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Abstract Body 
 

Background / Context:  
 
Assessing the effectiveness of educational interventions relies on quantifying differences 
between interventions groups over time in a between-within design1. Binary outcome variables 
(e.g., correct responses versus incorrect responses) are often assessed.  Widespread approaches 
use percent correct on assessments, and repeated measures analysis of variance (ANOVA) 
methods to detect differences between groups. However, this approach is not ideal, as in fact 
several assumptions are often violated when using this method that can result in less informative 
and at times biased and spurious findings (Dixon, 2008; Embretson, 1994). An alternative 
approach is to utilize item response models to detect differences between intervention groups 
over time.  
 
Purpose / Objective / Research Question / Focus of Study: 
 
The quantification of change in ability due to learning, in both individuals and between groups, 
is the primary outcome measure of educational intervention research. As such, it is important that 
these measures are accurate and informative. The specific benefits of one-parameter item 
response models for intervention research are presented and contrasted with repeated measures 
ANOVA. The appropriateness of these models will be demonstrated using data from elementary 
students who participated in a tutoring intervention on mathematical equivalence. Advances in 
the development of item response models now make them a viable option for accommodating 
educational datasets, in terms of practical constrains of sample sizes and the nature of the 
samples. Item response models can accommodate longitudinal designs with repeated measures 
(Embretson, 1991), multidimensional constructs (Briggs & Wilson, 2003), and a new generalized 
explanatory longitudinal item response model for multidimensional tests (Cho, Athay, & 
Preacher, in press) can accommodate both, as well as quantify and significance test the effect of 
intervention condition much like ANOVA approaches.  
  
The benefits of item response methodology for intervention research will be contrasted with 
repeated measures ANOVA approaches, using a longitudinal intervention dataset having a 
between-within design from elementary students learning about mathematical equivalence. The 
dependent measures of percent correct in repeated measures ANOVA approaches and item 
responses in item response models will be contrasted, as well as the methods for quantifying 
differences between groups using repeated measures ANOVA approaches and item response 
models.  
 
Intervention / Program / Practice:  
 
Second and third grade students who scored below 75% correct on the pretest participated in a 
20-minute one-on-one tutoring intervention that focused on mathematical equivalence problems. 
Students were from urban and suburban schools in a Southeastern city. Students then completed 

                                                 
1 A between-within design is also called a split-plot design, which is from in agricultural research, or a mixed 
design. The term “mixed” is used because the design mixes between-subjects and within-subjects factors, not 
because it has both random and fixed effects in linear or nonlinear mixed models. 



 

 

an immediate posttest, and a two-week retention test that took about 35 minutes to complete. 
Span from pretest to retention test averaged about 4 weeks. The assessments have been 
developed and tested for reliability and validity in prior work (Matthews, Rittle-Johnson, 
McEldoon & Taylor, 2012; Rittle-Johnson, Matthews, Taylor & McEldoon, 2011). The 
assessment has two components or dimensions that assess students’ procedural and conceptual 
knowledge. Models will be demonstrated from studies utilizing this method with samples of 347 
and 151 students.  
 
Statistical, Measurement, or Econometric Model:  
 
The models described here are from the one-parameter item response theory (IRT) family 
(Birnbaum, 1968). A one-parameter item response model considers both respondent ability and 
item difficulty simultaneously on the same interval scale, modeling the probability that a 
particular respondent will answer a particular item correctly (Birnbaum, 1968). Therefore, a 
student’s ability parameter takes into account the difficulty of the specific items they correctly 
answered. This ability parameter is an important feature that raw score approaches such as in a 
repeated measures ANOVA models do not utilize. The benefits of item response models for 
measuring individual change will be demonstrated using longitudinal intervention data from 347 
students fitted to the Embretson’s multidimensional latent trait model for measuring learning and 
change (1991), and will be compared to percent correct scores. Additionally, a new generalized 
explanatory longitudinal item response model for multidimensional tests (Cho, Athay, & 
Preacher, in press) will be described and contrasted with repeated measures ANOVA methods 
using a sample with 151 students. This new model can quantify the students’ change in ability on 
specific assessment subscales and quantify the effect of intervention condition, much like an 
ANOVA model.  
 
