.28 - 52.74 - 54.37 - 56.28 - 58.86 -

NB 63.80 34.5 | 70.56 50.5 | 72.47 55.0 | 74.66 59.1 | 75.82 674 | 76.64 727 | T7.57 73.5
SMO 69.41 64.7 | 7262 619 | 7526 63.1 | 76.58 64.9| 77.64 65.5| 7841 654 | 79.17 64.6
IB1 62.72 612 | 66.38 66.4 | 69.43 67.0| 7096 686 | 7230 688 | 7473 70.2| 7818 723
OneR 55.66 41.0 | 64.93 68.1| 7063 76.5| 7414 79.1| 7532 76.0| 7527 70.9 | 7590 57.9
PART 65.35 734 | 7129 715 | 7633 718 | 7897 73.3| 80.01 75.0| 81.3¢4 779 | 8244 73.7
J48 61.77 628 | 71.77r 73.0 | 7547 73.6 | 77.67 752 | 79.34 755 | 80.61 77.1| 8253 785

Table 6: Learning from student data enriched with social behaviour attributes according to semester [%)]
1 1-2 1-3 14 1-5 1-6 All

Method | Accur. TP | Accur. TP | Accur. TP | Accur. TP | Accur. TP | Accur. TP | Accur. TP
ZeroR 50.18 - 50.21 - 51.28 - 52.74 - 54.37 - 56.28 - 58.86 -

NB 71.45 69.1 | 75.06 754 | 7581 783 | 7541 79.7| 7541 80.7| 74.80 80.9 | 74.07 80.8
SMO 7240 739 | 7710 757 | 79.15 76.7 | 80.10 77.5 | 80.36 76.4 | 81.66 76.7 | 81.68 74.4
IB1 66.43 624 | 6741 63.7| 70.59 674 | 7692 73.1| 81.07 768 | 8310 79.2| 90.10 86.7
OneR 62.84 65.7 | 69.11 67.0| 7483 74.0| 81.27 79.7| 83.56 81.5| 8231 79.7| 8320 83.6
PART 70.13 69.5 | 79.65 77.6 | 86.60 86.7 | 90.21 89.3 | 92.38 90.9 | 9299 91.1 | 93.51 919
J48 70.73 71.2 | 80.01 79.1| 8493 830 | 87.40 85.7| 83.77 871 | 8825 85.8 | 89.57 87.2
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ABSTRACT

Although learning from multiple representations has been
shown to be effective in a variety of domains, little is
known about the mechanisms by which it occurs. We
analyzed log data on error-rate, hint-use, and time-spent
obtained from two experiments with a Cognitive Tutor for
fractions. The goal of the experiments was to compare
learning from multiple graphical representations of
fractions to learning from a single graphical representation.
Finding that a simple statistical model did not fit data from
either experiment, we searched over all possible mediation
models consistent with background knowledge, finding
several that fit the data well. We also searched over
alternative measures of student error-rate, hint-use, and
time-spent to see if our data were better modeled with
simple  monotonic or u-shaped  non-monotonic
relationships. We found no evidence for non-monotonicity.
No matter what measures we used, time-spent was
irrelevant, and hint-use was only occasionally relevant.
Although the total effect of multiple representations on
learning was positive, they also had a negative effect on
learning, mediated by a higher error-rate. Our evidence
suggests that multiple representations increase error-rate,
which in turn inhibits learning. The mechanisms by which
multiple representations improve learning are as yet
unmodeled.

Keywords

Model search, variable search, mediation, log data, multiple
representations

1. INTRODUCTION

Learning processes are complex: many factors influence
learning outcomes and the mechanisms by which
experimental interventions influence learning are often
mysterious. Intelligent Tutoring Systems (ITSs) can easily
capture large amounts of data during learning, and
combined with sophisticated data mining tools, they have
the potential to help understand the mechanisms underlying
the effects of successful interventions. Most ITSs are
instrumented to collect data on several problem-solving
behaviors that might mediate learning, such as error-rate,
hint-use, and time-spent [13]. Variables that assess
students’ problem-solving behaviors have been used to

Richard Scheines
Department of Philosophy
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213, USA

scheines@cmu.edu

model students’ learning [3,8] and to improve ITSs [17].
To make use of the potential of ITS data to gain insights
into why we see certain learning outcomes, however, we
have to overcome difficulties in modeling the mechanisms
of learning outcomes. First, we may not adequately
understand which variables to use to model these complex
relationships. We often assume a linear relationship
between measures of learning behaviors and learning
outcomes, even though linear relationships may not
adequately describe such complex relations [1]. Second,
there are a very large number of possible models that
describe how learning behaviors and learning outcomes
relate — how can we know which is the right one? The goal
of the present paper is to address both of these important
issues using variable search, path analytic modeling, and
model search.