Usefulness / Applicability of Method:  
 
Problems with ANOVA Approaches and an Item Response Model as its Alternative 
 
1. IRT ability estimates are more accurate and informative than total scores or percent correct 
scores, which are typical of traditional ANOVA approaches.  
 
A normal model such as ANOVA approaches assumes that the outcome variables are measured 
at least on the interval scale and are continuous. Linear models such as ANOVA approaches for 
categorical response data have been known problematic for a long time (for summaries, see  
Agresti, 2002, p. 120). The proportion correct is constrained to the range 0-1. This constrained 
range can lead problems in using ANOVA as described in Agresti (2002) and Dixon (2008). 
Item response models utilize an interval scale, where the distance between all score points are 
constant. Classical test models such as ANOVA can have interval scale properties, but only 
when the data is normally distributed, and this is often not the case with intervention data. This 
results in the relative distance between scores not being constant in classical test scaling. This is 
a crucial point for intervention research, as comparisons and change scores can only be 
meaningful when there is an interval scale. If there is not, comparisons can only properly be 
made when the initial score values are the same. Because of the compression of the total scores 
or percent correct scales, small changes from a high score means more than a small change from 



 

 

a moderate score. For example, a student who made a 19% pre- to post-test gain from 10% to 
29% had a 0.85 gain in ability estimate, whereas a student who also made a 19% gain from 62% 
to 81% had a much larger gain of 1.57 in their ability estimate. In item response models, the 
relative distance between scores is always constant and can be meaningfully interpreted no 
matter what the time point, ability estimate score, or intervention condition. As such, item 
response models are ideally suited for the accurate measurement and comparison of learning 
over time and between groups.  
 
2. Item response model takes the measurement error into account appropriately by modeling a 
latent variable so that the model allows investigators to separate true group difference from 
measurement error.  
 
Item response models make latent ability estimates, instead of simply using total score or percent 
correct. Since they are an estimate, the have standard error scores, and can also be used to make 
predictions about student performance on future items. ANOVA does not address the issue of 
measurement error in outcome variables. It uses an observable outcome variable, which ignores 
the measurement error. 
 
3. Item response models produce a rich ability estimate for each student for each subscale.  
 
Researchers may want to consider student abilities on different assessment subscales, because 
students may have differential performance across different dimensions, or item types. 
Importantly, knowledge of these different dimensions might be differentially affected by 
instruction intervention, and so it would be important to detect and quantify these changes in 
knowledge after intervention. Multidimensional item response models can accommodate this 
(Briggs & Wilson, 2003; Cho et al., in press). When using a multidimensional model, we still 
retain information about the students’ performance on the other subscales (and their correlational 
structure) when estimating a student’s ability on a particular subscale. Although multivariate 
ANOVA (MANOVA) allows analyzing multiple outcome variables simultaneously, it uses a 
single outcome (e.g., proportion correct for binary response) so items that actually measure 
different domains or facets of constructs are aggregated and are erroneously treated as 
unidimensional. 
 
Item Response Models More Accurately Quantify Group Differences Over Time: Repeated 
Measures ANOVA vs. Generalized Explanatory Longitudinal Item Response Models 
 
When looking to quantify differences between experimental groups in a longitudinal design, 
repeated measures ANOVA methods are used often. Despite their prevalence, repeated measures 
ANOVA models are not ideal for use with intervention data. Due to the nature of intervention 
research, repeated measures ANOVA assumptions are often not met, and this can lead to biased 
conclusions (Dixon, 2008; Embretson, 1991; Jaeger, 2008). The first assumption that must be 
met is that the samples are independent. Educational settings have systematic hierarchical 
structure and natural nesting (e.g. school district, school, grade, classroom), clearly violating this 
condition. Normality is also assumed. However, distributions are often not normal, particularly 
at posttest, where distributions may be bimodal due to the intervention being effective for some 
students but not for others. In the example dataset containing 347 students, the distribution of the 



 

 

pretest data is skewed, and the post and retention test distributions clearly have a bimodal shape 
(Figures 1-3). The Shapiro-Wilks test for normality indicates that all three distributions are 
significantly different from normal (Pre, t(347) = 0.945, p < .001; Post t(347) = 0.927, p < .001; 
Reten t(347) = 0.914, p < .001). Because the distributions of the post and retention tests are 
bimodal, a transformation cannot easily be used to correct this. In addition to being a violation of 
the repeated measures ANOVA approach, this non-normality also results in biased change score 
interpretations, as discussed earlier. The last assumption is of homoscedasticity and sphericity. 
This assumption is frequently violated in intervention data due to the variance often being greater 
after intervention because of differential effects of intervention on individuals. Indeed, this is the 
case in the example data as well. Levene’s test for homogeneity of variance is not met between 
pretest and post (t(1,692) = 250.58, p < .001) or retention test (t(1,692) = 251.04, p < .001), 
however it is equal between post and retention (t(1,692) = 0.022, p = .881). Even small violations 
of homoscedasticity and sphericity can lead to greatly inflated Type I error rates for both 
omnibus tests and contrasts (Boik, 1981). Because intervention data will typically violate many 
of these assumptions, as the current data set has, the repeated measures ANOVA approaches are 
not ideal. Indeed, inappropriately used the repeated measures ANOVA approach can lead to 
biased results and spurious interactions (Dixon, 2008; Embretson, 1991; Jaeger, 2008).  
 
Until recently, there were no direct alternatives that would answer the same research questions as 
ANOVAs within item response models; such as quantifying the effect of intervention, time, and 
providing significance tests for these factors. Item response models require that items are locally 
independent and that each subscale being measured is unidimensional. These requirements are 
easily tested and accommodated within intervention research designs. A new generalized 
explanatory longitudinal item response model for multidimensional tests (Cho et al., in press) 
provides such an alternative. Suitable for sample sizes as small as 100 students and 20 
assessment items, this model provides a quantification of effect of intervention condition, of 
time, and time by intervention condition interactions, as well as a significance tests for each. 
These results are much like those provided in a repeated measures ANOVA, however, all of the 
benefits of more informative and accurate ability parameters are built into this model and 
problematic issues with ANOVA models are avoided. See the results of this generalized 
explanatory model (Model 1) run with our sample of 151 students in Appendix C. Here we can 
look for an effect of condition in the fixed effects section of the results to see that our 
intervention condition was 0.129 logits lower on their ability parameter than the control 
condition, but this difference was not significant (p = 0.406).  
 
Often researchers want to investigate the effect of intervention condition on various intervention 
subscales. In the current dataset, the assessment of mathematical equivalence is broken down 
into a procedural and conceptual knowledge section. The model developed by Cho et al. also 
estimates the difficulty, or effect of the subscales, which could be of value to intervention 
researchers. In Model 2, the fixed effect of ‘CONvPROC’ quantifies the relative difficulty of the 
conceptual knowledge items relative to the procedural knowledge items. We can interpret that 
the conceptual knowledge item difficulty is 1.11 logits smaller (or easier) than the procedural 
knowledge items (however p = 0.123). Additionally, researchers may be interested in 
determining if there is an item subscale by condition interaction, to see if the intervention 
condition performed differently than the control on different subscales. The subscale by 
condition interaction (Con.v.Proc*Condition) indicates that the conceptual knowledge items 



 

 

were 0.352 logits easier for the intervention condition than the control, but this difference was 
not significant (p = 0.310). These generalized explanatory item response models offer ways of 
quantifying and significance testing various differences between conditions and item subscales 
that repeated measures ANOVA models cannot.  
 
This new generalized explanatory longitudinal item response model for multidimensional tests 
provides intervention researchers a more informative, less biased, and equally powerful method 
for evaluating intervention effectiveness. 
 
Conclusions:  
 
In conclusion, item response models offer many methodological advantages in the quantification 
of individual learning and group change over time compared to repeated measure ANOVA 
approaches based on percent correct outcomes. In particular, the generalized explanatory 
longitudinal item response model for multidimensional tests (Cho et al., in press) quantifies and 
tests for differences between intervention conditions, while utilizing the more informative and 
less problematic metrics of student performance. In addition to being methodologically more 
sound, these analyses can be performed using the open-source and free program R. Details of the 
model, as well as information how to run these analyses can be found in Cho et al. (in press). 
One drawback to preforming IRT analyses is that they do require more technical proficiency on 
the part of the data analyst than ANOVA approaches. Nevertheless, researchers should strive to 
adapt this more informative and less biased metric in the evaluation of intervention effectiveness. 
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Appendix B. Figures 
 