Many ITSs use multiple representations to support
mathematics learning. Although a vast body of research
shows that multiple representations can benefit student
learning [2], we know little about the mechanisms that
underlie the advantage of learning with multiple
representations compared to learning with only a single
representation. We investigated the benefits of multiple
graphical representations compared to the benefits of a
single graphical representation in the context of an ITS —
thus enabling us to make use of the rich log data provided
in order to investigate the mediating role of student
learning behaviors. Specifically, students worked with a
Cognitive Tutor for fractions. Cognitive Tutors provide
problem-solving tasks and individualized support for
students during the learning process [10], and have been
shown to lead to significant learning gains in a variety of
studies [10,11]. The Fractions Tutor provides error
messages tailored to specific misconceptions a student may
have. Students can also request a sequence of hints for each
step. We chose fractions as the domain for our experiments
since fractions instruction typically uses multiple graphical
representations such as circles, rectangles, and number
lines [12]. Each of these representations emphasizes a
different conceptual view on fractions [6] and students need
to understand each of these conceptual views [12].
Furthermore, fractions pose a major obstacle for students in
the elementary and middle grades [12], such that
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understanding mechanisms underlying successful learning
is an important educational goal.

We conducted two in vivo experiments to investigate the
benefits from learning with a version of the Fractions Tutor
that uses multiple graphical representations compared to
learning with a version of the Fractions Tutor that uses only
a single graphical representation. In experiment 1, students
worked only with a number line (in the single
representation  condition), or (in the multiple
representations condition) with a variety of graphical
representations, including circles, rectangles, and number
lines. The representations were relatively static: students
could interact with the representations only by entering a
number into a text field. The picture updated when the
student entered the correct number. In each tutor problem,
students solved a fractions problem. For instance, students
were asked to add two given fractions and by typing the
number of shaded sections into a text field, specifying the
numerator of the sum fraction. We crossed these two
conditions with a second experimental factor: whether or
not students received self-explanation prompts to relate the
graphical representations to the symbolic notation of
fractions (e.g., 2). For example, students were asked to
select “adding the number of shaded sections” to the
question of what action with a circle diagram corresponds
to adding the numerators using fractions symbols. Results
based on an analysis of pretests, immediate posttests, and
delayed posttests showed that learners significantly
benefited from multiple representations, provided that they
were also prompted to self-explain [15].

In experiment 2, we included self-explanation prompts in
the single representation condition and in the multiple
representations  condition. Students in the single
representation condition worked either only with a number
line, only with a circle, or only with a rectangle. Students in
the multiple representations condition received all three
graphical representations. In this experiment, the graphical
representations were interactive: students could interact
with the representations by dragging-and-dropping sections
from one representation into another, by using buttons to
change number of sections, and by clicking on sections to
highlight them. Results based on students’ test data confirm
the findings from experiment 1: students in the multiple
representations  condition significantly  outperformed
students in the single representation condition'.

We hypothesize that multiple graphical representations
result in more successful learning behaviors in the learning
phase. We investigated these relationships with the log data
that the Fractions Tutor recorded during the learning phases
of both experiments. We assume that students who make
very few errors, ask for very few hints, and spend very little
time per step already have a very good understanding of

! This effect was significant for number line items and conceptual
transfer on the delayed posttest.

fractions and will not benefit from working with the
Fractions Tutor. On the other hand, inefficient learning
such as trial-and-error [4], may manifest themselves in
making many errors, asking for many hints, and spending a
lot of time per step. We expect that students who show
these kinds of unsuccessful learning strategies are not
engaging in deep processing of the learning contents and
will consequently be less likely to benefit from working
with the Fractions Tutor. We hypothesize that the most
successful learning behaviors will manifest themselves in
moderate levels error-rate, hint-use, and time-spent. This
suggests that the relationships between error-rate, hint-use,
and time-spent with learning is not simple and monotonic,
but rather u-shaped (or inverted u-shaped). We investigated
this hypothesis by searching for non-monotonic
transformations of our "raw" variables that better predict
students’ learning than do the raw variables. We then used
the best variables in path analysis to investigate the
mediating role of error-rate, hint-use, and time-spent on
students’ benefit from multiple graphical representations.

2. DATA SETS

The analyses presented in this paper are based on the data
obtained from the two experimental studies just described.
Students in both experiments received a pretest on the day
before they started to work with the Fractions Tutor. The
day after students finished working with the Fractions
Tutor, students received an immediate posttest. About one
week after the immediate posttest, students were given an
equivalent delayed posttest. In experiment 1, the pretest
was a shorter version of the posttests, the posttests included
more advanced items which required students to transfer
the knowledge covered by the tutoring system to novel
situations. In experiment 2, all three tests were equivalent
(i.e., they contained the same type of items, but with
different numbers).

In experiment 1, 110 6™-grade students worked with either
of four versions of the Fractions Tutor (i.e., with a version
that included a single graphical representation without
prompts, a single graphical representation with prompts,
multiple graphical representations without prompts, or
multiple graphical representations with prompts). Students
worked with the Fractions Tutor for 2.5 hours of their
regular mathematics instruction. The average number of
errors made per step, the average number of hints requested
per step, and the average time spent per step were extracted
from the log data obtained from the tutor sessions. Table I
shows the means and standard deviations per condition per
and per test. Students had a broad range of prior
knowledge: the minimum pretest score was 0.00, and the
maximum was 1.00. As shown in Table I, students in the
MGR condition with prompts outperformed the other
conditions both at the immediate and at the delayed
posttest. Since in experiment 1, the pretest was not
equivalent to the posttests, the pretest scores are not
directly comparable to the posttest scores shown in Table I.

Proceedings of the 5th International Conference on Educational Data Mining 111



Table II gives an overview of the tutor log data for each
condition. While conditions did not differ with regards to
error-rate, students who received self-explanation prompts
requested fewer hints than students without prompts.
Students in the MGR condition with prompts spent
relatively more time per step than students in the other
conditions, but the differences were small.

the posttests (see Table III). Table IV shows that students
in the MGR condition make slightly more errors and ask
for slightly more hints, while spending the same time per
step as students in the SGR condition. As in experiment 1,
the differences between conditions on the log data variables
are small.

SGR MGR
Pretest 0.54 (0.23) 0.57 (0.21)
Immediate 0.60 (0.23) 0.63 (0.21)
posttest
Delayed posttest 0.62 (0.23) 0.67 (0.20)

SGR w/o SGR MGR MGR

prompts with w/o with

prompts prompts prompts

Pretest 0.79 0.70 0.64 0.75
(0.14) (0.24) (0.25) 0.21)

Immediate 0.77 0.70 0.61 0.83
posttest (0.16) (0.18) (0.23) (0.15)
Delayed 0.77 0.74 0.63 0.85
posttest (0.19) (0.22) (0.21) (0.12)

Table III. Means and standard deviations (in brackets) of
standardized performance from experiment 2 per condition
and test: single graphical representations (SGR) and
multiple graphical representations (MGR).

Table 1. Means and standard deviations (in brackets) of
standardized performance on pretest and posttests from
experiment 1 per condition: single graphical representations
(SGR) with or without prompts, and multiple graphical
representations (MGR) with or without prompts.

SGR MGR
Error-rate 0.14 (0.07) 0.16 (0.08)
Hint-use 0.04 (0.06) 0.06 (0.09)
Time-spent 0.14 (0.04) 0.14 (0.05)

SGR w/o SGR MGR MGR

prompts with w/o with
prompts | prompts | prompts

Error- 0.27 0.37 0.31 0.34
rate (0.15) (0.17) (0.12) (0.13)

Hint-use 0.13 0.04 0.19 0.04
(0.31) (0.05) (0.32) (0.09)

Time- 10.37 8.47 11.93 13.99
spent (4.98) (6.77) (10.18) (18.406)

Table II. Means and standard deviations (in brackets) of
error-rate (# per step), hint-use (# per step), and time-spent
(in sec) per condition: single graphical representations
(SGR) with or without prompts, and multiple graphical
representations (MGR) with or without prompts.