Figure 1. Pretest Score Distribution 
 

 
 
Figure 2. Posttest Score Distribution 
 

 
 
Figure 3. Retention Test Score Distribution 
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Appendix C. Generalized Explanatory IRT Model R Code and Select Results 
 
# Load Data to R 
data <- read.table("C:/Path/data.txt", header=T, fill=T) 
 
#Call libraries 
library(lme4) 
 
# Establishing Matrices 
data$ITEM <- as.factor(data$Item) 
data$TIME <- as.factor(data$Time) 
data$CONDITION <- as.factor(data$Condition) 
data$CONvPROC <- as.factor(data$Con)  
data$CONT1 <- (data$Con)*(data$Q1) 
data$CONT2 <- (data$Con)*(data$Q2) 
data$CONT3 <- (data$Con)*(data$Q3) 
data$PROCT1 <- (data$Proc)*(data$Q1) 
data$PROCT2 <- (data$Proc)*(data$Q2) 
data$PROCT3 <- (data$Proc)*(data$Q3) 
 
# Code for Model 1: Generalized Explanatory IRT Model that Parallels Repeated Measures ANOVA 
GenExplanIRTModel <- lmer(Resp ~ 1 + TIME*CONDITION + CONvPROC + (1|Item) + (ConceptualT1 + 
ConceptualT 2+ ConceptualT 3-1|Person)+(ProceduralT1+ ProceduralT2+ ProceduralT3 -1|Person), data, 
binomial("logit")) 
GenExplanIRTModel 
 
#Results for Model 1 
Random effects: 
 Groups Name        Variance  Std.Dev. Corr           
 Person  PROCT1      3.032   1.741                 
         PROCT2      3.948   1.986     -0.050         
         PROCT3      1.157   1.076     -0.183   -0.191  
 Person  CONT1        0.691   0.831                 
         CONT2        0.558   0.747      0.407         
         CONT3        0.033   0.183     -0.968   -0.163  
 item1  (Intercept) 2.493 1.579                 
Number of obs: 9300, groups: Person, 155; item1, 20 
 
Fixed effects: 
                   Estimate    Std. Error z value   Pr(>|z|)      
(Intercept)         -0.2974     0.3728      -0.798     0.4250     
TIME2                1.4109      0.1335      10.569     <2e-16 *** 
TIME3                1.5883      0.1344      11.815     <2e-16 *** 
CONDITION    -0.1296     0.1559      -0.831     0.4057     
TIME2:CONDITION    0.2644      0.1872       1.412     0.1579     
TIME3:CONDITION    0.4245      0.1893       2.243     0.0249 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Correlation of Fixed Effects: 
              (Intr)  TIME2 TIME3   CONDIT TIME2: 
TIME2        -0.060                             
TIME3        -0.086   0.658                      
CONDITION   -0.210   0.144   0.208               
TIME2:CONDI   0.043  -0.704  -0.460  -0.206        
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TIME3:CONDI   0.061  -0.457  -0.698  -0.295   0.654 
 
 
# Model 2: Code for Generalized Explanatory IRT Model with Item Type (Conceptual) by Condition 
Interaction  
GenExplanIRTModelwItemTypeInteraction <- lmer(Resp ~ 1 + TIME + CONvPROC + 
CONvPROC*CONDITION + (1|Item) + (ConceptualT1 + ConceptualT2+ ConceptualT3-
1|Person)+(ProceduralT1+ ProceduralT2+ ProceduralT3 -1|Person), data, binomial("logit")) 
GenExplanIRTModelwItemTypeInteraction 
 
#Select Results for Model 2 

 
Fixed effects: 
                                     Estimate   Std. Error Z value Pr(>|z|)     
(Intercept)              0.26568    0.52602   0.505    0.614     
Time2                    1.54647    0.09523  16.240   <2e-16 *** 
Time3                    1.80560    0.09710  18.595   <2e-16 *** 
Conceptual(vs Procedural) -1.11337    0.72175  -1.543    0.123     
Condition                        -0.29204    0.30188  -0.967    0.333     
Con.v.Proc*Condition       0.35247    0.34697   1.016    0.310     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 