In experiment 2, 290 4™- and 5™-grade students worked on
one of two versions of the Fractions Tutor (i.e., SGR with
prompts, or MGRs with prompts) for about 5 hours of their
regular mathematics instruction. As in experiment 1, we
extracted the average number of errors made per step, the
average number of hints requested per step, and the average
time spent per step from the log data. Table III summarizes
students’ performance on each test for each condition in
experiment 2. Again, students started with a broad range of
prior knowledge: the minimum pretest score was 0.06, and
the maximum pretest score was 0.96. Students in the MGR
condition perform slightly better than students in the SGR
condition at the immediate and at the delayed posttest.
Since in experiment 2, the pretest was equivalent to the
posttests, we can compare the pretest scores to the posttest
scores: students’ average scores improved from pretest to

Table IV. Means and standard deviations (in brackets) of
error-rate (# per step), hint-use (# per step), and time-spent
(in sec) per condition: single graphical representations
(SGR) and multiple graphical representations (MGR).

3. DEFINING VARIABLES WITH WHICH
TO INVESTIGATE MEDIATORS

In order to investigate whether a u-shaped, non-monotonic
relationship between error-rate, hint-use, and time-spent
with students’ learning describes the association between
problem-solving behavior and learning better than the
monotonic relationship, we first conducted a search for a
non-monotonic transformation that best predicts students’
learning using the data from experiment 2. We used a
simple algorithm which computed the “optimal level” of
error-rate, hint-use, and time-spent by searching for the
highest correlation with learning gains from pretest to the
immediate posttest, and from pretest to the delayed posttest,
respectively. The algorithm used intervals that varied in
size and position. For each interval, we computed a binary
variable that for each student indicated whether his/her
error-rate (or hint-use, or time-spent) was within the
interval or outside the interval. We then computed the
correlation of this variable with students’ learning gains.
For the interval that had the highest correlation with
students’ learning gains, we identified the mid-point as the
“optimum” level of error-rate, hint-use, and time spent.
Next, we created two new, non-monotonic predictor
variables for error-rate, hint-use, and time-spent,
respectively: distance from the optimum, and squared
distance from the optimum.
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To evaluate whether the non-monotonic variables more
accurately predict students’ learning, we conducted step-
wise regression analyses separately for error-rate, hint-use,
and time-spent on both the immediate and the delayed
posttests. We entered pretest performance, error-rate, hint-
use, or time-spent, and the interaction of pretest
performance with error-rate, hint-use, or time-spent as
predictors into the regression model. Table V provides a
summary of the results from the stepwise regression
analyses for error-rate. The regression models with error-
rate show that the regression models using monotonic
variable explain more variance than the non-monotonic
variables. Similarly, the best models with hint-use using the
monotonic variable explain more variance than the best
models with the non-monotonic variables. The most
successful regression models with time-spent take only
pretest performance into account; neither the monotonic
variable for time-spent nor the non-monotonic variables for
time-spent were significant predictors.

pre pre + pre + errors
errors + errors*pre
1P By =81*, | By =.81%, | p;=.46%
R%z=.66 Bo=-27% | p,=-48%
R2=.70 ps=.19%
mono- R?=.71
tonic DP Bl = 80*, ﬂl =.65*, Bl = 54*,
R2=.65 | p,=-24% | P, =-.38%,
R*=.68 Bs =.13(*%),
R*=.68
1P By =.81%, | By =.76%, | p1=.63%
R2=.66 Bo=-17% | p,=-37%

. Rz=.68 p3=.23%
distance R?=.69
optimum DP Bl = 80*, ﬂ] =.78*, Bl = 71*,

Rz=.65 pr=-13% | By=-22%,
R*=.66 Bs=.11,
R?=.66
1P By =.81%, | g, =.76% | B =.73%,
R2=.66 | p,=-16% | p,=-25%,
R*=.68 B;=.09,
squared- Rz=.68
distance  DP | B;=.80% | B;=.77% | B1=.77%,
Rz=.65 p=- B, =-.12,
13*% R*= | B;=-.01,
66 R?=.66
Table V. Regression with error-rate: standardized

regression weights and variance explained by each
regression model for performance on immediate posttest
(IP) and delayed posttest (DP). The best model is displayed
in bold-italics. B; = pretest (pre), , =error-rate (errors), and
B3 = errors*pre.

In sum, the results from the stepwise regressions show, the
non-monotonic variables do not predict performance on the
immediate or the delayed posttest better than the monotonic
variables do. For that reason, we decided to use the

original, monotonic variables of error-rate, hint-use, and
time-spent for the subsequent path analytical analyses.

4. HYPOTHESES AND PATH ANALYSIS
MODELING

In order to investigate the mechanisms by which the
intervention (multiple graphical representations) might
have affected learning, we first specified, estimated and
tested two path analytical structural equation models [5,20]
for each of the two experiments. Structural equation models
provide a unified framework within which to test mediation
hypotheses, to estimate total effects, and also to separate
direct from indirect effects. The models that represented
our hypotheses in both experiments were decisively
rejected by the data, and in such a case it is not appropriate
to use the model to test mediation hypotheses or estimate
effects. Our strategy was to use the Tetrad IV program? to
search for alternative models that are both theoretically
plausible and consistent with the data. In this section, we
describe the path analytic models that represent our
hypotheses, describe the search algorithms we use to search
for alternative models, and briefly summarize the results of
our search.

4.1 Modeling Our Hypotheses

We hypothesized that multiple representations lead to
learning via the three different mechanisms discussed
above: error-rate, hint-use or time-spent per step. As each
of these variables might also be affected by a student’s
prior knowledge of fractions, our hypothesis included paths
from our intervention variables to each of these mediator
variables as well as paths from prefest to each of these
variables. One of the path models we specified to represent
and test our hypothesis about mediation for experiment 1 is
shown in Fig. 1.° Fig. 2 shows one of the models we
specified for experiment 2. Each node in the path models
refers to a variable in the data set: mult rep = single vs.
multiple representations, se = self-explanation prompts,
mr*se is variable representing a intervention interaction,
pre = pretest, time, errors, hints = average time spent, # of
errors, and # of hints requested per step, post
performance on the immediate posttest, delpost =
performance on the delayed posttest. For both experiments,
we hypothesize that pretest performance predicts
performance on the immediate and on the delayed posttests,
as well as error-rate, hint-use, and time-spent.

% Tetrad, freely available at www.phil.cmu.edu/projects/tetrad,
contains a causal model simulator, estimator, and over 20 model
search algorithms, many of which are described and proved
asymptotically reliable in [20].

3 In path models of this type, also called "causal graphs" [20],
each arrow, or directed edge, represents a direct causal
relationship relative to the other variables in the model. For
example, in Fig. 1 the conditions are direct causes of the
mediator variables, but only affect the post-test indirectly
through these mediators.
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Fig. 1. Path model for experiment 1.

In addition, we predict that in experiment 1, multiple
representations (mult_rep), self-explanation prompts (se),
and the interaction between multiple representations and
self-explanation prompts (mr*se) predict error-rate, hint-
use, and time-spent. In other words, we predict that the
effects of the intervention variables are entirely mediated
through students’ learning behaviors. Similarly, for
experiment 2, we predict that the effect of multiple
representations (mult_rep) predicts error-rate, hint-use, and
time-spent, which corresponds to a full mediation of the
intervention through learning behaviors. Hence, the path
model for experiment 2 corresponds to the one shown in
Fig. 1, except that self-explanation prompts (se), and the
interaction between multiple representations and self-
explanation prompts (mr*se) were not present in
experiment 2.

Using normal theory maximum likelihood to estimate the
parameters of these models, we find that in each case the
deviation between the estimated and the observed
covariance matrix is too large to be explained by chance
(for the model for experiment 1 in Fig. 1: > =53.8, df = 16,
p <.0001,4 and for the model for experiment in Fig. 2: y*> =

* The usual logic of hypothesis testing is inverted in path analysis.
The p-value reflects the probability of seeing as much or more
deviation between the covariance matrix implied by the
estimated model and the observed covariance matrix,
conditional on the null hypothesis that the model that we
estimated was the true model. Thus, a low p-value means the
model can be rejected, and a high p-value means it cannot. The
conventional threshold is .05, but like other alpha values, this is
somewhat arbitrary. The p-value should be higher at low sample
sizes and lowered as the sample size increases, but the rate is a
function of several factors, and generally unknown.

59.41, df =6, p <.0001), thus the models do not fit the data
and the parameter estimates cannot be trusted.’

4.2 Model Search

To search for alternatives, we used the GES algorithm in
Tetrad IV along with background knowledge constraining
the space of models searched [7] to those that are
theoretically tenable and compatible with our experimental
design. In particular, we assumed that our intervention
variables are exogenous, that in experiment 1 our
intervention variables are causally independent but direct
causes of the interaction variable, that the pretest is
exogenous and causally independent of intervention, that
the mediators are prior to the immediate posttest and to the
delayed posttest, and that the immediate posttest is prior to
the delayed posttest. Even under these constraints, there are
at least 2** (over 4 billion) distinct path models of
experiment 1 that are consistent with our background
knowledge, and 2% (over 33 million) distinct path models
of experiment 2.

The qualitative causal structure of each of these linear
structural equation models can be represented by a Directed
Acyclic Graph (DAG). If two DAGs entail the same set of
constraints on the observed covariance matrix,® then we say
that they are empirically indistinguishable. If the
constraints considered are independence and conditional
independence, which exhaust the constraints entailed by
DAGs among multivariate normal varieties, then the
equivalence class is called a pattern [14,20]. Instead of
searching in DAG space, the GES algorithm achieves
significant efficiency by searching in pattern space. The
algorithm is asymptotically reliable,” and outputs the
pattern with the best Bayesian Information Criterion (BIC)
score.® The pattern identifies features of the causal structure
that are distinguishable from the data and background
knowledge, as well as those that are not. The algorithm’s
limits are primarily in its background assumptions
involving the non-existence of unmeasured common causes
and the parametric assumption that the causal dependencies
can be modeled with linear functions.

v

We also tested variations of these models in which we added
direct paths from the condition variables to the post-test and
delayed post-test. These variants are also clearly rejected by our
data.

=)

An example of a testable constraint is a vanishing partial
correlation, e.g., pxyz=0.

N

Provided the generating model satisfies the parametric
assumptions of the algorithm, the probability that the output
equivalence class contains the generating model converges to 1
in the limit as the data grows without bound. In simulation
studies, the algorithm is quite accurate on small to moderate
samples.

All the DAGs represented by a pattern will have the same BIC
score, so a pattern’s BIC score is computed by taking an
arbitrary DAG in its class and computing its BIC score.

8
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Fig. 2. The model found by GES on data from experiment
1, with parameter estimates included. This model fits the
data well: x> =22.11, df = 19, p = .29.
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Fig. 3. The model found by GES on data from experiment
2, with parameter estimates included. This model also fits
the data well: > = 6.89, df = 10, p = .74.

Fig. 2 shows a model found by GES on the data from
experiment 1, with path coefficient estimates included. The
model fits the data well (x* = 22.1, df = 19, p = .28), and
contains a number of interesting properties. For one thing,
students with higher pretest scores spend much less time
per problem, but none of our intervention variables had any

influence on time, and the apparent effect of time spent per
step during the learning phase is minimal. Multiple
representations had a positive effect on learning, but only
when self-explanation prompts were also part of the
learning environment.” Further, there is no evidence that
the positive effect of multiple representations is mediated
by either error-rate, hint-use, or time-spent. When not
combined with multiple representations, self-explanation
prompts appear to slightly increase error-rate and thus
inhibit learning, but slightly decrease hint-use, which,
because they appear to inhibit learning, have an overall
positive effect on learning.

Fig. 3 shows a model found by GES for experiment 2 that
fits the data very well (x> = 6.89, df = 10, p = .74). This
model indicates that although multiple representations (mr)
have a positive direct effect on both the immediate posttest
and the delayed posttest, they also have a negative indirect
effect on both outcomes through error-rate. Learning with
multiple representations seems to cause students to make
slightly more errors during learning, possibly because the
greater variability in tutor problems leads to higher
cognitive processing demands. The higher error-rate during
the learning phase seems to have a negative influence on
test performance. Note that there are two paths from
multiple representations to the posttests in the model in Fig.
3, and that the positive direct effect (a bit over 3
percentage points on both) is larger than the indirect
negative effect through errors in both cases (2 percentage
points on the immediate posttest and about % a percentage
point on the delayed posttest).

As in experiment 1, hint-use and time-spent do not
discernibly mediate  the influence of multiple
representations on learning. However, students appear to
ask for more hints in response to making more errors, and
they spend more time on a problem when they have asked
for hints.

5. DISCUSSION

We used data mining in two ways: first to search for
mediator variables that are monotonically related to
learning outcomes and thus amenable to analysis with
standard tools like linear regression and path analysis, and
second, to search for causal models of learning that allowed
us to investigate mediation relationships and to estimate the
total and indirect effects of multiple representations on
learning.

Contrary to our expectations, we found that raw measures
of error-rate, hint-use, and time-spent were as predictive of
learning as any of the non-monotonic variants we searched
over. One might suspect that our variable search failed to

° The paths from the interaction variable mr*se track the effect of
both treatments compared to either one alone or neither. The
paths from the individual treatments track the effect of each
treatment when the other is absent.
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improve on the apparent monotonicity of the raw measures
because our sample did not include high prior knowledge
students. However, students’ pretest scores covered a broad
range from very low to very high (see Tables I and III).
Although surprising, our findings can be taken as
encouraging for the community of educational data mining
and for the community of researchers who study ITSs.
Analyzing raw measures of error-rate, hint-use, time-spent
and learning is much easier than analyzing non-monotonic
variants. Furthermore, most research that uses log data
obtained from ITSs assumes monotonicity. Our findings do
nothing to undermine this practice.

Our findings from path analysis modeling demonstrate the
importance of model search. None of our initial hypotheses
fit the data, but there are millions of plausible alternatives,
only a small handful of which could be practically
investigated by hand. Further, estimating path parameters
with a model that does not fit the data is scientifically
unreliable. Parameter estimates, and the statistical
inferences we make about them with standard errors etc.,
are all conditional on the model specified being true
everywhere except the particular parameter under test.

Even if our initial hypotheses had fit the data well,
however, it would have been important to know whether
there were alternatives that explained the same data. The
GES algorithm implemented in Tetrad IV enabled us to
find plausible models that fit the data well. The models we
found in Fig. 2 and Fig. 3 allow us to estimate and test path
parameters free from the worry that the model within which
the parameters are estimated is almost surely mis-specified,
as is the case for the model in Fig. 1.

Several caveats need to be emphasized, however, lest we
give the false impression that we think we have “proved”
the causal relationships that appear in the path diagrams
shown in Fig. 1 and Fig. 2. First, the GES algorithm
assumes that there are no unmeasured confounders (hidden
common causes), an assumption that is almost certainly
false in this and in almost any social scientific case, but one
that is routinely employed in most observational studies.'®
In future work we will apply algorithms (e.g., FCI) that do
not make this assumption, and see whether our conclusions
are robust against this assumption. Second, although we did
include intervention interaction in our model search for
experiment 1, and did test for interactions between pretest
and mediators in experiment 2, by no means were our tests
exhaustive, and by no means can we rely on the assumption
that the true relations between the variables we modeled are
linear, as the search algorithms assume. Nevertheless, many
of the bivariate relationships in the data we modeled appear
approximately linear, so the assumption is by no means

1% Although our data are from a study in which we intervened on
intervention, we did not directly intervene on our mediator or
outcome variables. Thus these parts of our model are subject to
the same assumptions as a non-experimental study.

unreasonable. Third, we have a sample of 290 students, and
although that is sizable compared to many ITS studies,
model search reliability goes up with sample size but down
with model complexity and number of variables, and is
overall impossible to put confidence bounds over on finite
samples [19].

Nevertheless, our searches for causal models suggest that
there are indeed path models that are consistent with our
background theory and with the data, and which indicate
that multiple representations enhance learning, but not
through any detectible mechanism involving error-rate,
hint-use, or time-spent. In experiment 1, multiple
representations have a positive influence on learning, but
have no detectible effect on any of the mediators we
measured. In experiment 2, in which interactive graphical
representations were part of the intervention, it appears that
there is a mediated influence on learning through error-rate,
but it is a negative influence. Research from a variety of
domains shows that some interventions that decrease
performance during the learning phase by increasing the
variability of learning tasks result in better long-term
retention and transfer performance [9,16]. In other words,
interventions that are beneficial in the long run often come
at some cost, for instance in the form of lower performance
during the learning phase. Our results show that “costs”
which become apparent during the learning phase are
indeed associated with lower performance also on the
posttests. However, we have not yet identified the
mediators of the benefits of learning with multiple
representations. Given the results from the two experiments
described in the present paper, it is unlikely that the
advantage of multiple representations is mediated through
error-rate, hint-use, or time-spent. Taken together, the
results from our two experiments suggest that researchers
need to look elsewhere for the cognitive mechanisms by
which multiple representations improve students’ learning.

The finding that error-rate partially mediates the effect of
multiple representations in experiment 2 (but not in
experiment 1) is an interesting one as well. One difference
between experiment 1 and experiment 2 was that the
graphical representations in experiment 1 were not
interactive tools, but static pictures that updated when
students entered the correct answer into a text field. By
contrast, the graphical representations in experiment 2 were
interactive: students could drag-and-drop sections from one
representation into another and use buttons to partition the
representation into fewer or more sections. It is conceivable
that interactive representations provide a more direct
learning experience for students, which will have a
different effect on problem-solving behavior (as, for
example, on error-rate) than relatively static representations
[18]. There 1is currently very little research that
systematically investigates the impact of interactive versus
static representations on students’ problem-solving
behaviors and consequent learning outcomes. Our findings
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demonstrate, that the impact of interactive representations
is an interesting question to address in future research.

In conclusion, our results are of interest both to the
educational psychology literature and to the intelligent
tutoring systems literature. First, we can gain insights into
the effects of instructional interventions: although multiple
representations seem to overall be beneficial, they also
seem to lead students to make more errors during the
learning phase, which is associated with lower performance
on posttests. Second, once we gain knowledge about which
learning behaviors are adaptive and which are not, we can
use these insights to improve our tutoring systems. For
example, perhaps multi-representational ITSs should be
designed to prevent errors in the practice and learning
phase. Perhaps we can help students avoid practice errors
by providing more worked examples, or by designing better
error feedback messages. Or perhaps the increase in errors
is simply a cost associated with multiple representations
that instructors have to live with. These questions and
others arose from path analysis and model search and lead
almost directly to new hypotheses that we, and hopefully
others, will address in future research.
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ABSTRACT

When modeling student learning, tutors that use the Knowl-
edge Tracing framework often assume that all students have
the same set of model parameters. We find that when fitting
parameters to individual students, there is significant varia-
tion among the individual’s parameters. We examine if this
variation is important in terms of instructional decisions by
computing the difference in the expected number of prac-
tice opportunities required if mastery is assessed using an
individual student’s own estimated model parameters, com-
pared to the population model. In the dataset considered,
we find that a significant portion of students are expected to
perform twice as many practice opportunities if the student
is modeled using a population-based model, compared to the
number needed if the student’s own model parameters were
used. We also find an additional significant portion of stu-
dents will be likely to receive less practice opportunities than
needed, implying that such students will be advanced too
early. Though further work on additional datasets is needed
to explore this issue in more depth, our results suggest that
considering individual variation in student parameters may
have important implications for the instructional decisions
made in intelligent tutoring systems that use a Knowledge
Tracing model.

1. INTRODUCTION

Both intelligent tutoring systems and live classroom instruc-
tion often assume that student learning can be adequately
represented using a single model and associated set of model
parameters. For example, in this paper we will focus on
Knowledge Tracing [8], a popular method for estimating stu-
dent mastery of skills that has been used in effective cogni-
tive tutor systems [9]. Knowledge tracing is parameterized
by 4 variables that are typically assumed to be the same for
all students. Note that these population-level models still
allow us to represent variation in our estimates of student
performance: if two students respond differently to a set
of practice opportunities, the model will have different esti-
mates of future student performance for the two cases.

There have been some prior work on KT student models that
represent differences in the student’s initial knowledge [10].
In addition, several logistic regression-based student mod-
els, including Additive Factor Models [5] and Instructional
Factors Analysis [7], include a single constant that is in-
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dividually fit per student. Including this student parame-
ter has been shown to lead to models that better fit the
data, and have improved prediction accuracy. However, in
all these cases, the parameters related to the progress of stu-
dent learning and student observations, are fitted to the en-
tire population. Therefore the underlying dynamical process
of student learning, and the way in which that is translated
to student performance, is assumed to be identical across
students.

There’s evidence to suggest this assumption is too strong.
Standard high schools commonly offer multiple versions of
the same class, such as a remedial version, normal version,
and honors version. This approach is taken, at least in part,
because it is believed both that students may have differ-
ent learning speeds or prior backgrounds for a subject, and
that those differences mean that the students will be best
taught in different ways. In other words, instruction will
vary not just according to our current estimate of student
performance, but also how we anticipate that performance
changes over time.

Here we examine the variation among individual student’s
parameters, and quantify the impact of this variation on
pedagogical strategies. To start we consider this in the
context of mastery learning, using the Knowledge Tracing
framework to estimate and monitor student skill mastery.
We already know from Cen et al. [6] that tuning the KT
parameters can lead to a significant impact on reducing the
amount of necessary practice opportunities; however, this
work still uses a single set of KT parameters for all students.
Corbett and Andersen [8] did try fitting individual param-
eters, and found this improved the predictive power of the
model, as well as some evidence that this might improve stu-
dent performance; however, the authors used curve-fitting to
find the parameter values' and the authors did not examine
the difference in practice opportunities needed if a popula-
tion model was used instead of an individual model.

In this paper we fit Knowledge Tracing model parameters
to each individual, on a dataset from the ASSISTment sys-
tem [10]. We exam